JP2510161Y2 - Electronic device cooling device - Google Patents
Electronic device cooling deviceInfo
- Publication number
- JP2510161Y2 JP2510161Y2 JP1990041944U JP4194490U JP2510161Y2 JP 2510161 Y2 JP2510161 Y2 JP 2510161Y2 JP 1990041944 U JP1990041944 U JP 1990041944U JP 4194490 U JP4194490 U JP 4194490U JP 2510161 Y2 JP2510161 Y2 JP 2510161Y2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- nozzle
- cooling
- semiconductor chip
- cooling device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Description
【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、電算機の電子回路を構成する大容量のIC,L
SIなどを対象に、半導体チップの表面にノズルを通じて
低沸点,電気絶縁性の冷媒液を噴射して冷却する電子機
器の冷却装置に関する。[Detailed Description of the Invention] [Industrial field of application] The present invention relates to a large-capacity IC, L that constitutes an electronic circuit of a computer.
The present invention relates to a cooling device for an electronic device, which is intended for SI and the like, and injects a low boiling point, electrically insulating refrigerant liquid through a nozzle onto the surface of a semiconductor chip to cool the electronic device.
頭記した電子機器の冷却装置として、IC,LSIなどの半
導体チップを実装した配線基板を低沸点,電気絶縁性の
冷媒,例えばフルオロカーボン液(沸点56℃)で満たし
た冷却容器内に収容し、ここで半導体チップの表面に向
けノズルを通じて冷媒液を加圧噴射して冷却するように
した電気機器の冷却装置が既に提案されて公知である。
(実開昭61-13949号公報参照) 第3図はかかる冷却装置の構成を示すものであり、図
において、1は冷却容器、2は冷却容器1内を満たした
フルオロカーボン液などの冷媒、3は配線基板4に半導
体チップ5(例えばLSI,VLSIチップなど)をフェイスダ
ウンボンディング法で面実装した電子機器、6は電子機
器3の配線基板4を起立姿勢に保持したコネクタ部品で
あり、半導体チップ5の表面に対向して冷却容器1の内
部仕切り隔壁1aには冷媒噴射ノズル7が半導体チップ5
と1対1で対応するように設けてある。なお、8は冷媒
ポンプ、9は冷凍機などを採用した熱交換器である。As a cooling device for the electronic device mentioned above, a wiring board on which semiconductor chips such as IC and LSI are mounted is housed in a cooling container filled with a low boiling point, electrically insulating refrigerant, for example, a fluorocarbon liquid (boiling point 56 ° C.), Here, a cooling device for an electric device, in which a coolant liquid is pressurized and jetted through a nozzle toward the surface of a semiconductor chip to cool, has already been proposed and known.
(See Japanese Utility Model Laid-Open No. 61-13949) FIG. 3 shows the configuration of such a cooling device. In the figure, 1 is a cooling container, 2 is a refrigerant such as a fluorocarbon liquid filling the cooling container 1, and 3 is a cooling container. Is an electronic device in which a semiconductor chip 5 (for example, an LSI, a VLSI chip or the like) is surface-mounted on the wiring board 4 by a face-down bonding method, and 6 is a connector component that holds the wiring board 4 of the electronic device 3 in an upright posture. The coolant injection nozzle 7 is provided on the inner partition wall 1a of the cooling container 1 facing the surface of the semiconductor chip 5
It is provided so as to have a one-to-one correspondence with. In addition, 8 is a refrigerant pump, and 9 is a heat exchanger employing a refrigerator or the like.
かかる構成で、電子機器3の通電動作時に半導体チッ
プ5が発熱すると、その発生熱は半導体チップ5の表面
に接する冷媒2に伝熱して冷媒を局部的に沸騰させ、そ
の気化潜熱により冷却される。一方、この状態でポンプ
8により加圧した冷媒2をノズル7を通じて半導体チッ
プ5の表面に向けて噴射することにより、冷媒2が衝突
噴流となってチップ表面より冷媒の沸騰気泡(気泡は液
に比べて伝熱性が低い)を排除するとともに、その冷媒
液の噴流がチップ表面を直接洗流して半導体チップ5を
強制冷却する。With such a configuration, when the semiconductor chip 5 generates heat during the energization operation of the electronic device 3, the generated heat is transferred to the refrigerant 2 in contact with the surface of the semiconductor chip 5 to locally boil the refrigerant and to be cooled by the latent heat of vaporization. . On the other hand, in this state, the refrigerant 2 pressurized by the pump 8 is jetted toward the surface of the semiconductor chip 5 through the nozzle 7, whereby the refrigerant 2 becomes a collision jet and boiling bubbles of the refrigerant (the bubbles turn into liquid) from the chip surface. (The heat conductivity is lower than that of the semiconductor chip)), and the jet of the refrigerant liquid directly flushes the chip surface to forcibly cool the semiconductor chip 5.
なお、半導体チップ5の表面から排除された冷媒の沸
騰気泡は、冷媒液中を浮上した後に冷媒2とともに冷却
容器1から流出し、熱交換器9で凝縮,液化した後に再
びポンプ8により昇圧して冷却容器1に戻るように循環
送流される。The boiling bubbles of the refrigerant removed from the surface of the semiconductor chip 5 float in the refrigerant liquid, then flow out from the cooling container 1 together with the refrigerant 2, are condensed and liquefied by the heat exchanger 9, and are then boosted by the pump 8 again. It is circulated and sent back to the cooling container 1.
かかる冷却方式により、実験レベルでは50〜100W/cm2
程度の発熱密度に対応可能な冷却能力の得られることが
確認されている。With such a cooling system, 50 to 100 W / cm 2 at the experimental level
It has been confirmed that a cooling capacity that can cope with a heat generation density of a certain degree can be obtained.
ところで、昨今では半導体チップの高集積化,高実装
密度化が進み、これに伴いチップの単位面積当たりの発
熱量もますます高まる傾向にあることから、冷却装置に
ついても冷却能力をより一層高めることが重要な課題と
なっている。By the way, as semiconductor chips have become more highly integrated and packaging density has increased in recent years, the amount of heat generated per unit area of the chip has also tended to increase, so it is necessary to further enhance the cooling capacity of the cooling device. Is an important issue.
一方、前記冷却装置の実験,考察を通じて得た知見に
よれば、単一の円形ノズルより噴出した冷媒液の噴流は
噴流の中心に対して軸対称の流れであり、かつ半導体チ
ップと冷媒噴流との間の熱伝達は冷媒の噴流速度,ノズ
ル径,ノズルとチップとの間の距離などに依存する他、
熱伝達は冷媒噴流の中心で最大であり、外周へ行くほど
小さくなることが明らかになっている。On the other hand, according to the knowledge obtained through the experiments and consideration of the cooling device, the jet of the refrigerant liquid ejected from the single circular nozzle is an axisymmetrical flow with respect to the center of the jet, and the semiconductor chip and the refrigerant jet The heat transfer between the two depends on the jet speed of the refrigerant, the nozzle diameter, the distance between the nozzle and the tip, etc.
It has been revealed that the heat transfer is maximum at the center of the refrigerant jet and becomes smaller toward the outer circumference.
したがって、半導体チップに対する冷却効果を高める
には、ノズルからの冷媒噴流速度を大きくすることに加
え、1個の半導体チップに対しその冷却領域を分担する
ように複数個のノズルを対向配備することが必要とな
る。Therefore, in order to enhance the cooling effect on the semiconductor chip, in addition to increasing the coolant jet speed from the nozzle, a plurality of nozzles may be arranged to face one semiconductor chip so as to share the cooling region. Will be needed.
しかして、IC,LSIなどのように外形寸法が小さな半導
体チップを配線基板に実装した電子機器に対し、各半導
体チップごとに複数個のノズルを集中させて対向配置す
ることは、限られたスペース内で空間的な制約を受ける
ため実現が極めて困難である。However, for electronic devices such as ICs and LSIs, which have semiconductor chips with small external dimensions mounted on a wiring board, it is limited space to place multiple nozzles facing each other in a limited space. It is extremely difficult to realize because it is restricted by space inside.
本考案は上記の点にかんがみなされたものであり、先
記した冷媒噴流方式の冷却装置を対象に、ノズルの構造
をを改良することにより、冷却効率の大幅な向上化が図
れるようにした電子機器の冷却装置を提供することを目
的とする。The present invention has been made in view of the above points, and for the cooling device of the refrigerant jet type described above, by improving the structure of the nozzle, it is possible to significantly improve the cooling efficiency. An object is to provide a cooling device for equipment.
上記課題を解決するために、本考案の冷却装置は、電
子機器の半導体チップに向けて冷媒液を噴出するノズル
の端面に小径な複数の冷媒噴射孔を分散穿孔して構成す
るものとする。In order to solve the above problems, the cooling device of the present invention is configured to disperse and perforate a plurality of small-diameter coolant injection holes in the end surface of a nozzle that ejects a coolant liquid toward a semiconductor chip of an electronic device.
上記の構成により、ノズルを通じて半導体チップのチ
ップ表面に向け噴出する冷媒噴流は、ノズル端面より複
数に分流して衝突噴流群を形成する。With the above configuration, the refrigerant jets ejected toward the chip surface of the semiconductor chip through the nozzle are divided into a plurality of collision jets from the end surface of the nozzle.
これにより、ノズルからの噴射冷媒流量が同一である
単流の冷媒噴流を噴射する従来の単一ノズルと比べて
も、各冷媒噴射孔からの噴流速度は大となり、かつ各々
の冷媒噴流が個々に半導体チップを小領域に分けて冷却
を分担することになり、この結果としてより高い冷却能
力が得られる。しかも、1基のノズルに複数の冷媒噴射
孔を穿孔して半導体素子のチップと1対1で対向させる
ようにしたので、限られたスペース内で空間的な制約を
殆ど受けることくノズルを設置できる。As a result, compared with the conventional single nozzle that injects a single-flow refrigerant jet having the same refrigerant flow rate from the nozzle, the jet velocity from each refrigerant injection hole is high and each refrigerant jet is In addition, the semiconductor chip is divided into small regions to share the cooling, and as a result, higher cooling capacity can be obtained. Moreover, since a plurality of coolant injection holes are formed in one nozzle so as to face the chip of the semiconductor element in a one-to-one manner, the nozzle is installed in a limited space with almost no space restriction. it can.
以下本考案の実施例を第1図,第2図により説明す
る。なお、第3図に対応する同一部品には同じ符号が付
してある。An embodiment of the present invention will be described below with reference to FIGS. The same parts corresponding to those in FIG. 3 are designated by the same reference numerals.
第1図,第2図において、配線基板4に実装された半
導体チップ5のチップ表面に対向して、冷却容器(図示
せず)の内部仕切り隔壁1aに開口したノズルポートには
半導体チップ5と1対1で対応するノズル7が取付けて
ある。ここで、前記ノズル7は断面が円形で先端にキャ
ップ面7aを有し、かつキャップ面7aには小径な冷媒噴射
孔7bが複数箇所に分散して穿孔された構造である。In FIG. 1 and FIG. 2, the semiconductor chip 5 is mounted in the nozzle port opened in the internal partition wall 1a of the cooling container (not shown) facing the chip surface of the semiconductor chip 5 mounted on the wiring board 4. Corresponding nozzles 7 are attached one-to-one. Here, the nozzle 7 has a structure having a circular cross section, a cap surface 7a at the tip, and small-diameter refrigerant injection holes 7b dispersedly formed in the cap surface 7a at a plurality of locations.
かかる構成で、図示されてないポンプにより昇圧した
冷媒2をノズルポートよりノズル7に送り込むと、冷媒
2は先記した冷媒噴射孔7bを通じて複数の冷媒噴流2aに
絞られて分流,噴出し、半導体チップ5の表面に向けて
衝突噴流群を形成する。これにより、冷媒噴流2aはチッ
プ表面を覆っている冷媒の沸騰気泡を排除するととも
に、各々の冷媒噴流2aが個別にチップ面域を分担して直
接洗流し、半導体チップ5を強制冷却する。With such a configuration, when the refrigerant 2 pressurized by a pump (not shown) is sent to the nozzle 7 from the nozzle port, the refrigerant 2 is shunted into a plurality of refrigerant jets 2a through the above-mentioned refrigerant injection holes 7b to be divided and ejected. A group of impinging jets is formed toward the surface of the tip 5. As a result, the coolant jet 2a eliminates the boiling bubbles of the coolant covering the chip surface, and each coolant jet 2a individually shares the chip surface area and directly flushes the semiconductor chip 5 forcibly.
しかも、このようにしてノズル7の先端から小径流に
絞られて噴出する冷媒噴流2aは噴流速度が大きく、かつ
各々の冷媒噴流2aは個々に半導体チップ5の面域に分散
して洗流するので、より高い冷却効果が得られる。ま
た、複数の冷媒噴射孔7bを穿孔したノズル7を半導体チ
ップ5と1対1で対応させて配置したので、空間的な制
約を殆ど受けることなく限られたスペース内でノズル7
を配置できる。In addition, the coolant jets 2a thus jetted from the tip of the nozzle 7 with a small diameter jetted out have a high jet velocity, and the respective coolant jets 2a are dispersed and washed individually in the surface area of the semiconductor chip 5. Therefore, a higher cooling effect can be obtained. In addition, since the nozzle 7 having the plurality of coolant injection holes 7b is arranged in a one-to-one correspondence with the semiconductor chip 5, the nozzle 7 is provided in a limited space with almost no spatial restriction.
Can be arranged.
本考案の冷却装置は、以上説明したように構成されて
いるので、限られた設置スペース,冷媒流量で、従来の
単一ノズルと比べて冷却効果を大幅に向上することがで
きる。Since the cooling device of the present invention is configured as described above, the cooling effect can be significantly improved as compared with the conventional single nozzle with a limited installation space and a refrigerant flow rate.
第1図は本考案実施例の要部構造の断面図、第2図は第
1図におけるノズルの端面図、第3図は従来における電
子機器冷却装置の全体構成図である。図において、 2:冷媒、2a:冷媒噴流、3:電子機器、4:配線基板、5:半
導体チップ、7:ノズル、7b:冷媒噴射孔。FIG. 1 is a sectional view of the essential structure of an embodiment of the present invention, FIG. 2 is an end view of the nozzle in FIG. 1, and FIG. 3 is an overall configuration diagram of a conventional electronic device cooling device. In the figure, 2: refrigerant, 2a: refrigerant jet, 3: electronic device, 4: wiring board, 5: semiconductor chip, 7: nozzle, 7b: refrigerant injection hole.
Claims (1)
けノズルを通じて低沸点,電気絶縁性の冷媒液を噴射し
て冷却する電気機器の冷却装置において、小径な複数の
冷媒噴射孔が分散して穿孔されているノズルキャップを
設けたことを特徴とする電気機器の冷却装置。1. A cooling device for an electric device, which cools an object such as an IC or LSI by cooling a low boiling point, electrically insulating refrigerant liquid through a nozzle toward a semiconductor chip of the cooling device. A cooling device for electric equipment, characterized in that a perforated nozzle cap is provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1990041944U JP2510161Y2 (en) | 1990-04-19 | 1990-04-19 | Electronic device cooling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1990041944U JP2510161Y2 (en) | 1990-04-19 | 1990-04-19 | Electronic device cooling device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH042051U JPH042051U (en) | 1992-01-09 |
JP2510161Y2 true JP2510161Y2 (en) | 1996-09-11 |
Family
ID=31553049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1990041944U Expired - Lifetime JP2510161Y2 (en) | 1990-04-19 | 1990-04-19 | Electronic device cooling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2510161Y2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3079450U (en) * | 2001-02-06 | 2001-08-17 | 株式会社ダイシンテクノサービス | Energy emitter mounting |
-
1990
- 1990-04-19 JP JP1990041944U patent/JP2510161Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH042051U (en) | 1992-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5491363A (en) | Low boiling point liquid coolant cooling structure for electronic circuit package | |
JP5590128B2 (en) | Cooling device, electronic device having cooling device, and cooling method of heating element | |
US7078803B2 (en) | Integrated circuit heat dissipation system | |
US5285351A (en) | Cooling structure for integrated circuits | |
JP2853481B2 (en) | Semiconductor element cooling structure | |
CA2087742C (en) | Cooling structure for integrated circuits | |
JPH05109954A (en) | Cooling structure for integrated circuit package | |
JPH0760954B2 (en) | Electronic circuit cooling module | |
US20220142002A1 (en) | Fluid cooling device | |
JP2510161Y2 (en) | Electronic device cooling device | |
JP2747156B2 (en) | Immersion jet cooling heat sink | |
JPH05283573A (en) | Semiconductor cooling mechanism | |
JPH02155258A (en) | Jet-cooled semiconductor device | |
JPH02237200A (en) | Cooling structure of integrated circuit | |
JP2611704B2 (en) | Integrated circuit cooling structure | |
JPH037960Y2 (en) | ||
US20240321680A1 (en) | Semiconductor device with 2-phase cooling structure | |
JP2712872B2 (en) | Integrated circuit cooling mechanism | |
JP2748762B2 (en) | Cooling device for integrated circuits | |
US20240203821A1 (en) | Semiconductor device having two-phase cooling structure | |
JPH06224577A (en) | Mechanism for cooling and feeding integrated | |
JP2845447B2 (en) | Integrated circuit cooling structure | |
JP2793204B2 (en) | Integrated circuit cooling structure | |
JPH06188582A (en) | Cooling and feeding mechanism of integrated circuit | |
JP2531459B2 (en) | Integrated circuit cooling structure |