[go: up one dir, main page]

JP2512769B2 - Method for producing yeast cell containing β-galactosidase - Google Patents

Method for producing yeast cell containing β-galactosidase

Info

Publication number
JP2512769B2
JP2512769B2 JP26898887A JP26898887A JP2512769B2 JP 2512769 B2 JP2512769 B2 JP 2512769B2 JP 26898887 A JP26898887 A JP 26898887A JP 26898887 A JP26898887 A JP 26898887A JP 2512769 B2 JP2512769 B2 JP 2512769B2
Authority
JP
Japan
Prior art keywords
galactosidase
culturing
culture
yeast
lipomyces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26898887A
Other languages
Japanese (ja)
Other versions
JPH01112978A (en
Inventor
宗彦 鈍寶
中島  宏
利章 小巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP26898887A priority Critical patent/JP2512769B2/en
Publication of JPH01112978A publication Critical patent/JPH01112978A/en
Application granted granted Critical
Publication of JP2512769B2 publication Critical patent/JP2512769B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,β−ガラクトシダーゼを含有する酵母菌体
の製造法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a yeast cell containing β-galactosidase.

(従来の技術) β−ガラクトシダーゼは,乳糖等のβ−ガラクトシド
結合の加水分解反応及びガラクトシル基転移反応を触媒
し,乳製品中の乳糖を分解する酵素として,あるいは乳
糖不耐症による下痢を治療するための医薬品として,あ
るいはエンザイムイムノアツセイの標識酵素として,あ
るいはビフイズス因子として有用なガラクトオリゴ糖を
製造するための酵素として利用されている。
(Prior Art) β-Galactosidase catalyzes the hydrolysis reaction and galactosyl group transfer reaction of β-galactoside bonds such as lactose and treats diarrhea due to lactose intolerance as an enzyme that decomposes lactose in dairy products. It has been used as a drug for the preparation, as a labeling enzyme for enzyme immunoassay, or as an enzyme for producing a galactooligosaccharide useful as a bifidus factor.

また,その種類については,従来より各種の微生物,
例えば,バチルス サーキユランス(Bacillus circula
ns),クリベロミセス ラクテイス(Kluyveromyces la
ctis),アスペルギルス オリゼー(Aspergillus oryz
ae),エシエリキア コリ(Escherichia coli),クリ
プトコツカス(Cryptococcus)属酵母等を起源とするも
のの他,ジヤツク ビーン(Jack beans)等の植物に由
来するもの及びボビン リバー(Bovine liver)等の動
物の臓器由来のものが知られている。
In addition, regarding the type, conventionally, various microorganisms,
For example, Bacillus circula
ns), Kluyveromyces la
ctis), Aspergillus oryz
ae), Escherichia coli, Cryptococcus yeast, etc., as well as those derived from plants such as Jack beans, and bovine liver and other animals. Those derived from organs are known.

β−ガラクトシダーゼは,周知のごとく,加水分解反
応を触媒すると同時に,ガラクトシル基を転移させる,
いわゆる転移反応も触媒するが,酵素の由来によって加
水分解反応と転移反応の反応速度が異なっている。例え
ば,アスペルギルス オリゼー(Aspergillus oryzae)
由来のβ−ガラクトシダーゼ,クリプトコツカス(Cryp
tococcus)属酵母由来のβ−ガラクトシダーゼは,転移
活性が比較的強く,この性質を利用してビフイズス菌増
殖因子として有用なガラクトオリゴ糖の製造法が提案さ
れている(特公昭58−20266号,特開昭62−111685号公
報参照)。
As is well known, β-galactosidase catalyzes a hydrolysis reaction and, at the same time, transfers a galactosyl group,
The so-called transfer reaction is also catalyzed, but the reaction rates of the hydrolysis reaction and transfer reaction differ depending on the origin of the enzyme. For example, Aspergillus oryzae
, A β-galactosidase derived from Cryptococcus (Cryptococcus
β-galactosidase derived from yeast belonging to the genus tococcus has a relatively strong transfer activity, and a method for producing a galactooligosaccharide useful as a growth factor for Bifidobacterium has been proposed utilizing this property (Japanese Patent Publication No. 58-20266, (See JP 62-111685 A).

ガラクトオリゴ糖を生成するβ−ガラクトシダーゼと
しては,この他にはバチルス サーキユランス(Bacill
us circulans)のβ−ガラクトシダーゼ〔アグリカルチ
ユラス・バイオロジカル・ケミストリー(Agric.Biol.C
hem.)48,3053,(1984)〕,乳酸菌のβ−ガラクトシダ
ーゼ〔ジヤーナル・オブ・デイリー・サイエンス(J.of
Dairy Sci.)64,185(1981)〕が知られている。
Other β-galactosidases that produce galacto-oligosaccharides include Bacillus circulans.
us circulans) β-galactosidase (Agric.Biol.C
hem.) 48 , 3053, (1984)], β-galactosidase of lactic acid bacteria [Journal of Daily Science (J. of
Dairy Sci.) 64, 185 ( 1981) ] it is known.

(発明が解決しようとする問題点) 前記したように,ガラクトオリゴ糖を生成するβ−ガ
ラクトシダーゼは種々知られているが,これらのβ−ガ
ラクトシダーゼを用いてガラクトオリゴ糖を製造しよう
とする際の問題点として,加水分解反応が同時に起こる
ため,原料であるラクトースが無駄に消費され,ビフイ
ズス菌増殖因子としての作用のないグルコース及びガラ
クトースが生成してしまうことが挙げられる。
(Problems to be Solved by the Invention) As described above, various β-galactosidases that produce galactooligosaccharides are known, but there are problems in producing galactooligosaccharides using these β-galactosidases. As a result, since the hydrolysis reaction occurs at the same time, the raw material lactose is wasted, and glucose and galactose, which do not act as a growth factor of Bifidobacterium, are produced.

この点においてクリプトコツカス(Cryptococcus)属
酵母由来のβ−ガラクトシダーゼは,加水分解活性が弱
く,転移活性が強いことから,ガラクトオリゴ糖を収率
良く得る方法として優れた方法であるが,やはり原料で
あるラクトースの加水分解が起こり,単糖類が生成する
(特開昭62−111685号公報参照)。
In this respect, β-galactosidase derived from Cryptococcus yeast is weak in hydrolysis activity and strong in translocation activity, so it is an excellent method for obtaining galacto-oligosaccharides in good yield, but it is also a raw material. A certain lactose is hydrolyzed to produce a monosaccharide (see JP-A-62-111685).

そこで本発明者らの一部は,以前にリポマイセス(Li
pomyces)属酵母を用いて収率良くガラクトオリゴ糖を
製造する方法を提案した(特願昭61−229223号参照)。
この菌株は,転移活性の強いβ−ガラクトシダーゼを生
産し,菌体反応でガラクトオリゴ糖を収率良く生成する
が,菌耐当たりのβ−ガラクトシダーゼ活性が充分では
なかった。
Therefore, some of the inventors of the present invention have previously reported that Lipomyces (Li
We have proposed a method for producing galacto-oligosaccharides using yeast of the genus Pomyces (see Japanese Patent Application No. 61-229223).
This strain produces β-galactosidase with strong transposition activity and produces galacto-oligosaccharides in a good yield in the cell reaction, but the β-galactosidase activity per bacterium resistance was not sufficient.

(問題点を解決するための手段) 本発明者らは,このような問題点を解決するために鋭
意研究を重ねた結果,リポマイセス(Lipomyces)属酵
母の培養条件を特定条件にコントロールすることによ
り,著しくβ−ガラクトシダーゼ活性が向上し,ガラク
トオリゴ糖合成能の向上した菌体が得られることを見い
出し,本発明を完成するに至った。
(Means for Solving Problems) As a result of intensive studies to solve such problems, the present inventors have found that by controlling the culture conditions of the yeast of the genus Lipomyces to specific conditions. The inventors have found that a β-galactosidase activity is remarkably improved and a bacterium having an improved ability to synthesize galacto-oligosaccharide is obtained, and the present invention has been completed.

すなわち,本発明は,リポマイセス(Lipomyces)に
属する酵母を培養してβ−ガラクトシダーゼを含有する
リポマイセス(Lipomyces)に属する酵母を菌体に製造
するに際し,培養時のpHを4.5〜8の弱酸性ないしは弱
アルカリ性領域に保ちながら培養する第一段階と,培養
時のpHを3.0以下の酸性領域に保ちながら培養する第二
段階との二つの段階からなる培養を行うことを特徴とす
るβ−ガラクトシダーゼを含有する酵母菌体の製造法を
要旨とするものである。
That is, the present invention, when the yeast belonging to Lipomyces is cultured to produce yeast belonging to Lipomyces containing β-galactosidase as a bacterial cell, the pH during the culture is 4.5 to 8 weakly acidic or Β-galactosidase, which is characterized by carrying out a two-step culture comprising a first step of culturing while maintaining it in a weakly alkaline region and a second step of culturing while maintaining the pH during culturing in an acidic region of 3.0 or less The gist is the method for producing the yeast cells contained therein.

本発明に用いられる酵母は,乳糖資化能を有し,リポ
マイセス(Lipomyces)に属する菌株ならいかなる菌株
でもよい。具体的にはリポマイセス スターキー(Lipo
myces starkeyi)IFO 1289,リポマイセス リポーフア
ー(Lipomyces lipofer)IFO 0673,IFO 1288等が挙げら
れるが,特に本発明においては,リポマイセス(Lipomy
ces)NKD−14(微工研菌寄第8948号)が好ましい。
The yeast used in the present invention may be any strain as long as it has lactose assimilation ability and belongs to Lipomyces. Specifically, Lipomyces Starkey (Lipo
myces starkeyi) IFO 1289, Lipomyces lipofer IFO 0673, IFO 1288, etc., but especially in the present invention, Lipomyces (Lipomyces)
ces) NKD-14 (Microtechnology Research Institute of Microbiology No. 8948) is preferred.

本発明における培養に用いる炭素源としては,乳糖等
のβ−ガラクトシダーゼ誘導基質が最も好ましく,窒素
源としは,例えばペプトン,カゼイン,コーンステイー
プリカー,肉エキス,酵母エキス等の有機窒素源や,硫
酸アンモニウム,塩化アンモニウム等の無機窒素源を用
いることができる。特に,硫酸アンモニウムあるいは塩
化アンモニウムを用いると,窒素の消費に伴って遊離し
てくる硫酸銀あるいは塩酸銀が培養液pHを低下させるた
め,アルカリ添加を停止することにより培地のpHを低下
させることができるので好ましい。使用する炭素源の濃
度としては,0.2wt%〜30wt%がよく,10wt%〜25wt%が
好ましく,15wt%〜22wt%が特に好ましい。また,窒素
源の濃度としては,0.1wt%〜10wt%がよく,1wt%〜6wt
%が好ましく,3wt%〜5wt%が特に好ましい。さらに,
必要に応じて各種ビタミン,ミネラル,無機塩等を添加
してもよい。培養の温度としては,例えば,20℃〜40
℃,好ましくは25℃〜35℃、さらに好ましくは28℃〜32
℃である。
The carbon source used in the culture in the present invention is most preferably a β-galactosidase-derived substrate such as lactose, and the nitrogen source is, for example, an organic nitrogen source such as peptone, casein, corn steep liquor, meat extract, yeast extract, or the like. An inorganic nitrogen source such as ammonium sulfate or ammonium chloride can be used. Especially when ammonium sulfate or ammonium chloride is used, the pH of the culture medium can be lowered by stopping the addition of alkali, since silver sulfate or silver chloride liberated with the consumption of nitrogen lowers the pH of the culture solution. Therefore, it is preferable. The concentration of the carbon source used is preferably 0.2 wt% to 30 wt%, preferably 10 wt% to 25 wt%, particularly preferably 15 wt% to 22 wt%. The concentration of nitrogen source is preferably 0.1 wt% to 10 wt%, and 1 wt% to 6 wt%.
% Is preferable, and 3 wt% to 5 wt% is particularly preferable. further,
If necessary, various vitamins, minerals, inorganic salts and the like may be added. The culture temperature is, for example, 20 ° C to 40 ° C.
℃, preferably 25 ℃ ~ 35 ℃, more preferably 28 ℃ ~ 32
° C.

本発明において,培養スタート時pHは,使用する菌株
の生育至極pH近辺がよく,pH4,5〜8の弱酸性ないしは弱
アルカリ性領域にpHを調節しながら培養を行い,その
後,対数増殖期でpH3.0以下の弱性領域にpHを低下させ
て,さらに培養を続ける。pH低下後,徐々にβ−ガラク
トシダーゼ活性が上昇し,12ないし48時間後に最大活性
となる。β−ガラクトシダーゼ活性が最大になったとこ
ろで培養を終了し、菌体を通常用いられる遠心分離,濾
過,デカンテーシヨン等の方法により集めることができ
る。
In the present invention, the pH at the start of culturing is close to the growth extreme pH of the strain to be used, and the culturing is performed while adjusting the pH in the weakly acidic or weakly alkaline region of pH 4,5 to 8, and then at pH 3 in the logarithmic growth phase. Decrease the pH to a weak zone below 0.0 and continue the culture. The β-galactosidase activity gradually increases after the pH is lowered, and reaches its maximum after 12 to 48 hours. The culture can be terminated when the β-galactosidase activity is maximized, and the cells can be collected by a commonly used method such as centrifugation, filtration or decantation.

得られた菌体でガラクトオリゴ糖を生成させるには,
例えば,菌体を20%(w/v)ラクトース溶液に懸濁し,30
℃でpH6.5で24時間反応させればよい。反応終了後,ガ
ラクトオリゴ糖の生成量を高速液体クロマトグラフイー
(カラム:ウオーターズ社製,マイクロボンダパツク/N
H2,移動相:アセトニトリル/水=7/3)で定量し,β−
ガラクトシダーゼ活性を測定することができる。
To produce galacto-oligosaccharides with the obtained bacterial cells,
For example, suspend the cells in 20% (w / v) lactose solution,
The reaction may be carried out at pH 6.5 at pH 6.5 for 24 hours. After the reaction was completed, the amount of galacto-oligosaccharide produced was measured by high performance liquid chromatography (column: Waters, Micro Bonder Pack / N).
H 2, mobile phase: quantified with acetonitrile / water = 7/3), β-
Galactosidase activity can be measured.

(実施例) 次に,本発明を実施例により具体的に説明する。(Example) Next, the present invention will be specifically described with reference to Examples.

なお,実施例中の%は,特に明記しない限りは重量%
を表わす。
In the examples,% means% by weight unless otherwise specified.
Represents

実施例1 ラクトース20%,硫安4%,KH2PO40.3%,MgSO4・7H2O
0.15%,ビオチン30μg/,ビタミンB13mg/からなる
培地20を30容ジヤーフアーメンターに仕込み,殺菌
後,pHを6.0に調整した。
Example 1 Lactose 20%, ammonium sulfate 4%, KH 2 PO 4 0.3%, MgSO 4 .7H 2 O
Medium 20 consisting of 0.15%, biotin 30 μg /, vitamin B 13 3 mg / was charged into a 30-volume jar fermenter, and after sterilization, the pH was adjusted to 6.0.

同組成の培地で30℃で24時間前培養したリポマイセス
(Lipomyces)NKD−14(微工研菌寄第8948号)1をジ
ヤーフアーメンターに接種し,30℃,通気量20/min,イ
ンペラー回転数600rpm,4N NaOHでpHを6に調整しながら
34時間培養した。この時の菌濃度は2.0%(乾燥重量)
であった。
A jar fermenter was inoculated with Lipomyces NKD-14 (Microtech Lab. No. 8948) 1 pre-incubated at 30 ℃ for 24 hours in a medium of the same composition, at 30 ℃, aeration rate 20 / min, impeller Rotating speed 600rpm, adjusting pH to 6 with 4N NaOH
It was cultured for 34 hours. The bacterial concentration at this time is 2.0% (dry weight)
Met.

次に,この時点で4N N OHの滴下を停止し,培養液のp
Hを2.0にまで低下させ,以後pHを2.0に保持しながら,
さらに14時間培養を継続した。培養終了後の菌濃度は3.
8%(乾燥重量)であった。
Next, at this point, the dropping of 4N NOH was stopped and the p
While lowering H to 2.0 and maintaining pH at 2.0,
The culture was continued for another 14 hours. The bacterial concentration after the culture is 3.
It was 8% (dry weight).

本培養における培養時間と培地のpH及びβ−ガラクト
シダーゼの活性及び菌濃度の関係を表−1にまとめて示
す。
Table 1 shows the relationship between the culture time in the main culture, the pH of the medium, the β-galactosidase activity, and the bacterial concentration.

なお,β−ガラクトシダーゼ活性の測定は,20%ラク
トースを基質とし,乾燥重量で2%の菌体を加え,pH6.
5,30℃で24時間反応後の上澄みをウオーターズ社製高速
液体クロマトグラフイー用カラム,マイクロボンダパツ
ク/NH2(移動相:アセトニトリル/水=7/3)で分析
し,反応後のガラクトオリゴ糖の生成濃度(%,w/v)と
して表示した。
For the measurement of β-galactosidase activity, 20% lactose was used as a substrate, 2% dry cells were added, and pH was adjusted to 6.
After reacting at 5,30 ℃ for 24 hours, the supernatant was analyzed with a Waters high performance liquid chromatography column, Microbonder Pack / NH 2 (mobile phase: acetonitrile / water = 7/3), and the galacto-oligosaccharide after reaction was analyzed. It was displayed as the production concentration (%, w / v).

表−1の結果から,培地pHを2.0にシフト後,β−ガ
ラクトシダーゼ活性が5.0倍に上昇しており,本発明の
効果は明白である。また,培養終了時の菌体の対ラクト
ース収率は19%であった。
From the results in Table 1, the β-galactosidase activity increased 5.0 times after the medium pH was shifted to 2.0, and the effect of the present invention is clear. At the end of the culture, the yield of lactose from the cells was 19%.

比較例1 pHを2.0に低下させずに,培養48時間目までpH6.0に調
整しながら培養した以外は,実施例1と同様にして培養
を行った。
Comparative Example 1 Culture was carried out in the same manner as in Example 1 except that the pH was adjusted to 6.0 until the 48th hour of culture without lowering the pH to 2.0.

その結果を表−2にまとめて示す。 The results are summarized in Table-2.

表−2の結果から,pH6.0に調整して培養すると,β−
ガラクトシダーゼ活性の上昇はほとんど見られないこと
が明らかである。また,培養終了時の菌体の対糖収率は
19.5%であった。
From the results shown in Table-2, β-
It is clear that little increase in galactosidase activity is seen. In addition, the yield of sugar to the bacterium at the end of culture is
It was 19.5%.

(発明の効果) 本発明によれば,培養時のpHを切り換えるという簡単
な操作だけで,高活性なβ−ガラクトシダーゼを含有す
る酵母菌体を収率よく得ることができる。
(Effect of the Invention) According to the present invention, a yeast cell containing a highly active β-galactosidase can be obtained in a high yield only by a simple operation of changing pH during culture.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12R 1:645) C12R 1:645) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area C12R 1: 645) C12R 1: 645)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リポマイセスに属する酵母を培養してβ−
ガラクトシダーゼを含有するリポマイセスに属する酵母
菌体を製造するに際し,培養時のpHを4.5〜8の弱酸性
ないしは弱アルカリ性領域に保ちながら培養する第一段
階と,培養時のpHを3.0以下の酸性領域に保ちながら培
養する第二段階との二つの段階からなる培養を行うこと
を特徴とするβ−ガラクトシダーゼを含有する酵母菌体
の製造法。
1. β- by culturing yeast belonging to Lipomyces
When producing yeast cells belonging to lipomyces containing galactosidase, the first step of culturing while maintaining the pH during culturing in the weakly acidic or weakly alkaline region of 4.5 to 8, and the acidic region of 3.0 or less in the culturing pH A method for producing a yeast cell containing β-galactosidase, which comprises culturing in two steps, that is, a second step of culturing while maintaining the above.
JP26898887A 1987-10-23 1987-10-23 Method for producing yeast cell containing β-galactosidase Expired - Lifetime JP2512769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26898887A JP2512769B2 (en) 1987-10-23 1987-10-23 Method for producing yeast cell containing β-galactosidase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26898887A JP2512769B2 (en) 1987-10-23 1987-10-23 Method for producing yeast cell containing β-galactosidase

Publications (2)

Publication Number Publication Date
JPH01112978A JPH01112978A (en) 1989-05-01
JP2512769B2 true JP2512769B2 (en) 1996-07-03

Family

ID=17466095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26898887A Expired - Lifetime JP2512769B2 (en) 1987-10-23 1987-10-23 Method for producing yeast cell containing β-galactosidase

Country Status (1)

Country Link
JP (1) JP2512769B2 (en)

Also Published As

Publication number Publication date
JPH01112978A (en) 1989-05-01

Similar Documents

Publication Publication Date Title
EP0323201B1 (en) Method for producing processed milk containing galactooligosaccharide
JP3608620B2 (en) Hemicellulase supplements to improve the energy efficiency of hemicellulose-containing foods and animal feed
EP0081262B1 (en) Process for the production of alpha-galactosidase and uses of the enzyme thus obtained
US5294546A (en) Method for production of a growth factor for Bifidobacterium sp.
JPS6320520B2 (en)
CN102676614A (en) Method for preparing galacto-oligosaccharide
JP2512769B2 (en) Method for producing yeast cell containing β-galactosidase
US3681195A (en) Method of treating yeast
CN111227232A (en) Preparation method of medlar extract enzyme liquid and product thereof
EP0564770B1 (en) Diacetyl production
US3980520A (en) Process for the production of l-malic acid by microbiological fermentation and means suitable for carrying out the same
JP2739335B2 (en) Method for producing galactooligosaccharide
JPH0313877B2 (en)
KR100355264B1 (en) soy yogurt and process for preparation thereof
US4990451A (en) Process for the preparation of inulase
JP3556704B2 (en) β-galactosidase
JP2970932B2 (en) Novel heat-stable β-galactosyltransferase, its production method and its use
JP4095816B2 (en) Production method of galactooligosaccharide
EP0262858B1 (en) Method for production of a growth factor for bifidobacterium Sp.
JP2806969B2 (en) Bifidobacterium growth promoting composition and method for producing the same
JPS62208293A (en) Method for producing Bifidobacterium growth promoting factor
JP2003093090A (en) Method for producing inulin
JP4328482B2 (en) Method for producing non-reducing disaccharide containing α-galactosyl group
JP3871371B2 (en) Method for producing sugar composition containing 3 'galactooligosaccharide
KR960003643B1 (en) Method for producing galactooligosaccharide