JP2512553B2 - Magnetostrictive torque sensor shaft manufacturing method - Google Patents
Magnetostrictive torque sensor shaft manufacturing methodInfo
- Publication number
- JP2512553B2 JP2512553B2 JP1102857A JP10285789A JP2512553B2 JP 2512553 B2 JP2512553 B2 JP 2512553B2 JP 1102857 A JP1102857 A JP 1102857A JP 10285789 A JP10285789 A JP 10285789A JP 2512553 B2 JP2512553 B2 JP 2512553B2
- Authority
- JP
- Japan
- Prior art keywords
- stress
- compressive
- torque
- shaft
- residual stress
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000000034 method Methods 0.000 claims description 16
- 230000008859 change Effects 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 5
- 230000035699 permeability Effects 0.000 claims description 5
- 230000004907 flux Effects 0.000 claims description 3
- 230000005415 magnetization Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 6
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 238000009827 uniform distribution Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910001240 Maraging steel Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000005480 shot peening Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Landscapes
- Measuring Magnetic Variables (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
- Heat Treatment Of Articles (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、伝達トルクを、この伝達トルクにより発生
する応力変化に伴う透磁率の変化として感知するように
した磁歪式トルクセンサ軸の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a magnetostrictive torque sensor shaft, in which transmission torque is sensed as a change in magnetic permeability due to a change in stress generated by the transmission torque.
従来の技術 この種の磁歪式トルクセンサ軸においては、透磁率の
変化を感知可能とするために、その表面の一部に螺旋方
向の磁気異方性が付与される。このような磁気異方性を
付与する方法として、従来、特開昭63−252487号公報に
示されるものがある。これは、軸体に過度の捩りひずみ
を加えて残留応力区域を生成することにより、この残留
応力にもとづく磁気異方性を付与するものである。具体
的には、たとえば熱硬化させる軸では、マルエージング
鋼からなる軸に熱硬化前に過度の捩りひずみを与え、短
時間で時効硬化させている。2. Description of the Related Art In this type of magnetostrictive torque sensor shaft, a helical magnetic anisotropy is imparted to a part of the surface of the shaft so that the change in magnetic permeability can be sensed. As a method for imparting such magnetic anisotropy, there is a method disclosed in JP-A-63-252487. This is to impart a magnetic anisotropy based on this residual stress by applying an excessive torsional strain to the shaft to generate a residual stress area. Specifically, for example, in the case of a heat-hardened shaft, an excessive torsional strain is applied to the shaft made of maraging steel before heat-hardening to age-harden the shaft in a short time.
発明が解決しようとする課題 しかし、単に過度の捩りひずみを加えて残留応力を付
与するのでは、捩った際の引張応力が残留するため、機
械的強度の面では著しく不利である。特にトルクセンサ
軸用の材料として使用される確率の高いNi鉄合金のよう
な材料では、切欠感度が高く亀裂進展抵抗が小さいた
め、疲労強度が損なわれるという欠点がある。たとえ
ば、上記特開昭63−252487号公報には、「熱硬化後の軸
では過度の捩りひずみを加えると必ず軸を破損させた」
とあり、問題である。SUMMARY OF THE INVENTION However, simply applying excessive torsional strain to give residual stress is not advantageous in terms of mechanical strength because tensile stress remains when twisted. In particular, a material such as a Ni iron alloy, which has a high probability of being used as a material for a torque sensor shaft, has a defect that fatigue strength is impaired because the notch sensitivity is high and the crack growth resistance is small. For example, Japanese Patent Laid-Open No. 252487/1988 describes that "on a shaft after thermosetting, the shaft is always damaged when excessive torsional strain is applied."
There is a problem.
そこで本発明はこのような問題を解決して、機械的強
度、特に疲労強度にすぐれた磁歪式トルクセンサ軸の製
造方法を提供し、またこのトルクセンサ軸の磁化容易軸
を面垂直方向としてセンサ特性のヒステリシス低減と感
度向上とを図ることを目的とする。Therefore, the present invention solves such a problem and provides a method for manufacturing a magnetostrictive torque sensor shaft having excellent mechanical strength, particularly fatigue strength, and a sensor in which the easy axis of magnetization of the torque sensor shaft is perpendicular to the surface. The purpose is to reduce the hysteresis of the characteristics and improve the sensitivity.
課題を解決するための手段 上記目的を達成するため本発明の方法は、 伝達トルクにもとづく軸体の透磁率変化を感知するた
めこの軸体において励磁磁束を通過させる主たる部分
に、圧縮残留応力がほぼ一様に分布する処理を施し、 次に前記部分に捩りトルクを加えて、この捩りトルク
にもとづく圧縮主応力と前記圧縮残留応力との合計が圧
縮降伏応力よりも大きくなるように設定し、 その後、前記捩りトルクを取り除き、前記合計が圧縮
降伏応力よりも大きくなった前記圧縮主応力の方向の残
留圧縮応力を解放して、前記軸体に残留応力の磁気異方
性を付与するものである。Means for Solving the Problems In order to achieve the above object, the method of the present invention is to detect a change in the magnetic permeability of a shaft body based on a transmission torque. Performing a treatment to be distributed almost uniformly, then applying a torsion torque to the portion, set so that the sum of the compression main stress based on the torsion torque and the compression residual stress is larger than the compression yield stress, Then, the torsional torque is removed, and the residual compressive stress in the direction of the compressive principal stress whose total is larger than the compressive yield stress is released to give the shaft a magnetic anisotropy of residual stress. is there.
本発明の方法は、圧縮降伏応力が小さくなる温度条件
下で実施することができる。The method of the present invention can be carried out under temperature conditions in which the compressive yield stress becomes small.
作用 すなわち、本発明によれば、第1段階として、軸体に
おいて励磁磁束を通過させる主たる部分に、方向性を有
することなく一様な分布を呈する圧縮残留応力を付与す
る。第2段階では、この圧縮残留応力を付与した部分の
両端に捩りトルクを加える。すると、捩りにもとづく剪
断応力が発生し、軸心と45度の方向に圧縮主応力を生じ
る。Action That is, according to the present invention, as the first step, a compressive residual stress exhibiting a uniform distribution without directivity is applied to the main portion of the shaft body through which the exciting magnetic flux passes. At the second stage, a torsion torque is applied to both ends of the portion to which the compressive residual stress is applied. Then, shear stress is generated based on the torsion, and a compressive principal stress is generated in the direction of 45 degrees with the axis.
このとき、この圧縮主応力と前記圧縮残留応力との合
計が軸材料の圧縮降伏応力よりも大きくなるように捩り
トルクを加えても、実際には軸体には圧縮降伏応力以上
の応力は作用しない。一方、この捩りトルクは、圧縮主
応力の方向以外の方向では両応力の合計が圧縮降伏応力
以下の大きさとなるように付与される。At this time, even if a torsional torque is applied so that the total of the compressive principal stress and the compressive residual stress becomes larger than the compressive yield stress of the shaft material, in reality, the stress above the compressive yield stress acts on the shaft body. do not do. On the other hand, this torsional torque is applied so that the sum of both stresses becomes equal to or less than the compressive yield stress in the directions other than the direction of the compressive principal stress.
したがって、捩りトルクを開放すると、前記合計が圧
縮降伏応力以下であった部分は元の一様な圧縮残留応力
の分布に戻るが、合計が圧縮降伏応力を越えていた部分
については、圧縮残留応力が解放される。この結果、ト
ルク除去後は、前記圧縮主応力の方向の圧縮残留応力
が、他の方向についての圧縮残留応力よりも小さな値と
なり、残留応力の異方性すなわち残留応力にもとづく磁
気異方性が付与されることになる。Therefore, when the torsional torque is released, the part where the total is less than the compressive yield stress returns to the original uniform distribution of compressive residual stress, but the part where the total exceeds the compressive yield stress is compressed residual stress. Is released. As a result, after the torque is removed, the compressive residual stress in the direction of the compressive principal stress becomes a value smaller than the compressive residual stress in the other directions, and the anisotropy of the residual stress, that is, the magnetic anisotropy based on the residual stress is reduced. Will be granted.
通常の材料は常温時と比べ温度が上昇するほど圧縮降
伏応力が低下するため、このような圧縮降伏応力が小さ
くなる温度条件下、すなわち高温条件下で、磁気異方性
を与える処理を実施するのが有利である。Since the compressive yield stress of ordinary materials decreases as the temperature rises compared to normal temperature, magnetic anisotropy treatment is performed under temperature conditions that reduce such compressive yield stress, that is, high temperature conditions. Is advantageous.
実施例 第1図において、1はトルクセンサ軸を製造するため
の軸体で、軟磁性体により構成されている。Embodiment 1 In FIG. 1, reference numeral 1 denotes a shaft body for manufacturing a torque sensor shaft, which is made of a soft magnetic material.
まず、第1図の軸体1において、この軸体1によりト
ルクセンサ軸を構成して伝達トルクを加えたときに、透
磁率変化を検知するために励磁磁束を通過させる主たる
部分に、圧縮残留応力−σRを付与する。この圧縮残留
応力−σR(圧縮応力であるのでマイナスとする)は、
方向性を有しない一様な分布となるように付与される。
第1図では、この一様な分布を表わすため圧縮残留応力
−σRを円で示している。この圧縮残留応力−σRは、
浸炭焼入、窒化、ショットピーニングなどの熱処理、機
械的処理などにより付与することができる。First, in the shaft body 1 of FIG. 1, when a torque sensor shaft is configured by the shaft body 1 and a transmission torque is applied, compression residual is caused in a main portion through which an exciting magnetic flux passes in order to detect a change in permeability. Apply stress −σ R. This compressive residual stress −σ R (negative because it is compressive stress) is
It is given so as to have a uniform distribution having no directionality.
In FIG. 1, the compressive residual stress −σ R is indicated by a circle to represent this uniform distribution. This compressive residual stress −σ R is
It can be applied by carburizing and quenching, nitriding, heat treatment such as shot peening, mechanical treatment and the like.
次に、第2図に示すように、前記主たる部分に対応す
る軸体1の部分に、捩りトルクTを加える。すると、こ
の捩りトルクTにもとづく剪断応力が発生し、この剪断
応力によって、第2図に示すような分布の圧縮応力が生
じる。ここで軸体1の軸心2と−45度の方向には、圧縮
主応力−σTが生じる。なお、第2図では、説明の簡単
のために圧縮残留応力−σRは図示されていない。ま
た、捩りトルクTを加えると、圧縮応力のほかに引張応
力も生じ、圧縮主応力−σTと直交する方向(軸心2と
45度の方向)に引張主応力σTが生じるが、簡単のため
これも図示が省略されている。Next, as shown in FIG. 2, a torsion torque T is applied to the portion of the shaft body 1 corresponding to the main portion. Then, a shear stress is generated based on the torsion torque T, and the shear stress causes a compressive stress having a distribution as shown in FIG. Here, a compressive principal stress-[sigma] T is generated in the direction of -45 degrees with the axis 2 of the shaft body 1. Note that the compressive residual stress −σ R is not shown in FIG. 2 for the sake of simplicity. Further, when the torsional torque T is applied, a tensile stress is generated in addition to the compressive stress, and a direction orthogonal to the compressive principal stress −σ T (axis
A tensile principal stress σ T occurs in the direction of 45 degrees), but this is not shown for simplicity.
このように圧縮残留応力−σRを付与したうえに捩り
トルクTによる圧縮応力を付与すると、軸体1にはこれ
らの合力が付与されることになる。第3図は、このよう
な合力の分布を示す。第3図には、軸体1の圧縮降伏応
力−σCyが円で示されている。When the compressive residual stress −σ R is applied and then the compressive stress due to the torsion torque T is applied, the resultant force is applied to the shaft body 1. FIG. 3 shows the distribution of the resultant force. In FIG. 3, the compressive yield stress −σ Cy of the shaft body 1 is shown by a circle.
第3図において、軸体1における−45度方向の圧縮応
力の合計は、圧縮残留応力−σRと捩りトルクTによる
圧縮主応力−σTとの合計−(σR+σT)となる。し
かし、この合計が圧縮降伏応力−σCyを越える程度に大
きな捩りトルクTを加えると、実際は軸体1には圧縮降
伏応力−δCyよりも大きな圧縮応力は作用せず、捩りト
ルクTによる圧縮ひずみが増大するだけである。In FIG. 3, the total of the compressive stress in the −45 degree direction in the shaft body 1 is the sum of the compressive residual stress −σ R and the compressive main stress due to the torsion torque T −σ T − (σ R + σ T ). However, if a large torsional torque T is applied to such an extent that the total exceeds the compressive yield stress −σ Cy , a compressive stress larger than the compressive yield stress −δ Cy does not actually act on the shaft body 1 and the compression due to the torsional torque T occurs. Only the strain increases.
捩りトルクTを除去すると、合計−(σR+σT)が
圧縮降伏応力−σCyを越えていた場合(σR+σT>σ
Cy)は、圧縮残留応力が解放される。一方、圧縮主応力
−σTの方向以外の方向で、第3図に示すように合計が
圧縮降伏応力−σCy以下の場合(σR+σT≦σCy)
は、捩りトルクTを除去すると、元の一様な圧縮残留応
力−σR+の分布に戻る。When the torsional torque T is removed and the total − (σ R + σ T ) exceeds the compressive yield stress −σ Cy (σ R + σ T > σ
Cy ) releases the compressive residual stress. On the other hand, when the total is less than or equal to the compressive yield stress −σ Cy as shown in FIG. 3 in a direction other than the direction of compressive principal stress −σ T (σ R + σ T ≦ σ Cy ).
Removes the twisting torque T and returns to the original uniform distribution of compressive residual stress −σ R +.
この結果、捩りトルクTを解除した後の圧縮残留応力
の分布は第4図のようになり、残留応力の異方性が生じ
る。これにより、軸体1に、残留応力にもとづく磁気異
方性が付与されることになる。As a result, the distribution of the compressive residual stress after releasing the torsion torque T becomes as shown in FIG. 4, and the anisotropy of the residual stress occurs. As a result, magnetic anisotropy based on the residual stress is given to the shaft body 1.
なお、前述のように、捩りトルクTを加えると圧縮応
力のほかに引張応力も生じるが、この引張応力は、あら
かじめ与えられていた圧縮残留応力−σRにて相殺され
ることになる。したがって、引張応力については、降伏
応力を越えるような大きな応力が生じることはなく、こ
れによっては残留応力の異方性が現われることはない。As described above, when the torsional torque T is applied, a tensile stress is generated in addition to the compressive stress, but this tensile stress is canceled by the compressive residual stress −σ R given in advance. Therefore, regarding the tensile stress, a large stress that exceeds the yield stress does not occur, and this does not cause anisotropy of the residual stress.
このように、あらかじめ圧縮残留応力−σRを付与し
たうえで捩りトルクTにもとづく圧縮力を付与し、その
ときの圧縮主応力−σTと圧縮残留応力−σRとの合計
−(σR+σT)が圧縮降伏応力−σCyよりも大きくな
るようにするものであるため、比較的小さな捩りトルク
Tを加えるだけで、容易に残留応力の異方性を付与する
ことができる。In this way, the compressive residual stress −σ R is applied in advance and then the compressive force based on the torsion torque T is applied, and the sum of the compressive principal stress −σ T and the compressive residual stress −σ R at that time − (σ R Since + σ T ) is set to be larger than the compressive yield stress −σ Cy , anisotropy of residual stress can be easily imparted by adding a relatively small torsion torque T.
このようにして圧縮残留応力による磁気異方性を付与
する作業は、もちろん常温下において実施することがで
きる。しかし、通常の材料は温度が上昇するほど圧縮降
伏応力が低下するため、このように圧縮降伏応力が小さ
くなる温度条件下、すなわち高温下で異方性を付与する
処理を行うと、加えるべき捩りトルクを小さなものとす
ることができる利点がある。The work of imparting the magnetic anisotropy due to the compressive residual stress in this manner can of course be carried out at room temperature. However, since the compressive yield stress of ordinary materials decreases as the temperature rises, the twisting that should be applied should be carried out under such temperature conditions that the compressive yield stress becomes small, that is, at the high temperature. There is an advantage that the torque can be made small.
また本発明によれば、圧縮残留応力の大小の差にもと
づく磁気異方性を付与するものであるため、従来のよう
に引張応力で異方性を付与するものと異なって、磁化容
易軸が軸体1の表面に対して垂直方向を向くことにな
る。すなわち、磁性体としての軸体1の磁化過程には回
転磁化過程や磁壁移動過程などがあり、磁壁移動過程が
センサ特性のヒステリシスを大きくし、感度を下げるこ
とが知られている。しかし、本発明のように磁化容易軸
が軸表面に対し垂直方向を向いていれば、磁壁移動過程
を経ることなく回転磁化過程のみを利用できることか
ら、ヒステリシス小かつ感度大というセンサ性能を得る
ことができる。Further, according to the present invention, since magnetic anisotropy is imparted based on the difference in the magnitude of the compressive residual stress, unlike the conventional technique in which anisotropy is imparted by tensile stress, the easy axis of magnetization is The shaft 1 is oriented in the direction perpendicular to the surface of the shaft 1. That is, it is known that the magnetization process of the shaft body 1 as a magnetic body includes a rotation magnetization process and a domain wall movement process, and the domain wall movement process increases the hysteresis of the sensor characteristic and lowers the sensitivity. However, as in the present invention, if the easy axis of magnetization is oriented in the direction perpendicular to the surface of the axis, only the rotating magnetization process can be used without passing through the domain wall movement process, so that a sensor performance with small hysteresis and high sensitivity can be obtained. You can
磁歪式トルクセンサ軸の磁性材料としてよく用いられ
るNiなどを含有する材料は、切欠感度が高く、引張残留
応力の分布する部分では亀裂の進展が速いという特性を
有する。しかし、本発明のように圧縮残留応力を分布さ
せることで、機械的強度、特に疲労強度を高めることが
できる。A material containing Ni, which is often used as a magnetic material for a magnetostrictive torque sensor shaft, has high notch sensitivity and has characteristics that cracks grow rapidly in a portion where tensile residual stress is distributed. However, by distributing the compressive residual stress as in the present invention, the mechanical strength, especially the fatigue strength can be increased.
第5図は、本発明の方法により製造される磁歪式トル
クセンサ軸の一具体例を示す。第5図において、センサ
軸を構成する軸体11は、中央部12と、この中央部12の両
側に形成された一対の小径部13,14と、これら小径部13,
14にそれぞれ連続する軸部15,16とを有している。FIG. 5 shows a specific example of the magnetostrictive torque sensor shaft manufactured by the method of the present invention. In FIG. 5, a shaft body 11 constituting a sensor shaft includes a central portion 12, a pair of small diameter portions 13 and 14 formed on both sides of the central portion 12, and the small diameter portions 13, 14.
14 has shaft portions 15 and 16 which are continuous with each other.
このような軸体11において、小径部13,14に圧縮残留
応力をほぼ一様に分布させたのちに、中央部12を固定し
て、両小径部13,14を互いに逆方向に捩る。すると、図
示のように、小径部13と14とで、互いに逆方向に傾斜し
たシェブロン状の残留応力の磁気異方性部17,18が付与
される。In such a shaft body 11, after compressive residual stress is distributed almost uniformly in the small diameter portions 13 and 14, the central portion 12 is fixed and both small diameter portions 13 and 14 are twisted in opposite directions. Then, as shown in the figure, the small-diameter portions 13 and 14 provide the chevron-shaped residual stress magnetic anisotropic portions 17 and 18 that are inclined in opposite directions.
発明の効果 以上述べたように本発明によると、圧縮残留応力と捩
りトルクによる圧縮主応力との合計が軸材料の圧縮降伏
応力よりも大きくなるようにして、捩りトルク解除時の
圧縮主応力方向の残留圧縮応力を解放することにより、
軸体に圧縮残留応力による磁気異方性を付与するもので
あるため、機械的強度、特に疲労強度の高いトルクセン
サ軸を得ることができ、しかも磁化容易軸は軸表面に対
し垂直方向を向くため、回転磁化のみを利用できること
になって、センサのヒステリシスを小さくできるうえに
感度を大きくできる。また、圧縮残留応力と捩りトルク
による圧縮主応力との合計を利用するものであるため、
小さな捩りトルクで容易に圧縮降伏応力を越えることが
可能になる。As described above, according to the present invention, the sum of the compressive residual stress and the compressive principal stress due to the torsion torque is made larger than the compressive yield stress of the shaft material, and the direction of the compressive principal stress at the time of releasing the torsion torque is determined. By releasing the residual compressive stress of
Since the shaft is given magnetic anisotropy due to residual compressive stress, a torque sensor shaft with high mechanical strength, especially fatigue strength can be obtained, and the easy axis of magnetization is perpendicular to the shaft surface. Therefore, only rotational magnetization can be used, and the hysteresis of the sensor can be reduced and the sensitivity can be increased. Also, since the total of the compressive residual stress and the compressive principal stress due to the torsion torque is used,
It becomes possible to easily exceed the compressive yield stress with a small torsional torque.
圧縮降伏応力が小さくなる高温の温度条件下で異方性
の付与作業を実施すれば、加えるべき捩りトルクをさら
に小さくすることができる。If the work of applying anisotropy is carried out under a high temperature condition where the compressive yield stress becomes small, the torsion torque to be applied can be further reduced.
第1図〜第4図は、本発明による磁歪式トルクセンサ軸
の製造方法の説明図、第5図は本発明にもとづく磁歪式
トルクセンサ軸の一具体例の斜視図である。 1,11……軸体、−σR……圧縮残留応力、−σT……圧
縮主応力、−σCy……圧縮降伏応力。1 to 4 are explanatory views of a method for manufacturing a magnetostrictive torque sensor shaft according to the present invention, and FIG. 5 is a perspective view of a specific example of the magnetostrictive torque sensor shaft according to the present invention. 1,11 ... Shaft,-? R ... Compressive residual stress,-? T ... Compressive principal stress,-? Cy ... Compressive yield stress.
Claims (2)
感知するためこの軸体において励磁磁束を通過させる主
たる部分に、圧縮残留応力がほぼ一様に分布する処理を
施し、 次に前記部分に捩りトルクを加えて、この捩りトルクに
もとづく圧縮主応力と前記圧縮残留応力との合計が圧縮
降伏応力よりも大きくなるように設定し、 その後、前記捩りトルクを取り除き、前記合計が圧縮降
伏応力よりも大きくなった前記圧縮主応力の方向の残留
圧縮応力を解放して、前記軸体に残留応力の磁気異方性
を付与することを特徴とする磁歪式トルクセンサ軸の製
造方法。1. In order to detect a change in the magnetic permeability of a shaft body due to a transmission torque, a main portion of the shaft body through which an exciting magnetic flux passes is subjected to a treatment so that the compressive residual stress is substantially evenly distributed. Is set so that the sum of the compressive principal stress based on the twist torque and the compressive residual stress is larger than the compressive yield stress, then the torsion torque is removed, and the sum is the compressive yield stress. A method of manufacturing a magnetostrictive torque sensor shaft, characterized in that the residual compressive stress in the direction of the compressive principal stress that has become larger than that is released, and the magnetic anisotropy of the residual stress is imparted to the shaft body.
度条件下で実施することを特徴とする請求項1記載の磁
歪式トルクセンサ軸の製造方法。2. The method for manufacturing a magnetostrictive torque sensor shaft according to claim 1, wherein the method is carried out under a temperature condition in which the compressive yield stress is smaller than that at room temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1102857A JP2512553B2 (en) | 1989-04-20 | 1989-04-20 | Magnetostrictive torque sensor shaft manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1102857A JP2512553B2 (en) | 1989-04-20 | 1989-04-20 | Magnetostrictive torque sensor shaft manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02280024A JPH02280024A (en) | 1990-11-16 |
JP2512553B2 true JP2512553B2 (en) | 1996-07-03 |
Family
ID=14338593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1102857A Expired - Lifetime JP2512553B2 (en) | 1989-04-20 | 1989-04-20 | Magnetostrictive torque sensor shaft manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2512553B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4986815B2 (en) * | 2007-11-09 | 2012-07-25 | 本田技研工業株式会社 | Manufacturing method of magnetostrictive torque sensor |
US20190178683A1 (en) | 2016-05-17 | 2019-06-13 | Kongsberg Inc. | System, Method And Object For High Accuracy Magnetic Position Sensing |
WO2018109674A1 (en) | 2016-12-12 | 2018-06-21 | Kongsberg Inc. | Dual-band magnetoelastic torque sensor |
US10983019B2 (en) | 2019-01-10 | 2021-04-20 | Ka Group Ag | Magnetoelastic type torque sensor with temperature dependent error compensation |
WO2021161066A1 (en) | 2020-02-11 | 2021-08-19 | Ka Group Ag | Magnetoelastic torque sensor with local measurement of ambient magnetic field |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60257334A (en) * | 1984-06-04 | 1985-12-19 | Nissan Motor Co Ltd | Torque detecting instrument |
JPS61111434A (en) * | 1984-11-06 | 1986-05-29 | Matsushita Electric Ind Co Ltd | Torque sensor |
US4896544A (en) * | 1986-12-05 | 1990-01-30 | Mag Dev Inc. | Magnetoelastic torque transducer |
-
1989
- 1989-04-20 JP JP1102857A patent/JP2512553B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02280024A (en) | 1990-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1304601C (en) | Magnetoelastic torque transducer | |
Adams | The damping characteristics of certain steels, cast irons and other metals | |
US4034585A (en) | Process of compression stressing metals to increase the fatigue strength thereof | |
JP2512553B2 (en) | Magnetostrictive torque sensor shaft manufacturing method | |
US4840073A (en) | Torque detecting device | |
JP2512552B2 (en) | Magnetostrictive torque sensor shaft manufacturing method | |
SINES | The prediction of fatigue fracture under combined stresses at stress concentrations | |
JPH0531671A (en) | Coil spring peening method | |
JP3998733B2 (en) | High spring resistance and fatigue resistance coil spring | |
JP2512555B2 (en) | Magnetostrictive torque sensor shaft preparation method | |
US4164806A (en) | Method for attaching an end bead to a musical instrument string | |
JP2001082518A (en) | Coil spring and its manufacturing method | |
JP2512554B2 (en) | Magnetostrictive torque sensor shaft manufacturing method | |
JPH11140589A (en) | High fatigue strength steel wires and springs and their manufacturing methods | |
JP2781071B2 (en) | Manufacturing method of magnetostrictive torque sensor shaft | |
JPH0242419B2 (en) | ||
JP2721192B2 (en) | Corrosion resistant soft magnetic material | |
JPH0450741A (en) | Torque sensor shaft | |
JPH041542A (en) | Manufacture of magnetostrictive torque sensor shaft | |
Kobelev | Elastic-plastic work-hardening deformation under combined bending and torsion and residual stresses in helical springs | |
JP2775777B2 (en) | High strength coil spring and manufacturing method thereof | |
JPH0381630A (en) | Torque sensor shaft | |
JPH02129422A (en) | High strength coil spring and its manufacturing method | |
JP3095864B2 (en) | Manufacturing method of torque detection shaft | |
JP3264471B2 (en) | Magnetostrictive torque sensor shaft |