[go: up one dir, main page]

JP2509654B2 - Chemical decontamination waste liquid treatment method - Google Patents

Chemical decontamination waste liquid treatment method

Info

Publication number
JP2509654B2
JP2509654B2 JP1958788A JP1958788A JP2509654B2 JP 2509654 B2 JP2509654 B2 JP 2509654B2 JP 1958788 A JP1958788 A JP 1958788A JP 1958788 A JP1958788 A JP 1958788A JP 2509654 B2 JP2509654 B2 JP 2509654B2
Authority
JP
Japan
Prior art keywords
waste liquid
waste
chemical decontamination
decontamination
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1958788A
Other languages
Japanese (ja)
Other versions
JPH01196599A (en
Inventor
要 松本
謙一 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP1958788A priority Critical patent/JP2509654B2/en
Publication of JPH01196599A publication Critical patent/JPH01196599A/en
Application granted granted Critical
Publication of JP2509654B2 publication Critical patent/JP2509654B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は原子力発電施設内における放射能汚染機器お
よび配管の化学除染廃液の処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Industrial field of application) The present invention relates to a method for treating a chemical decontamination waste liquid for radioactive contamination equipment and piping in a nuclear power generation facility.

(従来の技術) 原子力発電施設内では機器,配管への放射性物質の付
着によって作業員の被曝が生じる恐れがある。そこで、
これらの放射性物質を取り除き被曝低減を図る手段とし
て化学除染が行われており、この化学除染により発生し
た廃液の処理方法としては、除染剤濃度が数%と高い場
合は除染剤を単独に濃縮および固化しており、また除染
剤濃度が低い場合はイオン交換樹脂による除染廃液の処
理が行われている。
(Prior Art) Workers may be exposed to radiation in a nuclear power plant due to the deposition of radioactive materials on equipment and piping. Therefore,
Chemical decontamination is performed as a means of removing these radioactive substances and reducing exposure.As a treatment method for waste liquid generated by this chemical decontamination, decontaminating agents are used when the decontaminating agent concentration is as high as several%. When the decontamination agent concentration is low, the decontamination waste solution is treated with an ion exchange resin.

(発明が解決しようとする課題) ところで、現在我国で行われている化学除染は小規模
のものであるが、今後大規模に行なうとするといくつか
の問題点が生じる。
(Problems to be solved by the invention) By the way, the chemical decontamination currently performed in Japan is a small scale, but if it is carried out on a large scale in the future, some problems will occur.

第2図は濃厚化学除染処理方法の代表的な処理方法で
あるドレスデン法の廃液処理の系統図である。同図にお
いて、除染廃液は収集タンク21に集められた後濃縮器22
で濃縮される。濃縮廃液は濃縮廃液受タンク26に移送さ
れた後固化装置27で固化される。固化されたものはドラ
ム缶に入れられ、ドラム缶貯蔵庫28に貯蔵される。この
ドラム缶に入れられた固化体は高濃度放射能レベルを有
し、きわめて線量が高い。しかもドラム缶本数が多いと
いう問題点がある。また、濃縮器22の凝縮液はクーラ23
により冷されて凝縮タンク24に導かれ、さらに脱塩塔25
で脱塩されて放射能のないきれいな液となって廃棄物処
理系へ放出される。
FIG. 2 is a system diagram of waste liquid treatment of the Dresden method, which is a typical treatment method of the concentrated chemical decontamination treatment method. In the figure, the decontamination waste liquid is collected in the collection tank 21 and then the concentrator 22
Is concentrated in. The concentrated waste liquid is transferred to the concentrated waste liquid receiving tank 26 and then solidified by the solidification device 27. The solidified product is placed in a drum can and stored in the drum can storage 28. The solidified material contained in the drum has a high level of radioactivity and a very high dose. Moreover, there is a problem that the number of drums is large. The condensate of the concentrator 22 is cooled by the cooler 23.
It is cooled by and is guided to the condensation tank 24, and further desalination tower 25
It is desalted to form a clean liquid with no radioactivity and released to the waste treatment system.

上記したドレスデン法は米国ドレスデン発電所1号機
において実施されたものであるが、その廃液処理設備は
発電所の本設の廃棄物建屋よりも大きくなるためコスト
がかかり今後の除染処理方法としては適切とは言い難
い。
The Dresden method described above was implemented at Unit 1 of the Dresden Power Plant in the United States, but its waste liquid treatment facility is larger than the main waste building of the power plant, so it is costly, and as a future decontamination treatment method Hard to say.

第3図は希薄除染廃液処理方法の例であるCANDECON法
の廃液処理の系統図である。図において、除染対象機器
30除染した廃液はクーラ34で冷却されながらアニオン樹
脂塔32及びカチオン樹脂塔33を経て再び除染剤タンク31
に戻される。アニオン樹脂塔32では除染剤等の低線量な
がら大量のものが回収される。カチオン樹脂塔33では放
射能を有する高線量のものが回収される。このCANDECON
法では二次廃棄物としてイオン交換樹脂が発生するの
で、この処理がめんどうである。
FIG. 3 is a system diagram of the waste liquid treatment of the CANDECON method, which is an example of the dilute decontamination waste liquid treatment method. In the figure, equipment to be decontaminated
30 The decontaminated waste liquid is cooled by the cooler 34, passes through the anion resin tower 32 and the cation resin tower 33, and again passes through the decontaminating agent tank 31.
Is returned to. In the anion resin tower 32, a large amount of decontaminating agent or the like is collected with a low dose. In the cation resin tower 33, a high dose of radioactive material is recovered. This CANDECON
This method is troublesome because the method produces ion exchange resin as secondary waste.

第4図は希薄除染廃液処理方法の他の例であるLOMI法
の廃液処理の系統図である。この第4図のLOMI法も前記
CANDECON法と同様な処理が行われる。すなわち、除染対
象機器30を除染した廃液はアニオン樹脂塔32により除染
剤のアニオン成分を回収し、またカチオン樹脂塔33によ
り放射能及び除染剤カチオン成分(高濃度低レベル)が
回収されるが、CANDECON法と同様に2次廃棄物としてイ
オン交換樹脂が発生するので、この処理が非常にめんど
うである。
FIG. 4 is a system diagram of the waste liquid treatment of the LOMI method which is another example of the dilute decontamination waste liquid treatment method. The LOMI method shown in Fig. 4 is also described above.
Processing similar to the CANDECON method is performed. That is, the waste liquid decontaminated by the decontamination target device 30 collects the anion component of the decontamination agent by the anion resin tower 32, and also the radioactivity and the decontamination agent cation component (high concentration and low level) by the cation resin tower 33. However, as with the CANDECON method, ion-exchange resin is generated as secondary waste, so this process is extremely troublesome.

前記したCANDECON法およびLOMI法は薬剤濃度が1%以
下であることから、イオン交換樹脂に吸着させて処理設
備の簡略化を図っている。また、放射能がイオン交換樹
脂の中にだけ閉じ込められるので、イオン交換樹脂のま
わりだけ遮蔽することで作業中の被曝も小さくできる。
この処理方法は処分場への搬出も容易であるため英国,
米国では普及している。しかしながら、我国ではイオン
交換樹脂の形で放射能廃棄物を保管する施設はなく、ま
た洗浄廃液にはキレート剤が含まれているため、これら
を安定化することが望まれている。また廃棄物の最終形
態として現状認められているのは、セメント固化体ある
いはプラスチック固化体であり、イオン交換樹脂をこの
ような固化体の形態にすることは廃棄物量の低減の観点
からは得策とはいえない。
Since the above-mentioned CANDECON method and LOMI method have a drug concentration of 1% or less, they are adsorbed on an ion-exchange resin to simplify the processing equipment. Further, since the radioactivity is confined only in the ion exchange resin, the exposure during the work can be reduced by shielding only around the ion exchange resin.
This treatment method is easy to carry to the disposal site,
It is popular in the United States. However, in Japan, there is no facility for storing radioactive waste in the form of an ion exchange resin, and since the cleaning waste liquid contains a chelating agent, it is desired to stabilize these. Currently, the final form of waste is recognized as solidified cement or solidified plastic, and it is a good idea from the viewpoint of reducing the amount of waste to make the ion exchange resin into such solidified form. I can't say.

これまでの化学除染剤は構造材料の健全性を損なわず
に放射性の腐食生成物を効率的に溶解除去するように調
合されており、特に材料健全性に対する要求度が厳しく
この性能を満足するように薬剤が調合されている。
Conventional chemical decontamination agents have been formulated to efficiently dissolve and remove radioactive corrosion products without impairing the soundness of structural materials. In particular, the requirements for material soundness are strict and satisfy this performance. The drug is formulated as follows.

しかして、上述したような化学除染剤を廃液処理する
上での問題点を列挙すると下記のとおりである。
Then, the problems in treating the chemical decontaminating agent as described above with the waste liquid are listed below.

(1)配管および機器に付着している鉄錆スケール放射
性腐食生成物を溶解除去するには化学量論的には大量の
薬品が必要となる。
(1) A large amount of chemicals is required stoichiometrically to dissolve and remove the iron rust scale radioactive corrosion products adhering to the pipes and equipment.

(2)液比と濃度の積が単位面積当りのスケール量に比
例しているので、使用薬品量がきわめて多い。このため
通常の放射性廃棄物処理であるセメント固化を行うと、
薬剤のために充填量が小さく必然的に固化体量がきわめ
て大きくなる。プラスチック固化、アスファルト固化で
も同様であり廃棄物固化体量が多い。
(2) Since the product of the liquid ratio and the concentration is proportional to the scale amount per unit area, the amount of chemicals used is extremely large. For this reason, when solidification of cement, which is a normal radioactive waste treatment, is performed,
Due to the drug, the filling amount is small and the solidified amount is necessarily very large. The same applies to plastic solidification and asphalt solidification, and the amount of solid waste is large.

(3)薬剤はスケール成分、放射能成分を溶解する成
分、溶解したものを安定分解させる成分、材料の腐食を
抑制する成分等が入っており、キレート系の薬剤が多
く、かつ廃液量自体が多いためこのままの形で廃液の処
理を行うとこれら化学洗浄剤の分解に大型の反応器が必
要となる。
(3) The chemicals include scale components, components that dissolve radioactive components, components that decompose dissolved substances, components that suppress corrosion of materials, etc., and there are many chelate-based chemicals, and the amount of waste liquid itself If the waste liquid is treated as it is because of the large amount, a large reactor is required to decompose these chemical cleaning agents.

(4)できるだけ簡単で単器処理量の多い装置で除染廃
液を処理し、大量の低能度廃液と少量の高濃度廃液とに
分ける必要がある。少量の高濃度廃液には化学薬品、特
に有機酸スケール成分が濃縮されてしかもスケール成
分、放射能成分も濃縮されている。キレート剤は酸性で
濃縮してくると溶解度の関係で析出してくる。中和する
とキレート剤の溶解度が増して析出しないがキレート剤
を分解すると、中性領域ではスケール成分、放射能成分
がキレート剤の分解につれて沈降してくる。中和には無
機物が使われるので二次廃棄物発生量が増加する。
(4) It is necessary to treat the decontamination waste liquid with a device that is as simple as possible and has a large single unit throughput, and divide it into a large amount of low-efficiency waste liquid and a small amount of high-concentration waste liquid. A small amount of high-concentration waste liquid is concentrated with chemicals, especially organic acid scale components, and also with scale components and radioactive components. If the chelating agent is acidic and concentrated, it will precipitate due to its solubility. When neutralized, the solubility of the chelating agent increases and does not precipitate, but when the chelating agent is decomposed, scale components and radioactive components precipitate in the neutral region as the chelating agent decomposes. Since inorganic substances are used for neutralization, the amount of secondary waste generated increases.

(5)中性領域でキレート剤および有機酸を分解処理
し、無機のスケール成分と放射能成分にしようとするに
は焼却煤焼、仮焼、熱分解といった処理方法しかない。
また、キレート剤が放射能成分を安定化しているため電
気分解、電析電着させることもできない。
(5) In order to decompose the chelating agent and the organic acid in the neutral region into inorganic scale components and radioactive components, there are only treatment methods such as incineration soot calcination, calcination, and thermal decomposition.
Further, since the chelating agent stabilizes the radioactive component, it cannot be electrolyzed or electrodeposited.

(6)大量の低濃度廃棄物と少量の高濃度廃棄物に分離
するプロセスでは、蒸発濃縮,逆浸透膜処理のいずれか
が廃液に対して有効であるが、蒸発濃縮処理は材料の健
全性の上からもアルカリ性あるいは中性で処理し、比較
的高純度の蒸留液を得て、これを廃棄物処理系統へ送
り、濃縮液を高濃縮廃液として処理することとなるが、
蒸発濃縮装置は処理容量に対して機械設備が大きく、熱
源が大きいなどの難点があり、また仮設の設備としにく
い。濃縮液の処理にしても有機酸分解に伴い強アルカリ
性となるので酸を用いて中和する工程が必要となり、ス
ケール成分、放射能成分が沈澱してきて、かつその沈澱
はかさ高で含水率が高く、非常に取り扱いにくく、処理
しにくい。またこれは塩濃度が高いため廃棄物処理系統
に送れない。したがって、中性ないしアルカリ性で濃縮
処理する場合はその時点では沈澱析出はないが、濃縮処
理時間が問題となる。これは逆浸透膜処理においても同
様のことがいえる。
(6) In the process of separating a large amount of low-concentration waste and a small amount of high-concentration waste, either evaporative concentration or reverse osmosis membrane treatment is effective for the waste liquid. From above, it is treated as alkaline or neutral to obtain a relatively high-purity distillate, which is sent to the waste treatment system, where the concentrated liquid is treated as a highly concentrated waste liquid.
The evaporative concentrator has problems such as large mechanical equipment and large heat source with respect to processing capacity, and it is difficult to make temporary equipment. Even if the concentrated solution is treated, it becomes strongly alkaline with organic acid decomposition, so a step of neutralizing with an acid is required, and scale components and radioactive components are precipitated, and the precipitation is bulky and the water content is high. High, very difficult to handle and difficult to handle. Also, it cannot be sent to the waste treatment system due to its high salt concentration. Therefore, when the neutralization or alkaline concentration treatment is performed, there is no precipitation at that point, but the concentration treatment time becomes a problem. The same can be said for the reverse osmosis membrane treatment.

本発明は上記事情に鑑みてなされたもので、その目的
は、化学除染で生じた廃液の最終廃棄物量を少なくして
少量の安定固化体とし、大量の低レベル廃液を原子力発
電所の本設の処理装置で処理できるようにした化学除染
廃液処理方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to reduce the final waste amount of waste liquid generated by chemical decontamination to form a small amount of stable solidified body, and to generate a large amount of low-level waste liquid in a nuclear power plant book. An object of the present invention is to provide a chemical decontamination waste liquid treatment method that can be treated by an installed treatment device.

[発明の構成] (課題を解決するための手段) 本発明は、上記目的を達成するために、原子力発電施
設内で発生する化学除染廃液の処理方法において、化学
除染廃液のうち濃厚化学除染廃液を逆浸透膜装置により
処理水と濃縮液とに分離した後、前記濃縮液に硫酸と過
酸化水素を加え、数10℃以上に加熱して化学除染剤成分
を分解し、次いで前記化学除染剤分解液から放射能成分
および鉄錆の金属成分を電着回収し、前記回収物を遮蔽
付きキャスクに入れて保管するようにしたことを特徴と
するものである。
[Means for Solving the Problems] (Means for Solving the Problems) In order to achieve the above object, the present invention provides a method for treating a chemical decontamination waste liquid generated in a nuclear power generation facility, wherein a concentrated chemical of the chemical decontamination waste liquid is used. The decontamination waste liquid is separated into treated water and concentrated liquid by a reverse osmosis membrane device, sulfuric acid and hydrogen peroxide are added to the concentrated liquid, and the chemical decontaminating agent components are decomposed by heating to several tens of degrees Celsius or more, and then It is characterized in that a radioactive component and a metal component of iron rust are electrodeposited and recovered from the chemical decontaminating agent decomposition solution, and the recovered product is stored in a shielded cask.

(作用) 本発明の化学除染廃液処理方法によると、除染作業に
おける工期を短縮することができるので、廃液処理時の
被曝も低減できる。また、除染によって生じる廃棄物量
を低減でき、さらに廃棄物の安定貯蔵が可能となるため
除染廃棄物処理処分のコストの低減を図ることができ
る。
(Operation) According to the chemical decontamination waste liquid treatment method of the present invention, the construction period in the decontamination work can be shortened, so that the exposure during the waste liquid treatment can also be reduced. In addition, the amount of waste generated by decontamination can be reduced and stable storage of waste can be achieved, so that the cost of decontamination waste disposal can be reduced.

一般に、化学除染廃液を薬剤とスケール成分とに分
け、非放射性の薬剤を放出してスケール分のみ固化処理
できると、二次廃棄物はきわめて少量になる。非放射性
の薬剤を含む廃液から放射性成分を分離した液を放出し
ないまでも既設の廃棄物処理系統で処理できるようにし
て、放射性成分を含んだ少量の廃液をそれだけ単独に処
理するか、あるいは廃棄物処理系統で処理すると洗浄工
事における廃液処理工程が大幅に簡素化され、またこの
廃液処理に伴う被曝量が低減される。
Generally, if the chemical decontamination waste liquid is divided into a drug and a scale component, and a non-radioactive drug is released to solidify only the scale, the secondary waste becomes extremely small. Even if the liquid obtained by separating radioactive components from the waste liquid containing non-radioactive drug is not released, it can be processed by the existing waste treatment system, and a small amount of waste liquid containing radioactive components can be treated alone or discarded. The treatment with the material treatment system greatly simplifies the waste liquid treatment process in the cleaning work, and reduces the exposure dose associated with this waste liquid treatment.

そのためには前述したような除染剤成分と廃棄物の特
性を考慮して、酸性側で濃縮し、キレート剤の析出沈降
が始まる前にその濃縮液の有機酸、キレート剤を分解
し、析出を防止するようにする。分解が進むと中性側に
移行し、キレート剤も分解されてきて金属水酸化物の沈
澱が出てくるので、これを防止するために硫酸をPHをみ
ながら滴下し、PH2〜3を保つようにする。こうする
と、スケール成分を水酸化物として析出するのを防止
し、溶解させることができる。キレート剤および有機酸
が分解されたことをTOCメータで分析して確認し、電解
還元して、鉄,クロム,ニッケル,銅といったスケール
成分の金属イオンを電析させ、また放射能成分のコバル
ト58,コバルト60,マンガン54,鉄59等を廃液から除去す
る。放射能成分が除去されると硫酸廃液であるので、中
和して本設の廃棄物処理系統の化学廃液系統に排出すれ
ば簡単に処理できる。
For that purpose, in consideration of the characteristics of the decontaminating agent component and the waste as described above, concentrate on the acidic side, decompose the organic acid and chelating agent of the concentrated solution before the precipitation of the chelating agent begins, To prevent. As the decomposition progresses, it moves to the neutral side, the chelating agent is also decomposed and the metal hydroxide precipitates, so in order to prevent this, sulfuric acid is dropped while watching the pH, and PH2 to 3 is maintained. To do so. This makes it possible to prevent scale components from precipitating as hydroxides and to dissolve them. Decomposition of the chelating agent and organic acid was confirmed by analysis with a TOC meter, electrolytic reduction was performed, and metal ions of scale components such as iron, chromium, nickel, and copper were electrodeposited, and the radioactive component cobalt 58 , Cobalt 60, manganese 54, iron 59, etc. are removed from the waste liquid. When the radioactive component is removed, it is sulfuric acid waste liquid, so it can be easily treated by neutralizing it and discharging it to the chemical waste liquid system of the waste treatment system of the main facility.

ここで処理対象とする化学除染廃液は、濃厚除染方法
に属するキレート剤,有機酸系のものであり、溶解成分
がかなり高く、使用濃度が1%〜8%程度のものであ
る。勿論1%以下の希薄除染剤の処理にも使えるが、希
薄除染剤は薬剤等の量自体が小さくCANDECON法などでは
除染中に除染剤の再生が行われ、放射能が除染剤から除
去されて二次廃棄物の方に濃縮されているので、特にこ
の方法を用いるメリットはない。
The chemical decontamination waste liquid to be treated here is a chelating agent belonging to the concentrated decontamination method and an organic acid type, and has a considerably high dissolved component and a use concentration of about 1% to 8%. Of course, it can also be used to treat diluted decontaminating agents of 1% or less, but the amount of diluted decontaminating agents is small and the decontaminating agent is regenerated during decontamination by the CANDECON method, etc. There is no particular advantage to using this method as it is removed from the agent and concentrated towards secondary waste.

基礎試験の結果では液中の酸濃度,金属イオン濃度が
高く、数%以上の領域では1〜2時間で反応が進むが1
%以下、特にPPMの領域になると、反応がきわめて遅く
なってくることが分かった。また、実際の廃液は量が多
く、有機酸濃度は高いが金属濃度は数1000PPM以下で薄
く、十分な反応を起こすには希薄であるので、そのまま
の濃度で過酸化水素による分解を行うと、かなりの時間
を要することと反応が途中で終わりキレート剤を完全に
分解できないことが分かった。
According to the results of the basic test, the acid concentration and the metal ion concentration in the liquid are high, and the reaction proceeds in 1 to 2 hours in the region of several% or more,
It was found that the reaction becomes extremely slow in the range of less than%, especially in the PPM region. In addition, the actual amount of waste liquid is large, the organic acid concentration is high, but the metal concentration is thin at a few 1000 PPM or less, and it is diluted to cause a sufficient reaction, so if you decompose it with hydrogen peroxide at that concentration, It was found that it took a considerable amount of time and that the reaction ended prematurely and the chelating agent could not be completely decomposed.

そこで、反応を迅速に進め、除染対象系のリンス,フ
ラッシングも兼ねかつ除染廃液の処理を円滑に進めるた
めに本発明の化学除染廃液処理方法を案出した。
Therefore, the chemical decontamination waste liquid treatment method of the present invention was devised in order to accelerate the reaction, combine the functions of the decontamination target system with rinsing and flushing, and proceed smoothly with the decontamination waste liquid.

なお、硫酸第一鉄を触媒にして過酸化水素水で脂肪,
タンパク質を分解する方法は、フェントン法として知ら
れており、その後の研究で第二鉄でも反応すること、硫
酸根でなくとも有機酸でも反応は遅いが同様に反応する
こと、酸化対象物もアルコール,パラフィン,潤滑油等
の炭化水素も分解できることが明らかとなってきてい
る。
In addition, using ferrous sulfate as a catalyst,
The method of degrading proteins is known as the Fenton method, and in subsequent research, it also reacts with ferric iron, it reacts slowly with organic acids even if it is not a sulfate group, but it reacts similarly. It has become clear that hydrocarbons such as paraffin and lubricating oil can also be decomposed.

上述したように個々の単位操作は既知のものである
が、本発明の化学除染廃液処理方法はこれら単位操作を
組合わせて濃厚化学除染廃液を処理するとともに処理水
を既設廃棄物処理系統で処理できるように放射能の大部
分を電気メッキし、少量の金属屑としてキャスクにつめ
て保管するもので比較的簡単で迅速に廃液処理できるも
のである。
Although the individual unit operations are known as described above, the chemical decontamination waste liquid treatment method of the present invention combines these unit operations to treat the concentrated chemical decontamination waste liquid and treats the treated water with the existing waste treatment system. Most of the radioactivity is electroplated so that it can be treated with, and it is stored as a small amount of metal scraps in a cask, which is a relatively simple and quick waste liquid treatment.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Hereinafter, the Example of this invention is described with reference to drawings.

第1図は本発明の一実施例の系統図である。 FIG. 1 is a system diagram of an embodiment of the present invention.

除染対象機器配管1を化学除染した廃液はメークアッ
プタンク2に排出する。また、このメークアップタンク
2には除染剤を供給したヒータ7で加熱する。加熱され
た除染廃液はメークアップタンク2から循環ポンプ10,
ヒータ17を経て再び除染対象機器配管1に戻る除染シス
テムによって除染対象機器配管1の除染を行う。18は圧
力計,19は流量計である。また、メークアップタンク2
から除染廃液をバイパスして高圧ポンプ11で逆浸透膜
(RO)分離器3に供給すると清澄水が得られる。この清
澄水はサージタンク8に蓄えられた後既設廃棄物処理系
統にそのまま排出できる水質である。あるいは排出せず
に除染系統にリサイクルして除染系統のフラッシングに
用いても良い。この場合は逆浸透膜入口側の濃度が低下
してくるので、濃縮には時間がかかりリサイクルが増
す。逆浸透膜分離器3は30%までの濃縮は可能である
が、20%程度になると低溶解度成分の結晶析出が始まる
ので15%程度まで濃縮する。ここで使用済みROモジュー
ルは梱包されて焼却処分する。また、15%程度まで濃縮
したら一部を排出してダイジェスター(消化器)4に送
り、ここで過酸化水素と硫酸を加えて、PHを2程度に保
ちながら有機酸およびキレート剤を分解していく。そし
て、PHメータ,オイルメータ,TOCメータあるいはCODメ
ータ等のメータ20で分析し、所定の有機物濃度以下まで
分解が進んだら電着槽5に分解後の廃液を送り、直流電
源9をかけて電析させ、鉄,クロム,ニッケル,銅とい
った電着し易い金属を回収する。陽極は不活性電極であ
ればなんでも良い。陰極には上述した金属が析出する
が、陰極材料としては特に指定する必要はない。電流密
度は可能な限り上げ、電着物が剥離しない程度に付着し
ていれば良い。この電着物は遮蔽付きキャスクに入れて
倉庫に保管する。放射能の大部分を電着により分離した
ら、廃液を中和槽6に移し、中和して廃棄物処理系統に
放出する。
The waste liquid obtained by chemically decontaminating the decontamination target device pipe 1 is discharged to the makeup tank 2. Further, the makeup tank 2 is heated by the heater 7 supplied with a decontaminating agent. The heated decontamination waste liquid is circulated from the makeup tank 2 to the circulation pump 10,
The decontamination target device pipe 1 is decontaminated by the decontamination system that returns to the decontamination target device pipe 1 via the heater 17. 18 is a pressure gauge and 19 is a flow meter. Also, makeup tank 2
When the decontamination waste liquid is bypassed from the above and supplied to the reverse osmosis membrane (RO) separator 3 by the high-pressure pump 11, clear water is obtained. This clear water is of a quality that can be stored in the surge tank 8 and then discharged as it is to the existing waste treatment system. Alternatively, it may be recycled to the decontamination system without being discharged and used for flushing of the decontamination system. In this case, the concentration on the inlet side of the reverse osmosis membrane decreases, so that concentration takes time and recycling increases. The reverse osmosis membrane separator 3 is capable of concentrating up to 30%, but at about 20%, crystal precipitation of low-solubility components begins, so concentrating up to about 15%. The used RO module is packed here and incinerated. Also, after concentrating to about 15%, a part of it is discharged and sent to a digester (digestion device) 4, where hydrogen peroxide and sulfuric acid are added to decompose organic acids and chelating agents while keeping PH at about 2. To go. Then, it is analyzed with a meter 20, such as a PH meter, oil meter, TOC meter or COD meter, and when the decomposition proceeds to below a predetermined organic matter concentration, the decomposed waste liquid is sent to the electrodeposition tank 5 and a DC power source 9 is applied to turn it on. It is deposited to recover metals such as iron, chromium, nickel and copper, which are easy to electrodeposit. Any anode may be used as long as it is an inactive electrode. The above-mentioned metal is deposited on the cathode, but it is not necessary to specify the cathode material. The current density should be increased as much as possible, and the electrodeposit should adhere to the extent that it does not peel off. This electrodeposit should be stored in a warehouse in a shielded cask. When most of the radioactivity has been separated by electrodeposition, the waste liquid is transferred to the neutralization tank 6, neutralized and discharged to the waste treatment system.

イオン交換樹脂の再生廃液はかなり薄い硫酸ナトリウ
ムの廃液となる。これは蒸発濃縮脱塩で処理できる。マ
ンガン65は除去されないが、この元素は中和で沈澱する
ほどは存在しない上、ガンマ線エネルギーが低いため問
題となることはない。したがって、十分に既設廃棄物処
理系統で処理できる。
The regenerated waste liquid of the ion exchange resin becomes a very thin waste liquid of sodium sulfate. It can be treated by evaporative concentration desalination. Manganese 65 is not removed, but this element does not exist to the extent that it is precipitated by neutralization, and since gamma ray energy is low, it does not pose a problem. Therefore, it can be sufficiently treated in the existing waste treatment system.

コバルトの電着が不十分な場合には電着槽5に硫酸コ
バルトを添加して放射性のコバルトをスキャベンジす
る。
When the electrodeposition of cobalt is insufficient, cobalt sulfate is added to the electrodeposition tank 5 to scavenge radioactive cobalt.

なお、12は循環ポンプ、13,14,16はポンプである。 In addition, 12 is a circulation pump, and 13, 14 and 16 are pumps.

上述したように、本実施例に使用される除染廃液処理
装置はコンパクトで可搬型であるので従来のような大規
模な専用の廃棄物処理設備を必要としない。また廃液処
理速度がかなりはやく、大容量の廃液を処理して少量の
濃縮液になってから次の処理に移るので所要時間を小さ
くできる。
As described above, since the decontamination waste liquid treatment apparatus used in this embodiment is compact and portable, it does not require a large-scale dedicated waste treatment facility as in the past. Further, the waste liquid treatment speed is considerably fast, and a large amount of waste liquid is treated to form a small amount of concentrated liquid before proceeding to the next treatment, so that the required time can be shortened.

したがって、二次廃棄物量が少なく放射能の大部分は
きわめてコンパクトな形態となるので、遮蔽し易く取扱
が容易である。さらに、高放射能の物はコンパクトで小
容積の中に閉じ込めてあるので遮蔽し易い。原子炉一次
系の全体除染を行った場合にはキューリーオーダーの放
射能量を扱うこととなるので、本装置の大きさのメリッ
トは重要となる。しかも、廃液はRO処理液と電着廃液で
あり、いずれも既設廃棄物処理系統の化学廃液系統で処
理できる状態であるので、この大量の廃液を既設廃棄物
処理系統で処理することにより大幅に廃棄物処理装置を
簡略化できる。このように操作が単純であり、作業員が
少なくてすむので、被曝の総量を抑制できる。
Therefore, the amount of secondary waste is small and most of the radioactivity is in an extremely compact form, which is easy to shield and easy to handle. In addition, highly radioactive materials are compact and are enclosed in a small volume, so they are easy to shield. When the entire primary reactor system is decontaminated, Curie-order radioactivity is handled, so the merit of the size of this device is important. Moreover, the waste liquids are RO treatment liquid and electrodeposition waste liquid, both of which are in a state that can be treated in the chemical waste liquid system of the existing waste treatment system, so by treating this large amount of waste liquid in the existing waste treatment system, The waste treatment device can be simplified. Since the operation is simple and the number of workers is small as described above, the total amount of radiation exposure can be suppressed.

[発明の効果] 以上説明したように、本発明によれば除染作業におけ
る工期を短縮することができるので、廃液処理時の被曝
も低減できる。また、除染によって生じる廃棄物量を低
減でき、さらに廃棄物の安定貯蔵が可能となるため除染
廃棄物処理処分のコストの低減を図ることができるとい
うすぐれた効果を奏する。
[Effects of the Invention] As described above, according to the present invention, the construction period in the decontamination work can be shortened, so that the exposure during the waste liquid treatment can also be reduced. In addition, the amount of waste generated by decontamination can be reduced, and since stable storage of waste can be achieved, it is possible to reduce the cost of disposal of decontamination waste, which is an excellent effect.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の系統図、第2図は従来の濃
厚除染廃液処理方法を示す系統図、第3図および第4図
はそれぞれ希薄除染廃液処理方法を示す系統図である。 1…除染対象機器配管系 2…メークアップタンク 3…RO膜分離機 4…ダイジェスタ 5…電着槽、6…中和槽 7,10…ヒータ、8…サージタンク 9…直流電源、10,12…循環ポンプ 11,13〜16…ポンプ、18〜20…メータ
FIG. 1 is a system diagram of an embodiment of the present invention, FIG. 2 is a system diagram showing a conventional concentrated decontamination waste liquid treatment method, and FIGS. 3 and 4 are system diagrams showing a dilute decontamination waste liquid treatment method, respectively. Is. 1 ... Decontamination target equipment piping system 2 ... Make-up tank 3 ... RO membrane separator 4 ... Digester 5 ... Electrodeposition tank, 6 ... Neutralization tank 7,10 ... Heater, 8 ... Surge tank 9 ... DC power supply, 10, 12 ... Circulation pump 11, 13-16 ... Pump, 18-20 ... Meter

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原子力発電施設内で発生する化学除染廃液
の処理方法において、化学除染廃液のうち濃厚化学除染
廃液を逆浸透膜装置により処理水と濃縮液とに分離した
後、前記濃縮液に硫酸と過酸化水素を加え、数10℃以上
に加熱して化学除染剤成分を分解し、次いで前記化学除
染剤分解液から放射能成分および鉄錆の金属成分を電着
回収し、前記回収物を遮蔽付きキャスクに入れて保管す
るようにしたことを特徴とする化学除染廃液処理方法。
1. A method for treating a chemical decontamination waste liquid generated in a nuclear power generation facility, wherein a concentrated chemical decontamination waste liquid of the chemical decontamination waste liquid is separated into treated water and a concentrated liquid by a reverse osmosis membrane device, Sulfuric acid and hydrogen peroxide are added to the concentrated solution, heated to several tens of degrees Celsius or higher to decompose the chemical decontamination reagent components, and then the radioactive components and metal components of iron rust are electrodeposited and recovered from the chemical decontamination reagent decomposition liquid. Then, the chemical decontamination waste liquid treatment method is characterized in that the recovered material is stored in a shielded cask.
JP1958788A 1988-02-01 1988-02-01 Chemical decontamination waste liquid treatment method Expired - Lifetime JP2509654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1958788A JP2509654B2 (en) 1988-02-01 1988-02-01 Chemical decontamination waste liquid treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1958788A JP2509654B2 (en) 1988-02-01 1988-02-01 Chemical decontamination waste liquid treatment method

Publications (2)

Publication Number Publication Date
JPH01196599A JPH01196599A (en) 1989-08-08
JP2509654B2 true JP2509654B2 (en) 1996-06-26

Family

ID=12003385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1958788A Expired - Lifetime JP2509654B2 (en) 1988-02-01 1988-02-01 Chemical decontamination waste liquid treatment method

Country Status (1)

Country Link
JP (1) JP2509654B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2620839B2 (en) * 1993-11-15 1997-06-18 森川産業株式会社 Method of treating a chelating agent solution containing radioactive contaminants
JP3665802B2 (en) * 1998-06-09 2005-06-29 大機エンジニアリング株式会社 Treatment method of chemical decontamination waste liquid
JP3656602B2 (en) * 2002-01-08 2005-06-08 九州電力株式会社 Treatment method of chemical decontamination waste liquid
JP3958712B2 (en) * 2003-06-10 2007-08-15 株式会社千代田テクノル Waste liquid treatment method and apparatus including radioactive organic waste liquid
JP5829931B2 (en) * 2012-01-30 2015-12-09 日立Geニュークリア・エナジー株式会社 Radioactive waste liquid treatment method and radioactive waste liquid treatment apparatus
CN112687418A (en) * 2019-10-17 2021-04-20 中核霞浦核电有限公司 Automatic metering neutralization device and method

Also Published As

Publication number Publication date
JPH01196599A (en) 1989-08-08

Similar Documents

Publication Publication Date Title
CN107068226B (en) Disposal and decontamination of radioactive polyvinyl alcohol products
JP5489124B2 (en) Waste resin treatment method and treatment system for nuclear power plant
FR2682524B1 (en) METHOD FOR PACKAGING OR RECYCLING USED ION CARTRIDGES.
EP0789831B1 (en) Decontamination process
CN104900283A (en) A nuclear power plant radioactive liquid waste treatment system
JP4438988B2 (en) Electrochemical method, system and apparatus for removing contamination by radioactive material.
EP0682806A1 (en) Process for the treatment of particulate material
EP2625694A2 (en) Ion exchange regeneration and nuclide specific selective processes
EP0125401B1 (en) Method for decontaminating metals contaminated with radioactive substances
KR101919200B1 (en) Electrolytic decontamination method capable of regenerative electrolyte
JP2509654B2 (en) Chemical decontamination waste liquid treatment method
RU2467419C1 (en) Method of cleaning still residues of liquid radioactive wastes from radioactive cobalt and caesium
Osteen et al. Treatment of radioactive laboratory waste for mercury removal
US8115045B2 (en) Nuclear waste removal system and method using wet oxidation
Epimakhov et al. Reverse-osmosis filtration based water treatment and special water purification for nuclear power systems
JP3119538B2 (en) Decontamination method for radioactive waste resin
KR101624453B1 (en) Equipment for decontamination of waste ionexchange resin and activated carbon polluted radioactive substance and method therefor
RU2276110C1 (en) Method of production of the desalted water and the water of the high purity for the nuclear power plants of the research centers
RU2391727C1 (en) Procedure for neutralisation of low mineralised low-activity waste under field conditions
JP2938286B2 (en) Treatment of radioactive liquid waste
JPH09189798A (en) Radioactive waste liquid treatment device
JPH0557560B2 (en)
JP2004028697A (en) Radioactive ion species eluent treatment apparatus, treatment system of radioactive ion-exchange resin, and treatment method of radioactive ion-exchange resin
Miyamoto et al. Development of wet-oxidation treatment system for filter backwash sludge and ion exchange resins
Fujikawa et al. Extractability and chemical forms of radioactive cesium in designated wastes investigated in an on-site test