[go: up one dir, main page]

JP2508261B2 - Underwater sound insulation - Google Patents

Underwater sound insulation

Info

Publication number
JP2508261B2
JP2508261B2 JP1100493A JP10049389A JP2508261B2 JP 2508261 B2 JP2508261 B2 JP 2508261B2 JP 1100493 A JP1100493 A JP 1100493A JP 10049389 A JP10049389 A JP 10049389A JP 2508261 B2 JP2508261 B2 JP 2508261B2
Authority
JP
Japan
Prior art keywords
sound insulation
air chamber
frequency
underwater sound
rubber plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1100493A
Other languages
Japanese (ja)
Other versions
JPH02278293A (en
Inventor
明 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1100493A priority Critical patent/JP2508261B2/en
Publication of JPH02278293A publication Critical patent/JPH02278293A/en
Application granted granted Critical
Publication of JP2508261B2 publication Critical patent/JP2508261B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水中遮音材に関し、特に遮音特性の広帯域化
と高耐水圧化を図った、水中音響機器用の水中遮音材に
関する。
TECHNICAL FIELD The present invention relates to an underwater sound insulation material, and more particularly to an underwater sound insulation material for underwater acoustic equipment, which has a wide sound insulation property and a high water pressure resistance.

〔従来の技術〕[Conventional technology]

従来、この種の遮音材は第5図のようにゴム材11a,11
bだけで空気室12を作り、水中音波による空気室の振動
や反射により遮音する動作を行なわせて遮音効果を得て
いた。
Conventionally, this type of sound insulation material has been made of rubber materials 11a, 11 as shown in FIG.
The air chamber 12 was created only by b, and the sound was insulated by the vibration and reflection of the air chamber caused by the underwater sound waves.

この場合、特に空気室が共振する周波数においては遮
音の効果が高く、それ故ゴム材だけで作られる空気室は
体積弾性率が低く、小さな空気室でも低周波数に適した
遮音材が確保されていた。
In this case, the effect of sound insulation is high especially at the frequency at which the air chamber resonates, so that the air chamber made of only rubber material has a low bulk modulus, and a sound insulating material suitable for low frequencies is secured even in a small air chamber. It was

しかしながら、空気室がゴム材だけで作られているた
め、静水圧が加わると空気室がつぶれて遮音効果がなく
なり、高水圧下では使えなかった。
However, since the air chamber is made of only rubber material, it cannot be used under high water pressure because the air chamber is crushed when hydrostatic pressure is applied and the sound insulation effect is lost.

また、この問題を解決すべく、第6図のような強化プ
ラスチック22でたわみやすい偏平状の空気室23を作り、
これをゴム材21でモールドした遮音材がある。
In addition, in order to solve this problem, a flat air chamber 23 which is easy to bend is made of reinforced plastic 22 as shown in FIG.
There is a sound insulation material in which this is molded with a rubber material 21.

しかしながら、この種の遮音材においては、空気室の
弾性率が強化プラスチックによって大きくなるので、空
気室の共振周波数が高くなり、共振周波数以下の低周波
数においては遮音効果が著るしく低下する。
However, in this type of sound insulation material, since the elastic modulus of the air chamber is increased by the reinforced plastic, the resonance frequency of the air chamber is increased, and the sound insulation effect is remarkably reduced at a low frequency below the resonance frequency.

さらに、共振周波数を低くするために強化プラスチッ
クの偏平面を広くし、空気室の弾性率を下げると強度が
低下し、耐水圧性が低くなる。
Further, if the flat surface of the reinforced plastic is widened to lower the resonance frequency and the elastic modulus of the air chamber is lowered, the strength is lowered and the water pressure resistance is lowered.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上述した従来の水中遮音材は、空気室をゴム材だけで
形成する場合には低周波数に適しているが耐水圧性が低
く、また空気室を偏平状の強化プラスチックで形成した
場合には低周波数化すると耐水圧性が低下し、耐水圧性
を高くしようとすると低周波数の遮音効果が著るしく低
下するという欠点がある。
The above-mentioned conventional underwater sound insulation material is suitable for low frequency when the air chamber is made of only rubber material, but has low water pressure resistance, and low frequency when the air chamber is made of flat reinforced plastic. However, there is a drawback in that the water pressure resistance is lowered when it is made to be high, and the low frequency sound insulation effect is remarkably lowered when the water pressure resistance is increased.

本発明の目的は上述した欠点を解決すべく、空気室を
形成するのに1種類の材質に限定せず、空気室を構成す
る壁面の部材を2種類に分け、空気室の低弾性率を維持
しながら静水圧荷重に対する強度の向上を計った水中遮
音材を提供することにある。
In order to solve the above-mentioned drawbacks, the object of the present invention is not limited to one type of material for forming the air chamber, but the wall member constituting the air chamber is divided into two types to reduce the low elastic modulus of the air chamber. An object of the present invention is to provide an underwater sound insulation material which is improved in strength against hydrostatic pressure load while being maintained.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の水中遮音材は、遮音周波数に応じた厚さを有
し前記遮音周波数に応じた直径の貫通孔が均等に配設さ
れているゴム板と、前記貫通孔の両端に嵌入されて前記
遮音周波数で共振する空気室を形成すると共に所定のた
わみ共振を行う円板と、前記ゴム板および前記円板の外
面を密閉被覆するシースとを有する水中遮音板を備え
る。また、遮音周波数帯域に応じて形成された複数の前
記水中遮音板を積層して構成される。
The underwater sound insulation material of the present invention is a rubber plate having a thickness corresponding to the sound insulation frequency, and through holes having a diameter corresponding to the sound insulation frequency, which are evenly arranged, and fitted into both ends of the through hole. An underwater sound insulation plate having a disk that forms an air chamber that resonates at a sound insulation frequency and that performs a predetermined flexural resonance, and a rubber plate and a sheath that hermetically covers the outer surface of the disk is provided. Moreover, it is comprised by laminating | stacking the said several underwater sound-insulating board formed according to the sound-insulating frequency band.

〔実施例〕〔Example〕

次に、図面を参照して本発明を説明する。第1図は本
発明の一実施例の斜視図であり、低,中および高の3つ
の周波数帯域用の水中遮音板を積層して構成した水中遮
音材を例として示している。
Next, the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of an embodiment of the present invention, showing an example of an underwater sound insulation material formed by laminating underwater sound insulation plates for three frequency bands of low, middle and high.

第1図の実施例の構成は、低周波数帯域用水中遮音板
100、中周波数帯域用水中遮音板200および高周波数帯域
用水中遮音板300から成る。
The configuration of the embodiment shown in FIG. 1 is the underwater sound insulation board for the low frequency band.
100, an underwater sound insulation plate 200 for the middle frequency band and an underwater sound insulation plate 300 for the high frequency band.

第1層の低周波数帯域用水中遮音板100は、ゴム板
(1)1aに設けた貫通孔の両端の座ぐり部5aに振動減衰
の大なる合成樹脂あるいは金属の円板(1)2aを埋め込
むことにより、空気室(1)3aを形成し、ゴム板(1)
1aおよび円板(1)2aのうちの外側の外面をシース
(1)4aおよびシース(2)4bで被覆している。
The low frequency band underwater sound insulating plate 100 of the first layer has a disk (1) 2a made of synthetic resin or metal with large vibration damping in the counterbore 5a at both ends of the through hole provided in the rubber plate (1) 1a. By embedding, the air chamber (1) 3a is formed, and the rubber plate (1) is formed.
Outer outer surfaces of 1a and the disc (1) 2a are covered with a sheath (1) 4a and a sheath (2) 4b.

第2層の中周波数帯域用水中遮音板200は、第1層よ
りも薄いゴム板(2)1bに第1層よりも小さい直径の貫
通孔を設け、この貫通孔の両端に座ぐり部5bを設け、両
座ぐり部に第1層よりも小さな直径の円板(2)2bを埋
め込むことにより、空気室(2)3bを形成し、外面をシ
ース(2)4bとシース(3)4cとで被覆している。
The underwater sound insulation plate 200 for the middle frequency band of the second layer is provided with a through hole having a diameter smaller than that of the first layer in the rubber plate (2) 1b thinner than the first layer, and the counterbore portions 5b are provided at both ends of the through hole. And a disk (2) 2b having a diameter smaller than that of the first layer is embedded in both counterbore portions to form an air chamber (2) 3b, and outer surfaces thereof are sheath (2) 4b and sheath (3) 4c. It is covered with and.

第3層の高周波数帯域用水中遮音板300は、第2層よ
りも薄いゴム板(3)1cと、第2層よりも小さい直径の
貫通孔と円板(3)2cとで空気室(3)3cを形成し、外
面をシース(3)4cとシース(4)4dとで被覆してい
る。
The high frequency band underwater sound insulation plate 300 of the third layer includes a rubber plate (3) 1c thinner than the second layer, a through hole having a diameter smaller than that of the second layer, and a disk (3) 2c. 3) 3c is formed, and the outer surface is covered with the sheath (3) 4c and the sheath (4) 4d.

次に、本実施例の動作について説明する。第1図の実
施例の具体的説明に入るのに先立ち、先ず本発明の基本
的特徴について説明を加える。
Next, the operation of this embodiment will be described. Prior to the detailed description of the embodiment of FIG. 1, the basic features of the present invention will be described.

本発明の第1の特徴は、ゴム板に均等に貫通孔を分布
させ、この貫通孔の両端に円板を嵌合させて空気室を形
成し、この空気室を遮音周波数に共振するようにし、ま
た、外面をシースで密着被覆した状態で、両円板を支持
するゴム板と空気室とにより低弾性率を維持し、低周波
数における遮音効果を確保すると共に、両円板のたわみ
強度および両円板間へのゴム板の食い込みによる強度で
高耐水性を確保することにある。
The first feature of the present invention is that the through holes are evenly distributed in the rubber plate, the air chambers are formed by fitting the disks at both ends of the through holes, and the air chambers are resonated at the sound insulation frequency. In addition, while the outer surface is closely covered with a sheath, a low elastic modulus is maintained by the rubber plate that supports both discs and the air chamber to ensure the sound insulation effect at low frequencies, and the flexural strength of both discs and It is to secure high water resistance by the strength of the rubber plate biting between both discs.

本発明の第2の特徴は、貫通孔の両端に嵌合する円板
を、振動減衰の大きな合成樹脂あるいは金属とすること
による、円板のたわみ共振を制動して遮音周波数特性を
広帯域化することにある。
A second feature of the present invention is that the discs fitted to both ends of the through hole are made of synthetic resin or metal with large vibration damping to dampen the flexural resonance of the discs to broaden the sound insulation frequency characteristic. Especially.

本発明の第3の特徴は、空気室の大きさ、円板の振動
特性等が互いに異なる複数種の水中遮音板を積層するこ
とにより、遮音周波数の広帯域化を図ることにあり、第
1図の実施例は、低,中,高の3種類の水中遮音板を積
層して遮音周波数の広帯域化を図った場合を示すもので
ある。
A third feature of the present invention is that a plurality of types of underwater sound insulation plates having different sizes of an air chamber, vibration characteristics of a disk, and the like are laminated, so that the sound insulation frequency can be broadened. The embodiment of FIG. 3 shows a case where three types of underwater sound insulation plates of low, middle and high are laminated to widen the sound insulation frequency band.

ふたたび第1図に戻って実施例の説明を続行する。 Returning to FIG. 1 again, the description of the embodiment will be continued.

上述した低,中,高の各周波数帯域用水中遮音板にお
ける各円板の質量を、低から高周波数帯域方向にそれぞ
れm1,m2およびm3とすると、これら質量m1〜m3と、対応
する空気室でゴム板(1)1a,(2)1bおよび(3)1c
のそれぞれの座ぐり部5a,5bおよび5cの有するバネ定数k
1,k2およびk3とによって第2図(a)に示す縦振動の共
振系を形成し、共振周波数とその近傍において空気室
(1)3a,空気室(2)3bおよび空気室(3)3cによる
この振動系の振動の吸収が行なわれ、共振周波数および
その近傍の周波数を中心とする周波数帯域における音波
の進入を遮断する。
Assuming that the mass of each disk in the underwater sound insulation plate for each of the low, middle, and high frequency bands described above is m1, m2, and m3 in the low to high frequency band direction, respectively, these masses m1 to m3 and the corresponding air chambers Rubber plates (1) 1a, (2) 1b and (3) 1c
Spring constant k of each of the spot facings 5a, 5b and 5c of
1, k2 and k3 form a resonance system of longitudinal vibration shown in FIG. 2 (a), and the air chamber (1) 3a, air chamber (2) 3b and air chamber (3) 3c are formed at and near the resonance frequency. The absorption of the vibration of this vibration system is performed, and the penetration of the sound wave in the frequency band centered on the resonance frequency and the frequency in the vicinity thereof is blocked.

第2図(b)は、円板(1)2a〜(3)2cのたわみ振
動を説明するための断面図であり、円板(1)2a〜
(3)2cは、点線で示す如く、上方および下方に共振周
波数の繰返しでたわみ振動を行なう。
FIG. 2B is a sectional view for explaining the flexural vibration of the discs (1) 2a to (3) 2c.
(3) As indicated by the dotted line, 2c causes flexural vibration in the upward and downward directions by repeating the resonance frequency.

この縦振動の共振系は、円板の質量が大きい程、また
座ぐり部のバネ定数が小さい程低周波数で共振するた
め、円板とゴム板の貫通孔の直径が大きい程低周波数用
の遮音材となる。
This longitudinal vibration resonance system resonates at a lower frequency as the mass of the disc becomes larger and the spring constant of the spot facing part becomes smaller. It becomes a sound insulation material.

さらに、各層の円板は、それぞれの材料による弾性定
数、比重と直径及び板厚で定まる第2図(b)のような
たわみ振動による共振系をもっており、このたわみ共振
周波数とその近傍においても縦振動の共振周波数と同様
に空気室への振動の吸収により音波を遮断する。
Furthermore, the discs of each layer have a resonance system due to flexural vibration as shown in Fig. 2 (b), which is determined by the elastic constant, specific gravity, diameter, and plate thickness of each material. Like the resonance frequency of vibration, the sound wave is blocked by absorbing the vibration into the air chamber.

このたわみ共振周波数は主に円板のたわみバネ定数と
ゴム板の座ぐり部の縦振動バネ定数との相違により、縦
振動の共振周波数より高くなる。
This flexural resonance frequency becomes higher than the resonance frequency of longitudinal vibration mainly due to the difference between the flexural spring constant of the disc and the longitudinal vibration spring constant of the spot facing portion of the rubber plate.

また各層の円板のたわみ強度を一定とする直径/厚み
比においてそれぞれのたわみ共振周波数は円板の径が大
きい程低周波となり、かつ共振の鋭さは振動減衰の大き
さ、すなわち主にバネ定数の損失の大きさによって決ま
る。一般的に、ゴム板のバネ定数の損失は大きいため、
縦振動の共振特性は鈍くなり、遮音の周波数特性は広帯
域となる。
Also, at a diameter / thickness ratio where the flexural strength of the discs of each layer is constant, the flexural resonance frequency becomes lower as the disc diameter becomes larger, and the sharpness of resonance is the magnitude of vibration damping, that is, mainly the spring constant. Depends on the size of the loss. Generally, the loss of the spring constant of the rubber plate is large,
The resonance characteristic of longitudinal vibration becomes dull, and the frequency characteristic of sound insulation becomes wide band.

円板のたわみ共振は、一般的な弾性体材料を用いた場
合、たわみのバネ定数の損失が小さいために共振は鋭く
狭帯域となるが、制振処理を施した弾性体円板や防振樹
脂あるいは防振金属等のバネ定数の損失の大きいすなわ
ち振動減衰の大きい材料による円板を用いることにより
共振を鈍くし、遮音の周波数特性を広帯域にすることが
できる。
When a general elastic material is used, the flexural resonance of the disk is sharp and narrow because the loss of the spring constant of the flexure is small. By using a disk made of a material having a large spring constant loss, that is, a material having a large vibration damping, such as a resin or a vibration-proof metal, it is possible to slow down the resonance and widen the frequency characteristic of sound insulation.

以上述べたように、円板の質量、すなわち、材質、外
径および厚みと、ゴム板のバネ定数、すなわちゴム板の
材質、厚みおよび座ぐり部の円板の支持面積を各層ごと
に調整し、円板とゴム板の座ぐり部の縦振動共振周波数
fl1,fl2,fl3と円板のたわみ共振周波数fB1,fB2,fB3を均
等に設定することにより第3図に示すような広帯域の遮
音特性が得られる。
As described above, the mass of the disc, that is, the material, the outer diameter, and the thickness, and the spring constant of the rubber plate, that is, the material and the thickness of the rubber plate and the supporting area of the disc of the counterbore are adjusted for each layer. , Longitudinal vibration resonance frequency of counterbore of disk and rubber plate
By uniformly setting f l1 , f l2 , f l3 and the flexural resonance frequencies f B1 , f B2 , f B3 of the disk, a broadband sound insulation characteristic as shown in FIG. 3 can be obtained.

第3図は実線で示すゴム板の音圧透過率と、3種類の
円板と座ぐり部による縦振動共振周波数fl1,fl2,fl3
らびに3種類の円板のたわみ共振周波数における点線で
示す下向の単峯特性を有する音圧透過率、ならびに上述
した各音圧透過率を総合した実線で示す広帯域の総合音
圧透過率に関する各特性を示している。
Fig. 3 shows the sound pressure transmittance of the rubber plate shown by the solid line, and the longitudinal vibration resonance frequencies f l1 , f l2 , f l3 by the three types of discs and the counterbore and the flexural resonance frequencies of the three types of discs. The sound pressure transmissivity having a downward single-peak characteristic shown by and the characteristics relating to the comprehensive sound pressure transmissivity of a wide band shown by a solid line in which the above sound pressure transmissivities are integrated are shown.

さて、かかる構造における縦振動の共振系の耐水圧性
は、円板のたわみ強度と空気室の有する強度に依存し、
従って空気室の周囲のゴム壁面の空気室に対する水圧に
よる食い込み強度によって決定される。このような空気
室に対する食い込み圧力は水圧によってもたらされ、従
って水圧と同値にあるのに対し、空気室および空気室を
とりまくゴム壁面に対する円板による支持力は、円板と
座ぐり部の接触面積に対する円板の面積比で示される倍
率に対応して印加水圧よりも大きくなるので、それだけ
ゴム壁面の空気室に対する食い込み量が抑圧され、空気
室の食い込みに対する強度が高まり、耐水圧性が強化さ
れる。
Now, the water pressure resistance of the longitudinal vibration resonance system in such a structure depends on the flexural strength of the disc and the strength of the air chamber,
Therefore, it is determined by the biting strength of the rubber wall around the air chamber into the air chamber due to the water pressure. The biting pressure to such an air chamber is brought about by the water pressure, and therefore has the same value as the water pressure, while the supporting force of the disc against the air chamber and the rubber wall surrounding the air chamber is the contact between the disc and the counterbore. As the applied water pressure increases in proportion to the ratio of the area of the disk to the area, the amount of penetration of the rubber wall into the air chamber is suppressed, the strength against the penetration of the air chamber is increased, and the water pressure resistance is enhanced. It

上述した耐水圧性の強化について、さらに詳述すれば
次のとおりである。
The above-mentioned enhancement of water pressure resistance will be described in more detail below.

第4図は第1図の実施例における空気室の耐水圧性を
説明するための断面図である。
FIG. 4 is a cross-sectional view for explaining the water pressure resistance of the air chamber in the embodiment of FIG.

第4図は、例として、円板(1)2aおよびゴム板
(1)1aによって形成される空気室(1)3aの場合を示
している。
FIG. 4 shows, as an example, the case of an air chamber (1) 3a formed by a disc (1) 2a and a rubber plate (1) 1a.

第4図において、空気室(1)3aの空気室内壁Wに対
する空気室内壁食い込み圧力Pbは水圧POによってもたら
されるものであり、従ってPb=POである。
In Figure 4, the pressure P b biting air chamber walls to air chamber wall W of the air chamber (1) 3a are those provided by the water pressure P O, therefore P b = P O.

いま、円板(1)2aの直径を2A、空気室(1)3aの直
径を2Bとすると、対向する1組の円板(1)2aのZ軸方
向のゴム板(1)1aによる空気室内壁支持圧力PSは次の
(1)式で示される。
Now, assuming that the diameter of the disc (1) 2a is 2A and the diameter of the air chamber (1) 3a is 2B, the air generated by the pair of opposing discs (1) 2a in the Z-axis direction by the rubber plate (1) 1a. The indoor wall support pressure P S is expressed by the following equation (1).

たとえばB/A=3/4に設定するとPS=2.3Pb、B/Aを1/2
に設定するとPS=1.3Pbとなり、それだけ空気室(1)3
aの耐水圧性が強化される。
For example, when set to B / A = 3/4 P S = 2.3P b, the B / A 1/2
When set to, P S = 1.3P b , which is the air chamber (1) 3
The water pressure resistance of a is enhanced.

(1)式の根拠は次の内容にもとづく。すなわち、円
板(1)2aのZ軸方向における水圧POによってもたらさ
れる外力FOは、FO=PO×πA2であり、円板(1)2aのZ
軸方向のゴム板(1)1aによる支持圧力PSと支持力FS
関係は、次の(2)式で示される。
The basis of formula (1) is based on the following contents. That is, the external force F O caused by the water pressure P O in the Z-axis direction of the disc (1) 2a is F O = P O × πA 2 , and the Z of the disc (1) 2a is
The relationship between the supporting pressure P S and the supporting force F S by the rubber plate (1) 1a in the axial direction is expressed by the following equation (2).

FS=PS×π(A2−B2) …(2) 外力たる支持圧力PSと支持力の鈎合によりFO=FSであ
り、従って、PO×πA2=PS×π(A2−B2)が得られこれ
から(1)式が導かれる。つまり、PS>Pbである。
F S = P S × π (A 2 −B 2 ) ... (2) F O = F S due to the balance between the external support pressure P S and the supporting force, so P O × π A 2 = P S × π (A 2 −B 2 ) is obtained, from which Eq. (1) is derived. That is, P S > P b .

こうして、遮音周波数の広帯域化と耐水圧性の強化と
を共存させた水中遮音材が実現できる。
In this way, it is possible to realize an underwater sound insulation material in which the widening of the sound insulation frequency and the enhancement of the water pressure resistance coexist.

なお、上述した実施例は、低、中および高周波数帯域
の3つの水中遮音板を成層して広帯域の水中遮音材を構
成した場合を例としているが、これらは遮音目的に応じ
てそれぞれ分離使用することも勿論可能である。
The above-described embodiment is an example in which three underwater sound insulation plates for low, middle and high frequency bands are layered to form a wideband underwater sound insulation material, but these are separately used according to the purpose of sound insulation. Of course, it is also possible.

また、ゴム板とともに空気室を形成する円板は、その
変形として円板の周辺部から中心部に向って隆起させ振
動疲労の均等化を図った形式の円板等も全く同様に利用
できることは明らかであり、以上の変形例はいずれも本
発明の主旨を損なうことなく容易に実施できる。
In addition, the disk forming the air chamber together with the rubber plate can be used in the same manner as a disk in which the deformation is raised from the peripheral portion of the disk toward the center to equalize vibration fatigue. Obviously, any of the above modifications can be easily implemented without impairing the gist of the present invention.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、ゴム板に均等に配設さ
れた貫通孔の両端に円板を嵌合させて空気室を形成し、
この空気室を遮音周波数で共振させることにより、高耐
水圧で低周波数帯域の水中音波を遮断できる。
As described above, the present invention forms the air chamber by fitting the disks at both ends of the through holes evenly arranged in the rubber plate,
By making this air chamber resonate at a sound insulation frequency, it is possible to block underwater sound waves in a low frequency band with high water pressure resistance.

また、円板の材質を選択してたわみ共振による遮音周
波数特性を広帯域化できる。更に、遮音特性の異なる複
数種の水中遮音板を積層することにより、遮音周波数の
広帯域化を図ることができるという効果がある。
In addition, the sound insulation frequency characteristic due to flexural resonance can be broadened by selecting the material of the disc. Furthermore, by stacking a plurality of types of underwater sound insulation plates having different sound insulation characteristics, it is possible to achieve a wide sound insulation frequency band.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の斜視図、第2図(a)は第
1図の実施例において形成される振動系の説明図、第2
図(b)は第1図の実施例における円筒板のたわみ振動
の説明図、第3図は第1図の実施例における音圧透過率
の周波数特性図、第4図は第1図の実施例の空気室の耐
水圧性を説明するための断面図、第5図および第6図は
それぞれ、従来の水中遮音材の斜視図である。 1a,1b,1c……ゴム板(1)〜(3)、2a,2b,2c……円板
(1)〜(3)、3a,3b,3c……空気室(1)〜(3)、
4a,4b,4c,4d……シース(1)〜(4)、5a〜5c……座
ぐり部、11a,11b……ゴム材、12……空気室、21……ゴ
ムモールド、22……強化プラスチック、23……空気室、
100……低周波数帯域用水中遮音板、200……中周波数帯
域用水中遮音板、300……高周波数帯域用水中遮音板。
1 is a perspective view of an embodiment of the present invention, FIG. 2 (a) is an explanatory view of a vibration system formed in the embodiment of FIG. 1, and FIG.
(B) is an explanatory view of the flexural vibration of the cylindrical plate in the embodiment of FIG. 1, FIG. 3 is a frequency characteristic diagram of sound pressure transmittance in the embodiment of FIG. 1, and FIG. 4 is an implementation of FIG. A cross-sectional view for explaining the water pressure resistance of an example air chamber, FIG. 5 and FIG. 6 are perspective views of a conventional underwater sound insulation material, respectively. 1a, 1b, 1c ... Rubber plates (1) to (3), 2a, 2b, 2c ... Discs (1) to (3), 3a, 3b, 3c ... Air chambers (1) to (3) ,
4a, 4b, 4c, 4d …… Sheaths (1) to (4), 5a to 5c …… Spot facing, 11a, 11b …… Rubber material, 12 …… Air chamber, 21 …… Rubber mold, 22 …… Reinforced plastic, 23 ... air chamber,
100 …… Underwater sound insulation board for low frequency band, 200 …… Underwater sound insulation board for medium frequency band, 300 …… Underwater sound insulation board for high frequency band.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】遮音周波数に応じた厚さを有し前記遮音周
波数に応じた直径の貫通孔が均等に配設されているゴム
板と、前記貫通孔の両端に嵌入されて前記遮音周波数で
共振する空気室を形成すると共に所定のたわみ共振を行
う円板と、前記ゴム板および前記円板の外面を密閉被覆
するシースとを有する水中遮音板を備えて成ることを特
徴とする水中遮音材。
1. A rubber plate having a thickness corresponding to a sound insulation frequency and having through holes of a diameter corresponding to the sound insulation frequency evenly arranged, and a rubber plate fitted at both ends of the through hole to obtain the sound insulation frequency. An underwater sound insulation material, comprising an underwater sound insulation plate having a disk that forms a resonating air chamber and that performs a predetermined flexural resonance, and a rubber plate and a sheath that hermetically covers the outer surface of the disk. .
【請求項2】遮音周波数帯域に応じて形成された複数の
前記水中遮音板を積層して成ることを特徴とする請求項
1記載の水中遮音材。
2. The underwater sound insulation material according to claim 1, wherein a plurality of the underwater sound insulation plates formed according to a sound insulation frequency band are laminated.
JP1100493A 1989-04-19 1989-04-19 Underwater sound insulation Expired - Lifetime JP2508261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1100493A JP2508261B2 (en) 1989-04-19 1989-04-19 Underwater sound insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1100493A JP2508261B2 (en) 1989-04-19 1989-04-19 Underwater sound insulation

Publications (2)

Publication Number Publication Date
JPH02278293A JPH02278293A (en) 1990-11-14
JP2508261B2 true JP2508261B2 (en) 1996-06-19

Family

ID=14275457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1100493A Expired - Lifetime JP2508261B2 (en) 1989-04-19 1989-04-19 Underwater sound insulation

Country Status (1)

Country Link
JP (1) JP2508261B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110853610B (en) * 2019-11-14 2024-02-13 哈尔滨工程大学 Underwater sound insulation structure unit
CN111739498B (en) * 2020-06-01 2023-10-24 南京航空航天大学 Cross slotting low-frequency underwater sound absorption deep sub-wavelength super structure

Also Published As

Publication number Publication date
JPH02278293A (en) 1990-11-14

Similar Documents

Publication Publication Date Title
US5180619A (en) Perforated honeycomb
US6826285B2 (en) Bending wave loudspeaker
US6109388A (en) Sound absorbing mechanism using a porous material
US4226299A (en) Acoustical panel
US20050000751A1 (en) Acoustic attenuation materials
US20040037447A1 (en) Rectangular panel-form loudspeaker and its radiating panel
CN105122348A (en) Noise-absorbing structure
EA000858B1 (en) Inertial vibration transducers
JP2007533230A (en) Acoustic device and acoustic device manufacturing method
KR950011498B1 (en) Wide-band loudspeaker having a diaphragm area divided into sub-areas for various frequency ranges
JP2000046106A (en) Damping panel
US7636447B2 (en) Acoustic bracket system
JPH07327297A (en) Piezoelectric speaker
JP2508261B2 (en) Underwater sound insulation
CA2041628A1 (en) Inter-element mounting for stacked piezoelectric transducers
JPH07140985A (en) Sound absorber
JP3035526B2 (en) Substrate for cutter
JP2003122371A (en) Sound absorbing and vibration damping material
JP3127632B2 (en) Sound insulation structure
JP2000213591A (en) Vibration damping panel
JP3039846B2 (en) Laminated rubber bearing
CN118088615B (en) Anti-impact stealth integrated grid chiral covering layer and design method thereof
US12080264B2 (en) Flexural wave absorption system
JP3288513B2 (en) Sound absorber
JPH0769706B2 (en) Sound absorbing rubber plate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 14