JP2512912B2 - Rubber-based composite material manufacturing method - Google Patents
Rubber-based composite material manufacturing methodInfo
- Publication number
- JP2512912B2 JP2512912B2 JP61246278A JP24627886A JP2512912B2 JP 2512912 B2 JP2512912 B2 JP 2512912B2 JP 61246278 A JP61246278 A JP 61246278A JP 24627886 A JP24627886 A JP 24627886A JP 2512912 B2 JP2512912 B2 JP 2512912B2
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- cobalt
- rubber composition
- thin film
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Laminated Bodies (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、金属やプラスチック等の基体とゴム組成物
相互を加硫接着して複合体を製造するゴム系複合材料の
製造方法に関する。TECHNICAL FIELD The present invention relates to a method for producing a rubber-based composite material, in which a substrate such as metal or plastic and a rubber composition are vulcanized and adhered to each other to produce a composite.
従来の技術 従来、タイヤやコンベアベルト等のゴム系複合材料
は、金属を補強基体とする場合、例えばスチールコード
上に黄銅メッキ(ブラスメッキ)を施したものに対し、
硫黄成分と、加硫促進剤と、加硫接着に対し有効な働き
を有する有機コバルト塩又はレゾルシン−ヘキサメチル
テトラミン−シリカ等とを含有したゴム組成物を加硫接
着するなどの方法により製造されているが、かかる方法
において、硫黄成分や有機コバルト塩等の添加、その使
用量が接着を安定化するための重要な因子であることが
知られている。2. Description of the Related Art Conventionally, in rubber-based composite materials such as tires and conveyor belts, when a metal is used as a reinforcing base, for example, a steel cord is brass-plated (brass-plated),
A sulfur component, a vulcanization accelerator, and a method of vulcanizing and adhering a rubber composition containing an organic cobalt salt or resorcin-hexamethyltetramine-silica or the like having an effective action for vulcanization adhesion. However, in such a method, it is known that the addition of a sulfur component, an organic cobalt salt, or the like, and the amount used are important factors for stabilizing the adhesion.
例えば、黄銅メッキされたスチールコード等の基体に
ゴム組成物を接合する場合、、安定な接着を得るために
は硫黄の量をゴム組成物中のゴム成分100重量部に対し
少なくとも4〜8重量部とする必要があり、またナフテ
ン酸コバルト等の有機コバルト塩は、ゴム組成物と基体
とを安定に接着することができるため、その添加は必須
とされ、通常1〜3部程度添加することが行なわれてい
る。For example, when bonding a rubber composition to a substrate such as a brass-plated steel cord, in order to obtain stable adhesion, the amount of sulfur should be at least 4 to 8 parts by weight per 100 parts by weight of the rubber component in the rubber composition. In addition, since an organic cobalt salt such as cobalt naphthenate can stably bond the rubber composition and the substrate, its addition is essential, and usually about 1 to 3 parts should be added. Is being carried out.
発明が解決しようとする問題点 しかしながら、上述したように4〜8重量部という多
量の硫黄をゴム組成物に配合すると、加硫接着前のゴム
組成物、即ち未加硫ゴム組成物を長時間放置した場合に
ゴム組成物中から硫黄がブルームしてしまい、未加硫ゴ
ム組成物の保存性が大きな問題となったり、また、加硫
後のゴム組成物のゴム強度が熱劣化により著しく低下す
るといった欠陥がある。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, as described above, when a large amount of sulfur of 4 to 8 parts by weight is compounded in the rubber composition, the rubber composition before vulcanization adhesion, that is, the unvulcanized rubber composition, is left for a long time. Sulfur blooms from the rubber composition when left to stand, which poses a serious problem on the preservability of the unvulcanized rubber composition, and the rubber strength of the rubber composition after vulcanization is significantly reduced by heat deterioration. There is a defect that it does.
また、有機コバルト塩の使用は、加硫速度を適宜コン
トロールして安定な基体とゴム組成物との接着が得られ
る反面、接着力が経時で劣化する恐れがある他、ゴムの
破断強度、伸度等が熱老化により低下する傾向が著しく
強まるといった問題がある。Further, the use of the organic cobalt salt can control the vulcanization rate appropriately to obtain stable adhesion between the substrate and the rubber composition, but on the other hand, the adhesive strength may deteriorate with time, and the breaking strength and elongation of the rubber may be increased. There is a problem that the tendency such as the degree of deterioration due to heat aging remarkably increases.
このため、硫黄成分(硫黄加硫の際の硫黄又は有機硫
黄加硫の際の硫黄化合物)の配合量を軽減して、耐熱老
化性に優れ、かつ安定した金属やプラスチック等の基体
との接着性が得られるゴム系複合材料の製造方法が求め
られており、更には有機コバルト塩の配合をなくしても
安定した金属やプラスチック等の基体との接着性が得ら
れるゴム系複合材料の製造方法が求められている。Therefore, the compounding amount of the sulfur component (sulfur during sulfur vulcanization or sulfur compound during organic sulfur vulcanization) is reduced, and it has excellent heat aging resistance and stable adhesion to substrates such as metals and plastics. There is a need for a method for producing a rubber-based composite material that can provide good properties, and a method for producing a rubber-based composite material that can provide stable adhesion to a substrate such as metal or plastic even without the addition of an organic cobalt salt. Is required.
本発明は上記事情に鑑みなされたもので、ゴム組成物
の加硫接着に必要な硫黄成分の量を減らすことができ、
更には有機コバルト塩を全く使用しなくても、耐熱老化
性に優れ、しかも接合力が高く、長期に亘り安定した接
着性を有するゴム系複合材料を製造する方法を提供する
ことを目的とする。The present invention has been made in view of the above circumstances, it is possible to reduce the amount of the sulfur component required for vulcanization adhesion of the rubber composition,
Further, an object of the present invention is to provide a method for producing a rubber-based composite material having excellent heat aging resistance, high bonding strength, and stable adhesiveness over a long period of time without using any organic cobalt salt. .
問題点を解決するための手段及び作用 本発明者らは、上記目的を達成するため、基体とゴム
組成物との接合方法につき鋭意検討を行なった結果、基
体表面に真空蒸着、スパッタリング、イオンプレーティ
ング、イオンビームスパッタ、ECR(電子サイクルトロ
ン共鳴)プラズマ法等のドライメッキ法或いは電気メッ
キや無電解メッキ法などによってコバルト又はコバルト
を主体とする合金薄膜を形成し、基体とゴム組成物との
間に該コバルト又はコバルトを主体とする合金薄膜を介
在させると、従来より大幅にゴム組成物中の硫黄成分の
量を減らすことができ、また有機コバルト塩の配合をな
くすることができ、このようにゴム組成物中の硫黄量を
少なくしても、更には有機コバルト塩を使用しなくて
も、鉄鋼、アルミニウム等の金属材料、ポリアリレー
ト、ポリアクリレート、ポリアミド等のプラスチック材
料など、多種類の材料の基板にゴム組成物を接合、複合
化できること、この場合ゴム組成物を加硫して通常の加
硫時に加温される温度と同程度の温度で圧着するだけで
上記コバルト又はコバルトを主体とする合金薄膜と加硫
ゴム組成物とが強固に接着して接着性のよいゴム系複合
材料が得られること、更に硫黄量を少なくすること及び
有機コバルト塩の配合をなくすことができるもので、未
加硫ゴム組成物を長期間保存しても接着性がほとんど劣
化することがなく、また加硫ゴムの耐熱老化性を顕著に
向上し得ること、従ってタイヤやコンベアベルト等、苛
酷なストレスや歪がかかるゴム系複合材料をも好適に製
造し得ることを知見した。Means and Actions for Solving Problems The present inventors have conducted extensive studies on a method for joining a substrate and a rubber composition in order to achieve the above object, and as a result, vacuum deposition, sputtering, and ion plating on the substrate surface. Of cobalt or an alloy thin film mainly composed of cobalt by dry plating such as coating, ion beam sputtering, ECR (electron cycle tron resonance) plasma, electroplating, electroless plating, etc. By interposing the cobalt or an alloy thin film mainly containing cobalt between them, the amount of the sulfur component in the rubber composition can be significantly reduced as compared with the conventional one, and the compounding of the organic cobalt salt can be eliminated. As described above, even if the amount of sulfur in the rubber composition is reduced, or even if an organic cobalt salt is not used, metal materials such as steel and aluminum, and porosity It is possible to bond and compound rubber compositions to substrates made of various materials such as plastic materials such as rearylates, polyacrylates and polyamides. In this case, the temperature at which the rubber composition is vulcanized and heated during normal vulcanization Just by pressure bonding at the same temperature, the cobalt or alloy thin film containing cobalt as a main component and the vulcanized rubber composition are firmly bonded to each other to obtain a rubber-based composite material having good adhesiveness, and further the amount of sulfur is reduced. In addition, it is possible to eliminate the compounding of the organic cobalt salt, the adhesiveness hardly deteriorates even when the unvulcanized rubber composition is stored for a long period of time, and the heat aging resistance of the vulcanized rubber is significantly improved. It has been found that the rubber-based composite material can be improved, and accordingly, a rubber-based composite material such as a tire and a conveyor belt which is subjected to severe stress and strain can be preferably produced.
即ち、上述したように金属等の基体にゴム組成物を接
着する場合、従来は良好な接合性を得るためにはゴム組
成物中に多量の硫黄成分を配合したり、更に有機コバル
ト塩を多量に添加したりすることが必要であったが、基
体にコバルト又はコバルトを主体とする合金薄膜を形成
し、これにゴム組成物を複合化する本発明方法によれ
ば、ゴム組成物に少量の硫黄成分を添加するだけで、更
に有機コバルト塩の添加をなくしても、基体とゴム組成
物との接着性に非常に優れたゴム系複合材料が得られ、
従って本発明により始めて基体とゴム組成物とを接合す
る場合における硫黄成分の配合量を減少させ、また有機
コバルト塩の添加をなくすことを可能にするものであ
る。That is, when a rubber composition is adhered to a substrate such as a metal as described above, conventionally, in order to obtain good bondability, a large amount of a sulfur component is added to the rubber composition or a large amount of an organic cobalt salt is further added. However, according to the method of the present invention in which a cobalt or alloy thin film mainly containing cobalt is formed on a substrate and the rubber composition is compounded with the thin film, a small amount of the rubber composition is added to the rubber composition. Even if the addition of the sulfur component is eliminated and the addition of the organic cobalt salt is eliminated, a rubber-based composite material having excellent adhesion between the substrate and the rubber composition can be obtained.
Therefore, according to the present invention, it is possible to reduce the compounding amount of the sulfur component when joining the substrate and the rubber composition for the first time and to eliminate the addition of the organic cobalt salt.
従って本発明は、基体とゴム組成物とを接合してなる
ゴム系複合材料の製造方法において、基体表面上にコバ
ルト又はコバルトを主体とする合金薄膜を付着形成し、
次いで該コバルト又はコバルトを主体とする合金薄膜上
に、有機コバルト塩を含まないゴム組成物を加熱圧着し
て加硫接着することを特徴とするゴム系複合材料の製造
方法を提供するものである。Therefore, the present invention is a method for producing a rubber-based composite material by joining a base and a rubber composition, in which cobalt or an alloy thin film mainly containing cobalt is adhered and formed on the surface of the base,
Then, a method for producing a rubber-based composite material is provided, in which a rubber composition containing no organic cobalt salt is thermocompression-bonded and vulcanized and adhered onto the cobalt or an alloy thin film mainly containing cobalt. .
以下、本発明に更に詳しく説明する。 Hereinafter, the present invention will be described in more detail.
本発明に係るゴム系複合材料の製造方法は、基体とゴ
ム組成物とを接合することにより複合化するものである
が、ここで基体としては、鉄鋼、アルミニウム、銅、銅
合金等の金属、ポリアリレート、ポリエチレンテレフタ
レート、ポリブチレンテレフタレート、ポリオキシベン
ゾイル等のポリエステル、6−ナイロン,6,6−ナイロン
及び芳香族ポリアミド等のポリアミド、ポリアセター
ル、ポリフェニレンオキシド、ポリエーテルエーテルケ
トン、ポリフェニレンスルフィド等のポリエーテル、ポ
リサルホン、ポリエーテルサルホン等のポリサルホン
類、ポリイミド、ポリエーテルイミド、ポリアミドイミ
ド、ポリビスマレイミド等のポリイミド、ポリカーボネ
ートなどの熱可塑性樹脂及びフェノール樹脂、メラミン
樹脂等のホルムアルデヒド樹脂、ジアリルフタレート等
のアリル樹脂、エポキシ樹脂、シリコーン樹脂、ポリウ
レタンなどの熱硬化性樹脂、更にセラミック、ガラスな
ど、基体の材質を問わず使用し得る。また、基体の形状
やサイズなども制限はなく、目的に応じて適宜な材質、
形状、サイズの基体を選択、使用することができる。し
かし、本発明は、特にスチールワイヤー,スチールコー
ド,スチールタイヤコード,スチールケーブル,スチー
ルトランド,スチールロッド,スチールプレート,スチ
ールフィラメント等のスチールコードなどの金属基体を
ゴム組成物と複合化する場合に好適に採用され、これら
スチールコード等を金属基板をゴム組成物と複合化する
ことにより、タイヤ類、動力伝達ベルト類、コンベアベ
ルト類、ホース類等の繊維状金属を芯材を用いたゴム系
複合材料や防振ゴム、免震材、ゴムローラ、ラバースク
リーンなどの広範囲に亘る各種ゴム製品や部品類を製造
することができる。なおここで、スチールコードとは、
ゴム物品の強化あるいは補強に利用される金属製強化材
料を総称したもので、この点につき更に詳しく説明する
と、一般にスチールコードをゴム物品の強化や補強に使
用する場合、その効果を高めるために伸線して細線化し
たものを用いている。しかしながらスチールコード
(鋼)はそのままでは細線化が難しく、このためスチー
ルコード上に湿式メッキ、例えば電気メッキ法などを採
用して亜鉛、真鍮等を付着させ、これら付着金属の作用
により細線化をスムーズに行なっている。従って、本発
明でいうスチールコードは、上記スチールコード表面に
異種金属をメッキ等したものをも含むものである。The method for producing a rubber-based composite material according to the present invention is a composite by joining a base and a rubber composition, where the base is a metal such as steel, aluminum, copper, or a copper alloy, Polyesters such as polyarylate, polyethylene terephthalate, polybutylene terephthalate, polyoxybenzoyl, polyamides such as 6-nylon, 6,6-nylon and aromatic polyamides, polyethers such as polyacetal, polyphenylene oxide, polyether ether ketone, polyphenylene sulfide Polysulfones such as polysulfone and polyether sulfone, polyimides such as polyimide, polyether imide, polyamide imide and poly bismaleimide, thermoplastic resins such as polycarbonate and phenol resin, formaldehyde such as melamine resin Resins, allyl resins such as diallyl phthalate, epoxy resins, silicone resins, thermosetting resins such as polyurethane, ceramics, glass, etc. may be used regardless of the material of the substrate. Also, there is no limitation on the shape or size of the substrate, and an appropriate material depending on the purpose,
A substrate of any shape and size can be selected and used. However, the present invention is particularly suitable when a metal substrate such as a steel wire, a steel cord, a steel tire cord, a steel cable, a steel land, a steel rod, a steel plate, or a steel cord such as a steel filament is compounded with a rubber composition. By combining these steel cords, etc. with a metal substrate and a rubber composition, a rubber-based composite using a core material of fibrous metal such as tires, power transmission belts, conveyor belts, hoses, etc. It is possible to manufacture a wide variety of rubber products and parts such as materials, anti-vibration rubber, seismic isolation materials, rubber rollers, and rubber screens. Here, the steel cord is
This is a general term for metallic reinforcing materials used for reinforcement or reinforcement of rubber articles.To explain this point in more detail, when steel cords are generally used for reinforcement or reinforcement of rubber articles, they are expanded to enhance their effect. It is a thin line that has been drawn. However, it is difficult to thin the steel cord (steel) as it is. Therefore, wet plating such as electroplating is used to adhere zinc, brass, etc. on the steel cord, and the thinning is smoothed by the action of these adhered metals. I am doing this. Therefore, the steel cord referred to in the present invention includes a steel cord whose surface is plated with a different metal.
上記の基体にゴム組成物を複合化する場合は、まず基
体表面に必要により前処理を行なった後、基体表面にコ
バルト薄膜を形成する。ここで基体表面の前処理を行な
う場合、この基体表面の前処理法としては、熱処理法、
高周波加熱法、溶剤洗浄法、超音波洗浄法、低温プラズ
マ法、逆スパッタ処理法等が挙げられ、これらの1種又
は2種以上の方法を組合せて行なうことにより、基体表
面に付着している油剤や潤滑剤等が除去されて活性化さ
れ、基体とコバルト又はコバルト合金薄膜の密着性が良
好になるが、かかる前処理は基体としてスチールコード
等の基体を用いた場合に有効に採用し得る。この場合、
これらの前処理法の中では低温プラズマ法、逆スパッタ
処理法が特に効果的である。When compounding the rubber composition with the above-mentioned substrate, first, if necessary, pretreatment is performed on the substrate surface, and then a cobalt thin film is formed on the substrate surface. When the substrate surface is pretreated here, the substrate surface is pretreated by a heat treatment method,
Examples of the method include a high frequency heating method, a solvent cleaning method, an ultrasonic cleaning method, a low temperature plasma method, and a reverse sputtering treatment method. One of these methods or a combination of two or more methods adheres to the substrate surface. Oil and lubricant are removed and activated, and the adhesion between the substrate and the cobalt or cobalt alloy thin film is improved, but such pretreatment can be effectively adopted when a substrate such as a steel cord is used as the substrate. . in this case,
Among these pretreatment methods, the low temperature plasma method and the reverse sputtering treatment method are particularly effective.
また、コバルト又はコバルトを主体とする合金薄膜の
形成方法としては、電気メッキ法、無電解メッキ法等の
メッキ液を使用する湿式メッキ法、及び真空蒸着法、イ
オンプレーティング法、スパッタリング法、イオンビー
ムスパッタリング法、ECR(電子サイクロトロン共鳴)
プラズマ法等のドライメッキ法が挙げられる。本発明に
おいてはコバルト又はコバルト合金薄膜が形成すること
ができればよく、上記のいずれの方法をも好適に採用し
得る。しかし、湿式メッキ法は、メッキ液中に基体を浸
漬して金属薄膜を形成するものであり、酸、アルカリ等
による廃液処理の問題や、メッキ後処理等の繁雑な処理
工程を必要とし、工程管理が難しいなどの問題を有する
ほか、有機薄膜の膜厚が制御しにくく、また、得られた
金属薄膜の膜厚が不均一になり易く、均一な膜厚の金属
薄膜を形成するためには数μm以上の膜厚とする必要が
ある場合があり、このため、製造する複合体の種類によ
っては、金属薄膜の有する固有の性質が無視し得ず、複
合体の柔軟性が損なわれるおそれがある。これに対し、
ドライメッキ法はこのような問題がなく、しかも例えば
λ/4制御法等の光学的膜厚制御方法などにより薄膜形成
中に容易に膜厚が制御、管理できるといった利点があ
り、本発明の目的に対してより好ましい。Further, as a method for forming cobalt or an alloy thin film mainly containing cobalt, electroplating, wet plating using a plating solution such as electroless plating, and vacuum deposition, ion plating, sputtering, and ion Beam sputtering method, ECR (electron cyclotron resonance)
A dry plating method such as a plasma method may be used. In the present invention, it is sufficient that a cobalt or cobalt alloy thin film can be formed, and any of the above methods can be suitably adopted. However, the wet plating method involves forming a metal thin film by immersing a substrate in a plating solution, which requires a problem of waste solution treatment with acids, alkalis, and complicated treatment steps such as post-plating treatment. In addition to problems such as difficult management, it is difficult to control the film thickness of the organic thin film, and the film thickness of the obtained metal thin film tends to be non-uniform. In some cases, it is necessary to set the film thickness to several μm or more. Therefore, depending on the type of composite to be manufactured, the inherent properties of the metal thin film cannot be ignored, and the flexibility of the composite may be impaired. is there. In contrast,
The dry plating method does not have such a problem, and has an advantage that the film thickness can be easily controlled and managed during thin film formation by an optical film thickness control method such as a λ / 4 control method. Is more preferable for.
この場合、本発明に係るコバルト又はコバルト合金薄
膜形成のためのドライメッキ法は、所望の膜厚、薄膜物
性等に応じ、上述したように真空蒸着法、イオンプレー
ティング法、スパッタリング法、イオンビームスパッタ
リング法、ECR(電子サイクロトロン共鳴)プラズマ法
等の各種ドライメッキ法が採用されるが、これらドライ
メッキを行なう場合は、到達真空度、アルゴン、酸素等
のガスの注入の有無、基体温度、アニーリングなどが適
宜選定される。なお、真空蒸着法、イオンプレーティン
グ法においては蒸発源として抵抗加熱、誘導加熱、電子
ビーム加熱等の蒸発方法のいずれかが用いられ、イオン
プレーティング法においては、高周波プラズマ、アーク
プラズマ、直流電圧印加、クラスターイオンビーム、熱
陰極方式等の方式を用いて蒸発物のイオン化並びにイオ
ン化した蒸発物の加速が行なわれる。更に、スパッタリ
ング法においてはDCマグネトロン、2極直流、高周波等
の各種スパッタリング方式を選定して使用することがで
きる。In this case, the dry plating method for forming the cobalt or cobalt alloy thin film according to the present invention is, as described above, the vacuum deposition method, the ion plating method, the sputtering method, the ion beam, depending on the desired film thickness, thin film physical properties and the like. Various dry plating methods such as sputtering method and ECR (Electron Cyclotron Resonance) plasma method are adopted. When performing these dry plating methods, the ultimate vacuum, presence / absence of gas injection of argon, oxygen, etc., substrate temperature, annealing Etc. are appropriately selected. In the vacuum vapor deposition method and the ion plating method, one of evaporation methods such as resistance heating, induction heating, and electron beam heating is used as an evaporation source.In the ion plating method, high frequency plasma, arc plasma, DC voltage are used. Ionization of the evaporative substance and acceleration of the ionized evaporative substance are carried out using a method such as application, cluster ion beam, or hot cathode method. Further, in the sputtering method, various sputtering methods such as DC magnetron, two-pole direct current, and high frequency can be selected and used.
なお、コバルト合金としてはコバルトを主体とし、本
発明の接着性向上効果を損なわないものであればいずれ
のものでもよく、例えばCo−Ni,Co−P,Co−Cr,Co−Zn等
が挙げられる。It should be noted that the cobalt alloy is mainly cobalt, and may be any as long as it does not impair the adhesiveness improving effect of the present invention, for example, Co-Ni, Co-P, Co-Cr, Co-Zn and the like. To be
上記方法により得られたコバルト又はコバルト合金薄
膜の膜厚には特に制限はないが、10Å〜100μmが薄膜
の生産性から好ましく、複合体の性質に影響を及ぼさな
い程度の薄膜といった点から、特に10Å〜1μmが好ま
しい。The film thickness of the cobalt or cobalt alloy thin film obtained by the above method is not particularly limited, but 10 Å to 100 μm is preferable from the viewpoint of productivity of the thin film, and from the viewpoint of a thin film that does not affect the properties of the composite, 10Å to 1 μm is preferable.
次いで、本発明のゴム系複合材料の製造方法は、上記
方法により得られたコバルト又はコバルト合金薄膜上に
ゴム組成物を加熱圧着して加硫接着する方法によりゴム
系複合材料の製造を行なうものである。Then, the method for producing a rubber-based composite material of the present invention is a method for producing a rubber-based composite material by a method of thermocompression bonding and vulcanization adhesion of a rubber composition on the cobalt or cobalt alloy thin film obtained by the above method. Is.
ここで、本発明に用いられるゴム組成物中のゴム成分
は、天然ゴム(NR)、および構造式中に炭素−炭素二重
結合を有する合成ゴムを単独あるいは2種以上ブレンド
したものが使用できる。上記合成ゴムにはイソプレン、
ブタジエン、クロロプレン等の共役ジエン化合物の単独
重合体であるポリイソプレンゴム(IR)、ポリブタジエ
ンゴム(BR)、ポリクロロプレンゴム等、前記共役ジエ
ン化合物とスチレン、アクリロニトリル、ビニルピリジ
ン、アクリル酸、メタクリル酸、アルキルアクリレート
類、アルキルメタクリレート類等のビニル化合物との共
重合体であるスチレンブタジエン共重合ゴム(SBR)、
ビニルピリジンブタジエンスチレン共重合ゴム、アクリ
ロニトリルブタジエン共重合ゴム、アクリル酸ブタジエ
ン共重合ゴム、メタアクリル酸ブタジエン共重合ゴム、
メチルアクリレートブタジエン共重合ゴム、メチルメタ
アクリレートブタジエン共重合ゴム、メチルメタクリレ
ートブタジエン共重合ゴム等、エチレン、プロピレン、
イソブチレン等のオレフィン類とジエン化合物との共重
合体〔例えばイソブチレンイソプレン共重合ゴム(II
R)〕オレフィン類と非共役ジエンとの共重合体(EPD
M)〔例えばエチレン、プロピレン、シクロペンタジエ
ン三元共重合体、エチレンプロピレン−5−エチリデン
−2−ノルボルネン三元共重合体、エチレンプロピレン
−1,4−ヘキサジエン三元共重合体〕、シクロオレフィ
ンを開環重合させて得られるポリアルケナマー〔例えば
ポリペンテナマー〕、オキシラン環の開環重合によって
得られるゴム〔例えば硫黄加硫が可能なポリエピクロロ
ヒドリンゴム〕、ポリプロピレンオキシドゴム等が含ま
れる。また、前記各種ゴムのハロゲン化物、例えば塩素
化イソブチレンイソプレン共重合ゴム(Cl−IIR)、臭
素化イソブチレンイソプレン共重合(Br−IIR)等も含
まれる。更に、ノルボルネンの開環重合体も用い得る。
また更に、ブレンドゴムとしては上述のゴムにエピクロ
ルヒドリンゴム、ポリプロピレンオキシドゴム、クロル
スルフォン化ポリエチレン等の飽和弾性体をブレンドし
て用いることもできる。Here, as the rubber component in the rubber composition used in the present invention, natural rubber (NR) and synthetic rubber having a carbon-carbon double bond in the structural formula may be used alone or in a blend of two or more kinds. . The synthetic rubber is isoprene,
Butadiene, polyisoprene rubber (IR) which is a homopolymer of a conjugated diene compound such as chloroprene, polybutadiene rubber (BR), polychloroprene rubber, etc., the conjugated diene compound and styrene, acrylonitrile, vinyl pyridine, acrylic acid, methacrylic acid, Styrene-butadiene copolymer rubber (SBR) which is a copolymer with vinyl compounds such as alkyl acrylates and alkyl methacrylates,
Vinyl pyridine butadiene styrene copolymer rubber, acrylonitrile butadiene copolymer rubber, acrylic acid butadiene copolymer rubber, methacrylic acid butadiene copolymer rubber,
Methyl acrylate butadiene copolymer rubber, methyl methacrylate butadiene copolymer rubber, methyl methacrylate butadiene copolymer rubber, ethylene, propylene,
Copolymers of olefins such as isobutylene and diene compounds [eg isobutylene isoprene copolymer rubber (II
R)] Copolymer of olefins and non-conjugated dienes (EPD
M) [eg ethylene, propylene, cyclopentadiene terpolymer, ethylene propylene-5-ethylidene-2-norbornene terpolymer, ethylene propylene-1,4-hexadiene terpolymer], cycloolefin It includes a polyalkenamer obtained by ring-opening polymerization [for example, polypentenamer], a rubber obtained by ring-opening polymerization of an oxirane ring [for example, sulfur-vulcanizable polyepichlorohydrin rubber], polypropylene oxide rubber and the like. Also included are halides of the various rubbers, such as chlorinated isobutylene isoprene copolymer rubber (Cl-IIR) and brominated isobutylene isoprene copolymer (Br-IIR). Further, a ring-opening polymer of norbornene can also be used.
Furthermore, as the blended rubber, a saturated elastic body such as epichlorohydrin rubber, polypropylene oxide rubber, or chlorosulfonated polyethylene may be blended with the above-mentioned rubber and used.
本発明に用いられるゴム組成物は、上記ゴム成分以外
に、常法に従い、製造するゴム系複合体の目的、用途な
どに応じてカーボンブラック、シリカ、炭酸カルシウ
ム、硫酸カルシウム、クレイ、ケイソウ土、マイカ等の
充填剤、鉱物油、植物油、合成可塑剤等の軟化剤、及び
ステアリン酸等の加硫促進助剤、老化防止剤、硫黄その
他の架橋剤等を添加することができるが、有機コバルト
塩は配合しない。本発明によれば、コバルト又はコバル
ト合金薄膜の形成により、このようにゴム組成物中の有
機コバルト塩を全く使用しない組成にしても、ゴム組成
物と各種基体の接合力を損なうことがなく、優れた接着
を与えることができ、従って有機コバルト塩の添加に基
づく接着力を経時劣化、破断強度、伸度等の熱老化を抑
制し得、耐久性に優れたゴム系複合材料を得ることがで
きる。The rubber composition used in the present invention, in addition to the above rubber component, according to a conventional method, carbon black, silica, calcium carbonate, calcium sulfate, clay, diatomaceous earth, depending on the purpose and application of the rubber-based composite to be produced, Fillers such as mica, mineral oils, vegetable oils, softening agents such as synthetic plasticizers, vulcanization accelerating aids such as stearic acid, antioxidants, sulfur and other crosslinking agents, etc. can be added, but organic cobalt No salt is added. According to the present invention, by forming a cobalt or cobalt alloy thin film, even if the composition does not use the organic cobalt salt in the rubber composition at all, without impairing the bonding force between the rubber composition and various substrates, It is possible to provide excellent adhesion, and therefore, it is possible to obtain a rubber-based composite material having excellent durability, which is capable of suppressing the deterioration of the adhesive force due to the addition of the organic cobalt salt with time, the breaking strength, the heat aging such as elongation, and the like. it can.
上記ゴム組成物とコバルト又はコバルト合金薄膜を形
成した基板との接合は、上述した如くコバルト又はコバ
ルト合金薄膜上にゴム組成物を加熱圧着して加硫接着す
るものであるが、本発明のゴム系複合材料の製造法に用
いられる加硫法として、一般的でかつ最も重要な硫黄加
硫のほかに、例えばジチオジモルフォリン、チウラム加
硫等の有機硫黄化合物による有機硫黄加硫などが挙げら
れるが、特に硫黄加硫により方法が好ましい。ここで、
硫黄加硫や有機硫黄加硫法を採用する場合には、硫黄や
有機化合物の硫黄、即ち硫黄成分をゴム組成物中のゴム
成分100部に対して0.5〜4部使用することが未加硫ゴム
組成物の保存安定性や加硫ゴム組成物の耐熱老化性の点
で好適である。即ち、上述したように、従来のゴム組成
物と基体との接合には、安定な接着力を保持するために
硫黄成分の量を4〜8部の割合で使用していたものであ
るが、本発明によればコバルト又はコバルト合金薄膜を
ゴム組成物と基体との間に介在させたことによりこれら
の接合力が向上し、硫黄分を4部より少なくしても優れ
た接着力を示し、従って硫黄の過剰使用による加硫後の
ゴムの熱老化を避けることができ、引張強度、破断強
度、伸度等のゴム物性を良好に維持し得、耐久性に優れ
たゴム系複合材料を得ることができる。The bonding of the rubber composition and the substrate on which the cobalt or cobalt alloy thin film is formed is performed by vulcanizing and adhering the rubber composition on the cobalt or cobalt alloy thin film by heating and pressure bonding as described above. Examples of the vulcanization method used for the production of the composite material include, in addition to the general and most important sulfur vulcanization, organic sulfur vulcanization using organic sulfur compounds such as dithiodimorpholine and thiuram vulcanization. However, the method using sulfur vulcanization is particularly preferable. here,
When using the sulfur vulcanization or organic sulfur vulcanization method, it is necessary to use 0.5 to 4 parts of sulfur or sulfur of an organic compound, that is, the sulfur component with respect to 100 parts of the rubber component in the rubber composition. It is suitable in terms of storage stability of the rubber composition and heat aging resistance of the vulcanized rubber composition. That is, as described above, in the conventional joining of the rubber composition and the substrate, the amount of the sulfur component was 4 to 8 parts in order to maintain a stable adhesive force. According to the present invention, by interposing a cobalt or cobalt alloy thin film between the rubber composition and the substrate, the bonding strength between these is improved, and even if the sulfur content is less than 4 parts, excellent adhesive strength is exhibited. Therefore, heat aging of the rubber after vulcanization due to excessive use of sulfur can be avoided, and rubber properties such as tensile strength, breaking strength, and elongation can be favorably maintained, and a rubber-based composite material with excellent durability can be obtained. be able to.
なお、本発明のゴム系複合材料の製造方法にて行なわ
れる加熱及び圧着の操作は、基体及びゴム組成物の原形
を損うことのない程度の温度、圧力にてコバルト又はコ
バルト合金薄膜の形成された基体とゴム組成物とを密着
すること、及びコバルト又はコバルト合金薄膜と加硫ゴ
ム組成物との反応を形成するに必要な賦活熱エネルギー
を供給すること、更にはゴム組成物を加硫するに必要な
賦活熱エネルギーを供給することを目的として行なわれ
るものであり、このための適正な温度、圧力は基体及び
ゴム組成物の種類により適宜選定され、その範囲は特に
限定されない。The operations of heating and pressure bonding performed in the method for producing a rubber-based composite material of the present invention form a cobalt or cobalt alloy thin film at a temperature and pressure that do not impair the original shape of the substrate and the rubber composition. Adhesion of the rubber composition to the cured substrate and supplying the activating heat energy necessary to form the reaction between the cobalt or cobalt alloy thin film and the vulcanized rubber composition, and further vulcanization of the rubber composition. It is carried out for the purpose of supplying the necessary activation heat energy, and the appropriate temperature and pressure for this purpose are appropriately selected depending on the types of the substrate and the rubber composition, and the range is not particularly limited.
発明の効果 以上説明したように、本発明は基体表面上にコバルト
又はコバルトを主体とする合金薄膜を付着形成し、次い
でコバルト薄膜上にゴム組成物を加熱圧着して加硫接着
するようにしたので、加硫に用いる硫黄分が少なくて
も、しかも有機コバルト塩を含まないゴム組成物を使用
しても、非常に接合性よく基体とゴム組成物とを複合化
でき、また、このように硫黄加硫や有機硫黄加硫を行な
うためにゴム組成物に配合する硫黄成分の量が少量でよ
く、更には有機コバルト塩の使用をなくすことができる
ので、多量の硫黄成分の配合や有機コバルト塩の使用に
伴なう種々の問題点が解決され、耐熱老化性に優れ、か
つ接着力の高いゴム系複合材料を得ることができ、また
基体として従来ゴム組成物との複合化が困難であった材
質、形状、サイズのものを使用することができる。EFFECTS OF THE INVENTION As described above, according to the present invention, cobalt or an alloy thin film mainly containing cobalt is adhered and formed on the surface of a substrate, and then a rubber composition is heat-pressed onto the cobalt thin film for vulcanization adhesion. Therefore, even if a small amount of sulfur is used for vulcanization, and even if a rubber composition containing no organic cobalt salt is used, the base material and the rubber composition can be composited with very good bondability. A small amount of sulfur component may be added to the rubber composition to perform sulfur vulcanization or organic sulfur vulcanization, and since the use of an organic cobalt salt can be eliminated, a large amount of sulfur component and organic cobalt can be added. Various problems associated with the use of salt are solved, a rubber-based composite material having excellent heat aging resistance and high adhesive strength can be obtained, and it is difficult to form a composite with a conventional rubber composition as a substrate. Material, shape, Sizes can be used.
以下、実施例と比較例とを示し、本発明を具体的に説
明するが、本発明はこれらの実施例に制限されるもので
はない。Hereinafter, the present invention will be specifically described by showing Examples and Comparative Examples, but the present invention is not limited to these Examples.
〔実施例1,比較例1〕 基体材料として巾25mm×長さ60mm×厚さ2.3mmの鉄鋼
片(材質SS−41)、アルミニウム片、黄銅片を用い、こ
れら基体材料の洗浄、乾燥を行ない、しかる後、各々の
基体材料表面上に以下のA〜Cのドライメッキ法により
第2表に示される膜厚のCo薄膜を形成した。なお、上記
膜厚の測定はテーラーホブソン社製タリステップを用い
て行なった。[Example 1, Comparative Example 1] As a base material, a steel piece (material SS-41) having a width of 25 mm, a length of 60 mm, and a thickness of 2.3 mm, an aluminum piece, and a brass piece were used, and these base materials were washed and dried. Thereafter, a Co thin film having a film thickness shown in Table 2 was formed on each substrate material surface by the following dry plating methods A to C. The film thickness was measured using Taristep manufactured by Taylor Hobson.
A.真空蒸着法 試験片(上記基体材料)を真空蒸着装置に設置し、チ
ャンバー内を10-5Torr以下の真空度としてから、この中
に微量のArガスを流入して真空度を5×10-3Torrに調整
した後、RF高周波電源によるRFグロー放電にて5分間試
験片表面をクリーニングした。クリーニング後、RFグロ
ー放電を止め、抵抗加熱法により試験片表面に金属薄膜
(Co薄膜)を蒸着した。A. Vacuum deposition method The test piece (base material above) was placed in a vacuum deposition apparatus, the inside of the chamber was set to a vacuum degree of 10 -5 Torr or less, and then a small amount of Ar gas was introduced into the chamber to set the vacuum degree to 5 ×. After adjusting to 10 −3 Torr, the surface of the test piece was cleaned for 5 minutes by RF glow discharge using an RF high frequency power source. After cleaning, the RF glow discharge was stopped, and a metal thin film (Co thin film) was deposited on the surface of the test piece by a resistance heating method.
B.スパッタリング法 マグネトロンスパッタ装置を用い、この中の基体ホル
ダーに試験片(上記基体材料)を設置し、チャンバー内
を10-5Torr以下の真空度としてから、この中に微量のAr
ガスを流入して真空度を0.1Torrに調整した後、13.56MH
zの高周波グロー放電にて5分間試験片表面をクリーニ
ングした。クリーニング後、高周波グロー放電を止め、
金属試料ターゲットに直流電圧−600Vを印加し、ターゲ
ット電流0.5AにてArプラズマでスパッタを行い、試験片
表面に金属薄膜(Co薄膜)を形成した。B. Sputtering method Using a magnetron sputtering device, place the test piece (the above-mentioned substrate material) on the substrate holder inside it, and make the inside of the chamber a vacuum degree of 10 -5 Torr or less.
After introducing gas and adjusting the vacuum to 0.1 Torr, 13.56 MH
The surface of the test piece was cleaned by high frequency glow discharge of z for 5 minutes. After cleaning, stop high frequency glow discharge,
A DC voltage of −600 V was applied to the metal sample target, and sputtering was performed with Ar plasma at a target current of 0.5 A to form a metal thin film (Co thin film) on the surface of the test piece.
C.イオンプレーティング法 試験片(上記基本材料)をイオンプレーティング装置
に設置し、常法に従い高周波電源によりArプラズマを発
生させ、その状態のまま金属試料(Co)を抵抗加熱で蒸
発させることにより試験片表面に金属薄膜(Co薄膜)を
形成した。C. Ion plating method The test piece (basic material above) is installed in an ion plating device, Ar plasma is generated by a high frequency power source according to a conventional method, and a metal sample (Co) is evaporated by resistance heating in that state. Thus, a metal thin film (Co thin film) was formed on the surface of the test piece.
上記ドライメッキ法により得られたCo薄膜を有する基
本のCo薄膜上に下記第1表に示す種類の未加硫ゴム組成
物Iを貼り合わせた後、温度145℃で40分間加圧して上
記ゴム組成物を加硫接着した。An unvulcanized rubber composition I of the type shown in Table 1 below was laminated on a basic Co thin film having a Co thin film obtained by the dry plating method, and then the rubber was pressed at a temperature of 145 ° C. for 40 minutes. The composition was vulcanized and bonded.
上記ゴム組成物を加硫接着して得られた複合材料につ
き、引張り試験機により50mm/minの引張速度にて90゜剥
離試験を行ない、接着性を評価した。 The composite material obtained by vulcanizing and adhering the above rubber composition was subjected to a 90 ° peel test at a pulling speed of 50 mm / min using a tensile tester to evaluate the adhesiveness.
更に比較のために、基体表面にコバルト薄膜を形成せ
ずに直接、上記方法に従ってゴム組成物を加硫接着し、
コバルト薄膜層のない複合材料を製造し、上記と同様に
して接着性を評価した。For further comparison, the rubber composition was directly vulcanized and adhered according to the above method without forming a cobalt thin film on the surface of the substrate,
A composite material without a cobalt thin film layer was produced and evaluated for adhesion in the same manner as above.
以上の接着性評価結果を第2表に示す。 Table 2 shows the above adhesiveness evaluation results.
第2表の結果から、明らかなように金属基板上に直接
ゴム組成物を加硫接着するゴム系複合材料の製造方法
(比較例)により得られたものの接着性はいずれも非常
に悪いものである。これに対し、金属基板上にコバルト
薄膜を付着形成し、次いでその上にゴム組成物を加硫接
着するゴム系複合材料の製造方法(実施例)により得ら
れたものの接着性は鉄鋼、アルミニウム、黄銅のいずれ
の材料の基体に対しても優れた接着性を示し、さらに本
発明のゴム系複合材料の製造方法によれば、ゴム組成物
に有機コバルト塩を配合しなくとも十分な接着性を有す
るゴム系複合材料が得られることが知見される。また、
本発明のゴム系複合材料の製造方法により、薄膜形成方
法、Co薄膜の膜厚の如何によらず、接着性の優れた複合
材料が得られることが確認された。 As is clear from the results in Table 2, the adhesive properties of the rubber composites obtained by vulcanizing and adhering the rubber composition directly onto the metal substrate (Comparative Example) were very poor. is there. On the other hand, the adhesiveness of the one obtained by the method for manufacturing a rubber-based composite material (Example) in which a cobalt thin film is adhered and formed on a metal substrate and then a rubber composition is vulcanized and adhered to the steel, aluminum, Excellent adhesion to any base material of brass, further, according to the method for producing a rubber-based composite material of the present invention, sufficient adhesion is obtained without compounding an organic cobalt salt in the rubber composition. It is found that a rubber-based composite material having the same can be obtained. Also,
It was confirmed that the method for producing a rubber-based composite material of the present invention can provide a composite material having excellent adhesiveness regardless of the thin film forming method and the thickness of the Co thin film.
〔実施例2〕 実施例1の金属基体従来に代えて、ポリアリレート
(ユニチカ社製;商品名Uポリマー)、ポリアミド(6,
6ナイロン)、ポリエーテル(エンジニアリングプラス
チック社製;商品名ノリル)、ポリサルホン(日産化学
社製;商品名PES)、ポリカーボネートを巾25mm×長さ6
0mm×厚さ2mmに切り出し、表面を溶剤で脱脂したプラス
チック器材材料を使用したほかは、実施例1と同様にし
て複合材料を形成し、接着性を評価した。[Example 2] Instead of the conventional metal substrate of Example 1, polyarylate (manufactured by Unitika Ltd .; trade name U polymer), polyamide (6,
6 Nylon), polyether (Engineering Plastics Co .; trade name Noryl), polysulfone (Nissan Chemical Co., Ltd .; trade name PES), polycarbonate 25mm width x length 6
A composite material was formed in the same manner as in Example 1 except that a plastic equipment material having a thickness of 0 mm and a thickness of 2 mm was cut out and the surface thereof was degreased with a solvent was used, and the adhesiveness was evaluated.
以上の複合材料形成時に得られたCo薄膜層の膜厚及び
接着性評価結果を第3表に示す。Table 3 shows the film thickness of the Co thin film layer obtained at the time of forming the composite material and the evaluation result of the adhesiveness.
第3表の結果から、基体材料を実施例1の金属からプ
ラスチックに代えても、実施例1と同様、本発明のゴム
系複合材料の製造方法を使用することにより、多種類の
プラスチック基体に対してCo薄膜形成方法、Co薄膜の膜
厚の如何によらず接着性の優れた複合材料が得られ、更
にゴム組成物に有機コバルト塩を配合しなくても接着性
の優れた複合材料が得られることが認められ、本発明の
効果が確認された。 From the results shown in Table 3, even if the base material is changed from the metal of Example 1 to plastic, by using the method for producing a rubber-based composite material of the present invention, as in Example 1, various types of plastic substrates can be obtained. On the other hand, a composite material having excellent adhesiveness can be obtained regardless of the Co thin film forming method and the film thickness of the Co thin film, and a composite material having excellent adhesiveness can be obtained even if an organic cobalt salt is not added to the rubber composition. It was confirmed that it was obtained, and the effect of the present invention was confirmed.
〔実施例3,比較例2〕 実施例1及び比較例1のゴム組成物に代えて第4表に
示す種類のゴム組成物を用いたほかは実施例1及び比較
例1と同様にしてゴム系複合材料を製造し、接着性を評
価した。[Example 3, Comparative Example 2] Rubber was prepared in the same manner as in Example 1 and Comparative Example 1 except that the rubber compositions of Examples 1 and Comparative Example 1 were replaced with rubber compositions of the types shown in Table 4. -Based composite materials were produced and evaluated for adhesion.
以上のゴム系複合材料製造時に得られたCo薄膜層の膜
厚及び接着性評価結果を第5表に示す。Table 5 shows the film thickness and the adhesiveness evaluation result of the Co thin film layer obtained at the time of manufacturing the rubber-based composite material.
第5表の結果から、本発明のゴム系複合材料の製造方
法によれば、ゴム組成物中に有機コバルト塩が含まれて
いなくても優れた接着性を示し、又、ゴム組成物中のカ
ーボン量がゴム組成物II〜IVのように異なるものでも、
あるいはこれらのゴム組成物II〜IVとゴム種の異なるゴ
ム組成物Vを用いたものでも、ゴム組成物の種類の如何
によらず優れた接着性を有する複合材料が得られること
が知見され、更に実施例1と同様、鉄鋼、アルミニウ
ム、黄銅のいずれの材料の基体に対してもCo薄膜形成方
法の如何によらず接着性の優れたゴム系複合材料が得ら
れることが確認された。 From the results shown in Table 5, according to the method for producing a rubber-based composite material of the present invention, excellent adhesion is exhibited even when the rubber composition does not contain an organic cobalt salt. Even if the amount of carbon is different as in rubber compositions II to IV,
Alternatively, it has been found that a composite material having excellent adhesiveness can be obtained irrespective of the kind of the rubber composition even by using the rubber composition V having a different rubber type from these rubber compositions II to IV. Further, as in Example 1, it was confirmed that a rubber-based composite material having excellent adhesiveness can be obtained regardless of the Co thin film forming method on a substrate made of any of steel, aluminum and brass.
〔実施例4〕 実施例3の金属基体材料に代えて、実施例2で使用し
たものと同一のプラスチック基体材料を用いたほかは実
施例3と同様にしてゴム系複合材料を製造し接着性を評
価した。[Example 4] A rubber-based composite material was produced in the same manner as in Example 3 except that the same plastic substrate material as that used in Example 2 was used instead of the metal substrate material of Example 3, and the adhesive property was improved. Was evaluated.
以上のゴム系複合材料製造時に得られたCo薄膜層の膜
厚及び接着性評価結果を第6表に示す。Table 6 shows the film thickness and the adhesiveness evaluation results of the Co thin film layer obtained during the production of the rubber-based composite material.
第6表の結果から、本発明のゴム系複合材料の製造方
法を採用することにより、基体材料を実施例3の金属か
らプラスチックに代えても、実施例3と同様、多種類の
プラスチック基体に対して薄膜形成方法、ゴム組成物の
種類の如何によらず接着性の優れたゴム系複合材料が得
られ、しかもゴム組成物中に有機コバルト塩を含まなく
とも接着性が良好であることが確認された。 From the results shown in Table 6, by adopting the method for producing a rubber-based composite material of the present invention, even if the base material is changed from the metal of Example 3 to plastic, various types of plastic substrates can be obtained as in Example 3. On the other hand, it is possible to obtain a rubber-based composite material having excellent adhesiveness regardless of the thin film forming method and the type of rubber composition, and that the adhesiveness is good even if the rubber composition does not contain an organic cobalt salt. confirmed.
〔実施例5,比較例3〕 実施例1の黄銅片上に真空蒸着法により40Åのコバル
ト薄膜を付着形成し、次いで前記第1表に示されたゴム
組成物をIを温度145℃で40分間加圧し、加硫接着した
製造したゴム系複合材料の接着性及び温度100℃で24時
間の加熱を行なった後の接着性を実施例1と同様にして
評価し、これらの接着性と接着性評価後のゴム組成物の
状態とから熱老化度を評価した。[Example 5, Comparative Example 3] A 40 Å cobalt thin film was adhered and formed on the brass piece of Example 1 by a vacuum deposition method, and then the rubber composition shown in Table 1 was used for I for 40 minutes at a temperature of 145 ° C. The adhesiveness and the adhesiveness of the manufactured rubber-based composite material which was pressure-bonded and vulcanized and adhered and after being heated at a temperature of 100 ° C. for 24 hours were evaluated in the same manner as in Example 1, and these adhesiveness and adhesiveness were evaluated. The heat aging degree was evaluated from the state of the rubber composition after the evaluation.
更に比較のために、実施例1と同様の黄銅片上に直
接、前記第1表の植物油又は鉱物油2倍に替えてナフテ
ン酸コバルト2部を配合してなるナフテン酸コバルト含
有ゴム組成物を上記と同様にして加熱圧着し、加硫接着
して製造したゴム系複合材料の熱老化度を評価した。Further, for comparison, a cobalt naphthenate-containing rubber composition prepared by blending 2 parts of cobalt naphthenate in place of the vegetable oil or mineral oil of Table 1 directly on the same brass piece as in Example 1 was used. The heat aging degree of the rubber composite material produced by thermocompression bonding and vulcanization adhesion was evaluated in the same manner as in.
以上の熱老化度の評価結果を第7表に示す。 Table 7 shows the evaluation results of the heat aging degree.
第7表の結果から、従来接着性が良いとされていたナ
フテン酸コバルトを含有するゴム組成物を用いて製造し
たゴム系複合材料は熱老化により著しい性能低下が起こ
るのに対し、本発明の製造方法に従って製造したゴム系
複合材料においては殆んど性能変化が起こらず、熱老化
防止性能に優れていることが知見された。 From the results shown in Table 7, the rubber-based composite material produced by using the rubber composition containing cobalt naphthenate, which was conventionally considered to have good adhesiveness, shows a remarkable performance decrease due to heat aging, whereas It was found that the rubber-based composite material produced according to the production method had almost no change in performance, and was excellent in heat aging prevention performance.
〔実施例6,比較例4〕 基体として黄銅メッキされたコード系1.2mmのより構
造3+6のスチールコードを用い、この黄銅メッキされ
たスチールコード表面上に、前記A〜Cのドライメッキ
法により第9表に示される膜厚のCo薄膜を形成した。[Example 6 and Comparative Example 4] A brass-plated cord system of 1.2 mm having a stranded structure 3 + 6 was used as a substrate, and the brass-plated steel cord surface was coated with the above-mentioned dry plating method A to C. A Co thin film having a film thickness shown in Table 9 was formed.
上記ドライメッキ法により得られたCo薄膜を有する基
体のCo薄膜上に下記第8表に示す種類の未加硫ゴム組成
物VI,VIIを貼り合わせてた後、温度145℃で40分間加圧
して上記ゴム組成物を加硫接着した。An unvulcanized rubber composition VI or VII of the type shown in Table 8 below was laminated on the Co thin film of the substrate having the Co thin film obtained by the above dry plating method, and then pressed at a temperature of 145 ° C. for 40 minutes. The above rubber composition was vulcanized and adhered.
上記ゴム組成物を加硫接着して得られた複合材料につ
き、引張り試験機により50mm/minの引張速度にて剥離試
験を行ない、接着性を評価した。 The composite material obtained by vulcanizing and adhering the above rubber composition was subjected to a peel test with a tensile tester at a pulling speed of 50 mm / min to evaluate the adhesiveness.
更に比較のために、基材表面にコバルト薄膜を形成せ
ずに直接、上記方法に従ってゴム組成物を加硫接着し、
コバルト薄膜層のない複合材料を製造し、上記と同様に
して接着性を評価した。For further comparison, without forming a cobalt thin film on the surface of the base material, the rubber composition is vulcanized and adhered according to the above method,
A composite material without a cobalt thin film layer was produced and evaluated for adhesion in the same manner as above.
以上の接着性評価結果を第9表に示す。 Table 9 shows the results of the above adhesiveness evaluation.
第9表の結果から、本発明によれば、薄膜形成方法、
Co薄膜の膜厚の如何によらず、有機コバルト塩を含まな
いゴム組成物(ゴム組成物VI)であっても有機コバルト
塩を添加したゴム組成物(ゴム組成物VII)とほぼ同程
度の接着力、接着性能のゴム系複合材料が得られ、他
方、黄銅メッキスチールコード基体にCo薄膜を付着形成
しない比較例の場合は有機コバルト塩を添加しない接着
性に劣るものであることが確認された。 From the results of Table 9, according to the present invention, a thin film forming method,
Regardless of the thickness of the Co thin film, a rubber composition containing no organic cobalt salt (rubber composition VI) has almost the same degree as the rubber composition containing the organic cobalt salt (rubber composition VII). It was confirmed that a rubber-based composite material having adhesive strength and adhesive performance was obtained, while on the other hand, in the case of the comparative example in which the Co thin film was not formed on the brass-plated steel cord substrate, the adhesiveness was poor without adding the organic cobalt salt. It was
〔実施例7,比較例5〕 基体として実施例6と同様の黄銅メッキスチールコー
ドを用い、この基体表面上に前記Bのスパッタリング法
により400ÅのCo薄膜を形成し、次いでこのCo薄膜上に
前記第8表に示されたゴム組成物VI,VII及び第10表に示
すゴム組成物VIII〜XIを用いて実施例6と同様にして加
硫接着してゴム系複合材料を得た。[Example 7, Comparative Example 5] The same brass-plated steel cord as that used in Example 6 was used as a substrate, and a 400 Å Co thin film was formed on the surface of the substrate by the sputtering method of B. The rubber compositions VI and VII shown in Table 8 and the rubber compositions VIII to XI shown in Table 10 were vulcanized and adhered in the same manner as in Example 6 to obtain a rubber-based composite material.
こうして得られたゴム系複合材料につき、実施例6と
同様に接着性の評価を行ない、更に比較のために、基材
表面にコバルト薄膜を形成せずに直接、上記方法に従っ
てゴム組成物を加硫接着し、コバルト薄膜層のない複合
材料を製造し、上記と同様にして接着性を評価した。 The rubber composite material thus obtained was evaluated for adhesiveness in the same manner as in Example 6, and for comparison, the rubber composition was directly added according to the above method without forming a cobalt thin film on the surface of the base material. A sulfur-bonded composite material was produced by manufacturing a composite material without a cobalt thin film layer, and the adhesiveness was evaluated in the same manner as above.
以上の接着性評価結果を第11表に示す。 Table 11 shows the above adhesiveness evaluation results.
更にまた、基体表面にコバルト薄膜を形成したゴム系
複合材料につき、100℃で24時間の加熱処理を行った後
の弾性率(応力−歪曲線の歪50%時に対応する弾性
率)、破断強度、破断伸度を測定し、加熱前の物性と比
較した。Furthermore, regarding the rubber-based composite material with the cobalt thin film formed on the surface of the substrate, the elastic modulus (elastic modulus corresponding to 50% strain of the stress-strain curve) and rupture strength after heat treatment at 100 ° C for 24 hours The elongation at break was measured and compared with the physical properties before heating.
以上の測定結果を第12表に示す。 Table 12 shows the above measurement results.
第11表の結果から、基体上にCo薄膜を付着形成しない
でゴム系複合材料を製造した場合、ゴム組成物の種類に
より基体とゴム組成物との接着に不良が生じるのに対
し、本発明方法によればゴム組成物の種類によらず優れ
た接着性のゴム組成物が得られることが確認された。 From the results shown in Table 11, when a rubber-based composite material is produced without depositing a Co thin film on a substrate, adhesion between the substrate and the rubber composition may be defective depending on the type of the rubber composition. It was confirmed that according to the method, a rubber composition having excellent adhesiveness was obtained regardless of the kind of the rubber composition.
また、第12表の結果から、ゴム組成物中の硫黄の配合
量が増加するに従い、破断強度、破断伸度の加熱前後の
保持率の低下が見られ、また、ゴム組成物中に有機コバ
ルト塩を添加した場合には破断強度、破断伸度の加熱前
後の保持率が更に低下することとなり、ゴム組成物中に
多量の硫黄を配合したり、有機コバルト塩を添加するこ
とはゴム系複合材料にとって好ましくないことが確認さ
れるが、第11表から明らかなように、Co薄膜を形成され
た場合にはゴム組成物VIII及びゴム組成物Xのように硫
黄の配合量が少量であっても、またゴム組成物VI及びゴ
ム組成物VIII,IXのように有機コバルト塩を添加しなく
とも基体とゴム組成物との接着性は優れており、従って
本発明によれば多量の硫黄成分の配合や有機コバルト塩
の使用に伴なう上記物性や耐熱老化性の低下を防止し得
ることが知見された。Further, from the results in Table 12, as the blending amount of sulfur in the rubber composition increases, the breaking strength, the retention of the breaking elongation before and after heating is decreased, and also the organic cobalt in the rubber composition. When a salt is added, the breaking strength and the retention rate of the breaking elongation before and after heating are further reduced, and it is difficult to compound a large amount of sulfur in the rubber composition or to add an organic cobalt salt to the rubber-based composite. It is confirmed that this is not preferable for the material, but as is clear from Table 11, when the Co thin film is formed, the compounding amount of sulfur is small as in the rubber composition VIII and the rubber composition X. In addition, the adhesion between the substrate and the rubber composition is excellent without adding an organic cobalt salt as in the rubber compositions VI and VIII and IX. Therefore, according to the present invention, a large amount of sulfur component The above-mentioned physical properties and resistance due to the composition and use of organic cobalt salt It was found that the deterioration of heat aging can be prevented.
〔実施例8,比較例6〕 実施例7と同様の基体を用い、この基体表面上に実施
例7と同様にしてスパッタリング法により約400ÅのCo
薄膜を形成し、次いでこのCoW薄膜上に前記第10表に示
したゴム組成物VIIIを貼り合わせた後、145℃で加熱時
間を変えてゴム系複合材料を製造し、実施例7と同様に
して接着性を評価した。[Example 8, Comparative Example 6] A substrate similar to that in Example 7 was used, and about 400 Å Co was formed on the surface of the substrate by the sputtering method in the same manner as in Example 7.
After forming a thin film, and then laminating the rubber composition VIII shown in Table 10 on the CoW thin film, the heating time was changed at 145 ° C. to produce a rubber-based composite material, and the same procedure as in Example 7 was performed. And the adhesiveness was evaluated.
更に比較のために、基材表面にコバルト薄膜を形成せ
ずに直接、上記方法に従ってゴム組成物を加硫接着し、
コバルト薄膜層のない複合材料を製造し、上記と同様に
して接着性を評価した。For further comparison, without forming a cobalt thin film on the surface of the base material, the rubber composition is vulcanized and adhered according to the above method,
A composite material without a cobalt thin film layer was produced and evaluated for adhesion in the same manner as above.
上記の接着性評価を第13表に示す。 The above-mentioned evaluation of adhesiveness is shown in Table 13.
第13表の結果から、ナフテン酸コバルトを配合しない
ゴム組成物を用いて基体表面にCo薄膜を付着形成せずに
ゴム系複合材料を製造した場合には、加流時間の増加と
共に接着力、接着性能の向上が見られるものの、加硫時
間が100分に達していても十分満足し得る接着力、接着
性能が得られないのに対し、本発明方法によれば加硫時
間が20分程度でも十分な基板とゴム組成物との接着力、
接着性能に優れたゴム系複合材料が得られることが確認
された。 From the results of Table 13, in the case of producing a rubber-based composite material without forming a Co thin film on the surface of a substrate using a rubber composition containing no cobalt naphthenate, the adhesive force increases with increasing the flow time, Although the improvement of the adhesive performance can be seen, even if the vulcanization time reaches 100 minutes, a sufficiently satisfactory adhesive strength and adhesive performance cannot be obtained, whereas according to the method of the present invention, the vulcanization time is about 20 minutes. But sufficient adhesion between the substrate and the rubber composition,
It was confirmed that a rubber-based composite material having excellent adhesion performance was obtained.
〔実施例9〕 実施例7と同様の基体を用い、この基体表面上に実施
例7と同様にしてスパッタリング法により約400ÅのCo
薄膜を形成し、次いでこのCo薄膜上に上記第8表に示さ
れたゴム組成物VI,第10表に示されたゴム組成物VIII,IX
及び下記第14表に示すゴム組成物X II〜X IVをそれぞれ
使用し、実施例7と同様にしてゴム系複合材料を製造
し、100℃,24時間の加熱処理前後の接着性を実施例7と
同様にして評価した。[Example 9] The same substrate as in Example 7 was used, and about 400Å of Co was formed on the surface of the substrate by the sputtering method in the same manner as in Example 7.
A thin film was formed and then, on the Co thin film, the rubber composition VI shown in Table 8 above and the rubber compositions VIII and IX shown in Table 10 above were formed.
And rubber compositions XII to XIV shown in Table 14 below were each used to produce a rubber-based composite material in the same manner as in Example 7, and the adhesive properties before and after heat treatment at 100 ° C. for 24 hours were evaluated as in Example. Evaluation was made in the same manner as in 7.
以上の接着性評価結果を第15表に示す。 Table 15 shows the above adhesion evaluation results.
第15表の結果から、本発明方法によればゴム組成物
(いずれもナフテン酸コバルトを含まない)中の硫黄配
合量によらず、基体とゴム組成物との接着性能に優れた
ゴム系複合材料が得られることが確認された。また、硫
黄配合量が増加するに従い、却って接着力及び接着力の
保持率の低下が起り、ゴム組成物中に多量の硫黄を配合
することは接着性の点で好ましくなく、硫黄配合量はゴ
ム成分100重量部に対し1重量部程度で十分に接着性及
びこの耐熱老化性に優れたゴム系複合材料が得られるこ
とが認められた。 From the results shown in Table 15, according to the method of the present invention, a rubber-based composite having excellent adhesion performance between the substrate and the rubber composition was obtained irrespective of the blending amount of sulfur in the rubber composition (all do not contain cobalt naphthenate). It was confirmed that the material was obtained. Further, as the sulfur content increases, the adhesive strength and the retention rate of the adhesive strength rather decrease, and it is not preferable to add a large amount of sulfur to the rubber composition in terms of adhesiveness, and the sulfur content is lower than that of the rubber. It was confirmed that about 1 part by weight per 100 parts by weight of the component can provide a rubber-based composite material having sufficient adhesiveness and excellent heat aging resistance.
〔実施例10,比較例7〕 実施例6と同様の黄銅メッキスチールコード基体を用
い、この基体表面に電解メッキ法により膜厚約0.1μm
のCo薄膜を形成した。次いでこのCo薄膜上に前記第8表
に示したゴム組成物VI及び第10表に示したゴム組成物VI
IIを貼り合わせた後、実施例6と同様にして加硫接着を
行なってゴム系複合材料を製造し、同様の接着性評価を
行なった。[Example 10, Comparative Example 7] The same brass-plated steel cord substrate as in Example 6 was used, and a film thickness of about 0.1 μm was formed on the surface of the substrate by electrolytic plating.
Co thin film was formed. Then, the rubber composition VI shown in Table 8 and the rubber composition VI shown in Table 10 were formed on the Co thin film.
After bonding II, vulcanization adhesion was performed in the same manner as in Example 6 to produce a rubber-based composite material, and the same adhesion evaluation was performed.
更に比較のために、基材表面にコバルト薄膜を形成せ
ずに直接、上記方法に従ってゴム組成物を加硫接着し、
コバルト薄膜層のない複合材料を製造し、上記と同様に
して接着性を評価した。For further comparison, without forming a cobalt thin film on the surface of the base material, the rubber composition is vulcanized and adhered according to the above method,
A composite material without a cobalt thin film layer was produced and evaluated for adhesion in the same manner as above.
以上の接着性評価結果を第16表に示す。 Table 16 shows the results of the above adhesiveness evaluation.
第16表の結果より、Co薄膜を電気メッキにより形成し
ても、ナフテン酸コバルトを含まないゴム組成物を基体
に良好な接着力で接合し得ることが認められた。 From the results in Table 16, it was confirmed that even if the Co thin film was formed by electroplating, the rubber composition containing no cobalt naphthenate could be bonded to the substrate with good adhesive strength.
〔実施例11,比較例8〕 基体材料としてアルミナを90%含有した巾12.5mm×長
さ60mm×厚さ4mmのセラミックス板を用い、このセラミ
ックス板の表面を溶剤で脱脂した後、実施例1のスパッ
タリング法によりセラミックス板上に厚さ400Åのコバ
ルト薄膜を付着形成し、次いでこの上に前記第1表に示
されたゴム組成物Iを温度145℃で40分間加圧して加硫
接着を行ない、ゴム系複合材料を製造してその接着性能
を評価した。[Example 11 and Comparative Example 8] A ceramic plate having a width of 12.5 mm, a length of 60 mm and a thickness of 4 mm containing 90% of alumina was used as a substrate material, and the surface of the ceramic plate was degreased with a solvent, and then Example 1 was used. A cobalt thin film having a thickness of 400 Å is adhered and formed on the ceramic plate by the sputtering method described above, and then the rubber composition I shown in Table 1 is pressed at a temperature of 145 ° C. for 40 minutes for vulcanization adhesion. A rubber-based composite material was manufactured and its adhesive performance was evaluated.
比較のため、基材表面にコバルト薄膜を形成せずに直
接、上記方法に従ってゴム組成物Iを加硫接着し、コバ
ルト薄膜層のない複合材料を製造し、上記と同様にして
接着性を評価した。For comparison, the rubber composition I was directly vulcanized and adhered according to the above method without forming a cobalt thin film on the surface of the base material to produce a composite material having no cobalt thin film layer, and the adhesiveness was evaluated in the same manner as above. did.
上記の接着性評価結果を第17表に示す。 Table 17 shows the results of the above-mentioned adhesiveness evaluation.
第17表の結果から、基体材料をセラミックス材料とし
ても、この基体表面上にコバルト薄膜を付着形成する本
発明方法に従えば、ゴム組成物に有機コバルト塩を配合
しなくとも接着性能に優れたゴム系複合材料が得られる
ことが認められ、本発明の効果が確認された。 From the results of Table 17, even if the substrate material is a ceramic material, according to the method of the present invention in which a cobalt thin film is adhered and formed on the surface of the substrate, excellent adhesion performance is obtained without compounding an organic cobalt salt in the rubber composition. It was confirmed that a rubber-based composite material was obtained, and the effect of the present invention was confirmed.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−144433(JP,A) 特開 昭59−29145(JP,A) 特開 昭56−38246(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-53-144433 (JP, A) JP-A-59-29145 (JP, A) JP-A-56-38246 (JP, A)
Claims (6)
複合材料の製造方法において、基体表面上にコバルト又
はコバルトを主体とする合金薄膜を付着形成し、次いで
該コバルト又はコバルトを主体とする合金薄膜上に、有
機コバルト塩を含まないゴム組成物を加熱圧着して加硫
接着することを特徴とするゴム系複合材料の製造方法。1. A method for producing a rubber-based composite material comprising a substrate and a rubber composition bonded together, wherein cobalt or an alloy thin film containing cobalt as a main component is adhered and formed on the surface of the substrate, and then the cobalt or cobalt is the main component. A method for producing a rubber-based composite material, which comprises subjecting a rubber composition containing no organic cobalt salt to thermocompression bonding and vulcanizing adhesion on the alloy thin film.
載の方法。2. A method according to claim 1, wherein the substrate is a metal.
膜をドライメッキ法により付着形成した特許請求の範囲
第1項又は第2項に記載の方法。3. The method according to claim 1, wherein cobalt or an alloy thin film containing cobalt as a main component is adhered and formed by a dry plating method.
膜を電解メッキ又は無電解メッキにより付着形成した特
許請求の範囲第1項又は第2項に記載の方法。4. The method according to claim 1 or 2, wherein a cobalt or alloy thin film mainly containing cobalt is deposited by electrolytic plating or electroless plating.
許請求の範囲第1項乃至第4項のいずれか1項に記載の
方法。5. The method according to any one of claims 1 to 4, wherein the vulcanization is sulfur vulcanization or organic sulfur vulcanization.
量部に対して0.5〜4重量部使用した特許請求の範囲第
5項記載の方法。6. The method according to claim 5, wherein the sulfur component is used in an amount of 0.5 to 4 parts by weight based on 100 parts by weight of the rubber component in the rubber composition.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22963885 | 1985-10-15 | ||
JP60-229638 | 1985-10-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62189117A JPS62189117A (en) | 1987-08-18 |
JP2512912B2 true JP2512912B2 (en) | 1996-07-03 |
Family
ID=16895331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61246278A Expired - Fee Related JP2512912B2 (en) | 1985-10-15 | 1986-10-15 | Rubber-based composite material manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2512912B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3555643B2 (en) | 1997-04-15 | 2004-08-18 | 株式会社ブリヂストン | Method for producing rubber-based composite material and method for designing rubber-based composite material |
EP1277874A4 (en) * | 2000-04-28 | 2004-04-21 | Bridgestone Corp | Rubber-reinforcing fiber, process for producing the same, and rubber product and pneumatic tire each made with the same |
JP2002172721A (en) * | 2000-09-26 | 2002-06-18 | Bridgestone Corp | Rubber composite material and rubber article using the same |
US7172681B2 (en) | 2003-02-05 | 2007-02-06 | Bridgestone Corporation | Process for producing rubber-based composite material |
RU2758411C2 (en) * | 2019-04-26 | 2021-10-28 | Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский государственный технический университет имени Гагарина Ю.А.» | Method for processing surface of fluorinated rubber |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL7702643A (en) * | 1977-03-11 | 1978-09-13 | Akzo Nv | ARTICLE COATED WITH A METALLIC ALLOY, TO WHICH ELASTOMER MATERIAL IS ADHED, AND A PROCESS FOR MANUFACTURING THAT ARTICLE. |
JPS5638246A (en) * | 1979-09-07 | 1981-04-13 | Yokohama Rubber Co Ltd:The | Composition composed of metallic material and rubber |
US4446197A (en) * | 1982-07-23 | 1984-05-01 | The Goodyear Tire & Rubber Company | Ion beam deposition or etching re rubber-metal adhesion |
-
1986
- 1986-10-15 JP JP61246278A patent/JP2512912B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS62189117A (en) | 1987-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4872932A (en) | Method for making rubbery composite materials by plating a metal substrate with a cobalt alloy | |
JPH04131581A (en) | Low permeable rubber hose | |
JPH08309918A (en) | Copper clad laminated sheet, printed circuit board using the same and production of them | |
JP2929651B2 (en) | Method for producing rubber-based composite material | |
JP2512912B2 (en) | Rubber-based composite material manufacturing method | |
EP0872510B1 (en) | Process for producing rubber-based composite material | |
JP3610991B2 (en) | Manufacturing method of rubber-based composite material | |
JPH0580500B2 (en) | ||
JP2870784B2 (en) | Low permeability rubber hose | |
US6632319B1 (en) | Process for producing rubber-based composite material | |
JP2917382B2 (en) | Rubber compounding method | |
EP0737710B1 (en) | Resin composition for electroless metal deposition and method for electroless metal deposition | |
JP2605284B2 (en) | Method for improving adhesion between metal substrate and metal thin film | |
JP2535915B2 (en) | Method for improving adhesion between base material and cobalt or cobalt alloy thin film | |
JP2884700B2 (en) | Rubber joining method | |
JPS6287311A (en) | Manufacture of rubber-based composite material | |
JPH03220241A (en) | Method for bonding rubber | |
JP2512913B2 (en) | Rubber-based composite material manufacturing method | |
JP4841732B2 (en) | Rubber composite material and rubber article using the same | |
JP2870783B2 (en) | Low permeability rubber hose | |
JP3511114B2 (en) | Method for producing rubber-based composite material | |
JP4086221B2 (en) | Manufacturing method of rubber-based composite material for tire reinforcement | |
JP3617638B2 (en) | Rubber composite material and rubber article using the same | |
JPH07300768A (en) | Metal-coated fiber fabric | |
JP2004237550A (en) | Method for manufacturing rubbery composite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |