JP2508240B2 - Ice heat storage device and ice heat storage type air conditioner equipped with the ice heat storage device - Google Patents
Ice heat storage device and ice heat storage type air conditioner equipped with the ice heat storage deviceInfo
- Publication number
- JP2508240B2 JP2508240B2 JP1042587A JP4258789A JP2508240B2 JP 2508240 B2 JP2508240 B2 JP 2508240B2 JP 1042587 A JP1042587 A JP 1042587A JP 4258789 A JP4258789 A JP 4258789A JP 2508240 B2 JP2508240 B2 JP 2508240B2
- Authority
- JP
- Japan
- Prior art keywords
- heat storage
- heat
- ice
- refrigerant
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、蓄熱媒体を貯留する蓄熱槽を備えた蓄熱式
空気調和装置に係り、特に、蓄熱装置の蓄熱槽内に収容
された蓄熱式熱交換器の改良に関する。Description: FIELD OF THE INVENTION The present invention relates to a heat storage type air conditioner provided with a heat storage tank for storing a heat storage medium, and more particularly to a heat storage type air conditioner housed in the heat storage tank of the heat storage apparatus. Regarding improvement of heat exchanger.
(従来の技術) 従来より、冷房負荷のピーク時における電力需要の軽
減並びにオフピーク時における電力需要の拡大を図る手
段として、冷房負荷のオフピーク時に蓄熱媒体に冷熱を
蓄え、ピーク時にはその冷熱を冷房運転に寄与せしめる
ようにした蓄熱式空気調和装置の開発が進んでいる。(Prior Art) Conventionally, as a means for reducing the power demand at the peak of the cooling load and expanding the power demand at the off-peak time, cold heat is stored in a heat storage medium at the off-peak time of the cooling load, and the cold heat is operated at the peak. Development of a heat storage type air conditioner designed to contribute to
そして、この蓄熱式空気調和装置の一例として例え
ば、実開昭55−94661号公報に開示されているような装
置がある。該公報に示されているものは、室内熱交換器
と室外熱交換器の間に蓄熱用熱交換器と冷熱取出し用熱
交換器を有する蓄熱槽を設け、その蓄熱用熱交換器の一
方側を減圧機構および切換弁を介して室外熱交換器に、
他方側の圧縮機にそれぞれ接続し、上記冷熱取出し用熱
交換器の一方側を切換弁を介して室外熱交換器に、他方
側を減圧機構を介して室内熱交換器にそれぞれ接続して
構成されており、切換弁を適宜切換えることにより、蓄
熱運転時には、圧縮機、室外熱交換器、減圧機構、蓄熱
用熱交換器の順で冷媒を流し、蓄熱用熱交換器の冷却管
内において冷媒を蒸発させて該冷媒と蓄熱槽内に貯留さ
れている水との間で熱交換を行わせて水を冷却氷化し、
冷却管の表面に該氷を付着生成して該蓄熱槽内に冷熱を
蓄えている。一方、蓄熱回収冷房運転時には、圧縮機、
室外熱交換器、冷熱取出し用熱交換器、減圧機構、室内
熱交換器の順で冷媒を流し、蓄熱槽内において冷却管に
付着した氷と冷媒との間で熱交換させ、氷を融解して冷
媒を冷却し、冷熱を冷媒配管中に取出して室内熱交換器
に供給し、該冷熱を冷房に寄与させるようにしている。An example of this heat storage type air conditioner is the device disclosed in Japanese Utility Model Laid-Open No. Sho 55-94661. What is disclosed in the publication is that a heat storage tank having a heat storage heat exchanger and a cold heat extraction heat exchanger is provided between an indoor heat exchanger and an outdoor heat exchanger, and one side of the heat storage heat exchanger is provided. To the outdoor heat exchanger via the pressure reducing mechanism and the switching valve,
Connected to the compressor on the other side, one side of the heat exchanger for cold heat extraction is connected to the outdoor heat exchanger via the switching valve, and the other side is connected to the indoor heat exchanger via the pressure reducing mechanism. By appropriately switching the switching valve, during heat storage operation, the refrigerant flows in the order of the compressor, the outdoor heat exchanger, the pressure reducing mechanism, and the heat storage heat exchanger, and the refrigerant flows in the cooling pipe of the heat storage heat exchanger. Evaporate to cause heat exchange between the refrigerant and water stored in the heat storage tank to cool the water into ice,
The ice is attached and generated on the surface of the cooling pipe to store cold heat in the heat storage tank. On the other hand, during the heat storage recovery cooling operation, the compressor,
Refrigerant is caused to flow in the order of the outdoor heat exchanger, the heat exchanger for extracting cold heat, the pressure reducing mechanism, and the indoor heat exchanger, and heat is exchanged between the ice adhering to the cooling pipe and the refrigerant in the heat storage tank to melt the ice. The refrigerant is cooled by cooling the refrigerant, and the cold heat is taken out into the refrigerant pipe and supplied to the indoor heat exchanger to contribute the cold heat to the cooling.
(発明が解決しようとする課題) しかし、上述したようなこれまでの蓄熱式空気調和装
置にあっては、蓄熱用熱交換器のヘアピン型冷却管の配
管方向が水平方向であって、この水平方向の冷却管に氷
を付着させて冷熱を蓄えるようにしているために、以下
に述べるような課題を有していた。(Problems to be solved by the invention) However, in the conventional heat storage type air conditioner as described above, the pipe direction of the hairpin type cooling pipe of the heat exchanger for heat storage is the horizontal direction, and Since ice is attached to the cooling pipe in the direction to store cold heat, there are problems as described below.
(i)第7図の矢印に示すように、蓄熱槽(b)内の水
(W)の対流によって融解させているために、氷(I)
の側面ではその融解が促進されるが、上下面においては
残氷量が多いために、製氷、融解を繰返すと上下方向で
氷が融合する場合があり蓄熱効率が劣化する。(I) As indicated by the arrow in FIG. 7, ice (I) is melted by convection of water (W) in the heat storage tank (b).
On the side surface, the melting is promoted, but on the upper and lower surfaces, there is a large amount of residual ice, so when ice making and melting are repeated, the ice may fuse in the vertical direction, and the heat storage efficiency deteriorates.
(ii)製氷量が多く、第8図(a)に示すように各氷
(I)が融合した状態になった場合、循環流によって融
解されるのは融合した氷塊の表面のみであって(第8図
(b)参照)、融解効率が低く、蓄熱装置としての本来
の機能が阻害される。(Ii) When the amount of ice making is large and the respective ices (I) are in a fused state as shown in FIG. 8 (a), only the surface of the fused ice blocks is melted by the circulation flow ( As shown in FIG. 8 (b), the melting efficiency is low, and the original function of the heat storage device is hindered.
また、1つの蓄熱用熱交換器で、蓄熱および蓄熱回収
を行うようにした場合には、以下に述べる問題点があ
る。Further, when the heat storage and heat recovery are performed by one heat storage heat exchanger, there are the following problems.
(i)第9図(a)に示すように、蓄熱回収時に冷却管
(a)の表面に付着している氷(I)が融解する際、該
氷(I)はその冷却管(a)との接触部分、即ち内側か
ら融解することになる。この時、氷(I)は水平状態に
保持されたままであるので融解部分の水(W)は温度の
高いものが上部に位置することになり、冷却管(a)の
下方に比べて上方での融解が促進されることになり、第
9図(b)に示すように冷却管(a)回りの氷(I)の
断面において、冷却管(a)上方の氷(I)が薄肉とな
る。その後、再製氷(蓄熱運転)すると、第9図(c)
に示すように氷(I)の生成付着厚さが不均一となっ
て、蓄熱効率が悪くなるものであった。(I) As shown in FIG. 9 (a), when the ice (I) adhering to the surface of the cooling pipe (a) is melted during heat storage recovery, the ice (I) is cooled by the cooling pipe (a). It will melt from the contact part, that is, from the inside. At this time, since the ice (I) is kept in a horizontal state, the water (W) in the melted portion has a high temperature and is located in the upper part, which is higher in the upper part than in the lower part of the cooling pipe (a). Melting is promoted, and as shown in FIG. 9 (b), the ice (I) above the cooling pipe (a) becomes thin in the cross section of the ice (I) around the cooling pipe (a). . After that, when ice making (heat storage operation) is performed again, FIG. 9 (c)
As shown in (3), the deposited thickness of ice (I) was non-uniform and the heat storage efficiency was poor.
(ii)冷却管に付着されている氷は常に冷却管を囲繞し
た状態に保持されるために、第10図に示すように、その
一部分のみが融解した状態においては氷(I)の浮力
(矢印A)が冷却管(a)に荷重として加わり、該冷却
管(a)の変形に繋る。(Ii) Since the ice attached to the cooling pipe is always kept in a state of surrounding the cooling pipe, as shown in FIG. 10, when only a part of the ice is melted, the buoyancy of ice (I) ( The arrow A) is applied as a load to the cooling pipe (a), which leads to deformation of the cooling pipe (a).
(iii)残氷した氷が移動せずに同じ場所に止どまるた
めに、製氷、融解を繰返し行った場合、第10図に示す融
解されない古い氷(I)は更新されることがなく、且つ
その部分の解氷も悪いため、残水量が増し、局部的なブ
ロッキング現象が発生し易くなる。(Iii) When ice making and thawing are repeated so that the remaining ice remains at the same place without moving, the old unmelted ice (I) shown in FIG. 10 is not updated, Moreover, since the defrosting of that part is also bad, the residual water amount increases, and the local blocking phenomenon easily occurs.
このように、これまでの蓄熱装置にあってはその蓄
熱、融解効率が悪く、融解および再製氷を繰返すと、各
氷が融合(ブロッキング)して冷却管や蓄熱槽の変形、
破損に繋るものであった。As described above, in the conventional heat storage device, the heat storage and melting efficiency are poor, and when the melting and re-ice making are repeated, the respective ices are fused (blocking) and the cooling pipe or the heat storage tank is deformed,
It led to damage.
そこで、本発明は蓄熱用熱交換器の冷却管を蓄熱槽内
で鉛直方向に配置させて、氷の融解を均一にするように
した蓄熱式空気調和装置の蓄熱装置を得ることを目的と
する。Therefore, an object of the present invention is to obtain a heat storage device of a heat storage type air conditioner in which a cooling pipe of a heat storage heat exchanger is arranged in a vertical direction in a heat storage tank so as to uniformly melt ice. .
(課題を解決するための手段) 次に、上記目的を達成するために本発明が講じた手段
について述べる。(Means for Solving the Problems) Next, the means taken by the present invention to achieve the above object will be described.
先ず、請求項(1)記載の発明は、第1図および第2
図に示すように、蓄熱槽(9)と、該蓄熱槽(9)内に
貯留された製氷用の蓄熱媒体(W)と、該蓄熱媒体
(W)に浸漬され、蓄熱媒体(W)の氷化動作時には、
冷内供給手段(1)から供給される冷却用冷媒が流通
し、該冷却用冷媒と蓄熱媒体(W)との間で熱交換を行
って該蓄熱媒体(W)を氷化して該氷(I)を外周面に
付着させる一方、氷を融解する冷熱回収動作時には、冷
媒供給手段(1)から供給される融解用冷媒が流通し、
該融解用冷媒と氷(I)との間で熱交換を行って融解用
冷媒に冷熱を与えながら氷(I)を内側から融解する伝
熱管(10a)を有する蓄熱用熱交換器(10)とを備えさ
せ、該蓄熱用熱交換器(10)の伝熱管(10a)を、蓄熱
槽(9)内で鉛直方向に蛇行するように形成した構成と
している。First, the invention according to claim (1) is based on FIG.
As shown in the figure, the heat storage tank (9), the heat storage medium (W) for ice making stored in the heat storage tank (9), and the heat storage medium (W) During icing operation,
The cooling refrigerant supplied from the cold inside supply means (1) circulates, heat is exchanged between the cooling refrigerant and the heat storage medium (W) to ice the heat storage medium (W), and the ice ( While I) is attached to the outer peripheral surface, during the cold heat recovery operation of melting ice, the melting refrigerant supplied from the refrigerant supply means (1) flows,
A heat storage heat exchanger (10) having a heat transfer tube (10a) for melting ice (I) from the inside while performing heat exchange between the melting refrigerant and ice (I) to give cold heat to the melting refrigerant. And the heat transfer pipe (10a) of the heat storage heat exchanger (10) is formed to meander vertically in the heat storage tank (9).
請求項(2)記載の発明は、上記請求項(1)記載の
氷蓄熱装置において、第6図に示すように、蓄熱用熱交
換器(10)に複数本の伝熱管(10a)を備えさせ、該伝
熱管(10a)を、蓄熱槽(9)の水平断面視において伝
熱管(10a)断面が各々縦横方向に直線上に位置するよ
うに配置した構成としている。The invention according to claim (2) is, in the ice heat storage device according to claim (1), as shown in FIG. 6, a heat storage heat exchanger (10) is provided with a plurality of heat transfer tubes (10a). The heat transfer tube (10a) is arranged such that the cross section of the heat transfer tube (10a) is located in a straight line in the vertical and horizontal directions in a horizontal sectional view of the heat storage tank (9).
請求項(3)記載の発明は、第1図に示すように、圧
縮機(2)、熱源側の第1熱交換器(3)、冷媒を減圧
する第1減圧機構(4)および負荷側の第2熱交換器
(5)が冷媒配管(6)で接続されて主冷媒回路(1)
が構成されると共に、蓄熱可能な蓄熱媒体(W)を備え
た氷蓄熱装置が配設されてなる氷蓄熱式空気調和装置を
前提としている。そして、氷蓄熱運転時に冷媒を減圧す
る第2減圧機構(12)を上記冷媒配管(6)に介設する
一方、上記氷蓄熱装置に、蓄熱槽(9)内に製氷用の蓄
熱媒体(W)を貯留すると共に、該蓄熱媒体(W)に浸
漬された蓄熱用熱交換器(10)を備えさせる。また、該
蓄熱用熱交換器(10)を、上記第2減圧機構(12)と並
列に主冷媒回路(1)に接続すると共に、冷媒が通る伝
熱管(10a)を備えさせ、該伝熱管(10a)を蓄熱槽
(9)内で鉛直方向に蛇行するように形成する。更に、
上記蓄熱用熱交換器(10)の第1熱交換器側端部(10
b)に短絡管(13)の一端を接続し、該短絡管(13)の
他端を上記圧縮機(2)上流側の冷媒配管(6)に接続
する。そして、氷蓄熱運転時に、冷媒を第2減圧機構
(12)より蓄熱用熱交換器(10)に第2熱交換器側端部
(10c)から流すことにより、蓄熱槽(9)内の蓄熱媒
体(W)を冷却して蓄熱用熱交換器(10)の伝熱管(10
a)の外周面に氷を付着生成させ、その後、短絡管(1
3)を介して圧縮機(12)の上流側に流す一方、氷融解
冷房運転時に、冷媒を第1熱交換器(3)より蓄熱用熱
交換器(10)に第1熱交換器側端部(10b)から流すこ
とにより氷を内側から融解しながら融解を冷却し、その
後、該冷媒を第2熱交換器(5)に供給するように回路
接続を切換える回路切換手段(15)を設けた構成として
いる。The invention according to claim (3) is, as shown in FIG. 1, a compressor (2), a first heat exchanger (3) on the heat source side, a first pressure reducing mechanism (4) for depressurizing the refrigerant, and a load side. The second heat exchanger (5) of the main refrigerant circuit (1) is connected by the refrigerant pipe (6).
And an ice heat storage type air conditioner including an ice heat storage device provided with a heat storage medium (W) capable of storing heat. Then, while the second pressure reducing mechanism (12) for reducing the pressure of the refrigerant during the ice heat storage operation is provided in the refrigerant pipe (6), the ice heat storage device has a heat storage medium (W) for ice making in the heat storage tank (9). ) Is stored and a heat storage heat exchanger (10) immersed in the heat storage medium (W) is provided. Further, the heat storage heat exchanger (10) is connected to the main refrigerant circuit (1) in parallel with the second pressure reducing mechanism (12), and a heat transfer tube (10a) through which the refrigerant passes is provided, and the heat transfer tube is provided. (10a) is formed so as to meander vertically in the heat storage tank (9). Furthermore,
The first heat exchanger side end portion (10) of the heat storage heat exchanger (10)
One end of the short-circuit pipe (13) is connected to b), and the other end of the short-circuit pipe (13) is connected to the refrigerant pipe (6) upstream of the compressor (2). Then, during the ice heat storage operation, by causing the refrigerant to flow from the second pressure reducing mechanism (12) to the heat storage heat exchanger (10) from the second heat exchanger side end portion (10c), the heat storage tank (9) stores heat. The heat transfer tube (10) of the heat exchanger (10) for heat storage by cooling the medium (W)
Ice is attached to the outer peripheral surface of a), and then the short-circuit tube (1
While flowing through the compressor (12) to the upstream side of the compressor (12), the refrigerant is transferred from the first heat exchanger (3) to the heat storage heat exchanger (10) at the end of the first heat exchanger during ice melting and cooling operation. A circuit switching means (15) is provided for switching the circuit connection so as to supply the second heat exchanger (5) with the cooling by cooling the melting while melting the ice from the inside by flowing from the section (10b). It has a structure.
(作用) 次に、上記構成による本発明の作用を述べる。(Operation) Next, the operation of the present invention having the above configuration will be described.
請求項(1)記載の発明においては、蓄熱媒体の氷化
動作時には、冷却用冷媒が冷媒供給手段(1)から蓄熱
用熱交換器(10)の伝熱管(10a)に供給されて、蓄熱
槽(9)内の蓄熱媒体(W)は冷媒との間で熱交換する
ことで冷却される。この冷却により蓄熱媒体(W)は伝
熱管(10a)の外周面に氷(I)となって付着し冷熱が
蓄えられる。一方、冷熱回収動作時には、伝熱管(10
a)が鉛直方向に蛇行していることにより付着生成され
ている氷(I)は均等に融解されて冷熱を放出する。In the invention according to claim (1), during the icing operation of the heat storage medium, the cooling refrigerant is supplied from the refrigerant supply means (1) to the heat transfer pipe (10a) of the heat storage heat exchanger (10) to store heat. The heat storage medium (W) in the tank (9) is cooled by exchanging heat with the refrigerant. By this cooling, the heat storage medium (W) adheres to the outer peripheral surface of the heat transfer tube (10a) as ice (I) to store cold heat. On the other hand, during the cold heat recovery operation, the heat transfer tube (10
The ice (I) adhering and generated due to the meandering of a) in the vertical direction is uniformly melted and emits cold heat.
請求項(2)記載の発明においては、冷却管(10a)
が蓄熱槽(9)の水平断面視において冷却管断面が各々
縦横方向に直線上に位置されていることで、氷同士が融
合しても上下方向に氷化していない部分が生じ易くなっ
ているために、その部分蓄熱媒体(W)が流通すること
で融解が促進される。In the invention according to claim (2), the cooling pipe (10a)
In the horizontal sectional view of the heat storage tank (9), the cross sections of the cooling pipes are located on the straight lines in the vertical and horizontal directions, respectively, so that even if the ice pieces are fused with each other, a portion that is not frozen is likely to occur in the vertical direction. Therefore, the partial heat storage medium (W) is circulated to promote melting.
請求項(3)記載の発明においては、氷蓄熱運転時に
は、回路切換手段(15)により回路接続を切換えると共
に、第2減圧機構(12)の開度を制御して、第1図の矢
印に示すように圧縮機(2)、第1熱交換器(3)を経
た冷媒を第2減圧機構(12)によって減圧させた後、第
1熱交換器側端部(10b)により蓄熱用熱交換器(10)
内に供給する。この蓄熱用熱交換器(10)内に供給され
た冷媒は該蓄熱用熱交換器(10)内で蒸発することで蓄
熱槽(9)内の蓄熱媒体(W)を冷却して、該蓄熱用熱
交換器(10)の表面に氷(I)を付着生成し、蓄熱槽内
に冷熱を蓄える。In the invention according to claim (3), during the ice heat storage operation, the circuit connection is switched by the circuit switching means (15) and the opening degree of the second pressure reducing mechanism (12) is controlled so that the arrow in FIG. As shown, the refrigerant that has passed through the compressor (2) and the first heat exchanger (3) is decompressed by the second decompression mechanism (12), and then the first heat exchanger side end portion (10b) is used for heat storage heat exchange. Bowl (10)
Supply in. The refrigerant supplied into the heat storage heat exchanger (10) cools the heat storage medium (W) in the heat storage tank (9) by evaporating in the heat storage heat exchanger (10), Ice (I) is adhered and generated on the surface of the heat exchanger (10) for storage, and cold heat is stored in the heat storage tank.
また、氷融解冷房運転時には、回路切換手段(15)に
より回路接続を切換えると共に、第1および第2減圧機
構(4),(12)の開度を制御して、第3図の矢印に示
すように圧縮機(2)、第1熱交換器(3)を経た冷媒
を第2減圧機構(12)によって、第1熱交換器側端部
(10a)から蓄熱用熱交換器(10)へ供給される冷媒の
流量を制御する。そして、蓄熱用熱交換器(10)へ供給
された冷媒は蓄熱槽(9)内に貯留されている氷(I)
によって冷却され、第2熱交換器側端部(10c)より第
1減圧機構(4)に導かれ、該第1減圧機構(4)から
第2熱交換器(5)へ導入されて、該第2熱交換器
(5)内で蒸発することによって室内の冷房に寄与す
る。Further, during the ice-melting / cooling operation, the circuit connection is switched by the circuit switching means (15), and the opening degrees of the first and second pressure reducing mechanisms (4) and (12) are controlled, as shown by arrows in FIG. The refrigerant that has passed through the compressor (2) and the first heat exchanger (3) is transferred from the first heat exchanger side end portion (10a) to the heat storage heat exchanger (10) by the second pressure reducing mechanism (12). Controls the flow rate of the supplied refrigerant. The refrigerant supplied to the heat storage heat exchanger (10) is ice (I) stored in the heat storage tank (9).
And is guided to the first pressure reducing mechanism (4) from the second heat exchanger side end portion (10c), introduced from the first pressure reducing mechanism (4) to the second heat exchanger (5), and Evaporation in the second heat exchanger (5) contributes to indoor cooling.
(実施例) 次に、本発明の実施例を図面に沿って説明する。(Example) Next, the Example of this invention is described along drawing.
第1図は本例に係る空気調和装置の全体構成を示し、
(2)は圧縮機、(3)は該圧縮機(2)からの吐出ガ
スを凝縮する熱源側熱交換器としての室外熱交換器、
(4)は該室外熱交換器(3)で凝縮された冷媒を減圧
する第1電子膨張弁、(5)は冷媒を蒸発させるための
負荷側熱交換器としての室内熱交換器であって、上記各
機器(2)〜(5)は冷媒配管(6)によって冷媒の流
通可能に順次接続され、室内熱交換器(5)で室内空気
との熱交換により得た熱を室外熱交換器(3)で外気に
放出するヒートポンプ機能を有する主冷媒回路(1)が
構成されている。FIG. 1 shows the overall configuration of the air conditioner according to this example,
(2) is a compressor, (3) is an outdoor heat exchanger as a heat source side heat exchanger for condensing the discharge gas from the compressor (2),
(4) is a first electronic expansion valve for decompressing the refrigerant condensed in the outdoor heat exchanger (3), and (5) is an indoor heat exchanger as a load side heat exchanger for evaporating the refrigerant. The above devices (2) to (5) are sequentially connected by a refrigerant pipe (6) so that the refrigerant can flow, and the heat obtained by heat exchange with indoor air in the indoor heat exchanger (5) is an outdoor heat exchanger. In (3), the main refrigerant circuit (1) having a heat pump function of discharging to the outside air is configured.
そして、この主冷媒回路(1)には付属機器として、
室外熱交換器(3)の下流側には冷媒を一時貯留するた
めのレシーバ(7)が、圧縮器(2)の上流側には該圧
縮機(2)への吸入ガス中の液冷媒を分離するためのア
キュームレータ(8)が夫々介設されている。また、上
記第1電子膨張弁(4)の上流側およびアキュームレー
タ(8)の上流側には各々サーミスタ(Th1),(Th2)
が配置されており、各冷媒配管(6)内の温度を検知す
る一方、上記アキュームレータ(8)の上流側には圧力
センサ(Ps)が配設され、圧縮機(2)上流側の冷媒配
管(6)内の圧力を検出しており、冷媒温度および冷媒
圧により膨張弁の開度およびインバータ制御による圧縮
機(2)の容量を制御している。And, as an accessory to this main refrigerant circuit (1),
A receiver (7) for temporarily storing the refrigerant is provided downstream of the outdoor heat exchanger (3), and a liquid refrigerant in the intake gas to the compressor (2) is provided upstream of the compressor (2). An accumulator (8) for separating is provided respectively. Further, the thermistors (Th1) and (Th2) are provided on the upstream side of the first electronic expansion valve (4) and the upstream side of the accumulator (8), respectively.
Are arranged to detect the temperature in each refrigerant pipe (6), while a pressure sensor (Ps) is arranged on the upstream side of the accumulator (8) and the refrigerant pipe on the upstream side of the compressor (2). The pressure in (6) is detected, and the opening of the expansion valve and the capacity of the compressor (2) by inverter control are controlled by the refrigerant temperature and refrigerant pressure.
そして、この空気調和装置には、蓄熱可能な蓄熱媒体
としての水(W)を貯留する蓄熱槽(9)が備えられて
いて、該蓄熱槽(9)の内部には、冷媒と水(W)との
熱交換を行う蓄熱用交換器(10)が配設されている。該
熱交換器(10)は複数の伝熱管(10a)より成り、この
伝熱管(10a)は、上記主冷媒回路(1)より分岐接続
され、熱交換器の一端が上記レシーバ(7)の下流側に
連結された室外側連結端(10b)となり、他端が上記第
1電子膨張弁(4)の上流側に連結された室内側連結端
(10c)となっている。即ち、室外側連結端(10b)は室
内側連結端(10c)よりも室外熱交換器(3)に近接し
た位置に配設されている。また、この蓄熱用熱交換器
(10)の両連結端(10b),(10c)間の冷媒配管(6)
には氷蓄熱運転時に冷媒の減圧を行う第2電子膨張弁
(12)が設けられている。即ち、上記伝熱管(10a)は
この第2電子膨張弁(12)と並列に配管されている。The air conditioner is provided with a heat storage tank (9) that stores water (W) as a heat storage medium capable of storing heat. Inside the heat storage tank (9), a refrigerant and water (W) are stored. ), A heat storage exchanger (10) for exchanging heat with The heat exchanger (10) is composed of a plurality of heat transfer tubes (10a), the heat transfer tubes (10a) are branched and connected from the main refrigerant circuit (1), and one end of the heat exchanger is connected to the receiver (7). The outdoor side connecting end (10b) is connected to the downstream side, and the other end is the indoor side connecting end (10c) connected to the upstream side of the first electronic expansion valve (4). That is, the outdoor side connecting end (10b) is arranged closer to the outdoor heat exchanger (3) than the indoor side connecting end (10c). Further, the refrigerant pipe (6) between both connecting ends (10b) and (10c) of the heat storage heat exchanger (10).
A second electronic expansion valve (12) for reducing the pressure of the refrigerant during the ice heat storage operation is provided therein. That is, the heat transfer tube (10a) is arranged in parallel with the second electronic expansion valve (12).
そして、本発明の特徴とする部分は、この蓄熱用熱交
換器(10)の伝熱管(10a)配設構造にある。この伝熱
管(10a)は蓄熱槽(9)内において鉛直方向に蛇行す
るように配置されていて、つまり、第2図に示すよう
に、蓄熱槽(9)内の水(W)に浸漬され、上下方向の
端部であるU字部分(10d)に近接した直線部分(10e)
が蓄熱槽(9)内に立設された支持基台(9a)によって
支持されて鉛直方向に配置されている。また、各伝熱管
(10a)は、第6図に示すように、蓄熱槽(9)の水平
断面視において各々縦横方向に直線上に位置するように
配置されている。The feature of the present invention lies in the heat transfer tube (10a) arrangement structure of the heat storage heat exchanger (10). This heat transfer tube (10a) is arranged so as to meander vertically in the heat storage tank (9), that is, as shown in FIG. 2, it is immersed in water (W) in the heat storage tank (9). , A straight line portion (10e) close to the U-shaped portion (10d) that is the end in the vertical direction
Are supported by a support base (9a) provided upright in the heat storage tank (9) and arranged vertically. Further, as shown in FIG. 6, each heat transfer tube (10a) is arranged so as to be located on a straight line in the vertical and horizontal directions in a horizontal sectional view of the heat storage tank (9).
また、上記蓄熱用熱交換器(10)における室外側連結
端(10b)付近と圧縮機(2)の上流側との間には両者
を連結する短絡管(13)が配管されている。Further, a short-circuit pipe (13) is connected between the outdoor side connection end (10b) of the heat storage heat exchanger (10) and the upstream side of the compressor (2) to connect them.
また、本装置には各運転状態に応じて回路接続を切換
えるための回路切換手段(15)が設けられている。この
回路切換手段(15)は、第1開閉弁(11)、第2開閉弁
(14)および開閉制御手段(16)とより成り、第1開閉
弁(11)は蓄熱用熱交換器(10)における上記室外側連
結端(10b)と上記短絡管(13)の接続位置との間に介
設され、第2開閉弁(14)は上記短絡管(13)に設けら
れている。また、開閉制御手段(16)は装置の運転状態
および各サーミスタ(Th1),(Th2)、圧力センサ(P
s)からの信号に応じて、蓄熱運転時には第1開閉弁(1
1)を閉状態に、第2開閉弁(14)を開状態にすると共
に、第1電子膨張弁(4)を全閉状態、第2電子膨張弁
(12)の開度を上記サーミスタ(Th1)と圧力センサ(P
s)との検出信号に基づいて制御するようになっている
一方、蓄熱回収冷房運転時には、第1開閉弁(11)を開
状態、第2開閉弁(14)を閉状態とすると共に、第1電
子膨張弁(4)および第2電子膨張弁(12)の開度をサ
ーミスタ(Th2)、圧力センサ(Ps)の検出信号に基づ
いて制御するようになっている。Further, this device is provided with circuit switching means (15) for switching the circuit connection according to each operating state. The circuit switching means (15) comprises a first opening / closing valve (11), a second opening / closing valve (14) and an opening / closing control means (16), and the first opening / closing valve (11) is a heat storage heat exchanger (10). 2) is provided between the outdoor side connection end (10b) and the connection position of the short-circuit pipe (13), and the second on-off valve (14) is provided in the short-circuit pipe (13). Further, the opening / closing control means (16) controls the operating state of the device, each thermistor (Th1), (Th2), and the pressure sensor (P
In response to the signal from (s), the first on-off valve (1
1) is closed, the second on-off valve (14) is opened, the first electronic expansion valve (4) is fully closed, and the opening degree of the second electronic expansion valve (12) is the thermistor (Th1 ) And pressure sensor (P
s) on the basis of the detection signal, the first opening / closing valve (11) is opened and the second opening / closing valve (14) is closed during heat storage recovery cooling operation, and The openings of the first electronic expansion valve (4) and the second electronic expansion valve (12) are controlled based on the detection signals of the thermistor (Th2) and the pressure sensor (Ps).
次に、上記の如く構成された回路の各運転状態につい
て説明する。Next, each operating state of the circuit configured as described above will be described.
先ず、蓄熱回収を伴わない通常冷房運転時には、第1
および第2開閉弁(11),(14)を閉状態とすると共
に、第2電子膨張弁(12)を全開状態とする。この状態
において圧縮機(2)で圧縮された冷媒は室外熱交換器
(3)で凝縮された後、第1電子膨張弁(4)で減圧さ
れて、室内熱交換器(5)に供給され、該室内熱交換器
(5)内で蒸発することによって周囲の熱を奪い、冷房
に寄与せしめた後、再び圧縮機(2)側に流通されて循
環される。First, during normal cooling operation without heat storage recovery,
The second on-off valves (11) and (14) are closed, and the second electronic expansion valve (12) is fully opened. In this state, the refrigerant compressed by the compressor (2) is condensed by the outdoor heat exchanger (3), decompressed by the first electronic expansion valve (4), and supplied to the indoor heat exchanger (5). After being evaporated in the indoor heat exchanger (5) to take away ambient heat and contribute to cooling, it is again circulated and circulated to the compressor (2) side.
また、氷蓄熱運転時には、回路切換手段(15)の開閉
制御手段(16)が作動することにより、第1開閉弁(1
1)を閉状態に、第2開閉弁(14)を開状態にすると共
に、第1電子膨張弁(4)を全閉状態、第2電子膨張弁
(12)の開度をサーミスタ(Th1)と圧力センサ(Ps)
との検出信号に基づいて開閉制御手段(16)が適宜制御
して、第1図の矢印に示すように圧縮機(2)、室外熱
交換器(3)を経た冷媒を第2電子膨張弁(12)によっ
て減圧させた後、室内側連結端(10c)より伝熱管(10
a)内に供給する。この伝熱管(10a)内に供給された冷
媒は該伝熱管(10a)内で蒸発して蓄熱槽(9)内の水
(W)との間で熱交換を行い、該伝熱管(10a)の表面
に氷(I)を付着生成して冷熱を蓄える。In addition, during the ice heat storage operation, the opening / closing control means (16) of the circuit switching means (15) operates, so that the first opening / closing valve (1
1) is closed, the second on-off valve (14) is opened, the first electronic expansion valve (4) is fully closed, and the opening degree of the second electronic expansion valve (12) is the thermistor (Th1). And pressure sensor (Ps)
The opening and closing control means (16) appropriately controls the opening and closing control means (16) on the basis of the detection signal to detect the refrigerant passing through the compressor (2) and the outdoor heat exchanger (3) as shown by the arrow in FIG. After decompressing with (12), heat transfer pipe (10
a) Supply within. The refrigerant supplied into the heat transfer tube (10a) evaporates in the heat transfer tube (10a) and exchanges heat with the water (W) in the heat storage tank (9), and the heat transfer tube (10a). Ice (I) adheres to the surface of the to generate cold energy.
この氷蓄熱運転の後、蓄熱回収冷房運転を行う際に
は、開閉制御手段(16)の作動により第1開閉弁(11)
を開状態、第2開閉弁(14)を閉状態とする共に、第1
電子膨張弁(4)の開度をサーミスタ(Th2)、圧力セ
ンサ(Ps)の検出信号に基づいて上記開閉制御手段(1
6)が制御して、第3図の矢印に示すように圧縮機
(2)、室外熱交換器(3)を経た冷媒のうち主冷媒回
路(1)を流れる流通量を第2電子膨張弁(12)によっ
て制御して、室外側連結端(10b)から伝熱管(10a)へ
供給される冷媒の流量を制御する。そして、伝熱管(10
a)へ供給された冷媒は蓄熱槽(9)内に貯留されてい
る氷(I)との間で熱交換されて冷却され、室内側連結
端(10c)より第1電子膨張弁(4)に導かれ、該第1
電子膨張弁(4)の開度が制御されて、減圧された後、
室内熱交換器(5)へ導入されて、該室内熱交換器
(5)内で蒸発することで室内の冷房に寄与する。When the heat storage recovery cooling operation is performed after this ice heat storage operation, the first opening / closing valve (11) is operated by the operation of the opening / closing control means (16).
Is opened, the second on-off valve (14) is closed, and the first
Based on the detection signals of the thermistor (Th2) and the pressure sensor (Ps), the opening and closing control means (1) of the electronic expansion valve (4) is opened.
6) controls the flow rate of the refrigerant flowing through the compressor (2) and the outdoor heat exchanger (3) through the main refrigerant circuit (1) as shown by the arrow in FIG. 3 to the second electronic expansion valve. (12) to control the flow rate of the refrigerant supplied from the outdoor side connection end (10b) to the heat transfer tube (10a). And the heat transfer tube (10
The refrigerant supplied to a) is cooled by heat exchange with the ice (I) stored in the heat storage tank (9), and the first electronic expansion valve (4) from the indoor side connection end (10c). Led to the first
After the opening of the electronic expansion valve (4) is controlled to reduce the pressure,
When introduced into the indoor heat exchanger (5) and evaporated in the indoor heat exchanger (5), it contributes to cooling the room.
このような蓄熱回収冷房運転においては、伝熱管(10
a)が鉛直方向に配置されているために、第4図(a)
に示すように伝熱管(10a)に付着されていた氷(I)
は第4図(b)に示すように伝熱管(10a)と同心円上
で均一に融解されることになるために、所定量融解した
氷(I)は伝熱管(10a)に沿って蓄熱槽(9)の上方
に浮上し、伝熱管(10a)に浮力が作用することはな
く、該伝熱管(10a)の変形なども防止される。また、
浮上した氷(I)は比較的高温の水(W)に晒されるた
めに融解が促進され、古い水(W)が常に一箇所に残留
することもなく、氷(I)の異常成長が防止されてお
り、氷充填率の高い製氷設定量でも従来に比べ局所的な
ブロッキングは起り難く、該ブロッキングによる伝熱管
(10a)や蓄熱槽(9)の破損が抑制される。更には、
再製氷時においては第4図(c)の如く冷熱回収運転時
に融解された部分が再び氷化することになり、その再現
性にも優れている。In such heat storage recovery cooling operation, the heat transfer tube (10
Fig. 4 (a) because a) is arranged vertically.
Ice (I) attached to the heat transfer tube (10a) as shown in
As shown in FIG. 4 (b), the heat transfer tube (10a) is uniformly melted on a concentric circle. Therefore, a predetermined amount of ice (I) is melted along the heat transfer tube (10a) into a heat storage tank. It does not float on the heat transfer tube (10a) and does not act on the heat transfer tube (10a), and deformation of the heat transfer tube (10a) is prevented. Also,
Floating ice (I) is exposed to relatively high temperature water (W), so melting is promoted and old water (W) does not always remain in one place, preventing abnormal growth of ice (I). Therefore, even with the set amount of ice making with a high ice filling rate, local blocking is less likely to occur than in the past, and damage to the heat transfer tube (10a) and the heat storage tank (9) due to the blocking is suppressed. Furthermore,
At the time of re-ice making, as shown in FIG. 4 (c), the portion melted during the cold heat recovery operation becomes iced again, and the reproducibility is excellent.
また、上述したように、各伝熱管(10a)は、蓄熱槽
(9)の水平断面視において各々縦横方向に直線上に位
置するように配置されているので、図6(a)に示すよ
うに、氷蓄熱運転時の製氷量が多く、各氷(I)が融合
した状態になっても、各氷(I)の間にある水(W)が
流動可能であるために、蓄熱回収冷房運転には、この融
合を解消するように融解され(第9図(b)参照)、従
来のものに比べ水(W)の流通する面積が増え、融解効
率の向上を図ることができる。Further, as described above, since the heat transfer tubes (10a) are arranged so as to be located on the straight lines in the vertical and horizontal directions in the horizontal sectional view of the heat storage tank (9), as shown in FIG. 6 (a). In addition, even if the amount of ice making during the ice heat storage operation is large and the ice (I) is in a fused state, the water (W) between the ice (I) can flow, so the heat storage recovery cooling During the operation, the fusion is performed so as to eliminate this fusion (see FIG. 9 (b)), the area in which water (W) flows is increased compared to the conventional one, and the fusion efficiency can be improved.
尚、上述したものは蓄熱槽(9)に貯留される蓄熱媒
体として水(W)を単独で用いたが、その他、エチレン
グリコール等を混入したブライン水溶液を採用してもよ
い。また、蓄熱用熱交換器(10)の配設位置として、第
5図(a)に示すように、伝熱管(10a)の上端固定部
分を水面の上方に突出させたり、第5図(b)のように
伝熱管(10a)の下端のU字部分(10d)を蓄熱槽(9)
の下方外側に突出させると、氷(I)の融解時における
氷(I)の浮上を妨げる要因が除去されることになり、
容易に氷(I)の浮上動作が得られる。In the above, water (W) was used alone as the heat storage medium stored in the heat storage tank (9), but an aqueous brine solution containing ethylene glycol or the like may be used. Further, as shown in FIG. 5 (a), the upper end fixing portion of the heat transfer tube (10a) may be projected above the water surface, as shown in FIG. ), The U-shaped part (10d) at the lower end of the heat transfer tube (10a) is stored in the heat storage tank (9).
When the ice (I) is melted, the factors that hinder the floating of the ice (I) will be removed by projecting the ice (I) to the outside.
The floating operation of ice (I) can be easily obtained.
尚、上述した実施例は蓄熱用熱交換器として直膨熱交
換器を用いたが、ブライン等の2次冷媒を用いて製氷を
行う装置においても適用できる。Although the above-described embodiment uses the direct expansion heat exchanger as the heat storage heat exchanger, it can be applied to an apparatus for making ice using a secondary refrigerant such as brine.
(発明の効果) 上述の如く本発明は、以下に述べるような効果を有す
るものである。(Effect of the Invention) As described above, the present invention has the following effects.
請求項(1)記載の発明においては、蓄熱用熱交換器
の伝熱管を鉛直方向に配置させたことにより、冷熱回収
動作時には付着された氷が略均一に滞留するために、そ
の融解が均一になり、再製氷時に局部的に氷が成長する
ことがなく、氷のブロッキングが抑制されて、蓄熱効率
が向上されるばかりでなく、蓄熱用熱交換器や蓄熱槽の
変形、破損が防止される。In the invention according to claim (1), since the heat transfer tubes of the heat storage heat exchanger are arranged in the vertical direction, the attached ice stays substantially uniformly during the cold heat recovery operation, so that the melting is uniform. In addition, the ice does not grow locally during ice making, the ice blocking is suppressed, the heat storage efficiency is improved, and the heat storage heat exchanger and the heat storage tank are prevented from being deformed or damaged. It
請求項(2)記載の発明においては、伝熱管が蓄熱槽
の水平断面視において伝熱管断面が各々縦横方向に直線
上に位置されていることで、氷同志が融合してもその間
に氷化していない部分があるために、その部分に蓄熱媒
体が対流することで融解が促進され、融解効率の向上が
図れる。In the invention according to claim (2), since the heat transfer tubes are positioned on the straight lines in the vertical and horizontal directions in the horizontal sectional view of the heat storage tank, even if the ice comrades are fused with each other, icing occurs between them. Since there is a portion that does not exist, convection of the heat storage medium to that portion promotes melting and improves melting efficiency.
請求項(3)記載の発明において、所定量融解された
氷は伝熱管に沿って浮上されて、蓄熱槽の上層部で融解
されることになるために、氷の内部に古い水が残留する
ことがなく、局部的なブロッキングの防止が図れる。In the invention according to claim (3), the ice melted by a predetermined amount is floated along the heat transfer tube and melted in the upper layer portion of the heat storage tank, so that old water remains inside the ice. It is possible to prevent local blocking.
第1図〜第6図は本発明の実施例を示し、第1図は蓄熱
運転状態を示す本装置の回路図、第2図は蓄熱槽の縦断
面図、第3図は蓄熱回収冷房運転状態を示す第1図相当
図、第4図は氷の付着状態を示す伝熱管の横断面図、第
5図は伝熱管の変形例を示す第2図相当図、第6図は蓄
熱回収冷房運転時の蓄熱槽の横断面図である。第7図〜
第10図は従来例を示し、第7図は蓄熱槽内の対流によっ
て氷を融解するタイプの蓄熱槽の縦断面図、第8図はそ
の氷がブロッキングした場合の融解状態を示す図、第9
図は伝熱管内の冷媒によって氷を融解するタイプの伝熱
管の横断面図、第10図は氷に作用する浮力を説明するた
めの第9図相当図である。 (1)……主冷媒回路(冷媒供給手段) (2)……圧縮機 (3)……室外熱交換器(第1熱交換器) (4)……第1電子膨張弁(第1減圧機構) (5)……室内熱交換器(第2熱交換器) (6)……冷媒配管 (9)……蓄熱槽 (10)……蓄熱用熱交換器 (10a)……伝熱管 (10b)……室外側連結部(第1熱交換器側端部) (10c)……室内側連結部(第2熱交換器側端部) (12)……第2電子膨張弁(第2減圧機構) (13)……短絡管 (15)……回路切換手段 (W)……水(蓄熱媒体)1 to 6 show an embodiment of the present invention, FIG. 1 is a circuit diagram of this device showing a heat storage operation state, FIG. 2 is a longitudinal sectional view of a heat storage tank, and FIG. 3 is a heat storage recovery cooling operation. The state corresponding to FIG. 1, FIG. 4 is a cross-sectional view of the heat transfer tube showing the adhesion state of ice, FIG. 5 is a view corresponding to FIG. 2 showing a modified example of the heat transfer tube, and FIG. 6 is heat storage recovery cooling. It is a cross-sectional view of the heat storage tank during operation. Fig. 7 ~
FIG. 10 shows a conventional example, FIG. 7 is a longitudinal sectional view of a heat storage tank of a type that melts ice by convection in the heat storage tank, and FIG. 8 is a view showing a melting state when the ice blocks, 9
The figure is a cross-sectional view of a heat transfer tube of a type in which ice is melted by a refrigerant in the heat transfer tube, and FIG. 10 is a view corresponding to FIG. 9 for explaining buoyancy acting on ice. (1) ...... Main refrigerant circuit (refrigerant supply means) (2) ...... Compressor (3) ...... Outdoor heat exchanger (first heat exchanger) (4) ...... First electronic expansion valve (first decompression) Mechanism) (5) …… Indoor heat exchanger (second heat exchanger) (6) …… Refrigerant piping (9) …… Heat storage tank (10) …… Heat storage heat exchanger (10a) …… Heat transfer tube ( 10b) …… Outdoor side connection (first heat exchanger side end) (10c) …… Indoor side connection (second heat exchanger side end) (12) …… Second electronic expansion valve (second) (Decompression mechanism) (13) …… Short-circuit tube (15) …… Circuit switching means (W) …… Water (heat storage medium)
Claims (3)
と、 該蓄熱媒体(W)に浸漬され、蓄熱媒体(W)の氷化動
作時には、冷媒供給手段(1)から供給される冷却用冷
媒が流通し、該冷却用冷媒と蓄熱媒体(W)との間で熱
交換を行って該蓄熱媒体(W)を氷化して該氷(I)を
外周面に付着させる一方、氷を融解する冷熱回収動作時
には、冷媒供給手段(1)から供給される融解用冷媒が
流通し、該融解用冷媒と氷(I)との間で熱交換を行っ
て融解用冷媒に冷熱を与えながら氷(I)を内側から融
解する伝熱管(10a)を有する蓄熱用熱交換器(10)と
を備えており、該蓄熱用熱交換器(10)の伝熱管(10
a)は、蓄熱槽(9)内で鉛直方向に蛇行するように形
成されていることを特徴とする氷蓄熱装置。1. A heat storage tank (9) and a heat storage medium (W) for ice making stored in the heat storage tank (9).
And, when the heat storage medium (W) is immersed in the heat storage medium (W), the cooling refrigerant supplied from the refrigerant supply means (1) flows through the cooling medium and the heat storage medium (W). While the heat storage medium (W) is iced to adhere the ice (I) to the outer peripheral surface of the heat storage medium (W), it is supplied from the refrigerant supply means (1) during the cold heat recovery operation for melting the ice. And a heat transfer tube (10a) for melting the ice (I) from the inside while giving a cold heat to the melting refrigerant by performing heat exchange between the melting refrigerant and the ice (I). And a heat transfer pipe (10) for the heat storage heat exchanger (10).
(a) is an ice heat storage device which is formed so as to meander vertically in a heat storage tank (9).
て、蓄熱用熱交換器(10)は複数本の伝熱管(10a)を
備え、該伝熱管(10a)は蓄熱槽(9)の水平断面視に
おいて伝熱管(10a)断面が各々縦横方向に直線上に位
置するように配置されていることを特徴とする氷蓄熱装
置。2. The ice heat storage device according to claim 1, wherein the heat storage heat exchanger (10) includes a plurality of heat transfer tubes (10a), and the heat transfer tubes (10a) are heat storage tanks (9). The heat storage device (10a) is arranged such that the cross sections of the heat transfer tubes (10a) are located in a straight line in the vertical and horizontal directions, respectively.
(3)、冷媒を減圧する第1減圧機構(4)および負荷
側の第2熱交換器(5)が冷媒配管(5)で接続されて
主冷媒回路(1)が構成されると共に、蓄熱可能な蓄熱
媒体(W)を備えた氷蓄熱装置が配設されてなる氷蓄熱
式空気調和装置において、 氷蓄熱運転時に冷媒を減圧する第2減圧機構(12)が上
記冷媒配管(6)に介設される一方、 上記氷蓄熱装置は、蓄熱槽(9)内に製氷用の蓄熱媒体
(W)が貯留されると共に、該蓄熱媒体(W)に浸漬さ
れた蓄熱用熱交換器(10)を備えており、 該蓄熱用熱交換器(10)は、上記第2減圧機構(12)と
並列に主冷媒回路(1)に接続されると共に、冷媒が通
る伝熱管(10a)を備え、該伝熱管(10a)が蓄熱槽
(9)内で鉛直方向に蛇行するように形成されている一
方、上記蓄熱用熱交換器(10)の第1熱交換器側端部
(10b)には短絡管(13)の一端が接続され、該短絡管
(13)の他端は上記圧縮機(2)上流側の冷媒配管
(6)に接続され、 更に、氷蓄熱運転時には、冷媒を第2減圧機構(12)よ
り蓄熱用熱交換器(10)に第2熱交換器側端部(10c)
から流すことにより、蓄熱槽(9)内の蓄熱媒体(W)
を冷却して蓄熱用熱交換器(10)の伝熱管(10a)の外
周面に氷を付着生成させ、その後、短絡管(13)を介し
て圧縮機(2)の上流側に流す一方、 氷融解冷房運転時には、冷媒を第1熱交換器(3)より
蓄熱用熱交換器(10)に第1熱交換器側端部(10b)か
ら流すことにより氷を内側から融解しながら冷媒を冷却
し、その後、該冷媒を第2熱交換器(5)に供給するよ
うに回路接続を切換える回路切換手段(15)が設けられ
ていることを特徴とする氷蓄熱装置を備えた氷蓄熱式空
気調和装置。3. A compressor (2), a first heat exchanger (3) on the heat source side, a first pressure reducing mechanism (4) for reducing the pressure of the refrigerant, and a second heat exchanger (5) on the load side are refrigerant pipes ( In an ice heat storage type air conditioner in which the main refrigerant circuit (1) is connected by 5) and an ice heat storage device equipped with a heat storage medium (W) capable of storing heat is arranged, A second pressure reducing mechanism (12) for reducing the pressure of the refrigerant is provided in the refrigerant pipe (6), while the ice heat storage device stores a heat storage medium (W) for ice making in a heat storage tank (9). A heat storage heat exchanger (10) immersed in the heat storage medium (W) is also provided, and the heat storage heat exchanger (10) is arranged in parallel with the second pressure reducing mechanism (12) in the main refrigerant circuit. The heat transfer tube (10a) is connected to (1) and through which the refrigerant passes, and the heat transfer tube (10a) meanders vertically in the heat storage tank (9). On the other hand, one end of the short-circuit pipe (13) is connected to the first heat exchanger side end portion (10b) of the heat storage heat exchanger (10), and the other end of the short-circuit pipe (13) is formed. Is connected to the refrigerant pipe (6) on the upstream side of the compressor (2), and during the ice heat storage operation, the second heat exchanger (10) transfers the refrigerant from the second pressure reducing mechanism (12) to the heat storage heat exchanger (10). Side edge (10c)
Heat storage medium (W) in the heat storage tank (9) by flowing from
Is cooled to cause ice to adhere to and generate on the outer peripheral surface of the heat transfer pipe (10a) of the heat storage heat exchanger (10), and then to flow through the short-circuit pipe (13) to the upstream side of the compressor (2), During the ice-melting cooling operation, the refrigerant is flowed from the first heat exchanger (3) to the heat storage heat exchanger (10) from the first heat exchanger side end portion (10b) to melt the ice from the inside. An ice heat storage system equipped with an ice heat storage device, characterized in that it is provided with circuit switching means (15) for cooling and then switching the circuit connection so as to supply the refrigerant to the second heat exchanger (5). Air conditioner.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1042587A JP2508240B2 (en) | 1989-02-22 | 1989-02-22 | Ice heat storage device and ice heat storage type air conditioner equipped with the ice heat storage device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1042587A JP2508240B2 (en) | 1989-02-22 | 1989-02-22 | Ice heat storage device and ice heat storage type air conditioner equipped with the ice heat storage device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02223770A JPH02223770A (en) | 1990-09-06 |
JP2508240B2 true JP2508240B2 (en) | 1996-06-19 |
Family
ID=12640196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1042587A Expired - Lifetime JP2508240B2 (en) | 1989-02-22 | 1989-02-22 | Ice heat storage device and ice heat storage type air conditioner equipped with the ice heat storage device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2508240B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5386709A (en) * | 1992-12-10 | 1995-02-07 | Baltimore Aircoil Company, Inc. | Subcooling and proportional control of subcooling of liquid refrigerant circuits with thermal storage or low temperature reservoirs |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS484750U (en) * | 1971-06-17 | 1973-01-19 | ||
US4294078A (en) * | 1977-04-26 | 1981-10-13 | Calmac Manufacturing Corporation | Method and system for the compact storage of heat and coolness by phase change materials |
FR2481433B1 (en) * | 1980-04-24 | 1985-06-28 | Armines | FLEXIBLE TUBE HEAT EXCHANGER |
JPS5760196A (en) * | 1980-09-29 | 1982-04-10 | Karumatsuku Mfg Corp | Cold heat storage apparatus by phase changing material |
JPS60142170A (en) * | 1983-12-29 | 1985-07-27 | 松下電器産業株式会社 | Controller for operation of heat accumulation type air conditioner |
JPS6270275U (en) * | 1985-10-19 | 1987-05-02 | ||
JPS6410068A (en) * | 1987-06-30 | 1989-01-13 | Daikin Ind Ltd | Heat accumulation type air conditioner |
-
1989
- 1989-02-22 JP JP1042587A patent/JP2508240B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02223770A (en) | 1990-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20030029882A (en) | Heat pump | |
JP2508240B2 (en) | Ice heat storage device and ice heat storage type air conditioner equipped with the ice heat storage device | |
CN113631876B (en) | Defrosting system | |
JP2003202135A (en) | Regenerative air-conditioning device | |
JP2002243215A (en) | Regenerative air conditioning device | |
JPH09159232A (en) | Controlling method for ice storage type water chiller | |
JPH07117302B2 (en) | Ice heat storage type air conditioner | |
JP2630143B2 (en) | Ice making equipment | |
JPH0561539B2 (en) | ||
JP2911710B2 (en) | Prevention method of ice freezing heat exchanger for ice storage in supercooled ice making method | |
JPH11294983A (en) | Thermal storage tank of thermal storage cooling system | |
JP3365371B2 (en) | Ice storage device | |
JPH06213525A (en) | Ice heat accumulator and air conditioner using the same | |
JP3422288B2 (en) | Ice storage device | |
JP3639422B2 (en) | Air conditioner with ice heat storage unit | |
JP2509667B2 (en) | Thermal storage refrigeration system | |
JP3292502B2 (en) | Ice storage device | |
JPH03105181A (en) | Antifreezing device for heat exchanger | |
JPH0752540Y2 (en) | Refrigerator for low temperature air conditioner | |
JP2001021184A (en) | Ice storage device | |
JPH0755301A (en) | Dynamic ice storage apparatus | |
JPH04227447A (en) | Icemaker | |
JP2906380B2 (en) | Heat storage type air conditioning cooling method | |
JPH07146040A (en) | Structure for preventing freezing of drain water of freezing chamber | |
JP2003004324A (en) | Regenerative air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080416 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090416 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term |