JP2510701B2 - Ultra-equilibrium gas-containing water production equipment - Google Patents
Ultra-equilibrium gas-containing water production equipmentInfo
- Publication number
- JP2510701B2 JP2510701B2 JP63264251A JP26425188A JP2510701B2 JP 2510701 B2 JP2510701 B2 JP 2510701B2 JP 63264251 A JP63264251 A JP 63264251A JP 26425188 A JP26425188 A JP 26425188A JP 2510701 B2 JP2510701 B2 JP 2510701B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- container
- oxygen
- gas
- duct
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/237—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
- B01F23/2376—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
- B01F23/23762—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/237—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
- B01F23/2376—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
- B01F23/23761—Aerating, i.e. introducing oxygen containing gas in liquids
- B01F23/237612—Oxygen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/10—Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/10—Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
- B01F25/102—Mixing by creating a vortex flow, e.g. by tangential introduction of flow components wherein the vortex is created by two or more jets introduced tangentially in separate mixing chambers or consecutively in the same mixing chamber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/50—Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
- B01F25/51—Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle in which the mixture is circulated through a set of tubes, e.g. with gradual introduction of a component into the circulating flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F2025/91—Direction of flow or arrangement of feed and discharge openings
- B01F2025/919—Direction of flow or arrangement of feed and discharge openings characterised by the disposition of the feed and discharge openings
- B01F2025/9191—Direction of flow or arrangement of feed and discharge openings characterised by the disposition of the feed and discharge openings characterised by the arrangement of the feed openings for one or more flows, e.g. for the mainflow and the flow of an additional component
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Gas Separation By Absorption (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Non-Alcoholic Beverages (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超平衡ガス含有水、すなわち任意の所定の
温度及び圧力での飽和に対応する平衡条件に対して過剰
量にてガスを安定に含有する水を製造する装置に関す
る。DETAILED DESCRIPTION OF THE INVENTION Industrial Field of the Invention The present invention stabilizes a gas in excess to superequilibrium gas-containing water, ie, equilibrium conditions corresponding to saturation at any given temperature and pressure. The present invention relates to an apparatus for producing water contained in.
各種ガスが水中に溶解され得ること、及び任意の所定
温度及び圧力下に単位容量の水中に任意の特別のガスが
良く規定された最大量即ち飽和量で常に存在することは
周知である。酸素の場合においては、その様なデータは
例えばアメリカン・パブリック・ヘルス・アソシエーシ
ョン(American Public Health Association)により作
成及び刊行された「水及び廃水の標準的検査方法(Stan
dard Methods for the Examination of Water and Wast
e Water)」と題される本〔監修者Mary Ann H.Frason
(第16版)〕に見ることができる。この本の421章はこ
れらの表を含み、溶存酸素を如何にして求めることが出
来るかについて詳細に説明している。同様なデータはそ
の他のガスについても各種物理の教科書に見ることがで
きる。It is well known that various gases can be dissolved in water and that any particular gas is always present in a unit volume of water under any given temperature and pressure in a well-defined maximum or saturation amount. In the case of oxygen, such data can be found, for example, in the “Standard Methods for Testing Water and Wastewater (Stan Water),” published and published by the American Public Health Association.
dard Methods for the Examination of Water and Wast
e Water) ”(edited by Mary Ann H. Frason
(16th edition)]. Chapter 421 of this book, including these tables, describes in detail how dissolved oxygen can be determined. Similar data can be found in other physics textbooks for other gases.
又、水がガス雰囲気下において激しく混合されるか或
いは撒き散らされるか或いはガスが水中に高圧下に導入
される場合に水がガスにより過飽和となり得ることも又
知られている。しかしながら、その様な場合において、
ガスの過剰量は水により安定な条件で取り込まれておら
ず、圧力或いは激しい動きが完了すると、短時間内に水
から泡立って出てしまう。It is also known that water can become supersaturated by gas when it is vigorously mixed or sprinkled under a gas atmosphere or when the gas is introduced into water under high pressure. However, in such cases,
The excess amount of gas is not taken in by water in a stable condition, and when pressure or vigorous movement is completed, it bubbles out of the water within a short time.
本発明の目的は酸素、炭酸ガス、或いはある種のその
他のガスの過剰量を水中に安定状態で取り込んだ水を製
造する装置を提供することにある。It is an object of the present invention to provide an apparatus for producing water with a stable uptake of oxygen, carbon dioxide or some other gas in water.
本発明に従えば、ガスを水に導入する装置であって、
実質的に上部(2)が球状であり下端に従ってテーパー
する狭い下部(4)とを有し軸線に対して円形対称であ
る中空の容器(1)と、前記容器(1)の中間部分の上
方から斜目に延び少なくとも容器(1)の接線平面と鋭
角をなすダクト(13)と、数個の接線方向の穴(24)及
び流出開口部を有する中空要素(21)並びに反応室内壁
と前記中空要素(21)との間に形成される圧力室をも
ち、そして接線方向の穴(24)が前記圧力室と連通する
反応室(15)と、水を強制的に循環するポンプ(14)と
から構成され、前記容器(1)の内部の水が容器(1)
から反応室(15)及びダクト(13)の順に流れて容器
(1)にポンプ循環するように閉ループ状態で結合され
ている装置が提供される。According to the invention, a device for introducing gas into water, comprising:
A hollow container (1) having a substantially spherical upper part (2) and a narrow lower part (4) tapering according to the lower end and having circular symmetry with respect to an axis, and an upper part of an intermediate part of the container (1). A duct (13) extending obliquely from the container and forming an acute angle with the tangential plane of the container (1), a hollow element (21) having several tangential holes (24) and an outlet opening, a reaction chamber inner wall and the above A reaction chamber (15) having a pressure chamber formed between it and a hollow element (21) and having a tangential hole (24) communicating with said pressure chamber, and a pump (14) for forcedly circulating water. And the water inside the container (1) is
There is provided an apparatus which is connected in a closed loop state so as to flow in the order from the reaction chamber (15) and the duct (13) and circulate in the container (1) by pumping.
本発明においてガスとは、常温常圧下で気相の物質を
意味し、例えば酸素、炭酸ガス、ヘリウム、アルゴン等
の気体が含まれる。In the present invention, the gas means a substance in a gas phase at room temperature and atmospheric pressure, and includes gases such as oxygen, carbon dioxide gas, helium and argon.
本発明において水は、用途によって適宜選択すること
ができ、例えば水道水、蒸留水、脱イオン水等を用い
る。In the present invention, the water can be appropriately selected depending on the application, and for example, tap water, distilled water, deionized water or the like is used.
以下添付図面を参照しながら本発明の好ましい実施態
様に関して説明を行う。Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
本発明に係る装置の第一の態様の一般的配置を第1図
に示す。容器1は、実質的に球状の上部2と、下部方向
にテーパーする実質的に双曲線面形状を有する中間部3
と、細長く僅かにテーパーする下部4との液滴形を有す
る中空内部をもっている。上部2及び中間部3は凸面で
あり、下部4は凹面である。従って、中間部3と下部4
との間に変曲面が形成される。容器1の内部は回転軸5
の周りに対称的に配置されている。好ましい態様におい
て、容器1はその中で起こる過程の観察を可能にするガ
ラスで出来ている。上部2の上部壁には3個のダクト6,
7及び8が設けられ、その内ダクト6及び7は密封され
ている。The general arrangement of the first aspect of the device according to the invention is shown in FIG. The container 1 includes a substantially spherical upper portion 2 and an intermediate portion 3 having a substantially hyperbolic surface shape that tapers downward.
And an elongated, slightly tapered lower portion 4 with a hollow interior having a droplet shape. The upper part 2 and the intermediate part 3 are convex, and the lower part 4 is concave. Therefore, the middle part 3 and the lower part 4
A curved surface is formed between and. Inside the container 1 is a rotating shaft 5
Are arranged symmetrically around. In a preferred embodiment, the container 1 is made of glass which allows observation of the processes that occur therein. 3 ducts 6 on the upper wall of the upper part 2,
7 and 8 are provided in which the ducts 6 and 7 are sealed.
この配置には水を充満したタンク9を含むものであ
る。円筒状皿10は、その開放口側から水中に浸漬されて
いる。ダクト11が、皿10の閉じられた底部を形成してい
る。可撓性の導管12は、容器1の上部のダクト8と皿10
のダクト11とを接続している。This arrangement includes a tank 9 filled with water. The cylindrical dish 10 is immersed in water from its opening side. The duct 11 forms the closed bottom of the dish 10. The flexible conduit 12 comprises a duct 8 and a dish 10 on top of the container 1.
It is connected to the duct 11 of.
容器1は更に二つの開口部を有する。ダクト13は、容
器が最大直径を有する実質的な高さにおいて、中間部2
の上部部分から斜めに延びている。ダクト13は、容器の
赤道面及び接線平面とそれぞれ鋭角をなしている。その
軸は容器の内部方向に対して僅かに内側且つ上方に向い
ている。これらの角度は通常、30°より小さい。これら
の開口部の第二のものは容器1の下部4の開放底部未満
である。The container 1 further has two openings. The duct 13 has an intermediate portion 2 at a substantial height where the container has a maximum diameter.
Extends diagonally from the upper part of the. The duct 13 makes an acute angle with the equatorial plane and the tangential plane of the container, respectively. Its axis points slightly inward and upward with respect to the interior direction of the container. These angles are usually less than 30 °. The second of these openings is below the open bottom of the lower part 4 of the container 1.
下部4の下方末端と斜めダクト13との間には、ポンプ
14、反応室15並びに三本の導管16,17及び18よりなる水
再循環路が設けられている。反応室15のデザインを第2
図及び第3図に示す。Between the lower end of the lower part 4 and the diagonal duct 13, a pump
14, a water recirculation path consisting of a reaction chamber 15 and three conduits 16, 17 and 18 is provided. Second design of reaction chamber 15
Shown in Figures and 3.
反応室15は一端19において開放され、及び反対末端20
において閉じられた円筒状壁を含んでなる。この円筒内
には中空要素21が規定されており、その要素は円筒の中
心部分で円筒内部に結合した円形リム22を有する。この
要素21の第一の部分23は、リム22と反応室15の閉じられ
た末端20との間の閉鎖室内に配置されている中空回転放
物面の形を有する。放物面23の約1/3の高さに、要素21
の壁を貫通して多数の均一に分布した接線方向の穴24が
設けられている。図示した態様例においては、この数は
5個である。反応室15の閉鎖末端20から反応室の軸に対
して僅かに傾いたダクト25が延びている。要素21は、リ
ム22の平面で第一の部分23に連通する第二の部分26を含
み、そしてこの部分は短い円筒状ダクト27として連続し
ている回転双曲線の形を有する。好ましい態様において
反応室15はガラス製である。Reaction chamber 15 is open at one end 19 and opposite end 20
Comprising a cylindrical wall closed at. Within this cylinder a hollow element 21 is defined, which element has a circular rim 22 which is connected to the inside of the cylinder at the central part of the cylinder. The first part 23 of this element 21 has the form of a hollow paraboloid of revolution located in the closed chamber between the rim 22 and the closed end 20 of the reaction chamber 15. At the height of about 1/3 of the paraboloid 23, the element 21
A number of uniformly distributed tangential holes 24 are provided through the wall of the. In the illustrated example embodiment, this number is five. Extending from the closed end 20 of the reaction chamber 15 is a duct 25 slightly inclined with respect to the axis of the reaction chamber. The element 21 comprises a second part 26 communicating with the first part 23 in the plane of the rim 22 and this part has the form of a continuous hyperbola which is continuous as a short cylindrical duct 27. In the preferred embodiment, the reaction chamber 15 is made of glass.
次に、第1図〜第3図に示された装置を用いて、超平
衡ガス含有水がどのようにして製造されるかを説明す
る。第1図に示す製造装置は、酸素ガス雰囲気下の遮へ
い容器(図示せず)内に設置されているものとする。Next, how the super-equilibrium gas-containing water is produced will be described using the apparatus shown in FIGS. The manufacturing apparatus shown in FIG. 1 is installed in a shielding container (not shown) under an oxygen gas atmosphere.
先ず、ダクト7の密封コルクを開け10lの通常の水道
水(例えば、スイス国,チューリッヒにおいて調達)を
容器1に満たす。容器1の容積は水の高さがダクト13よ
り約2インチ上であるような程度である。ダクト7を閉
じ、再び密封し、ポンプ14をスタートして水を系内に流
し、導管16,17及び18並びに反応室15中に存在するいづ
れの空気も水平線の上の空間に放出されるようにする。
次にポンプを停止し、ダクト6に結合したコックを開
き、タンク9中の水を介して酸素を皿10の内部空間内に
導入する。酸素の供給は、皿10、導管12、及び容器1中
の水の高さより上の自由空間から空気を除去(押出)す
るのに十分なものである。しばらくしてから、タンク6
のコックを閉じると、純粋な酸素が容器1及び皿10内の
全ガス容積を充満したことになる。First, the sealed cork of the duct 7 is opened and the container 1 is filled with 10 l of ordinary tap water (for example, procured in Zurich, Switzerland). The volume of the container 1 is such that the height of the water is about 2 inches above the duct 13. The duct 7 is closed, resealed, the pump 14 is started to allow water to flow through the system, so that any air present in the conduits 16, 17 and 18 and the reaction chamber 15 is also released into the space above the horizon. To
Next, the pump is stopped, the cock connected to the duct 6 is opened, and oxygen is introduced into the inner space of the dish 10 through the water in the tank 9. The supply of oxygen is sufficient to remove (extrude) air from the free space above the level of water in the dish 10, conduit 12 and vessel 1. After a while, tank 6
When the cock is closed, pure oxygen has filled the entire gas volume in vessel 1 and dish 10.
この時点において、皿10内の水の高さはタンク9内の
水の高さと等しい。At this point, the height of the water in the dish 10 is equal to the height of the water in the tank 9.
この配置において、ポンプ14をスタートさせる。この
ポンプは25l/分の流出量をもつ。導管16,17及び18の内
径は等しく約16mmである。流れの方向は第1図の矢印に
より示される。水が反応室15に通されると、それは接線
方向の穴24を通って流れ、第一の渦巻が要素21の中空放
物面を形成する第一の部分23内に形成される。回転水流
成分は先ず放物面の閉じられた末端の方向に流れ、そこ
から前方に反射され、他の前方成分と結合し、そして要
素21の指数的にテーパーする形状のために、迅速に回転
する水流が導管18内を容器1の方向に進行する。第1図
の矢印28はこの水が導管18内で回転していることを示す
ものである。この水は斜め入口ダクト13を通って接線方
向に容器1内に流入する。In this arrangement, pump 14 is started. This pump has an output of 25 l / min. The conduits 16, 17 and 18 have an equal inner diameter of about 16 mm. The direction of flow is indicated by the arrow in FIG. As water is passed through the reaction chamber 15, it flows through the tangential holes 24 and a first vortex is formed in the first part 23 forming the hollow paraboloid of the element 21. The rotating water flow component first flows in the direction of the closed end of the paraboloid, from which it is reflected forward, combines with other front components, and rotates rapidly due to the exponentially tapered shape of element 21. The flowing water flows in the conduit 18 toward the container 1. The arrow 28 in FIG. 1 indicates that this water is rotating in the conduit 18. This water flows tangentially into the container 1 through the oblique inlet duct 13.
容器1内では、先に静かであった水が旋回を開始し、
第二の渦巻が形成される。容器1内における渦巻の定常
状態の形成には幾らか時間(約1〜2分間)がかかる。
本発明者は渦巻の形成からの多数の写真を撮り、第5図
〜第7図はこれらの写真の内の幾つかを図示したもので
ある。In the container 1, the water that was quiet earlier started to swirl,
A second spiral is formed. It takes some time (about 1-2 minutes) for the steady state formation of the spiral in the vessel 1.
The inventor has taken a number of photographs from the formation of spirals and FIGS. 5-7 illustrate some of these photographs.
これらの図面から明らかなように、各種旋回の後に竜
巻状渦巻が形成される。その渦巻中には、容器1の下部
4の底まで延びる、ほぼ円筒形の中心中空部分が存在す
る。渦巻中の水粒子の速度は極めて高い。渦巻の最上部
及び最大直径における回転数は約50r.p.m.であり、この
速度は下の方向に向かってほぼ指数函数的に増大する。
この速度は、任意の高さを流れる容積が一定であること
を考慮に入れることにより計算することができ、従って
速度は渦巻の周りの実際の水の断面積に比例する。As is clear from these figures, a tornado spiral is formed after various turns. In the spiral there is a substantially cylindrical central hollow part extending to the bottom of the lower part 4 of the container 1. The velocity of the water particles in the spiral is extremely high. The rotation speed at the top and maximum diameter of the spiral is about 50 rpm, and this velocity increases almost exponentially in the downward direction.
This velocity can be calculated by taking into account that the volume flowing at any height is constant, so that the velocity is proportional to the actual water cross section around the spiral.
渦巻が容器1内で安定化しても、ポンプ14の運転を続
ける。しばらくして、皿10内の水の高さがタンク9内の
水の高さに比べて増加し始める。これは水上の容積内に
存在する酸素の一部分が循環水により摂取されたことを
示す。Even if the swirl stabilizes in the container 1, the pump 14 continues to operate. After a while, the height of the water in the dish 10 starts to increase relative to the height of the water in the tank 9. This indicates that some of the oxygen present in the volume above the water was taken up by the circulating water.
第4図は、循環水により摂取された酸素量をどのよう
にして計算するかを模式的に示すものである。皿内の元
の水の高さを参照番号29により示す。高さの増加をHと
すると、皿10の断面積をAとする。酸素摂取量はV=A
×Hにより表すことができる。FIG. 4 schematically shows how to calculate the amount of oxygen taken up by circulating water. The original water height in the dish is indicated by reference numeral 29. When the height increase is H, the cross-sectional area of the dish 10 is A. Oxygen uptake is V = A
It can be represented by × H.
酸素の密度は0℃ではd=1.43mg/cm3であることが知
られている。消費酸素をmg単位で表したい場合には、mg
での酸素質量はm=d×A×Hである。A×Hでの積の
単位は立方cm単位であるべきである。It is known that the density of oxygen is d = 1.43 mg / cm 3 at 0 ° C. If you want to express oxygen consumption in mg, mg
The oxygen mass at is m = d × A × H. The unit of product in A × H should be cubic cm units.
この酸素は水容量により摂取される。循環水中の相対
的酸素量を表現する場合には、Co×=d×A×H/Vwを計
算する。この式は、水の容積Vwをl単位で表すとすれ
ば、プロセス時に水により摂取される過剰酸素をmg/l単
位で表す。This oxygen is taken up by the water volume. When expressing the relative amount of oxygen in the circulating water, Co × = d × A × H / Vw is calculated. This equation expresses the excess oxygen uptaken by water during the process in mg / l, given that the volume of water Vw is expressed in l.
通常の水道水は暫時の自由流水後に実際上飽和される
ので、容器1内に満たされている水道水は溶解酸素と殆
ど飽和されているものと十分考えられる。室温におい
て、これは実質的に9mg/lの濃度に対応する。Since ordinary tap water is practically saturated after free flowing water for a while, it is sufficiently considered that the tap water filled in the container 1 is almost saturated with dissolved oxygen. At room temperature this corresponds to a concentration of substantially 9 mg / l.
図示の態様において皿10の直径は10cmであり、水の容
量はVw=10lである。これらのデータを酸素濃度に対す
る式中に代入すると、Co=11.225Hが得られる。Hをcm
単位で測定するなら、T=0℃ではCoはmg/l単位とな
る。=20℃ではCo=10.46Hである。In the illustrated embodiment, the dish 10 has a diameter of 10 cm and the volume of water is Vw = 10 l. Substituting these data into the equation for oxygen concentration gives Co = 11.225H. H to cm
If measured in units, Co will be in mg / l at T = 0 ° C. At 20 ° C, Co is 10.46H.
全酸素濃度は、出発濃度を計算値に加えて得られる。 The total oxygen concentration is obtained by adding the starting concentration to the calculated value.
下記の表1に、1987年5月13日から6月3日の間に行
われた一連の試験の測定結果及び計算結果を要約して示
す。Table 1 below summarizes the measurement and calculation results of a series of tests conducted between May 13 and June 3, 1987.
合計濃度欄の第1列における9mg/lの値は水の初期溶
解酸素濃度に対応する。 The value of 9 mg / l in the first column of the total concentration column corresponds to the initial dissolved oxygen concentration of water.
第8図は表1に示されたデータを図示する。水を用い
る試験は1987年6月3日に終了した。この時点でポンプ
を切換えて閉鎖系のみを残した。その後の5日間で、高
さの違が変化しないままであった。これは循環水により
摂取されたガスが水中に安定に取り込まれたことを示し
た。この結果は装置中にガス漏れがなかったことを示
す。FIG. 8 illustrates the data presented in Table 1. The test with water ended on June 3, 1987. At this point the pump was switched to leave only the closed system. The difference in height remained unchanged during the following 5 days. This indicated that the gas ingested by the circulating water was stably taken up in the water. The results show that there were no gas leaks in the device.
容器1を5日目の後に開放し、酸素処理水を常圧下で
0.1lのガラスびん及び0.2lのガラスびんに満たした。Container 5 is opened after the 5th day and oxygenated water is added under normal pressure.
Fill 0.1 liter and 0.2 liter vials.
通常の溶解酸素試験を、イエロー・スプリングス・イ
ンストルメント・カンパニィ・インコーポレーション
(Yellow Springs Instruments Co.Inc.)型式54酸素計
量器(Oxygen Meter)により20.5℃の温度でその酸素処
理水から採取した水について実施したところ、その装置
はわずかに8.5mg/lの溶解酸素濃度を示すだけであっ
た。Routine dissolved oxygen tests were performed on water taken from the oxygenated water at a temperature of 20.5 ° C with a Yellow Springs Instruments Co. Inc. Model 54 Oxygen Meter. The device showed a dissolved oxygen concentration of only 8.5 mg / l.
第9図は、第1図に示された装置に類似する装置を示
す。容器1、ポンプ14及び反応室15は第一の態様に使用
されたものである。第1図に示されたタンク9及び皿10
に代えて、酸素を供給するガス源30と注射器(針なし)
31を使用する。ガス源30、注射器31及びダクト8は、そ
れぞれガラスコック32,33及び34を設けた導管12(12a,1
2b,12c)と接続している。又、ダクト6は導管35と接続
し、導管35の端部は水を収容したトラップ36内に収容さ
れ、トラップ36はガラスコック37と連結している。FIG. 9 shows a device similar to the device shown in FIG. The container 1, the pump 14 and the reaction chamber 15 are those used in the first embodiment. Tank 9 and dish 10 shown in FIG.
Instead of a gas source 30 to supply oxygen and a syringe (without needle)
Use 31. The gas source 30, the syringe 31, and the duct 8 are the conduit 12 (12a, 1a) provided with glass cocks 32, 33, and 34, respectively.
2b, 12c). Further, the duct 6 is connected to the conduit 35, the end of the conduit 35 is accommodated in a trap 36 containing water, and the trap 36 is connected to a glass cock 37.
先づ、ダクト7を開け10lの蒸留水を容器1に満たし
た後、ダクト7を閉じる。First, the duct 7 is opened, 10 l of distilled water is filled in the container 1, and then the duct 7 is closed.
ガラスコック32,34と37は開放されそして注射器31の
押動体(ピストン)31aは、注射器31から外される。し
ばらくの間、ガラスコック33は内部に存在している空気
を追い出すように流通路内に酸素を注入する為開けられ
る。押動体31aは、測定目盛200mlになる様に注射器31に
セットされる。ガラスコック33が閉じられた後、トラッ
プ36の水位を導管35内の水位とを合わせると共にガラス
コック37を閉じる。ポンプ14をスタートすると容器1内
が減圧され、導管35内も減圧状態となり、導管35の水位
がトラップ36内の水位より高くなる。1日に2回ポンプ
14を停止してからトラップ36内の水位を導管35内の水位
が一致する様、注射器31内の酸素を押動体31aを介して
押し込む。注射器31内の酸素がなくなると、前述と同様
にガラスコック34を閉じ、ガラスコック33を開け、ガス
源30と注射器31を連結させて注射器内に酸素を注入す
る。こうして行われた一連の測定結果を以下に示す。
尚、測定結果は、毎朝8:30に計測した値で示す。The glass cocks 32, 34 and 37 are opened and the pusher (piston) 31a of the syringe 31 is removed from the syringe 31. For a while, the glass cock 33 is opened to inject oxygen into the flow passage so as to expel the air existing inside. The pusher 31a is set on the syringe 31 so that the measuring scale becomes 200 ml. After the glass cock 33 is closed, the water level in the trap 36 is matched with the water level in the conduit 35, and the glass cock 37 is closed. When the pump 14 is started, the pressure inside the container 1 is reduced, the pressure inside the conduit 35 is also reduced, and the water level in the conduit 35 becomes higher than the water level in the trap 36. Pump twice a day
After stopping 14, the oxygen in the syringe 31 is pushed through the pusher 31a so that the water level in the trap 36 matches the water level in the conduit 35. When the oxygen in the syringe 31 is exhausted, the glass cock 34 is closed, the glass cock 33 is opened, and the gas source 30 and the syringe 31 are connected to inject oxygen into the syringe as described above. The series of measurement results thus obtained are shown below.
The measurement results are shown as the values measured every morning at 8:30.
実験終了時にポンプ14を停止して放置した。ポンプ停
止後1日目は酸素の摂取及び放出はなかった。ポンプ停
止後2日目には16ml、そして3日目には24mlの酸素の放
出が観測された。4日目以降酸素の摂取及び放出はなか
った。4日目から超平衡ガス含有水は、安定状態になっ
たと言える。 At the end of the experiment, pump 14 was stopped and left unattended. There was no uptake or release of oxygen on the first day after the pump was stopped. 16 ml of oxygen was observed on the second day after the pump was stopped and 24 ml of oxygen was observed on the third day. There was no uptake or release of oxygen after the 4th day. From the 4th day, it can be said that the water containing the super-equilibrium gas became stable.
次に酸素に代えてガス源を炭酸ガスとしたときの測定
結果を下記に示す。Next, the measurement results when carbon dioxide gas was used as the gas source instead of oxygen are shown below.
実験終了時にポンプ14を停止して放置した。ポンプ停
止後1日目は炭酸ガスの摂取及び放出はなかった。ポン
プ停止後2日目には2ml、そして3日目には116mlの炭酸
ガスの放出が観測された。4日目以降炭酸ガスの摂取及
び放出はなかった。4日目から超平衡ガス含有水は、安
定状態になったと言える。 At the end of the experiment, pump 14 was stopped and left unattended. On the first day after the pump was stopped, carbon dioxide was not ingested or released. Emission of 2 ml of carbon dioxide was observed on the second day after the pump was stopped and 116 ml on the third day. From the 4th day onward, carbon dioxide was not ingested or released. From the 4th day, it can be said that the water containing the super-equilibrium gas became stable.
次に、前述で得られた超平衡ガス含有水の安定性を測
定する為に用いる装置の態様を第10図に示す。Next, FIG. 10 shows an embodiment of the apparatus used to measure the stability of the water containing the super-equilibrium gas obtained above.
三角フラスコ46は、超平衡ガス含有水を収容し、上部
空間には空気が充満している。この三角フラスコ46は、
台47上に配置され、下からバーナー48で加熱することが
できる。三角フラスコ46の上端部は栓でシールされてい
る。又、蛇管式冷却管44を三角形フラスコ46内の上部に
設ける。この蛇管式冷却管44は、図示しない冷却水で絶
えず冷却されている。蛇管式冷却管44の上端は、栓でシ
ールされ、ガラス管42及びシリコンチューブ41を介して
注射器40と接続している。最初に、ピストンを目盛
「0」にセットする。大気中の酸素を、酸素濃度測定用
ガス見地器((株)ガステック社製)で検出すると20.8
%の濃度を示した。次に第10図の様に超平衡ガス(酸
素)含有水を三角形フラスコ46内に入れて、バーナー48
で1時間煮沸する。煮沸すると注射器40の押動体が押し
戻される。注射器40を取り外して、注射器40内の空気を
前記と同様のガス検知器で濃度を測定した。測定結果は
21.2%であった。このことから、超平衡ガス含有水中に
取り込まれた酸素は安定状態にあると言うことができ
る。炭酸ガスについても同じ安定度測定試験を行った。
測定器具は、炭酸ガス濃度測定用のガス検知器((株)
ガステック社製)で使用した。大気中の炭酸ガス濃度は
0.03%であった。2時間煮沸後の濃度は5.0%であり、
5時間煮沸後の濃度は、5.2%であり7時間煮沸後は5.3
%であり9時間煮沸後も5.3%であった(図10の空間体
積の合計値から換算すると45.5mlである)。従って、煮
沸後7時間目以降超平衡ガス含有水は安定状態となっ
た。The Erlenmeyer flask 46 contains water containing super equilibrium gas, and the upper space is filled with air. This Erlenmeyer flask 46
It is placed on a stand 47 and can be heated by a burner 48 from below. The upper end of the Erlenmeyer flask 46 is sealed with a stopper. Further, a serpentine cooling tube 44 is provided in the upper part of the triangular flask 46. The serpentine cooling pipe 44 is constantly cooled by cooling water (not shown). The upper end of the flexible tube cooling pipe 44 is sealed with a stopper and is connected to the syringe 40 via a glass tube 42 and a silicon tube 41. First, set the piston on the scale "0". 20.8 when detecting oxygen in the atmosphere with a gas sighter for measuring oxygen concentration (manufactured by Gastec Co., Ltd.)
% Concentration was given. Next, as shown in FIG. 10, water containing superequilibrium gas (oxygen) is put into the triangular flask 46, and the burner 48
Boil for 1 hour. When boiled, the pusher of the syringe 40 is pushed back. The syringe 40 was removed, and the concentration of the air in the syringe 40 was measured with the same gas detector as described above. The measurement result is
It was 21.2%. From this, it can be said that oxygen taken into the superequilibrium gas-containing water is in a stable state. The same stability measurement test was performed on carbon dioxide.
The measuring instrument is a gas detector for measuring carbon dioxide concentration
Gas Tech). The concentration of carbon dioxide in the atmosphere is
It was 0.03%. The concentration after boiling for 2 hours is 5.0%,
The concentration after boiling for 5 hours is 5.2% and 5.3 after boiling for 7 hours.
% And 5.3% after boiling for 9 hours (45.5 ml when converted from the total value of the spatial volume in FIG. 10). Therefore, the superequilibrium gas-containing water became stable after 7 hours from boiling.
以下、本発明による超平衡ガス含有水の各種用途及び
効果を示す具体例を説明する。簡単を期して本発明によ
る酸素に富んだ水は以下において「酸素添加水」と称す
る。Hereinafter, specific examples showing various uses and effects of the water containing superequilibrium gas according to the present invention will be described. For the sake of simplicity, the oxygen-rich water according to the invention is referred to below as "oxygenated water".
例1 2滴の新たに採取したヒト血液を清浄なガラス板上に
おいた。水道水の1滴を第一の血液試料に添加した。そ
の様に希釈された血液の色はより明るくなり、水投与後
約10秒間で凝固が開始した。Example 1 Two drops of freshly collected human blood were placed on a clean glass plate. One drop of tap water was added to the first blood sample. The blood thus diluted became brighter in color and began to clot about 10 seconds after administration of water.
第二の試料を酸化添加水の1滴により希釈した。凝固
は直ちに開始及び完了し、血液の色は変化しなかった。The second sample was diluted with one drop of oxidizing added water. Coagulation started and completed immediately and the blood color did not change.
これらの血液試料のそれぞれの希釈は同時に行った。 The respective dilutions of these blood samples were performed simultaneously.
酸素添加水のこの優れた凝固刺激特性をOtt博士の歯
科実践において利用した。酸素添加水の適用は実質的に
出血を減少させる。This excellent coagulation stimulating property of oxygenated water was utilized in Ott's dental practice. Application of oxygenated water substantially reduces bleeding.
例2 アルコール飲料(ブランディ)を6人のヒトに与え
た。彼等の血液中アルコール量をアルコール消費後1時
間後に測定した。測定アルコール濃度の平均は1.3‰
(1.25〜1.38間で変化)であった。濃度は、男性に対し
て0.7及び女性に対して0.6の分布因子を乗じた、消費純
粋アルコール及び体重の商で表した。スイスではこれが
標準的アルコール濃度の表示方法である。運転に対する
限度は0.8‰であり、更にこの値が約2〜3.5‰より高い
とヒトは無意識となり、約4‰を越える濃度は致命的と
なり得る。Example 2 An alcoholic beverage (Brandy) was given to 6 humans. The amount of alcohol in their blood was measured 1 hour after alcohol consumption. Average alcohol concentration measured is 1.3 ‰
(Changed between 1.25 and 1.38). Concentrations were expressed as the quotient of pure alcohol consumed and body weight multiplied by a distribution factor of 0.7 for men and 0.6 for women. In Switzerland this is the standard method of indicating alcohol concentration. The limit for operation is 0.8 ‰, and if this value is higher than about 2-3.5 ‰, humans become unconscious, and concentrations above about 4 ‰ can be fatal.
試料を採取した時点で、第1図に示した装置を用いて
水道水から製造した酸素添加水1dlを各人に飲ませた。
約1.5時間後に血液試料を再び採取し、これらの血液試
料のアルコール濃度を測定した。これらの測定の平均値
は0.3‰のアルコール濃度であり、試験したヒトの間に
おける偏差は極めて小さかった。At the time when the sample was taken, each person was given 1 dl of oxygenated water produced from tap water using the apparatus shown in FIG.
Blood samples were taken again after about 1.5 hours and the alcohol concentration of these blood samples was measured. The average of these measurements was an alcohol concentration of 0.3 ‰, and the deviation among the tested humans was very small.
酸素添加水を消費してからのそれらのヒトの報告によ
れば、約30分後には気分が良くなり、そしてアルコール
の影響の徴候が徐々に無くなった。血液試料を採取され
るまでには、彼等は全くシラフとなり完全な自制状態に
なった。Their human reports after consuming oxygenated water made them feel better after about 30 minutes and gradually diminished the signs of alcohol effects. By the time blood samples were taken, they were completely silaf and completely restrained.
血液中の通常のアルコール濃度の減少速度は毎時約0.
1‰であることに注意すべきである。この通常の値とを
試験結果(減少速度が1.5)時間で1‰であった)とを
比較すると、1dlの酸素添加水の存在により、人体にお
けるアルコール代謝が約7倍により、高い速度になるこ
とが判る。The normal rate of decrease in alcohol concentration in the blood is about 0 per hour.
It should be noted that it is 1 ‰. Comparing this normal value with the test result (decrease rate was 1.5% in time), the presence of 1 dl of oxygenated water increased the alcohol metabolism in the human body by about 7 times to a higher rate. I understand.
例3 カンジダ・アルビカンス(Candida albicans)の存在
によるカンジダ症に悩む10人の女性を選んだ。病気の領
域は胸の下(6人)、指の間(3人)及び性器及び肛門
領域(3人)であった。Example 3 Ten women with candidiasis due to the presence of Candida albicans were selected. The areas of illness were below the chest (6), between the fingers (3) and the genital and anal areas (3).
病気の領域及びそれらの2cmの過剰半径内の近辺を2
週間に亘って酸素添加水で1日2回塗抹した。その他の
治療は用いなかった。2 areas of disease and their vicinity within a 2 cm excess radius
Oxygenated water was smeared twice a day for a week. No other treatment was used.
患者達は治療の約3日後に痛みがやわらいだと報告し
た。皮膚領域はその時までには未だ治癒していなかっ
た。最も早い治癒は胸領域の下で経験された。それは治
療の約7日目までに起きた。最も遅い治癒は指の間及び
指の先端で経験された。それらの症例においては、治癒
は10日〜12日目の終わりまでに生じた。性器及び肛門領
域に関しては治癒は10日〜13日後に経験された。Patients reported pain relief after about 3 days of treatment. The skin area had not yet healed by that time. The earliest healing was experienced below the chest area. It happened by about day 7 of treatment. The slowest healing was experienced between the fingers and at the tips of the fingers. In those cases, healing occurred by the end of days 10-12. For the genital and anal areas, healing was experienced 10 to 13 days later.
全ての患者について1週間目及びその後は治療後1ヶ
月目に検査をした。1週間後の検査においては、指の間
が治療した患者1人に僅かな再発が見られた。領域が再
び赤変していた。治療を更に4日間繰返したところ、患
者は治癒した。1ヶ月後の対照において彼女は健康であ
った。全てのその他の対照検査において患者達は治癒さ
れた。All patients were examined at 1 week and then 1 month after treatment. At one week's examination, there was a slight recurrence in one patient treated between the fingers. The area was turning red again. When the treatment was repeated for another 4 days, the patient was cured. She was healthy in the control after one month. Patients were cured in all other control tests.
例4 7人の男性の患者は一級の凍傷(凍傷皮膚)に悩んで
いた。凍傷領域は手及び足及び一例において耳であっ
た。Example 4 Seven male patients suffered from first grade frostbite (frostbite skin). The frostbite area was the hands and feet and in one case the ears.
予め酸素添加水に浸漬した細菌薄布により凍傷領域を
1日3回治療した。水を、その領域上で乾燥させた後、
傷を無傷ガーゼでしばった。ビタミン以外のその他の治
療は適用されなかった。The frostbite area was treated three times a day with a thin bacterial cloth presoaked in oxygenated water. After drying the water on the area,
The wound was tied with intact gauze. No other treatment other than vitamins was applied.
激しい痛みは治療の2日目又は3日目までに減少しは
じめ、更に3〜5日以内に完全に停止した。間もなく、
皮膚の自然色が戻り、全症例において治療の10日目まで
に完全に治癒した。Severe pain began to decrease by the second or third day of treatment and stopped completely within an additional 3-5 days. Soon,
The natural color of the skin returned and in all cases was completely healed by day 10 of treatment.
例5 吸収材綿をペトリ皿上に置き、50個のムラサキウマゴ
ヤシ(alfalaf)の種をその上に播いた。吸収材綿を十
分に酸素添加水に浸漬させた。綿の湿潤状態は酸素添加
水の個々の供給により維持した。約2日後に、発芽率を
検査したところ、70%の種が発芽したことが判明した。
酸素添加されない通常の水を用いた対照に対する発芽率
は50%であった。その結果、酸素添加水による浸漬は20
%高い発芽率を導くことが判った。更に、約5日後に成
長速度を観察したところ、平均生育は対照群の平均23mm
に比べて28mmであることが判明した。これを考慮する
と、酸素添加水は植物成育の促進に有効であり得ること
が判った。Example 5 Absorbent cotton was placed on a Petri dish and 50 seeds of alfalaf palm were sown on it. The absorbent cotton was thoroughly immersed in oxygenated water. The wetness of the cotton was maintained by individual feeding of oxygenated water. After about 2 days, the germination rate was examined and it was found that 70% of the seeds germinated.
The germination rate was 50% with respect to the control using normal water without oxygenation. As a result, the immersion in oxygenated water is 20
It was found to lead to a high germination rate. Furthermore, when the growth rate was observed about 5 days later, the average growth was 23 mm in the control group.
It was found to be 28 mm compared to. Taking this into consideration, it was found that oxygenated water can be effective in promoting plant growth.
例6 本例は本発明による炭酸ガスを含んでなる水の効果に
関する。第1〜3図の装置において、循環プロセスを24
時間維持し、酸素を炭酸ガスで置換した。吸収材綿をペ
トリ皿上に置き、50個のムラサキウマゴヤシの種をその
上に置いた。この吸収材綿を炭酸ガスを含む水で十分浸
漬した。綿の湿潤状態は炭酸ガスを含む水の個々の供給
により維持した。約2日後、発芽率を検査したところ、
50%の種が発芽したことが判明し、それは通常水に対す
る50%の発芽率と異ならなかった。約5日後の生育速度
を観察したところ、平均生育速度は、同一条件下におけ
る通常の水を用いる対照群における平均21mmに対して、
25mmであることが判明した。これらの結果から、本発明
による炭酸ガスを含有する水は植物生育を促進するのに
有効であることが判った。Example 6 This example relates to the effect of water comprising carbon dioxide according to the present invention. In the apparatus shown in FIGS.
The time was maintained, and oxygen was replaced with carbon dioxide. Absorbent cotton was placed on a petri dish and 50 seeds of Echinacea chinensis placed on it. This absorbent cotton was sufficiently dipped in water containing carbon dioxide. The wetness of the cotton was maintained by individual feeding of water containing carbon dioxide. After about 2 days, when the germination rate was examined,
It was found that 50% of the seeds germinated, which did not differ from the 50% germination rate in normal water. When the growth rate after about 5 days was observed, the average growth rate was 21 mm in average in the control group using normal water under the same conditions.
It turned out to be 25 mm. From these results, it was found that water containing carbon dioxide according to the present invention is effective in promoting plant growth.
上記具体例は本発明による安定状態で過剰量のガス、
特に酸素、空気及び炭酸ガスを含む水は多くの異なった
応用分野を有し、又これらの分野における結果が驚くべ
き程有意義であることを示す。勿論、はるかにより多く
の応用分野及び数多くの有益な効果も存在し得る。The above examples are steady state excess amounts of gas according to the invention,
Especially water containing oxygen, air and carbon dioxide has many different fields of application, and shows that the results in these fields are surprisingly significant. Of course, there can be many more fields of application and many beneficial effects.
その様な直接の応用に関して、酸素添加水の過剰投与
はあり得るか否かとの疑問が挙げられよう。ヒトの組織
においては酸素が腸膜を介して過剰量提供されてもヘモ
グロビンは必要以上の酸素を吸収しないという妨害をす
る制御系が存在する。過剰酸素は肺を通して吸込んだ際
にのみ危険であり得る。For such direct applications, the question may be whether overdosing of oxygenated water is possible. In human tissues, there is a control system that prevents hemoglobin from absorbing too much oxygen even if oxygen is provided in excess through the intestinal membrane. Excess oxygen can be dangerous only when inhaled through the lungs.
次に、本発明の各種の態様を列記する。 Next, various aspects of the present invention will be listed.
1.容器の下部(4)の流出部分、斜めダクト(13)のそ
れ及び該フィードバック路内の導管(16,17,18)の内部
断面積が実質的に等しく、及びそれ等のそれぞれの最低
が高々1:3の範囲内にある特許請求の範囲第1項記載の
装置。1. the internal cross-sectional areas of the outlet part of the lower part of the vessel (4), that of the oblique duct (13) and of the conduits (16,17,18) in the feedback path are substantially equal, and their respective minimum A device according to claim 1 in which is at most 1: 3.
2.該斜めダクト(13)が僅かに上部方向に傾けられてい
る特許請求の範囲第1項記載の装置。2. Device according to claim 1, characterized in that the oblique duct (13) is slightly inclined upwards.
3.容器(1)の上部(2)が再循環水により吸収される
ガスの供給を与えるためのガスで充満された容器(10)
に連通している特許請求の範囲第1項記載の装置。3. A container (10) in which the upper part (2) of the container (1) is filled with gas to provide a supply of gas absorbed by the recirculated water
The device of claim 1 in communication with.
4.該反応室(15)が一端に開放した円筒状収納部を有
し、要素(21)が回転放物面の形状の開放末端が該領域
開口部に面する。第一の部分(23)及び第一の部分に結
合し該流出開口部を規定する開放末端を有する曲線状の
輪郭を有する第二の部分(26)を有し、これらの二つの
部分(23,26)は該円筒状収納部の中間領域に結合した
共通の円形リム(22)を有し、該接線方向の穴(24)は
リムに近接した放物面部分に設けられ、及び円筒状収納
部の閉じられた末端(20)は円筒の軸と鋭角をなして圧
力室に流入させて水が接線方向の穴を通過する際に水の
回転を増大させる。ダクト(25)を有する特許請求の範
囲第1項記載の装置。4. The reaction chamber (15) has an open cylindrical housing at one end and the element (21) has an open end in the form of a paraboloid of revolution facing the area opening. A first portion (23) and a second portion (26) having a curved contour with an open end that joins the first portion and defines the outflow opening, these two portions (23) , 26) has a common circular rim (22) joined to the intermediate region of the cylindrical housing, the tangential hole (24) being provided in the parabolic portion close to the rim, and cylindrical. The closed end (20) of the housing makes an acute angle with the axis of the cylinder to enter the pressure chamber to increase rotation of the water as it passes through the tangential holes. The device according to claim 1, comprising a duct (25).
第1図は本発明装置の第一の態様の説明図、 第2図は第1図の反応室の正面図、 第3図は穴の平面内の反応室の頂部断面図、 第4図はガス消費の測定方法を示す説明図、 第5図〜第7図は渦巻形成における開始相、中間相及び
最終相における渦巻の形状を示す説明図、 第8図は時間と酸素摂取量との関係を示すグラフ、 第9図は第1図に示したものと同様装置の改良態様の説
明図、 第10図は安定性を測定する為の装置の説明図である。 1……容器、14……ポンプ、15……反応室、16,17,18…
…導管、24……開口部、27……ダクト。FIG. 1 is an explanatory view of the first embodiment of the device of the present invention, FIG. 2 is a front view of the reaction chamber of FIG. 1, FIG. 3 is a top sectional view of the reaction chamber in the plane of the hole, and FIG. Explanatory diagram showing a method for measuring gas consumption, FIGS. 5 to 7 are explanatory diagrams showing the shape of the spiral in the start phase, the intermediate phase and the final phase in the spiral formation, and FIG. 8 is a relationship between time and oxygen uptake. FIG. 9 is an explanatory view of an improved mode of the apparatus similar to that shown in FIG. 1, and FIG. 10 is an explanatory view of an apparatus for measuring stability. 1 ... Container, 14 ... Pump, 15 ... Reaction chamber, 16, 17, 18 ...
… Conduit, 24 …… Opening, 27 …… Duct.
Claims (1)
に上部(2)が球状であり下端に従ってテーパーする狭
い下部(4)とを有し軸線に対して円形対称である中空
の容器(1)と、前記容器(1)の中間部分の上方から
斜目に延び少なくとも容器(1)の接線平面と鋭角をな
すダクト(13)と、数個の接線方向の穴(24)及び流出
開口部を有する中空要素(21)並びに反応室内壁と前記
中空要素(21)との間に形成される圧力室をもち、そし
て接線方向の穴(24)が前記圧力室と連通する反応室
(15)と、水を強制的に循環するポンプ(14)とから構
成され、前記容器(1)の内部の水が容器(1)から反
応室(15)及びダクト(13)の順に流れて容器(1)に
ポンプ循環するように閉ループ状態で結合されているこ
とを特徴とする装置。1. A device for introducing gas into water, which is hollow and has a substantially spherical upper part (2) and a narrow lower part (4) which tapers along the lower end and which is circularly symmetric with respect to the axis. A container (1), a duct (13) extending obliquely from above the middle part of the container (1) and forming an acute angle with the tangential plane of the container (1), and several tangential holes (24), A reaction chamber having a hollow element (21) having an outlet opening and a pressure chamber formed between the reaction chamber inner wall and the hollow element (21), and a tangential hole (24) communicating with the pressure chamber. (15) and a pump (14) for forcedly circulating water, and the water inside the container (1) flows from the container (1) to the reaction chamber (15) and the duct (13) in this order. A device characterized in that it is connected in a closed loop to the container (1) for pump circulation.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP87115583A EP0312642A1 (en) | 1987-10-23 | 1987-10-23 | Method for introducing gas into water in superequilibrum quantity, apparatus for carrying out the method and water produced by the method |
EP87115583.4 | 1988-09-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01199634A JPH01199634A (en) | 1989-08-11 |
JP2510701B2 true JP2510701B2 (en) | 1996-06-26 |
Family
ID=8197389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63264251A Expired - Lifetime JP2510701B2 (en) | 1987-10-23 | 1988-10-21 | Ultra-equilibrium gas-containing water production equipment |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0312642A1 (en) |
JP (1) | JP2510701B2 (en) |
KR (1) | KR890006293A (en) |
CN (1) | CN1033577A (en) |
DD (1) | DD297774A5 (en) |
ZA (1) | ZA887848B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0463041B1 (en) * | 1989-03-17 | 1994-06-22 | Klaus L. Buchholz | Use of a reaction product composed of a gas and a liquid and process and device for producing it |
US5499871A (en) * | 1989-04-21 | 1996-03-19 | Tecno-Bio Co., Ltd. | Device for producing liquid emulsion of hydrophobic and hydrophilic liquid |
HUT61909A (en) * | 1989-04-21 | 1993-03-29 | Techno Bio Kk | Method and mixer for mixing more materials and mixture produced by the same |
CN111530334A (en) * | 2020-05-09 | 2020-08-14 | 吴茹茹 | Paper mill paper production is with paper pulp anti-settling device |
NL2028325B1 (en) * | 2021-05-28 | 2022-12-12 | Stichting Wetsus Intellectual Property Found | Method, system, and use of said system for enhancing gas volumetric mass transfer |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1005450A (en) * | 1947-07-22 | 1952-04-10 | Process and device for spraying all liquids and fiberizing thermoplastic materials | |
US2986343A (en) * | 1957-02-25 | 1961-05-30 | Siderurgie Fse Inst Rech | Arrangement for the equal distribution of the throughput of a mixture of solids and fluids in a vertical pipe |
CH370057A (en) * | 1959-05-21 | 1963-06-30 | Buss Ag | Method for bringing a gas into contact with a liquid and device for carrying out the method |
NL137124C (en) * | 1962-07-24 | |||
DE1642794A1 (en) * | 1967-06-16 | 1971-04-29 | Stockhausen & Cie Chem Fab | Device for mixing Trueben and Schleemmen with solutions of flocculants |
GB1260163A (en) * | 1969-03-05 | 1972-01-12 | Stirling Alexander Mcinnis | Apparatus for preparing a mixture of plastics material and filler material for injection into molding dies |
US4008163A (en) * | 1970-04-14 | 1977-02-15 | Ingels Glenn R | Method of preparing a saturated fluid mixture |
US3867195A (en) * | 1972-08-25 | 1975-02-18 | Anton Pfeuffer | Apparatus for continuous production of syrup |
US4337152A (en) * | 1978-09-27 | 1982-06-29 | Frebar Holding Ag | Aeration apparatus and method |
-
1987
- 1987-10-23 EP EP87115583A patent/EP0312642A1/en not_active Withdrawn
-
1988
- 1988-10-20 ZA ZA887848A patent/ZA887848B/en unknown
- 1988-10-21 JP JP63264251A patent/JP2510701B2/en not_active Expired - Lifetime
- 1988-10-22 CN CN88107298A patent/CN1033577A/en active Pending
- 1988-10-22 KR KR1019880013834A patent/KR890006293A/en not_active Application Discontinuation
- 1988-10-24 DD DD88321031A patent/DD297774A5/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JPH01199634A (en) | 1989-08-11 |
DD297774A5 (en) | 1992-01-23 |
ZA887848B (en) | 1989-07-26 |
CN1033577A (en) | 1989-07-05 |
EP0312642A1 (en) | 1989-04-26 |
KR890006293A (en) | 1989-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2760534B2 (en) | Method for introducing and combining gas into water, apparatus for carrying out the method, and water produced by the method | |
Marshall et al. | Site and sensitivity for stimulation of hypoxic pulmonary vasoconstriction | |
Landis | The capillary blood pressure in mammalian mesentery as determined by the micro-injection method | |
Du Sault | The effect of oxygen on the response of spontaneous tumours in mice to radiotherapy | |
Lee et al. | The lungs in renal failure. | |
Weissman et al. | Oxygen transfer to blood flowing in round tubes | |
JP2510701B2 (en) | Ultra-equilibrium gas-containing water production equipment | |
Matsuda et al. | Blood flow and oxygen transfer rate of an outside blood flow membrane oxygenator | |
Rider et al. | Small intestinal glucose transport: Proximal-distal kinetic gradients | |
Bergofsky et al. | The use of lymph for the measurement of gas tensions in interstitial fluid and tissues | |
US3893926A (en) | Membrane fluid diffusion exchange device | |
Mangos | Transductal fluxes of Na, K, and water in the human eccrine sweat gland | |
Verso | Some nineteenth-century pioneers of haematology | |
Seylaz et al. | Quantitative continuous measurement of blood gas tensions by mass spectrometry. | |
Bergsjø et al. | Oxygen Tension of Cervical Carcinoma during the Early Phase of External Irradiation: 1. Measurements with a Clark Micro Electrode | |
Morff et al. | Measurement of blood flow with radioactive microspheres in the intact and surgically exposed rat cremaster muscle | |
Gibbon et al. | An efficient oxygenator for blood | |
RU2269329C1 (en) | Group radon procedures inhalatorium | |
Romics et al. | Zn, Ca and Na levels in the prostatic secretion of patients with prostatic adenoma | |
EP0463041A1 (en) | Use of a reaction product composed of a gas and a liquid and process and device for producing it. | |
Evans et al. | The effect of metabolism on the transport of 15O-labelled oxygen through Vicia faba roots | |
Suki et al. | Measurement of intrarenal transit time and hemoglobin saturation by fiberoptics | |
Jung et al. | Influence of capillary geometry on hypoperfusion-induced ischemia: a numerical study | |
Power et al. | Diffusion characteristics of pulmonary blood-gas barrier at low temperatures. | |
Gaylor et al. | Novel method for fabricating capillary membrane oxygenators |