JP2512050Y2 - Observation device in non-contact detection device - Google Patents
Observation device in non-contact detection deviceInfo
- Publication number
- JP2512050Y2 JP2512050Y2 JP1986021623U JP2162386U JP2512050Y2 JP 2512050 Y2 JP2512050 Y2 JP 2512050Y2 JP 1986021623 U JP1986021623 U JP 1986021623U JP 2162386 U JP2162386 U JP 2162386U JP 2512050 Y2 JP2512050 Y2 JP 2512050Y2
- Authority
- JP
- Japan
- Prior art keywords
- optical system
- observation
- light
- detection
- contact detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001514 detection method Methods 0.000 title claims description 20
- 230000003287 optical effect Effects 0.000 claims description 37
- 238000005259 measurement Methods 0.000 claims description 23
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 description 6
- 201000009310 astigmatism Diseases 0.000 description 4
- 238000003708 edge detection Methods 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Description
【考案の詳細な説明】 〈利用分野〉 この考案は被測定物の表面形状・粗さ、パターンエッ
ジ検出等をレーザー光による光学的非接触手段により検
出し、測定する非接触検出装置における表面の観察装置
に関するものである。[Detailed Description of the Invention] <Field of Use> The present invention detects the surface shape / roughness of an object to be measured, pattern edge detection, etc. by an optical non-contact means using laser light and measures the surface of the non-contact detection device. The present invention relates to an observation device.
〈従来技術〉 従来の技術をICチップ等のパターンエッジ検出の例に
よって説明する。<Prior Art> The prior art will be described with an example of pattern edge detection of an IC chip or the like.
第3図は非点収差法による光学系を示すもので、レー
ザー光源1からの光を偏光ビームスプリッタ2及びλ/4
板3を通し、対物レンズ4によって測定対象面5に照射
すると共にその反射光を再び偏光ビームスプリッタ2を
通して直角に方向を変え、半透鏡6によって2分された
後シリンドリカルレンズ7、8を通して、分割受光素子
9、10で受けるようにしている。ここで分割受光素子9
は4分割、10は2分割とし、4分割素子9によって測定
点における焦点を合わせるために対物レンズ4を移動さ
せるための制御信号を得るようにし、2分割素子10によ
ってパターンエッジ検出を行なうようにしている。なお
このエッジ検出とは半導体ウエーハ上に形成されたICチ
ップ等のパターン細線の位置を決定するもので、レーザ
ースポットが線(この場合いくらかの幅を有する)の境
界(これをエッジとする)を走査したとき、2分割素子
の受ける反射光は一方が強く、他方がこれよりも弱くな
るのでその差から線のエッジ位置を特定しようとするも
のである。FIG. 3 shows an optical system based on the astigmatism method, in which light from the laser light source 1 is polarized by the polarization beam splitter 2 and λ / 4.
After passing through the plate 3, the object surface 4 is irradiated with the objective lens 4 and the reflected light is redirected again through the polarization beam splitter 2 at a right angle, divided by the semi-transparent mirror 6 and then split through the cylindrical lenses 7 and 8. The light receiving elements 9 and 10 are adapted to receive the light. Here, the divided light receiving element 9
Is divided into 4 and 10 is divided into 2 so that the control signal for moving the objective lens 4 to adjust the focus at the measurement point is obtained by the 4-division element 9 and the pattern edge detection is performed by the 2-division element 10. ing. Note that this edge detection is to determine the position of a fine pattern line of an IC chip or the like formed on a semiconductor wafer, and the laser spot defines the boundary of the line (which has a certain width in this case) as the edge. When scanning, the reflected light received by the two-divided element is strong on one side and weaker on the other side, so that the edge position of the line is specified from the difference.
この測定において、レーザー光は測定面上に微細なレ
ーザースポットを照射しているものであって、その照射
部に肉眼用顕微鏡を介在させて直接観察することは物理
的に困難であることから、μmの単位で照射されるレー
ザースポットの位置が被測定物全体の測定面のどの位置
にあるのかを簡単に知ることができなかった。特に多数
の線が平行に並んだ場合など、その検出位置を検知する
には非常に困難なものであった。また測定面のオリエン
テーションによって線の方向を光学系に一致させる必要
があるが、その検出にも煩雑な手数が伴なうものであっ
た。In this measurement, the laser light is what irradiates a fine laser spot on the measurement surface, because it is physically difficult to directly observe the irradiation part with a macroscopic microscope interposed, It was not possible to easily know which position on the measurement surface of the entire object to be measured the position of the laser spot irradiated in the unit of μm. In particular, when many lines are arranged in parallel, it is very difficult to detect the detection position. In addition, it is necessary to match the direction of the line with the optical system by the orientation of the measurement surface, but this is a complicated task to detect.
上述のような問題は例えば表面粗さ測定装置において
も同様であって、厳格にどの地点の検出値が出力されて
いるかを簡単に知ることができなかった。The problem as described above is the same in the surface roughness measuring device, for example, and it has not been possible to easily know exactly which point the detected value is output.
なお、検出用光学系とはまったく別個に観察用光学系
を設ければ良いが、これでは構造的、装置的に問題であ
ることはもとより測定点を傾斜して観察することになっ
て非常に不具合となる。It should be noted that an observation optical system may be provided separately from the detection optical system, but this is not only a structural and device problem, but it also means that the measurement point is inclined and observed. It becomes a malfunction.
〈本考案における解決手段〉 上述の如き問題点に鑑み、本考案は検出用光源として
のレーザー光の他に測定点のレーザースポットの周辺を
も照射する他の光源を設け、その反射光を測定系と同一
の光学系を通し、途中で分岐して観察用光学系に導くよ
うにすることにより、光学系の僅かな追加で測定点の観
察(確認)ができるようにしたものである。<Means for Solving the Present Invention> In view of the problems described above, the present invention provides another light source that irradiates the periphery of the laser spot of the measurement point in addition to the laser light as the light source for detection, and measures the reflected light. By passing through the same optical system as the system and branching it to the observation optical system on the way, the measurement point can be observed (confirmed) with a slight addition of the optical system.
〈実施例〉 第1図は非点収差法による光学系の実施例であり、第
3図と共通する部分については説明を省略する。<Examples> FIG. 1 is an example of an optical system based on the astigmatism method, and description of parts common to those in FIG. 3 is omitted.
図に於いて、11は測定面5を照射する為の観察用光源
であり、対物レンズ4の周辺もしくは対物レンズ4と測
定面5との間に位置するように設けている。12は光束分
岐部材、例えば半透鏡であり、第3図の従来光学系で示
した半透鏡6とシリンドリカルレンズ8の間の光路中に
介在させ、該半透鏡12により光束の一部を従来同様に分
割受光素子10側へ反射させ、他の一部を赤外線フィルタ
13を介して観察用光学系としての顕微鏡部14へ導くよう
にしている。従って、顕微鏡部14は検出用光学系と同一
の光路中にあり、検出用のレーザー光と観察用光が入射
することになる。In the figure, 11 is an observation light source for irradiating the measurement surface 5, and is provided so as to be located around the objective lens 4 or between the objective lens 4 and the measurement surface 5. Reference numeral 12 denotes a light beam branching member, for example, a semitransparent mirror, which is interposed in the optical path between the semitransparent mirror 6 and the cylindrical lens 8 shown in the conventional optical system of FIG. It is reflected to the side of the divided light receiving element 10 and the other part is infrared filter
It is led via 13 to a microscope section 14 as an optical system for observation. Therefore, the microscope unit 14 is in the same optical path as the detection optical system, and the detection laser light and the observation light are incident.
しかして図例に於いて、測定面5に照射されたレーザ
ー光と観察用光の反射光は、偏光ビームスプリッタ2に
より光路を変更されて半透鏡6に入射し、一部はシリン
ドリカルレンズ7を介して焦点検出用の分割受光素子9
側に反射し、他の一部は該半透鏡6を透過して第2の半
透鏡12に入射する。該半透鏡12への入射光は前述同様一
部が反射して、目的とするエッジ等の変位検出用の分割
受光素子10に送られ、他の透過光が赤外線フィルタ13を
通って顕微鏡部14に送られる。In the illustrated example, the reflected light of the laser light and the observation light radiated on the measurement surface 5 has its optical path changed by the polarization beam splitter 2 and enters the semi-transparent mirror 6, and a part of the light passes through the cylindrical lens 7. Through the divided light receiving element 9 for focus detection
The light is reflected to the side, and the other part is transmitted through the semi-transparent mirror 6 and is incident on the second semi-transparent mirror 12. Part of the incident light on the semi-transparent mirror 12 is reflected and sent to the split light receiving element 10 for displacement detection of the target edge or the like, and the other transmitted light passes through the infrared filter 13 and the microscope unit 14 Sent to.
従って、顕微鏡部14から肉眼で測定面5における測定
点の位置をたやすく確認し、観察することができる。Therefore, the position of the measurement point on the measurement surface 5 can be easily confirmed and observed with the naked eye from the microscope unit 14.
次に、第2図は本考案を臨界角法による光学系に実施
した場合を示すものであり、1はレーザー光源、22は偏
光ビームスプリッタ、23はλ/4板、24は対物レンズ、26
は半透鏡であって、従来の光学系としてはこの半透鏡26
での反射光及び透過光がそれぞれ臨界角プリズム27、28
に入射し、もって焦点検出用の分割受光素子29と変位検
出用の分割受光素子30に送られるようにしている。Next, FIG. 2 shows a case where the present invention is applied to an optical system by the critical angle method, 1 is a laser light source, 22 is a polarization beam splitter, 23 is a λ / 4 plate, 24 is an objective lens, 26
Is a semi-transparent mirror.
The reflected light and transmitted light at the critical angle prisms 27 and 28, respectively.
And is sent to the split light receiving element 29 for focus detection and the split light receiving element 30 for displacement detection.
しかして本案は、前記半透鏡26と臨界角プリズム28の
間の光路中に光束分岐部材としての半透鏡12を介在さ
せ、該半透鏡12への入射光の一部を反射させて前記臨界
角プリズム28へ送り、他の透過光を第1実施例と同様に
構成した赤外線フィルタ13及び観察用光学系としての顕
微鏡部14へ送るようにしたものである。Therefore, in the present invention, the semi-transparent mirror 12 as a light beam branching member is interposed in the optical path between the semi-transparent mirror 26 and the critical angle prism 28, and a part of the incident light to the semi-transparent mirror 12 is reflected to make the critical angle. The transmitted light is sent to the prism 28, and the other transmitted light is sent to the infrared filter 13 and the microscope section 14 as an optical system for observation which are constructed in the same manner as in the first embodiment.
従って、対物レンズ24近傍に配置された観察用光源11
から照射され、測定面5で反射して検出用レーザー光と
同一光路中を通過した観察光は前述第1実施例と同様に
して顕微鏡部14に入ることになり、もって測定点の位置
をたやすく確認し、観察することができることになる。Therefore, the observation light source 11 disposed near the objective lens 24
The observation light that is emitted from the laser beam and reflected on the measurement surface 5 and passed through the same optical path as the laser light for detection enters the microscope section 14 in the same manner as in the first embodiment, and the position of the measurement point is determined accordingly. You will be able to easily check and observe.
ところで上記いずれの実施例に於いても、観察用光学
系に於ける焦点合わせは、検出用レーザースポットの焦
点合わせ手段(本実施例の場合、分割受光素子による制
御手段)に協動する手段を施しておけば、自動合焦とす
ることができる。また、上記それぞれの実施例に於いて
は、観察用光学系として顕微鏡部14により肉眼観察がで
きるようにしたものであるが、この顕微鏡部の代わりに
CCDカメラを使用してモニターテレビ表示方式を利用す
ることもできる。この場合には、被測定物からの反射度
合に応じて赤外線フィルタを設定すればよい。更に又、
観察用光を観察用光学系に導く為に光束分岐部材として
半透鏡を設けた場合を説明したが、これをビームスプリ
ッタで構成してもよいことは勿論である。By the way, in any of the above-mentioned embodiments, the focusing in the observing optical system requires a means for cooperating with the focusing means of the laser spot for detection (in this embodiment, the control means by the divided light receiving element). If it is applied, automatic focusing can be achieved. Further, in each of the above-mentioned embodiments, the observation optical system is configured so that macroscopic observation can be performed by the microscope section 14, but instead of this microscope section,
It is also possible to use a monitor TV display system using a CCD camera. In this case, the infrared filter may be set according to the degree of reflection from the object to be measured. Furthermore,
The case where the semi-transparent mirror is provided as the light beam branching member for guiding the observation light to the observation optical system has been described, but it goes without saying that this may be configured by a beam splitter.
〈効果〉 以上述べてきたように、本考案によれば被測定物の測
定面における測定点をレーザー光による非接触で測定、
検出するものに於いて、その測定点及びその周辺を観察
用光により照射し、その反射光を検出用光と同一の光学
系を通して観察用光学系に結像させ、これにより観察、
確認ができるので、レーザースポットによる測定点の測
定面における位置あるいは状態を容易に認めることがで
き、測定位置の検索、あるいは設定が極めて簡単に行な
えると共にその操作も容易であって、また光学系として
の構成も簡単にでき、実用的効果に極めて優れた装置を
提供することができる。<Effect> As described above, according to the present invention, the measurement point on the measurement surface of the DUT is measured in a non-contact manner by the laser beam,
In what is to be detected, the measurement point and its periphery are irradiated with the observation light, and the reflected light is imaged on the observation optical system through the same optical system as the detection light, thereby observing,
Since it can be confirmed, the position or state of the measurement point by the laser spot on the measurement surface can be easily recognized, the measurement position can be searched or set very easily, and its operation is easy, and the optical system It is possible to provide a device having an extremely excellent practical effect.
第1図は本案の第1実施例に係る非点収差法による光学
系の構成図、第2図は本案の第2実施例に係る臨界角法
による光学系の構成図、第3図は従来の非点収差法によ
る光学系の構成図である。 1:レーザー光源、5:測定面 11:観察用光源、12:光束分岐部材 13:赤外線フィルタ 14:観察用光学系(顕微鏡部)FIG. 1 is a block diagram of an optical system by the astigmatism method according to the first embodiment of the present invention, FIG. 2 is a block diagram of an optical system by the critical angle method according to the second embodiment of the present invention, and FIG. 3 is a configuration diagram of an optical system based on the astigmatism method of FIG. 1: Laser light source, 5: Measurement surface 11: Observation light source, 12: Light flux splitting member 13: Infrared filter 14: Observation optical system (microscope section)
フロントページの続き (56)参考文献 特開 昭60−253905(JP,A) 特開 昭60−253822(JP,A) 特開 昭60−186705(JP,A) 特開 昭60−179949(JP,A) 特開 昭60−15939(JP,A) 特開 昭59−101827(JP,A) 特開 昭59−100805(JP,A) 特開 昭59−27207(JP,A) 特開 昭59−18913(JP,A) 特開 昭56−24504(JP,A) 実開 昭60−21911(JP,U)Continuation of front page (56) Reference JP-A-60-253905 (JP, A) JP-A-60-253822 (JP, A) JP-A-60-186705 (JP, A) JP-A-60-179949 (JP , A) JP 60-15939 (JP, A) JP 59-101827 (JP, A) JP 59-100805 (JP, A) JP 59-27207 (JP, A) JP 59-18913 (JP, A) JP-A-56-24504 (JP, A) Actual development 60-21911 (JP, U)
Claims (3)
出用光を照射し、その反射光により測定点の合焦及び変
位検出を行なうように光学系を構成した非接触検出装置
において、測定面を照射する観察用光源を前記光学系の
外側に設けると共に、前記検出用光と同一の光学系を通
る、反射した観察用光を分岐し結像するように該光学系
光路に光束分岐部材及び観察用光学系を介設したことを
特徴とする非接触検出装置における観察装置。1. A non-contact detecting device having an optical system configured to irradiate a measuring surface of an object to be measured with detection light from a laser light source and to perform focusing and displacement detection of a measurement point by the reflected light. An observation light source for illuminating a surface is provided outside the optical system, and a light beam branching member is provided in the optical path of the optical system so that the reflected observation light passing through the same optical system as the detection light is branched and imaged. And an observation device in a non-contact detection device, wherein an observation optical system is provided.
録請求の範囲第1項記載の非接触検出装置における観察
装置。2. An observation device in a non-contact detection device according to claim 1, wherein the observation optical system is a microscope section.
登録請求の範囲第1項記載の非接触検出装置における観
察装置。3. An observation device in a non-contact detection device according to claim 1, wherein the observation optical system is a CCD camera.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1986021623U JP2512050Y2 (en) | 1986-02-18 | 1986-02-18 | Observation device in non-contact detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1986021623U JP2512050Y2 (en) | 1986-02-18 | 1986-02-18 | Observation device in non-contact detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62134016U JPS62134016U (en) | 1987-08-24 |
JP2512050Y2 true JP2512050Y2 (en) | 1996-09-25 |
Family
ID=30818231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1986021623U Expired - Lifetime JP2512050Y2 (en) | 1986-02-18 | 1986-02-18 | Observation device in non-contact detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2512050Y2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07117372B2 (en) * | 1988-01-14 | 1995-12-18 | 松下電器産業株式会社 | Welding line detector |
CA2504335A1 (en) * | 2002-10-30 | 2004-05-13 | Toppan Printing Co., Ltd. | Apparatus of wiring pattern, inspection method, detection apparatus, detection method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5767844A (en) * | 1980-10-15 | 1982-04-24 | Nippon Kogaku Kk <Nikon> | Surface inspecting device |
JPS57135306A (en) * | 1981-02-16 | 1982-08-20 | Toyo Kogaku Kogyo Kk | Measuring method of microsubstance |
JPS59100805A (en) * | 1982-12-01 | 1984-06-11 | Canon Inc | Device for observing object |
JPS60186705A (en) * | 1984-03-06 | 1985-09-24 | Agency Of Ind Science & Technol | Optical roughness gauge |
-
1986
- 1986-02-18 JP JP1986021623U patent/JP2512050Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62134016U (en) | 1987-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0743251B2 (en) | Optical displacement meter | |
JPS61104243A (en) | Foreign object detection method and device | |
JP2512050Y2 (en) | Observation device in non-contact detection device | |
WO2003060589A1 (en) | Auto focussing device and method | |
JPH04236307A (en) | Detecting device of three-dimensional shape of pattern | |
JP4713391B2 (en) | Infrared microscope | |
JPH10176906A (en) | Measuring device | |
JPH08334317A (en) | Measuring microscope | |
JPH0541407Y2 (en) | ||
JPH03231105A (en) | Method and apparatus for appearance inspection of soldered part | |
JPH02191314A (en) | Pattern detector | |
JPH1114575A (en) | Photothermal reflection-type sample analyzer | |
JP2565490Y2 (en) | Confocal laser microscope | |
JPH10133117A (en) | Microscope equipped with focus detecting device | |
JP2002311388A (en) | Optical system | |
JPH1164719A (en) | Microscope equipped with focus detection means and displacement measuring device | |
JPH1096625A (en) | Focus detector | |
JPH1123953A (en) | Microscope equipped with focus detector and displacement measuring device | |
JPS6236502A (en) | Microcsope for measuring minute displacement | |
JP2002323316A (en) | Focal point position detector | |
JPH02272514A (en) | Method for positioning optical cutting microscope device and its optical means | |
JPH04296609A (en) | Displacement measuring device | |
JP2989995B2 (en) | Positioning device | |
JPH07174552A (en) | Apparatus for detecting focal point | |
JPH0231103A (en) | Apparatus for detecting three-dimensional shape of pattern |