JP2513892B2 - Temperature sensor for strong magnetic field - Google Patents
Temperature sensor for strong magnetic fieldInfo
- Publication number
- JP2513892B2 JP2513892B2 JP2074236A JP7423690A JP2513892B2 JP 2513892 B2 JP2513892 B2 JP 2513892B2 JP 2074236 A JP2074236 A JP 2074236A JP 7423690 A JP7423690 A JP 7423690A JP 2513892 B2 JP2513892 B2 JP 2513892B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- temperature sensor
- superconductor
- temperature
- sheath
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
Description
【発明の詳細な説明】 「産業上の利用分野」 本発明は、超電導発電機・リニアモーターカー・超電
導電力貯蔵等の強磁界極低温環境下で用いる強磁界用温
度センサに関するものである。TECHNICAL FIELD The present invention relates to a temperature sensor for a strong magnetic field used in a strong magnetic field cryogenic environment such as a superconducting generator, a linear motor car, and a superconducting electric power storage.
「従来の技術」 白金−コバルト、カーボン等の測温抵抗体、サーミス
ター、アモルファス−シリコン、白金等の薄膜型測温抵
抗体は、電気抵抗の温度依存性を用いて温度を計測す
る。金鉄クロメル等の熱電対は異種導体間の測温接点と
他端との温度差によって生じる熱起電力を用いて温度を
計測する。電気容量型温度センサは誘電体をはさんで相
対する2枚の導体電極間の電気容量の温度依存性を用い
て温度を計測する。"Prior Art" Resistance temperature detectors such as platinum-cobalt and carbon, and thin film resistance temperature detectors such as thermistor, amorphous-silicon and platinum measure temperature by using temperature dependence of electric resistance. Thermocouples such as gold-iron chromel measure the temperature using the thermoelectromotive force generated by the temperature difference between the temperature-measuring junction between different conductors and the other end. The capacitance-type temperature sensor measures the temperature by using the temperature dependence of the capacitance between two conductor electrodes facing each other with a dielectric interposed therebetween.
以上の温度センサは工業的に有用であり、普及してい
るが、いずれも電気的磁気的原理を用いるため、強磁界
が印加される環境では、強磁界によって電子やキャリヤ
ー等の動きが乱され、測定値に誤差が生じて使用できな
かった。The above temperature sensors are industrially useful and widely used, but since they all use the electro-magnetic principle, the movement of electrons and carriers is disturbed by the strong magnetic field in an environment where a strong magnetic field is applied. , The measurement value had an error and could not be used.
従来技術の例を第1図に示す。第1図は測温抵抗体セ
ンサである。3線式測温抵抗体の為、導線8は3本あ
る。SUS316等の金属シース3の中に測温抵抗体1と導線
8の3本の導線同士及びシース3がショートしないよう
に絶縁粉体2で絶縁しつつ、測温抵抗体1、導線8を固
定している。大気中の水分を吸湿せぬようにエポキシ等
のシース封止部4で封止し、被覆10付の導線9を導線8
に銀ロウ等で電気的に接合7し、SUS316等のスリーブ5
をかぶせてシース3とスリーブ5を溶接16し、エポキシ
等の樹脂6をスリーブ5内に充填する。An example of the prior art is shown in FIG. FIG. 1 shows a resistance temperature detector sensor. Since it is a three-wire resistance temperature detector, there are three conducting wires 8. Fix the resistance temperature detector 1 and the conductor 8 while insulating them with the insulating powder 2 so that the three resistance wires of the resistance temperature detector 1 and the conductor 8 and the sheath 3 are not short-circuited in the metal sheath 3 such as SUS316. are doing. It is sealed with a sheath sealing portion 4 such as epoxy so as not to absorb moisture in the atmosphere, and the conductor 9 with the coating 10 is connected to the conductor 8.
It is electrically joined with silver solder, etc. to 7 and sleeve 5 such as SUS316.
Then, the sheath 3 and the sleeve 5 are welded 16 with each other, and a resin 6 such as epoxy is filled in the sleeve 5.
導線9の一端に設けた圧着端子11を介して電気計器に
接続され測温抵抗体1の温度を計測する。The temperature of the resistance temperature detector 1 is measured by being connected to an electric meter through a crimp terminal 11 provided at one end of the lead wire 9.
測温抵抗体1の詳細図が第2図である。アルミナ等の
2つの孔碍子13の孔の中にコイル状の白金線14の測温抵
抗線をU字状に通し、碍子13の両端をセラミック系接着
剤12で封止する。白金線14は銅等の導線8に接続され
る。3線式測温抵抗体として電気計器例でブリッジを組
んで白金線14の電気抵抗値を正確に測り、温度を算出す
るために、導線8は第1図に示すように、A、B、Cの
3本の枝分かれしている。FIG. 2 is a detailed view of the resistance temperature detector 1. A temperature measuring resistance wire of a coil-shaped platinum wire 14 is passed in a U shape into the holes of two holes 13 made of alumina or the like, and both ends of the insulator 13 are sealed with a ceramic adhesive 12. The platinum wire 14 is connected to the conducting wire 8 such as copper. In order to accurately measure the electric resistance value of the platinum wire 14 by constructing a bridge as an example of an electric meter as a three-wire resistance temperature detector and calculating the temperature, the lead wire 8 is, as shown in FIG. There are 3 branches of C.
「発明が解決しようとする課題」 上記のような構成の測温抵抗体温度センサ20に強磁界
Hを測温抵抗1もしくは導線8に印加すると、強磁界H
の変化に応じて、誘導電流が白金線14、導線8に生じ
て、温度測定値に大きな誤差を生じる。従って、このよ
うな温度センサは強磁界下では使用できない。[Problems to be Solved by the Invention] When a strong magnetic field H is applied to the resistance temperature detector 1 or the conductor 8 in the resistance temperature sensor 20 having the above-described structure, the strong magnetic field H is generated.
In accordance with the change of the above, an induced current is generated in the platinum wire 14 and the lead wire 8 and causes a large error in the temperature measurement value. Therefore, such a temperature sensor cannot be used under a strong magnetic field.
「課題を解決するための手段」 本発明では、ニオブ合金等の金属超電導体や、イット
ニウム−バリウム−銅−酸素系等のセラミック超電導
体、有機超電導体等の超電導体が臨界温度以下で反磁性
を示すことを用いる。"Means for Solving the Problems" In the present invention, a metal superconductor such as a niobium alloy, a ceramic superconductor such as ytnium-barium-copper-oxygen system, or a superconductor such as an organic superconductor is reacted at a critical temperature or lower. It is used to exhibit magnetism.
「実施例」 第3図にて、マイスナー効果により超電導体の反磁性
を示す。超電導体30の臨界温度T0以上では、第3図
(a)のように超電導体30は超電導状態にないため、磁
束31は内部空間32にも印加される。しかし、臨界温度T0
以下では第3図(b)のように超電導体30は超電導状態
となりマイスナー効果により完全反磁性を示すため、外
部の磁束31は超電導体30及び内部空間32には侵入できな
い。第3図(c)のように、超電導体30′に小孔34があ
いていても、内部空間32にはほとんど磁束31は侵入でき
ない。従って、この空間33に温度センサ本体35および導
線36を入れる。この超電導体30′、温度センサ本体35、
導線36を一体として温度センサとみなすと、この温度セ
ンサ37は臨界温度T0以下を計測する場合に限って超電導
体30′の完全反磁性により磁束31が温度センサ本体35、
導線36に印加されず、強磁界下でも誤差の生じない温度
センサを構成できる。[Example] Fig. 3 shows the diamagnetism of a superconductor due to the Meissner effect. Above the critical temperature T 0 of the superconductor 30, since the superconductor 30 is not in the superconducting state as shown in FIG. 3A, the magnetic flux 31 is also applied to the internal space 32. However, the critical temperature T 0
In the following, as shown in FIG. 3B, the superconductor 30 is in a superconducting state and exhibits perfect diamagnetism due to the Meissner effect, so that the external magnetic flux 31 cannot penetrate into the superconductor 30 and the internal space 32. Even if the superconductor 30 'has a small hole 34 as shown in FIG. 3 (c), almost no magnetic flux 31 can enter the internal space 32. Therefore, the temperature sensor body 35 and the conducting wire 36 are put in this space 33. This superconductor 30 ', temperature sensor body 35,
If the conductor 36 is regarded as a temperature sensor as a unit, the temperature sensor 37 will generate a magnetic flux 31 due to the complete diamagnetism of the superconductor 30 'only when measuring the critical temperature T 0 or lower.
It is possible to configure a temperature sensor that is not applied to the conducting wire 36 and does not cause an error even under a strong magnetic field.
ここで、温度センサは測温抵抗体、サーミスタ、薄膜
型測温抵抗体、熱電対、電気容量型温度センサ等のいず
れでもよく、電子・キャリヤー等が温度測定の原理に関
与していて、強磁界の影響を受ける温度センサならすべ
て適用できる。Here, the temperature sensor may be any of a resistance temperature detector, a thermistor, a thin film resistance temperature detector, a thermocouple, an electric capacity type temperature sensor, etc., and the electron / carrier etc. are involved in the principle of temperature measurement. Any temperature sensor affected by a magnetic field can be applied.
また、磁界の影響を主として受ける箇所が温度センサ
本体のみである場合は温度センサ本体のみの周囲を超電
導体で囲み、導線は囲まなくてもよい。逆に磁界の影響
を主として受ける箇所が導線部のみであるときは導線部
の周囲のみを超電導体で囲み、温度センサ本体は囲まな
くてもよい。一般に磁界の影響を受けやすい部分のみを
超電導体で囲み、他は囲まなくてもよい。Further, when the temperature sensor main body is the only part that is mainly affected by the magnetic field, the periphery of only the temperature sensor main body may be surrounded by the superconductor, and the conductor may not be surrounded. On the contrary, when only the conductive wire portion is mainly affected by the magnetic field, only the peripheral portion of the conductive wire portion may be surrounded by the superconductor and the temperature sensor body may not be surrounded. Generally, only the portion that is easily affected by the magnetic field is surrounded by the superconductor, and the other portions may not be surrounded.
従来例は、第1図と同じであるが、シース3の材質の
みがニオブ合金の超電導体である。従って、この測温抵
抗体温度センサ20で、臨界温度T0の温度を測る場合はシ
ース3が完全反磁性を示す為、強磁界Hが印加されても
シース3の内部には強磁界Hが侵入しない為に誘電電流
による温度誤差を生じない。The conventional example is the same as that of FIG. 1, but only the material of the sheath 3 is a niobium alloy superconductor. Therefore, when the temperature of the critical temperature T 0 is measured by the resistance temperature sensor 20, since the sheath 3 exhibits perfect diamagnetism, even if the strong magnetic field H is applied, the strong magnetic field H is generated inside the sheath 3. Since it does not enter, there is no temperature error due to dielectric current.
従来例を第4図に示す。 A conventional example is shown in FIG.
超電導体のシース51の中に測温接点53を形成した熱電
対52を挿入し、隙間に絶縁粉体(MgO)54を充填し、必
要ならば焼きなまし等の熱処理ののちエポキシ等で封止
56する。アルミダイキャストの端子箱58は嵌合部405に
てSUS316のフランジ57と結合する。シース51はフランジ
57と溶接404される。セラミックス端子板60の孔406を貫
通した熱電対52は端子62・63にてネジ止され、端子板60
は端子箱58にネジ61・64で止められる。電線孔66にてリ
ング401・402、パッキン403を介してベルマウス400でネ
ジ締め付けされたケーブル68の補償導線65は端子62・63
にて熱電対52と接続される。アルミダイキャストの蓋59
は嵌合部69にて端子箱58と嵌合する。補償導線65のB部
は電気計器に接続される。Insert the thermocouple 52 with the temperature measuring contact 53 formed in the sheath 51 of the superconductor, fill the gap with insulating powder (MgO) 54, and heat it with annealing if necessary, and then seal with epoxy or the like.
56. The aluminum die cast terminal box 58 is joined to the SUS316 flange 57 at the fitting portion 405. Sheath 51 is flange
Welded 404 with 57. The thermocouple 52 penetrating the hole 406 of the ceramics terminal plate 60 is screwed by the terminals 62 and 63,
Is fixed to the terminal box 58 with screws 61 and 64. The compensating conductor 65 of the cable 68 screwed with the bellmouth 400 through the ring 401/402 and the packing 403 at the wire hole 66 is the terminal 62/63
Is connected to thermocouple 52. Aluminum die cast lid 59
Is fitted to the terminal box 58 at the fitting portion 69. The B section of the compensating lead wire 65 is connected to an electric meter.
測温接点53と、補償導線65のB部の温度差に対応する
熱起電力VがB部に出力されるが、臨界温度以下を計測
している時は、シース51が完全反磁性を示す為、外部の
磁界Hは熱電対52、測温接点53に侵入できず測定誤差を
生じない。The thermoelectromotive force V corresponding to the temperature difference between the temperature measuring contact 53 and the B portion of the compensating lead wire 65 is output to the B portion, but the sheath 51 exhibits complete diamagnetism when measuring below the critical temperature. Therefore, the external magnetic field H cannot enter the thermocouple 52 and the temperature measuring contact 53, and no measurement error occurs.
本発明の実施例を第5図に示す。 An embodiment of the present invention is shown in FIG.
SUS316のシース105の内に4線式測温抵抗体101と導線
106を挿入し、隙間をMgOの絶縁粉体102で充填してエポ
キシでシース封止部108を封止する。それをさらにSUS31
6のシース104に挿入し、隙間にセラミック超電導体粉体
103を充填し、シース封止部107にてエポキシでシース封
止する。被覆112を有する導線113は前記導線106と接合1
09され、接合109部はスリーブ114で覆われ、スリーブ11
4は先端側をシース104の基端に外嵌めして溶接110によ
り固着し、スリーブ114内には樹脂111が充填される。4-wire resistance temperature detector 101 and conducting wire in SUS316 sheath 105
106 is inserted, the gap is filled with MgO insulating powder 102, and the sheath sealing portion 108 is sealed with epoxy. It further SUS31
6 Insert into the sheath 104, and insert ceramic superconductor powder in the gap.
103 is filled, and the sheath sealing portion 107 seals the sheath with epoxy. A conductive wire 113 having a coating 112 is joined to the conductive wire 106.
09, the joint 109 part is covered with the sleeve 114, the sleeve 11
The distal end of the sleeve 4 is externally fitted to the proximal end of the sheath 104 and fixed by welding 110, and the sleeve 114 is filled with the resin 111.
臨界温度以下を計測する時、超電導粉体103が完全反
磁性を示し、外部磁場Hは測温抵抗体101に侵入できな
いため、測定誤差は生じない。When measuring below the critical temperature, the superconducting powder 103 exhibits perfect diamagnetism and the external magnetic field H cannot penetrate into the resistance temperature detector 101, so that no measurement error occurs.
従来例を第6図に示す。 A conventional example is shown in FIG.
超電導体のケース72の内に、4線式測温抵抗体75が挿
入され、熱伝達をよくするためのHeガス74を封入後、導
線73をエポキシで樹脂封止71している。ケース72の完全
反磁性により外部磁界Hが測温抵抗体75に印加されない
原理は同様である。A 4-wire resistance temperature detector 75 is inserted in a case 72 of a superconductor, He gas 74 for improving heat transfer is filled, and then a conductor 73 is resin-sealed 71 with epoxy. The principle that the external magnetic field H is not applied to the resistance temperature detector 75 due to the complete diamagnetism of the case 72 is the same.
従来例を第7図に示す。 A conventional example is shown in FIG.
セラミック等の絶縁材でできた2つ孔碍子81の側面に
超電導体の膜80が蒸着、スパッタ、溶射等の方法で形成
されている。熱電対82が碍子81の2つの孔の中に挿入さ
れ碍子81の外側に測温接点83が形成されている。A film 80 of a superconductor is formed on the side surface of a two-hole insulator 81 made of an insulating material such as ceramics by a method such as vapor deposition, sputtering or thermal spraying. A thermocouple 82 is inserted into the two holes of the insulator 81, and a temperature measuring contact 83 is formed on the outside of the insulator 81.
超電導体の膜80の完全反磁性によって磁界Hは熱電対
82にほとんど印加されない為、計測誤差を生じない。The magnetic field H is a thermocouple due to the complete diamagnetism of the superconductor film 80.
Since it is hardly applied to 82, no measurement error occurs.
従来例を第8図に示す。 A conventional example is shown in FIG.
測温抵抗体310の構造は、第2図とほとんど同じであ
るが、2つ孔碍子302の側面に超電導体301の円筒を被
せ、超電導体の蓋304をセラミック系接着剤305で2つ孔
碍子302と接着した点が異なる。超電導体の円筒301と超
電導体の蓋304の完全反磁性により、磁界Hが白金線303
に印加されたい為、測定誤差を生じない。The structure of the resistance thermometer 310 is almost the same as in FIG. 2, but the side surface of the two-hole insulator 302 is covered with the cylinder of the superconductor 301, and the lid 304 of the superconductor is made of two holes with the ceramic adhesive 305. The difference is that it is adhered to the insulator 302. Due to the complete diamagnetism of the superconducting cylinder 301 and the superconducting lid 304, the magnetic field H is reduced by the platinum wire 303.
Since it is applied to, there is no measurement error.
従来例を第9図に示す。 A conventional example is shown in FIG.
薄膜測温抵抗体403および導線406は樹脂の絶縁フレキ
シブル基板401・402に挟まれ、基板401・402は超電導体
のケース404・405に挟まれる。ケース404とケース405は
接着剤等で互いに固定される。超電導体のケース404・4
05の完全反磁性により、外部磁界Hは薄膜測温抵抗体40
3と導線406に印加されないので測定誤差を生じない。The thin film resistance temperature detector 403 and the lead wire 406 are sandwiched between insulating flexible substrates 401 and 402 made of resin, and the substrates 401 and 402 are sandwiched between cases 404 and 405 of superconductor. The case 404 and the case 405 are fixed to each other with an adhesive or the like. Superconductor case 404.4
Due to the perfect diamagnetism of 05, the external magnetic field H is 40
3 and the conductor 406 are not applied, no measurement error occurs.
「発明の効果」 本発明は、上述のように、温度センサの所要部分を超
電導体で構成させたので、外部磁界が印加されても温度
センサには磁界が印加されず測定誤差を生じない。[Advantages of the Invention] As described above, according to the present invention, since the required portion of the temperature sensor is made of a superconductor, the magnetic field is not applied to the temperature sensor even if an external magnetic field is applied, and a measurement error does not occur.
第1図は従来の測温抵抗体センサの縦断面図、第2図は
測温抵抗体の詳細側面図、第3図は超電導体と磁界の関
係を説明する図、第4図は従来例を示す熱電対の縦断面
図、第5図は本発明の実施例を示す4線式測温抵抗体の
縦断面図、第6図は従来例を示す4線式測温抵抗体の縦
断面図、第7図は従来例を示す熱電対の縦断面図、第8
図は従来例を示す測温抵抗体の側面図、第9図は従来例
を示す薄膜測温抵抗体の縦断面図である。FIG. 1 is a vertical sectional view of a conventional resistance temperature detector sensor, FIG. 2 is a detailed side view of the resistance temperature detector, FIG. 3 is a view for explaining the relationship between a superconductor and a magnetic field, and FIG. 4 is a conventional example. 5 is a vertical sectional view of a thermocouple, FIG. 5 is a vertical sectional view of a 4-wire resistance temperature detector showing an embodiment of the present invention, and FIG. 6 is a vertical section of a 4-wire resistance temperature detector showing a conventional example. 8 and 9 are longitudinal sectional views of a thermocouple showing a conventional example.
FIG. 9 is a side view of a conventional resistance temperature detector, and FIG. 9 is a vertical sectional view of a conventional thin film resistance temperature detector.
Claims (1)
中に温度センサ及び導線106部が挿入され金属シース105
内の隙間に絶縁粉体102を充填したシース型温度センサ
を、さらに片端を封止部107で封じた他の金属シース104
の中に挿入し金属シース104内の隙間に超電導粉体103を
充填した強磁界用温度センサ。1. A metal sheath 105 in which a temperature sensor and a conductor 106 are inserted into a metal sheath 105 whose one end is sealed by a sealing portion 108.
A sheath-type temperature sensor in which the inner space is filled with insulating powder 102, and another metal sheath 104 having one end sealed with a sealing portion 107
A temperature sensor for a strong magnetic field, which is inserted into a metal sheath 104 and filled with a superconducting powder 103 in a gap in a metal sheath 104.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2074236A JP2513892B2 (en) | 1990-03-23 | 1990-03-23 | Temperature sensor for strong magnetic field |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2074236A JP2513892B2 (en) | 1990-03-23 | 1990-03-23 | Temperature sensor for strong magnetic field |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03273122A JPH03273122A (en) | 1991-12-04 |
JP2513892B2 true JP2513892B2 (en) | 1996-07-03 |
Family
ID=13541330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2074236A Expired - Fee Related JP2513892B2 (en) | 1990-03-23 | 1990-03-23 | Temperature sensor for strong magnetic field |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2513892B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020052869A (en) * | 2000-12-26 | 2002-07-04 | 이구택 | Shunt error free sheathed thermocouple |
JP4784843B2 (en) * | 2008-11-12 | 2011-10-05 | 株式会社鷺宮製作所 | Temperature measuring sensor and manufacturing method of temperature measuring sensor |
JP6301753B2 (en) * | 2014-06-25 | 2018-03-28 | 日本特殊陶業株式会社 | Temperature sensor |
JP2018091642A (en) * | 2016-11-30 | 2018-06-14 | 株式会社チノー | Sheath type temperature measuring resistor |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5577155U (en) * | 1978-11-22 | 1980-05-28 | ||
JPS55109310A (en) * | 1979-02-16 | 1980-08-22 | Matsushita Electric Ind Co Ltd | Panel temperature sensor and method of manufacturing same |
JPS55131735A (en) * | 1979-04-02 | 1980-10-13 | Mitsubishi Electric Corp | Cover for fitting ultralow temperature measuring element |
JPS5674334U (en) * | 1979-11-13 | 1981-06-18 | ||
JPS5768533U (en) * | 1980-10-13 | 1982-04-24 | ||
JPH0733810B2 (en) * | 1984-12-26 | 1995-04-12 | 日本電装株式会社 | Slot valve opening detector |
JPS61154536U (en) * | 1985-03-16 | 1986-09-25 | ||
JPS62203425U (en) * | 1986-06-13 | 1987-12-25 | ||
JPH01132105A (en) * | 1987-11-18 | 1989-05-24 | Hitachi Ltd | Superconducting magnetic particulate and usage thereof |
JPH01219527A (en) * | 1988-02-29 | 1989-09-01 | Toshiba Corp | Resistance thermometer |
-
1990
- 1990-03-23 JP JP2074236A patent/JP2513892B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03273122A (en) | 1991-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5999081A (en) | Shielding unique for filtering RFI and EFI interference signals from the measuring elements | |
US5864282A (en) | Unique strain relief junction | |
US5056929A (en) | Temperature compensation type infrared sensor | |
US4971452A (en) | RTD assembly | |
EP0153607B1 (en) | Multi-wire mineral insulated cable thermocouple reference junction | |
US3956936A (en) | Temperature-measuring system | |
GB2062860A (en) | Temperature sensing assembly | |
US4627744A (en) | Temperature sensor utilizing thermal noise and thermal couple elements, and associated connecting cable | |
US5090918A (en) | Isothermal termination block having a multi-layer thermal conductor | |
JP2513892B2 (en) | Temperature sensor for strong magnetic field | |
US6158885A (en) | Thermocouple-to-extension wire ambient temperature error correction device | |
JP2002048652A (en) | Temperature sensor | |
US6846983B1 (en) | Millivoltage generator | |
US4682898A (en) | Method and apparatus for measuring a varying parameter | |
JPH0743285B2 (en) | Electronic thermometer | |
JP2515067Y2 (en) | Thermistor temperature sensor | |
US4695793A (en) | Resistive sensing thermal device for current measurement | |
GB2184554A (en) | Temperature monitoring devices for use with mineral insulated cables | |
JP3118621B2 (en) | Capsule type strain gauge with temperature measurement function | |
JPH07104214B2 (en) | Sheath type thermocouple with airtight terminal | |
EP0327252A2 (en) | RTD assembly | |
JPH0120664Y2 (en) | ||
CN112033561A (en) | Temperature sensing element, temperature measurement component and battery pack | |
US20230194357A1 (en) | Temperature probe and method for manufacturing a temperature probe | |
JPS6234270Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |