[go: up one dir, main page]

JP2507601Y2 - Optical isolator - Google Patents

Optical isolator

Info

Publication number
JP2507601Y2
JP2507601Y2 JP1990033992U JP3399290U JP2507601Y2 JP 2507601 Y2 JP2507601 Y2 JP 2507601Y2 JP 1990033992 U JP1990033992 U JP 1990033992U JP 3399290 U JP3399290 U JP 3399290U JP 2507601 Y2 JP2507601 Y2 JP 2507601Y2
Authority
JP
Japan
Prior art keywords
optical
birefringent crystal
faraday rotator
polarization
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1990033992U
Other languages
Japanese (ja)
Other versions
JPH03125321U (en
Inventor
良博 今野
浩 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP1990033992U priority Critical patent/JP2507601Y2/en
Publication of JPH03125321U publication Critical patent/JPH03125321U/ja
Application granted granted Critical
Publication of JP2507601Y2 publication Critical patent/JP2507601Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は半導体レーザを用いた光ファイバー通信等に
おける光学系の反射戻り光を阻止するための偏光方向に
影響を受けない偏光無依存型光アイソレータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is a polarization-independent optical isolator that is not influenced by the polarization direction for blocking reflected return light of an optical system in optical fiber communication using a semiconductor laser. Regarding

[従来の技術] 半導体レーザを中心とする光通信,光計測等が開発さ
れるにしたがって、光学システムたとえば結合レンズ,
光コネクタその他光学部品から回帰する反射戻り光によ
ってレーザ発振が誤動作し高速,高密度信号伝送を不安
定化する問題が生じ、反射戻り光を遮断する各種の光ア
イソレータが提案された。
[Prior Art] With the development of optical communication centered on semiconductor lasers, optical measurement, etc., optical systems such as coupling lenses,
Various optical isolators have been proposed that block reflected return light by causing a problem that laser oscillation malfunctions due to reflected return light returning from an optical connector and other optical parts to destabilize high-speed, high-density signal transmission.

これらの光アイソレータは偏光子,ファラデー回転
子,検光子,ファラデー回転子を磁化するための永久磁
石から構成され、一般にはある偏光面にしか有効でな
く、光アイソレータの偏光方向に合致しない光が入射し
た場合、透過光が大幅に損失する欠点があった。偏光方
向に依存せず全ての偏光面に対してアイソレーション効
果を示す構成として平板状屈折結晶や旋光性結晶単板を
組合せた方式が提案されている。たとえば第3図に示さ
れる方式は平板状複屈折結晶を用いた構造(特公昭60−
51690号公報参照)であり、また第4図に示される構成
から偏光依存性のない方式である(特公昭58−28561号
公報参照)。後者においては1,1′の複屈折結晶は同厚
で1′は1に対しX軸のまわりに180°回転した対称構
造であり、それらの間にファラデー回転子5,旋光子7を
配置して偏光面を回転している。旋光子として水晶や二
酸化テルル(TeO2)等が用いられている。第4図
(a),(b)はそれぞれ順方向,逆方向の光の伝搬状
態を示すもので、順方向では出射点で再び入射光線の延
長上に伝搬できる。逆方向では最終入射点位置で入射光
線軸上から戻り光がある変位距離を有し、すなわち分離
されている。しかし第3図に示す方式では出射光の位置
は入射光線の延長線上ではなく平行移動すること、入射
偏向面は出射側では45°回転すること、およびファラデ
ー回転子5の温度変化によって入射光線軸上に回帰する
光成分が生じ消光特性の劣化を誘起する可能性が高い等
々の欠点を内在しており、また第4図に示される方式で
は前方式と異なり出射光線が入射線延長上で結合される
利点があるが、複屈折材料以外に旋光性結晶も加工し組
立てなければならず煩雑な工程が加わることになる。旋
光性物質のうち代表的なものに水晶があるが、45°偏光
面を回転させるには、1.3μm帯で旋光能が約4°/mmで
あり、45°では11.25mm程度必要とし全体で光路長の長
いものとなり、球レンズ,屈折率分布型GRINレンズ等に
よる他の光システムの結合が難しく、結合損失が大きく
なり実用的ではない。一方TeO2単結晶は旋光能が1.3mm
帯で5倍ほど大きく、45°旋光するために約2mm程度と
実用的であるが、加工,組立ての煩雑さと価格的な問題
が生じる等の生産上の困難性が予想されていた。
These optical isolators are composed of a polarizer, a Faraday rotator, an analyzer, and a permanent magnet for magnetizing the Faraday rotator. When it is incident, there is a drawback that transmitted light is significantly lost. As a configuration showing an isolation effect for all polarization planes independent of the polarization direction, a system in which a flat refraction crystal or a single optical rotation plate is combined has been proposed. For example, the system shown in FIG. 3 is a structure using a flat birefringent crystal (Japanese Patent Publication No. 60-
No. 51690), and the system shown in FIG. 4 has no polarization dependence (see Japanese Patent Publication No. 58-28561). In the latter case, the birefringent crystal of 1,1 'has the same thickness and 1'is a symmetrical structure in which 1'is rotated about the X axis by 180 °, and the Faraday rotator 5 and the optical rotator 7 are arranged between them. To rotate the plane of polarization. Quartz and tellurium dioxide (TeO 2 ) are used as optical rotators. FIGS. 4 (a) and 4 (b) show the forward and backward light propagation states, respectively. In the forward direction, the light can be propagated again on the extension of the incident ray at the exit point. In the opposite direction, the return light has a displacement distance from the axis of the incident ray at the final incident point position, that is, is separated. However, in the system shown in FIG. 3, the position of the outgoing light is not parallel to the extension line of the incoming light, the incident deflecting surface is rotated by 45 ° on the outgoing side, and the incident light axis changes due to the temperature change of the Faraday rotator 5. There are inherent drawbacks such as the possibility that a light component returning to the upper side will occur and deterioration of the extinction characteristic is likely to occur. Moreover, in the method shown in Fig. 4, unlike the previous method, the outgoing light beam is coupled on the extension of the incident line. However, in addition to the birefringent material, an optically active crystal must be processed and assembled, which adds a complicated process. Quartz is a typical optical rotatory substance, but in order to rotate the plane of polarization at 45 °, the optical activity is about 4 ° / mm in the 1.3 μm band, and about 45 ° requires about 11.25 mm. It has a long optical path length, making it difficult to combine other optical systems such as spherical lenses and gradient index GRIN lenses, which causes large coupling loss and is not practical. On the other hand, TeO 2 single crystal has an optical rotation of 1.3 mm.
The band is about 5 times larger, and it is practically about 2 mm because it rotates at 45 °, but it was expected to have difficulties in production such as complexity of processing and assembly and cost problems.

[考案が解決しようとする課題] このため本考案者は先に特願昭63−196340号及び実願
昭1−46998号において開示したように、3個の複屈折
結晶と2個のファラデー回転子から構成し、前者はファ
ラデー回転子を磁化する2個の永久磁石において磁化の
向きが同一で、後者は磁化の向きが反対である構造を有
し、入出射光線が同一光軸上にあることを特徴とした偏
光依存性のない光アイソレータを提案した。しかしこれ
らにおいて、必要とする光線束が大きい場合、光路中の
ガウシアンビームの広がりが問題となり、逆方向におけ
る光線の広がり部分が光線軸上に回帰しないことが消光
特性の向上に必要とされることが確認された。
[Problems to be Solved by the Invention] Therefore, as disclosed in Japanese Patent Application Nos. 63-196340 and 1-469998, the present inventor has proposed three birefringent crystals and two Faraday rotations. The former has a structure in which the magnetization directions are the same in the two permanent magnets that magnetize the Faraday rotator, and the latter has a structure in which the magnetization directions are opposite, and the incoming and outgoing rays are on the same optical axis. We have proposed an optical isolator that does not depend on polarization. However, in these cases, when the required ray bundle is large, the spread of the Gaussian beam in the optical path becomes a problem, and it is necessary for improving the extinction characteristics that the spread portion of the ray in the opposite direction does not return to the ray axis. Was confirmed.

[課題を解決するための手段] 本考案は、前述の3個の複屈折結晶と2個のファラデ
ー回転子から構成し、入出射光線が同一光軸上にあるこ
とを特徴とした偏光依存性のない光アイソレータにおい
て、第一の複屈折結晶と第一のファラデー回転子間に、
第一の複屈折結晶により分離された常光線と異常光線と
が通過可能な長円形スリットを配置することである。
[Means for Solving the Problems] The present invention is characterized by being composed of the above-mentioned three birefringent crystals and two Faraday rotators, and the incident and outgoing rays being on the same optical axis. In an optical isolator without a filter, between the first birefringent crystal and the first Faraday rotator,
This is to arrange an elliptical slit through which an ordinary ray and an extraordinary ray separated by the first birefringent crystal can pass.

[実施例] 第1図は前述の3個の複屈折結晶1,2,3と2個のファ
ラデー回転子5,6及びファラデー回転子を磁化するため
その向きが同一である2個の永久磁石で構成した光学系
において、長円形スリット8を配置した光アイソレータ
を示し、第2図は磁化の向きが反対である2個の永久磁
石で構成した光学系において、長円形スリット8を配置
した光アイソレータを示す。図において順方向の光ビー
ムはスリット部で通過し、逆方向の光ビームは光軸上か
ら変位するためにスリット部で遮断されることが分か
る。
[Embodiment] FIG. 1 shows the above-mentioned three birefringent crystals 1, 2, 3 and two Faraday rotators 5, 6 and two permanent magnets whose directions are the same for magnetizing the Faraday rotator. FIG. 2 shows an optical isolator in which the elliptical slit 8 is arranged in the optical system configured in FIG. 2, and FIG. 2 shows an optical isolator in which the elliptical slit 8 is arranged in the optical system configured by two permanent magnets having opposite magnetization directions. Shows an isolator. In the figure, it can be seen that the light beam in the forward direction passes through the slit portion, and the light beam in the reverse direction is displaced from the optical axis and is blocked by the slit portion.

[考案の効果] 本考案により逆方向の光ビームはほぼ完全にスリット
部で遮断されるため、この方式の光アイソレータにおい
ては偏光面に依存せず、かつ入射光線と出射光線の位置
が完全に一致する利点を有し、光学回路中へ挿入する
際、特別精密な光軸調整を行なうこともなく本来の消光
特性及び偏光無依存性等に関する性能が容易に得られ
る。
[Advantages of the Invention] According to the present invention, since the backward light beam is almost completely blocked by the slit portion, the optical isolator of this system does not depend on the polarization plane, and the positions of the incident ray and the outgoing ray are completely. It has the advantage of matching, and when it is inserted into an optical circuit, the original characteristics of extinction characteristics and polarization independence can be easily obtained without specially adjusting the optical axis.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案による偏光無依存型光アイソレータの構
造図および常光,異常光の偏光状態を示し、(a)は順
方向,(b)は逆方向の光伝搬状態を示す。 第2図は本考案による偏光無依存型光アイソレータの他
の構造図および常光,異常光の偏光状態を示し、(a)
は順方向,(b)は逆方向の光伝搬状態を示す。 第3図,第4図は従来の偏光無依存型光アイソレータの
構造図および常光,異常光の偏光状態を示す。 1;2;3:複屈折結晶、5;6:ファラデー回転子 7:旋光子、8:長円形スリット
FIG. 1 shows a structure diagram of a polarization-independent optical isolator according to the present invention and polarization states of ordinary light and extraordinary light, where (a) shows a forward light propagation state and (b) shows a reverse light propagation state. FIG. 2 shows another structure diagram of the polarization-independent optical isolator according to the present invention and polarization states of ordinary light and extraordinary light.
Shows the light propagation state in the forward direction and (b) shows the light propagation state in the reverse direction. 3 and 4 show the structure of a conventional polarization-independent optical isolator and the polarization states of ordinary light and extraordinary light. 1; 2; 3: Birefringent crystal, 5; 6: Faraday rotator 7: Optical rotator, 8: Oval slit

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】結晶光軸が表面に対し傾いた第一の複屈折
結晶、偏光面を45°回転するための第一のファラデー回
転子、第一の複屈折結晶に対し√2倍の厚さを有し、ま
たX軸を中心として180°回転した後入射光線方向を軸
とし45°回転して配置された第二の複屈折結晶、前記第
一のファラデー回転子と同一もしくは逆向きに磁化され
た第二のファラデー回転子、第一の複屈折結晶と同一厚
さを有し、かつ第二の複屈折結晶に対し入射光線方向を
回転軸として45°回転し第一の複屈折結晶の光軸と互い
に90°回転して配置した第三の複屈折結晶、およびファ
ラデー回転子を磁化するための永久磁石により構成され
た光学系において、第一の複屈折結晶と第一のファラデ
ー回転子間に、第一の複屈折結晶により分離された常光
線と異常光線とが通過可能な長円形スリットを配置した
ことを特徴とする光アイソレータ。
1. A first birefringent crystal whose crystal optical axis is tilted with respect to the surface, a first Faraday rotator for rotating a plane of polarization by 45 °, and a thickness √2 times that of the first birefringent crystal. And a second birefringent crystal which is arranged by rotating 180 ° about the X-axis and then rotating by 45 ° about the incident ray direction in the same or opposite direction as the first Faraday rotator. The magnetized second Faraday rotator, which has the same thickness as the first birefringent crystal, and which is rotated by 45 ° about the incident ray direction as the axis of rotation with respect to the second birefringent crystal. In the optical system composed of a third birefringent crystal that is rotated by 90 ° with respect to the optical axis of and the permanent magnet for magnetizing the Faraday rotator, the first birefringent crystal and the first Faraday rotation Ordinary rays and extraordinary rays separated by the first birefringent crystal can pass between the children An optical isolator characterized in that a oblong slit.
JP1990033992U 1990-03-30 1990-03-30 Optical isolator Expired - Fee Related JP2507601Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1990033992U JP2507601Y2 (en) 1990-03-30 1990-03-30 Optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1990033992U JP2507601Y2 (en) 1990-03-30 1990-03-30 Optical isolator

Publications (2)

Publication Number Publication Date
JPH03125321U JPH03125321U (en) 1991-12-18
JP2507601Y2 true JP2507601Y2 (en) 1996-08-14

Family

ID=31538079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1990033992U Expired - Fee Related JP2507601Y2 (en) 1990-03-30 1990-03-30 Optical isolator

Country Status (1)

Country Link
JP (1) JP2507601Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5176853B2 (en) * 2007-10-09 2013-04-03 住友電気工業株式会社 Optical module and light source device including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121027A (en) * 1984-11-19 1986-06-09 Fujitsu Ltd optical isolator
JPS61122614A (en) * 1984-11-20 1986-06-10 Fujitsu Ltd laser module
JPH0246419A (en) * 1988-08-06 1990-02-15 Namiki Precision Jewel Co Ltd Optical isolator
JPH02116803A (en) * 1988-10-27 1990-05-01 Omron Tateisi Electron Co Fresnel lens device
JPH03135514A (en) * 1989-10-20 1991-06-10 Matsushita Electric Ind Co Ltd Optical isolator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0179017U (en) * 1987-11-17 1989-05-26
JPH0278918U (en) * 1988-12-05 1990-06-18

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121027A (en) * 1984-11-19 1986-06-09 Fujitsu Ltd optical isolator
JPS61122614A (en) * 1984-11-20 1986-06-10 Fujitsu Ltd laser module
JPH0246419A (en) * 1988-08-06 1990-02-15 Namiki Precision Jewel Co Ltd Optical isolator
JPH02116803A (en) * 1988-10-27 1990-05-01 Omron Tateisi Electron Co Fresnel lens device
JPH03135514A (en) * 1989-10-20 1991-06-10 Matsushita Electric Ind Co Ltd Optical isolator

Also Published As

Publication number Publication date
JPH03125321U (en) 1991-12-18

Similar Documents

Publication Publication Date Title
EP0015129B1 (en) Optical circulator
EP0525208A1 (en) Optical isolator
US6178044B1 (en) Method and system for providing an optical circulator
JP2542532B2 (en) Method for manufacturing polarization-independent optical isolator
EP0611980B1 (en) Optical isolator
JP2507601Y2 (en) Optical isolator
JPS5828561B2 (en) optical isolator
JPH0246419A (en) Optical isolator
JP3161885B2 (en) Optical isolator
JPH0244310A (en) Optical isolator
JPH04221922A (en) Polarization independent type optical isolator
JPH0743696Y2 (en) Optical isolator
JP2507601Z (en)
JPH06160774A (en) Optical isolator
JP2775499B2 (en) Optical isolator
JP3049551B2 (en) Optical isolator
JPH04264515A (en) Optical isolator
JP2570826B2 (en) Solid state circulator
JPH0720407A (en) Optical isolator
JPH10319346A (en) Optical isolator
JPH0862646A (en) Optical switch
JP2003066372A (en) Optical isolator
JPH10339848A (en) Polarization independent optical isolator
JPS61132925A (en) Semiconductor laser module with optical isolator
JPH04140709A (en) Optical isolator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees