[go: up one dir, main page]

JP2513664B2 - Method for manufacturing thin film transistor - Google Patents

Method for manufacturing thin film transistor

Info

Publication number
JP2513664B2
JP2513664B2 JP62036986A JP3698687A JP2513664B2 JP 2513664 B2 JP2513664 B2 JP 2513664B2 JP 62036986 A JP62036986 A JP 62036986A JP 3698687 A JP3698687 A JP 3698687A JP 2513664 B2 JP2513664 B2 JP 2513664B2
Authority
JP
Japan
Prior art keywords
layer
temperature
insulating film
film
gate insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62036986A
Other languages
Japanese (ja)
Other versions
JPS63204657A (en
Inventor
安宏 那須
悟 川井
友孝 松本
浩一 立岡
照彦 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62036986A priority Critical patent/JP2513664B2/en
Publication of JPS63204657A publication Critical patent/JPS63204657A/en
Application granted granted Critical
Publication of JP2513664B2 publication Critical patent/JP2513664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 〔概 要〕 本発明はスタガード型アモルファスシリコン薄膜トラ
ンジスタの製造方法において、ソース・ドレイン電極上
に活性層アモルファスSiを成膜する工程で、ソース・ド
レイン電極となるn+a−Si表面上に自然酸化膜が生成
し、コンタクト特性が劣化することを抑えるため、活性
層となるa−Siの成長温度を、低温から高温へ上昇させ
ながら成膜するようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION [Outline] The present invention relates to a method of manufacturing a staggered amorphous silicon thin film transistor, in which a source / drain electrode is formed of n + a in the process of forming an active layer of amorphous Si on the source / drain electrode. In order to prevent the natural oxide film from being formed on the -Si surface and deteriorating the contact characteristics, the film is formed while increasing the growth temperature of a-Si, which becomes the active layer, from a low temperature to a high temperature. .

〔産業上の利用分野〕[Industrial applications]

本発明はスタガード型アモルファスシリコン層よりな
る活性層を有する薄膜トランジスタの製造方法に係り、
特に活性層とその上に積層するゲート絶縁膜の形成方法
に関する。
The present invention relates to a method of manufacturing a thin film transistor having an active layer formed of a staggered amorphous silicon layer,
In particular, the present invention relates to a method for forming an active layer and a gate insulating film laminated thereon.

〔従来の技術〕[Conventional technology]

アクティブマトリクス型液晶パネルのスイッチング素
子としては、活性層をアモルファスシリコン(a−Si)
層により形成し、且つ逆スタガード型電極構成の薄膜ト
ランジスタ(TFT)が多く用いられていたが、液晶表示
用マトリクスの製造工程が簡単化できる点で、スタガー
ド型構造が見直され、その素子特性の向上及び安定化が
種々検討されている。
As a switching element of an active matrix type liquid crystal panel, an active layer is made of amorphous silicon (a-Si).
Although thin film transistors (TFTs) that are formed of layers and have an inverted staggered type electrode structure were often used, the staggered type structure was reconsidered and the device characteristics improved because the manufacturing process of the liquid crystal display matrix could be simplified. And various stabilizations have been studied.

第2図により従来のスタガード型TFTの製造方法を、
その製造工程の順に説明する。
The conventional staggered TFT manufacturing method is shown in FIG.
The manufacturing steps will be described in order.

同図(a)に示すように、絶縁性基板,例えばガラス
基板1の上に、ソース・ドレイン電極となる金属膜2
と、その上にn+a−Si層3を積層し、その上にソース,
ドレイン電極パターニング用のレジスト膜7を形成する
〔同図(a)参照〕。
As shown in FIG. 1A, a metal film 2 to be source / drain electrodes is formed on an insulating substrate, for example, a glass substrate 1.
And the n + a-Si layer 3 is laminated on it, and the source,
A resist film 7 for patterning the drain electrode is formed [see FIG.

次いで上記レジスト膜7をマスクとしてn+a−Si層3
と金属膜2を順次エッチングした後、上記レジスト膜7
を除去する〔同図(b)参照〕。
Next, using the resist film 7 as a mask, the n + a-Si layer 3 is formed.
And the metal film 2 are sequentially etched, and then the resist film 7 is formed.
Are removed [see (b) in the figure].

次いでn+a−Si層3に弗酸系エッチャンチによる表面
処理を施し、表面の自然酸化膜を除去する〔同図(c)
参照〕。
Then, the n + a-Si layer 3 is subjected to a surface treatment with a hydrofluoric acid-based etchant to remove the natural oxide film on the surface [FIG.
reference〕.

次いで活性層となるa−Si:H層4,ゲート絶縁膜となる
SiN(窒化シリコン)層5を成膜する〔同図(d)参
照〕。なおゲート絶縁膜としては、二酸化シリコン(Si
O2)層等を用いてもよい。
Then, the a-Si: H layer 4 which becomes the active layer and the gate insulating film becomes
A SiN (silicon nitride) layer 5 is formed [see FIG. As the gate insulating film, silicon dioxide (Si
An O 2 ) layer or the like may be used.

次いでゲート電極となる導電層6を形成し、その上に
ゲート電極パターニングのためのレジスト膜8を形成す
る〔同図(e)参照〕。
Then, a conductive layer 6 to be a gate electrode is formed, and a resist film 8 for patterning the gate electrode is formed thereon (see FIG. 8E).

次いで上記レジスト膜8をマスクとして、導電層6,Si
N層5,a−Si:H層4,n+a−Si層3を順次エッチングした
後、マスクとして用いたレジスト膜8を除去する〔同図
(f)参照〕。
Then, using the resist film 8 as a mask, the conductive layer 6, Si
After the N layer 5, a-Si: H layer 4, and n + a-Si layer 3 are sequentially etched, the resist film 8 used as a mask is removed [see FIG.

なお、ここでは導電層6とa−Si:H層4を一度のフォ
トリソグラフィ工程でパターニングする例を示したが、
勿論これらは別々の工程でエッチングしても良い。
Although an example in which the conductive layer 6 and the a-Si: H layer 4 are patterned by a single photolithography process is shown here,
Of course, these may be etched in separate steps.

以上によりスタガード型TFTが完成する。 The staggered TFT is completed by the above.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来のTFTの製造方法では、基板の温度を200℃〜
300℃としてプラズマ化学気相成長(P−CVD)法を施
し、a−Si:H層4を成長させる。この方法では、n+a−S
i層3表面に微量に吸着または残存している酸素
(O2)、或いは水分(H2O)が分解した酸素によって、n
+a−Si層3表面が酸化し、薄い酸化膜が形成されやす
い。そのため、n+a−Si層3とa−Si:H層4とのコンタ
クトが不十分となり、良好な特性を安定して得ることが
困難である。
In the above conventional TFT manufacturing method, the temperature of the substrate is 200 ° C to
Plasma chemical vapor deposition (P-CVD) is performed at 300 ° C. to grow the a-Si: H layer 4. In this method, n + a−S
The oxygen (O 2 ) adsorbed or remaining on the surface of the i-layer 3 in a trace amount or the oxygen decomposed by water (H 2 O) causes n
+ The surface of the a-Si layer 3 is easily oxidized to form a thin oxide film. Therefore, the contact between the n + a-Si layer 3 and the a-Si: H layer 4 becomes insufficient, and it is difficult to stably obtain good characteristics.

本発明はコンタクト層表面に酸化膜を生じることがな
く、良好なコンタクト特性が安定して得られる薄膜トラ
ンジスタの製造方法を提供することを目的とする。
It is an object of the present invention to provide a method for manufacturing a thin film transistor, in which an oxide film is not formed on the surface of a contact layer and good contact characteristics can be stably obtained.

〔問題点を解決するための手段〕[Means for solving problems]

本発明においては、n+a−Si層3上にa−Si:H層4を
成長させる際に、初期には膜が堆積する最低の温度より
低くない温度から膜成長を開始し、徐々に昇温してa−
Si:H層4の成長が終了し、次のSiN層5の成長を開始す
るまでに、a−Si:H層4とSiN層5との良好な界面特性
が得られる温度,即ち200℃〜300℃の温度になるように
する。
In the present invention, when the a-Si: H layer 4 is grown on the n + a-Si layer 3, the film growth is started at a temperature not lower than the lowest temperature at which the film is initially deposited, and gradually increased. Temperature rises to a-
By the time the growth of the Si: H layer 4 ends and the growth of the next SiN layer 5 begins, a temperature at which good interface characteristics between the a-Si: H layer 4 and the SiN layer 5 are obtained, that is, 200 ° C to Keep the temperature at 300 ° C.

〔作 用〕[Work]

a−Si:H層4の膜成長の初期には、基板温度が低いの
で、n+a−Si層3の表面が酸化することが抑制されるこ
とにより、コンタクト特性の劣化を防止され、a−Si:H
層4とSiN層5との界面付近では通常のa−Si:H層4の
成膜温度(200℃〜300℃)に昇温されているので、両者
の界面特性は従来と変わりなく、従って良好なFET特性
が得られる。
Since the substrate temperature is low at the initial stage of the film growth of the a-Si: H layer 4, the surface of the n + a-Si layer 3 is suppressed from being oxidized, so that the contact characteristics are prevented from being deteriorated. −Si: H
In the vicinity of the interface between the layer 4 and the SiN layer 5, the temperature is raised to the usual film formation temperature (200 ° C to 300 ° C) of the a-Si: H layer 4, so the interface characteristics of both are the same as before, Good FET characteristics can be obtained.

〔実 施 例〕〔Example〕

従来は真空内で基板温度が所定値に安定してから、一
定温度で成膜していたが、本実施例ではa−Si成膜中10
0℃程度から250℃程度まで昇温させながら成膜する。
Conventionally, the substrate temperature was stabilized at a predetermined value in a vacuum, and then the film was formed at a constant temperature.
The film is formed while raising the temperature from about 0 ° C to about 250 ° C.

以下第1図(a)〜(c)により、本発明の一実施例
をその製造工程の順に説明する。
An embodiment of the present invention will be described below in the order of manufacturing steps thereof with reference to FIGS. 1 (a) to 1 (c).

同図(a),(b)はa−Si:H層4,SiN層5の成膜工
程を示す図で、前記第2図(c),(d)の工程に相当
する。また同図(c)は成膜時に基板温度を徐々に上昇
させる模様を示したものである。
7A and 7B are diagrams showing a film forming process of the a-Si: H layer 4 and the SiN layer 5, and correspond to the processes of FIGS. 2C and 2D. Further, FIG. 6C shows a pattern in which the substrate temperature is gradually raised during film formation.

ガラス基板1上に、金属膜2,n+a−Si層3を積層し、
これをパターニングした後、上記n+a−Si層3の表面
を弗酸系のエッチャントによりごくわずかエッチングし
て、表面に形成された酸化膜(SiO2)を除去する〔第1
図(a)参照〕。
The metal film 2, n + a-Si layer 3 is laminated on the glass substrate 1,
After patterning this, the surface of the n + a-Si layer 3 is slightly etched with a hydrofluoric acid-based etchant to remove the oxide film (SiO 2 ) formed on the surface [First
See FIG. (A)].

次いでこれにプラズマ化学気相成長(P−CVD)法に
よりa−Si:H層,次いでその上に窒化シリコン(SiN)
層を成長させるのであるが、本実施例では基板を反応室
内に入れた後、n+a−Si層3表面が酸化するような高温
にさらされないよう、反応室を十分に冷やしておく。
Then, an a-Si: H layer is formed on the layer by plasma chemical vapor deposition (P-CVD), and then silicon nitride (SiN) is formed on the layer.
Although the layer is grown, in this embodiment, after the substrate is placed in the reaction chamber, the reaction chamber is cooled sufficiently so as not to be exposed to a high temperature such that the surface of the n + a-Si layer 3 is oxidized.

基板を反応室に入れ、真空度が所定値に達した後、基
板温度を上昇させ、a−Si:H層が成長する最低の温度を
越えた後、例えば120℃においてa−Si:H層の成長を開
始する。この後、同図(c)に示すように基板温度を徐
々に上昇させながらa−Si:H層4の成膜を行い、a−S
i:H層4の成膜を終了し次のSiN層5の成膜を開始するま
でに、通常のa−Si:H層4の成膜温度,即ち200〜300℃
(本実施例では、凡そ260℃)に到達させる。a−Si:H
層4の膜厚が所定値に達した後、SiN層5を成長させ、
同図(b)に示す積層体が得られる。これは前記第2図
(d)に相当し、構造的には何ら変わるところはない。
ただ、本実施例ではn+a−Si層3表面に酸化膜が形成さ
れていないので、これとa−Si:H層4とのコンタクトを
良好である点が、従来と異なる。
After the substrate is placed in the reaction chamber and the degree of vacuum reaches a predetermined value, the substrate temperature is raised to exceed the minimum temperature at which the a-Si: H layer grows. Start to grow. After that, as shown in FIG. 7C, the a-Si: H layer 4 is formed while gradually raising the substrate temperature, and a-S
Until the film formation of the i: H layer 4 is completed and the film formation of the next SiN layer 5 is started, the normal a-Si: H layer 4 film formation temperature, that is, 200 to 300 ° C.
(In this example, about 260 ° C.). a-Si: H
After the thickness of the layer 4 reaches a predetermined value, the SiN layer 5 is grown,
The laminated body shown in FIG. This corresponds to FIG. 2 (d), and there is no structural change.
However, in the present embodiment, since the oxide film is not formed on the surface of the n + a-Si layer 3, the contact between the oxide film and the a-Si: H layer 4 is good, which is different from the conventional case.

この後の製造工程は従来と全く同様に進めてよく、本
実施例においても、前記第2図(f)に見られるような
TFTが得られる。
The subsequent manufacturing process may be carried out in the same manner as in the conventional case, and in the present embodiment, as shown in FIG. 2 (f).
TFT is obtained.

以上のようにして本実施例で得られたTFTは、コンタ
クト層であるn+a:Si層3と、a−Si:H層4からなる活性
層とのコンタクトを良好で、且つ十分な再現性が得ら
れ、TFTの特性も安定する。
As described above, the TFT obtained in this example has good contact between the contact layer n + a: Si layer 3 and the active layer composed of the a-Si: H layer 4 and reproduces it sufficiently. And TFT characteristics are stable.

〔発明の効果〕〔The invention's effect〕

以上説明した如く本発明によれば、ソース・ドレイン
電極を構成するコンタクト層であるn+a−Si層3表面
が、a−Si:H層4の成膜工程初期に酸化されることが防
止されることから、ソース・ドレイン電極のコンタクト
特性が安定し、TFT特性,特にオン電流の値が安定す
る。
As described above, according to the present invention, the surface of the n + a-Si layer 3 which is the contact layer constituting the source / drain electrodes is prevented from being oxidized at the initial stage of the film formation process of the a-Si: H layer 4. As a result, the contact characteristics of the source / drain electrodes become stable, and the TFT characteristics, especially the on-current value, become stable.

このためアクティブマトリクス製造工程が簡単化でき
るスタガード型a−Si TFTを液晶パネルに使用すること
が容易となる。
Therefore, it becomes easy to use the staggered a-Si TFT in the liquid crystal panel, which can simplify the active matrix manufacturing process.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例説明図、 第2図は従来のTFTの説明図である。 図において、1は絶縁性基板(ガラス基板)、2は金属
膜、3はコンタクト層(n+a−Si層)、4は活性層(a
−Si:H層)、5はゲート絶縁膜(SiN層)を示す。
FIG. 1 is an explanatory diagram of an embodiment of the present invention, and FIG. 2 is an explanatory diagram of a conventional TFT. In the figure, 1 is an insulating substrate (glass substrate), 2 is a metal film, 3 is a contact layer (n + a-Si layer), and 4 is an active layer (a).
-Si: H layer), 5 indicates a gate insulating film (SiN layer).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 立岡 浩一 川崎市中原区上小田中1015番地 富士通 株式会社内 (72)発明者 市村 照彦 川崎市中原区上小田中1015番地 富士通 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichi Tachioka 1015 Kamiodanaka, Nakahara-ku, Kawasaki City, Fujitsu Limited Fujitsu Limited (72) Teruhiko Ichimura 1015, Kamedotachu, Nakahara-ku, Kawasaki City, Fujitsu Limited

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁性基板上に、金属膜とその上に積層さ
れたn+a−Si層からなるコンタクト層を有するソース電
極及びドレイン電極、a−Si:H層からなる活性層、ゲー
ト絶縁膜、ゲート電極を順次積層した構成のスタガード
型アモルファスシリコン薄膜トランジスタを製造する方
法であって、 前記n+a−Siのコンタクト層上にプラズマ化学気相成長
法によりa−Si:Hの活性層とゲート絶縁膜を連続して成
膜するに際し、 真空槽内において所定の真空度のもとで、基板温度をa
−Si:Hが堆積する最低温度より低い温度から上昇させ、
該最低温度を越えた後昇温させながらa−Si:H層を成長
させ、該a−Si:H層が所定の膜厚に達する前に、その上
のゲート絶縁膜との界面特性を良好ならしめる温度にま
で到達させ、次いで前記ゲート絶縁膜の成長を行う ことを特徴とする薄膜トランジスタの製造方法。
1. A source electrode and a drain electrode having a contact layer composed of a metal film and an n + a-Si layer laminated on the insulating substrate, an active layer composed of an a-Si: H layer, and a gate. A method for manufacturing a staggered amorphous silicon thin film transistor having a structure in which an insulating film and a gate electrode are sequentially stacked, wherein an active layer of a-Si: H is formed on the n + a-Si contact layer by plasma enhanced chemical vapor deposition. When the gate insulating film and the gate insulating film are continuously formed, the substrate temperature is set to a in a vacuum chamber under a predetermined vacuum degree.
− Raise from a temperature lower than the lowest temperature at which Si: H is deposited,
After the temperature exceeds the minimum temperature, the a-Si: H layer is grown while raising the temperature, and the interface characteristics with the gate insulating film on the a-Si: H layer are improved before the a-Si: H layer reaches a predetermined thickness. A method for manufacturing a thin film transistor, comprising: reaching a temperature for normalizing and then growing the gate insulating film.
JP62036986A 1987-02-19 1987-02-19 Method for manufacturing thin film transistor Expired - Lifetime JP2513664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62036986A JP2513664B2 (en) 1987-02-19 1987-02-19 Method for manufacturing thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62036986A JP2513664B2 (en) 1987-02-19 1987-02-19 Method for manufacturing thin film transistor

Publications (2)

Publication Number Publication Date
JPS63204657A JPS63204657A (en) 1988-08-24
JP2513664B2 true JP2513664B2 (en) 1996-07-03

Family

ID=12485072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62036986A Expired - Lifetime JP2513664B2 (en) 1987-02-19 1987-02-19 Method for manufacturing thin film transistor

Country Status (1)

Country Link
JP (1) JP2513664B2 (en)

Also Published As

Publication number Publication date
JPS63204657A (en) 1988-08-24

Similar Documents

Publication Publication Date Title
US5888855A (en) Method of manufacturing active matrix display
JPH05235034A (en) Method of manufacturing thin film transistor
JPH04280637A (en) Manufacturing method of thin film transistor
JPH08153699A (en) Manufacture of thin-film semiconductor device
JPH05283427A (en) Manufacture of thin film transistor and active matrix type liquid crystal display device using the same
JPH05304171A (en) Thin-film transistor
JP3204735B2 (en) Manufacturing method of hydrogenated amorphous silicon thin film transistor
JP2513664B2 (en) Method for manufacturing thin film transistor
JP2698724B2 (en) Thin film transistor and method of manufacturing the same
JPH04221854A (en) Thin film semiconductor device
JPH06260644A (en) Manufacture of semiconductor device
JP2692914B2 (en) Method for manufacturing thin film transistor
JPH0645606A (en) Manufacture of thin-film transistor matrix
JPH02186641A (en) Manufacture of thin film field-effect transistor element
JP3358284B2 (en) Method for manufacturing thin film transistor
JP2503001B2 (en) Method for manufacturing thin film transistor
JP3216173B2 (en) Method of manufacturing thin film transistor circuit
JP3025342B2 (en) Thin film transistor and method for forming the same
JP2002124466A (en) Method for fabricating semiconductor device and semiconductor device
JP3392557B2 (en) Processing method of aluminum wiring
JPH07122752A (en) Method of manufacturing thin film transistor
JP3038898B2 (en) Method for manufacturing thin film semiconductor device
JPH06188263A (en) Method of manufacturing self-aligned thin film transistor
JPH08148688A (en) Thin-film semiconductor device and manufacture thereof
JP2664413B2 (en) Method for manufacturing thin film transistor