JP2501835B2 - Metallic adhesive material - Google Patents
Metallic adhesive materialInfo
- Publication number
- JP2501835B2 JP2501835B2 JP21070487A JP21070487A JP2501835B2 JP 2501835 B2 JP2501835 B2 JP 2501835B2 JP 21070487 A JP21070487 A JP 21070487A JP 21070487 A JP21070487 A JP 21070487A JP 2501835 B2 JP2501835 B2 JP 2501835B2
- Authority
- JP
- Japan
- Prior art keywords
- adhesive material
- powder
- component
- composite powder
- bonding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
- Ceramic Products (AREA)
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は金属と金属、金属とセラミック、セラミック
とセラミックの接合用に好適な金属質接着材料に関する
ものである。TECHNICAL FIELD The present invention relates to a metallic adhesive material suitable for joining metal to metal, metal to ceramic, and ceramic to ceramic.
(従来の技術) 従来より、金属と金属、セラミックとセラミックのよ
うに同一材質間の接合法、或いは金属とセラミックの異
材質間の接合法としては様々な接合法が知られている。(Prior Art) Conventionally, various joining methods are known as a joining method between the same materials such as a metal and a metal or a ceramic and a ceramic, or a joining method between different materials of a metal and a ceramic.
例えば、金属と金属の接合法としては電気溶接、ガス
溶接、摩擦溶接等々の融接法があり、基材を溶融しない
方法としてロウ付け処理や有機接着剤による接着法があ
る。For example, there are fusion welding methods such as electric welding, gas welding, friction welding and the like as a method of joining metals, and there are a brazing method and an adhesion method using an organic adhesive as a method of not melting the base material.
また、セラミックとセラミックの接合法としては有機
接着剤による接着法や耐熱金属法(特開昭61−58870号
参照)などがある。Further, as a joining method of ceramic and ceramic, there are an adhesion method using an organic adhesive and a heat-resistant metal method (see JP-A-61-58870).
これらの同一材質間の接合に対し、金属とセラミック
との異材質間の接合法としては、有機接着剤による接着
法や活性金属法、焼きばめ法、固相反応法などがあり、
またセラミック基材にMoやWなどでメタライズした後に
ニッケルメッキを施し、金属基材と半田付けする耐熱金
属法があり、最近の技術では酸化物系の無機接着剤を使
用して水和化合物をつくるなどの化学反応による接合法
も出現している。For joining between these same materials, as joining methods between different materials of metal and ceramic, there are an adhesive method using an organic adhesive, an active metal method, a shrink fit method, a solid phase reaction method, and the like.
In addition, there is a heat-resistant metal method in which a ceramic substrate is metalized with Mo or W and then nickel-plated, and then soldered to a metal substrate. A recent technology uses an oxide-based inorganic adhesive to remove hydrated compounds. Bonding methods using chemical reactions such as building have also emerged.
(発明が解決しようとする問題点) しかし、上記各種接合法のうち、金属同志の固有な接
合法である融接法を除けば、いずれも熱に弱く、接着強
度も充分でないという欠点がある。(Problems to be Solved by the Invention) However, all of the above-mentioned various joining methods, except for the fusion welding method, which is a unique joining method between metals, are disadvantageous in that they are all weak to heat and have insufficient adhesive strength. .
一方、僅かに、蒸着、スパッタリング、溶射等による
接合技術や箔状のインサート材を使用する接合技術も提
案されてはいるが、接着力に乏しいという欠点があるば
かりでなく、使用範囲が限定されるなどのため、実用性
に乏しく、経済性でも満足し得る接合法とは云えない。On the other hand, bonding techniques such as vapor deposition, sputtering, and thermal spraying and bonding techniques using a foil-shaped insert material have also been proposed, but not only have the disadvantage of poor adhesion, but also have a limited range of use. Therefore, it cannot be said that the bonding method is poor in practicality and satisfactory in economical efficiency.
そこで、これらの欠点を解消し得る接着材料として、
本出願人は先に特願昭61−150003号にて金属質接着材料
を提案した。この接着材料はCu又はNiと、Ti、Zr又はNb
とAgとを構成成分とし、これらの各成分が機械的に噛合
結合した複合粉末からなる金属質接着材料であって、特
に接着強度が高く、各種の金属、セラミックの同一材質
間或いは異材質間の接合に適している。Therefore, as an adhesive material that can eliminate these drawbacks,
The present applicant previously proposed a metallic adhesive material in Japanese Patent Application No. 61-150003. This adhesive material is Cu or Ni and Ti, Zr or Nb
It is a metallic adhesive material composed of a composite powder in which each of these components is mechanically intermeshed with Ag and Ag as constituent components, and has a particularly high adhesive strength, and various metals, ceramics of the same material or different materials Suitable for joining.
しかし、この金属質接着材料は、特に熱サイクルを繰
り返す部材に適用した場合、例えば、アルミナ基板に銅
箔を貼り付けた放熱性基板を大電力用パワーモジュール
に使用した場合、或いは送電部品や自動車部品で使用環
境温度が零下から100℃近くまで変動する場合などに
は、熱サイクルを繰り返すと接合力が劣化し、剥離に至
るという問題が生じた。However, this metallic adhesive material is particularly applied to a member that repeats thermal cycles, for example, when a heat dissipation substrate in which a copper foil is attached to an alumina substrate is used in a high power power module, or a power transmission component or an automobile. When the operating environment temperature of parts fluctuates from below zero to near 100 ° C, repeated thermal cycles deteriorate the bonding strength and cause peeling.
本発明は、上記提案に係る金属質接着材料の問題点を
解決するためになされたものであって、耐熱性を有し、
接着強度が高く、かつ、冷熱サイクルに対して接着力劣
化が小さく、しかも金属、セラミックの同一材質間の接
合のみならず、金属とセラミックの異材質間の接合にも
簡便に利用でき、実用性、経済性を満足する新規な金属
質接着材料を提供することを目的とするものである。The present invention was made in order to solve the problems of the metallic adhesive material according to the above proposal, and has heat resistance,
It has high adhesive strength and little deterioration in adhesive strength due to thermal cycle, and it can be easily used not only for joining metal and ceramics of the same material, but also for joining metal and ceramics of different materials. The object of the present invention is to provide a novel metallic adhesive material that satisfies the economical requirements.
(問題点を解決するための手段) 上記目的を達成するため、本発明者は、まず、先に提
案した金属質接着材料を適用した場合、冷熱サイクルに
よって接着力が劣化し剥離に至るメカニズムについて解
析を試みた。その結果、剥離が起こるのは拡散層、すな
わち、活性金属(Ti、Nb、Zr)とセラミックとの反応層
の部分であることが判明した。(Means for Solving the Problems) In order to achieve the above-mentioned object, the present inventor firstly, when applying the previously proposed metallic adhesive material, regarding the mechanism leading to peeling due to deterioration of adhesive force due to a cooling / heating cycle. Tried to analyze. As a result, it was found that the exfoliation occurs in the diffusion layer, that is, the reaction layer of the active metal (Ti, Nb, Zr) and the ceramic.
そこで、このような剥離を防ぐ方策について種々研究
を重ねた結果、基本的には、拡散層の厚みを薄くして、
拡散層を介して金属板とセラミック板が直接接合するよ
うになればよいことが判った。しかし、拡散層の厚みは
活性金属の量に支配され、活性金属の量を減じようとす
ると接合力も減少してしまう問題が生じた。しかし、本
発明者は、この問題を解決するために他の観点から更に
研究を重ねた結果、活性金属の粒径を極力小さくし、拡
散容易とすることにより解決できることを見出したもの
である。すなわち、活性金属の粒径を小さくして拡散を
容易にすると、拡散層が薄くても強固な結合力を発揮で
きることを見い出し、その際、粒径を細かくすることに
より、同時に活性金属成分の量を少なくしても強固な結
合力を発揮できることを見い出し、ここに本発明をなし
たものである。Therefore, as a result of various studies on measures to prevent such peeling, basically, the thickness of the diffusion layer was reduced to
It has been found that it suffices if the metal plate and the ceramic plate are directly joined via the diffusion layer. However, the thickness of the diffusion layer is dominated by the amount of active metal, and if the amount of active metal is reduced, the bonding force also decreases. However, as a result of further research from another viewpoint in order to solve this problem, the present inventor has found that the problem can be solved by making the particle size of the active metal as small as possible and facilitating the diffusion. That is, it was found that if the particle size of the active metal is made small to facilitate diffusion, a strong binding force can be exhibited even if the diffusion layer is thin, and at that time, by making the particle size fine, the amount of the active metal component can be increased at the same time. It has been found that a strong binding force can be exhibited even if the amount is reduced, and the present invention is made here.
すなわち、本発明に係る金属質接着材料は、Cu及びNi
のうちの少なくとも1種を10〜60%、Ti、Nb及びZrのう
ちの少なくとも1種を0.5〜10%含み、残部がAg及び不
可避的不純物からなる組成を有し、かつ、各成分がメカ
ニカルアロイ法によって機械的に噛合結合した粒径5μ
m以下の複合粉末から実質的になることを特徴とするも
のであり、また、該粉末をシート状に成形し或いはペー
スト状にしたことを特徴とするものである。That is, the metallic adhesive material according to the present invention, Cu and Ni
10 to 60% of at least one of them, 0.5 to 10% of at least one of Ti, Nb and Zr, with the balance being Ag and inevitable impurities, and each component is mechanical Particle size 5μ mechanically meshed by alloy method
It is characterized by being substantially composed of a composite powder of m or less, and is characterized in that the powder is formed into a sheet or a paste.
以下に本発明を実施例に基づいて詳細に説明する。 Hereinafter, the present invention will be described in detail based on examples.
第1図は本発明の金属質接着材料の成分系並びに組成
系(wt%)を示す図であり、A成分はCu及びNiのうちの
少なくとも1種からなり、B成分はTi、Nb及びZrのうち
の少なくとも1種からなり、残部は実質的にAgからなる
C成分である系において、A成分:10〜60%、B成分:0.
5〜10%、C成分:残部の図示の斜線領域が接着材料と
して所望の性能を発揮でき、特に冷熱サイクルによる接
合力劣化に起因する剥離を防止できる組成範囲である。
なお、A成分が10%未満及び60%を超えると接着力が出
ないので、好ましくない。またB成分は10%を超えると
耐熱衝撃性が低下し、一方、0.5%未満では活性不充分
となって拡散接合が不良となるので、好ましくない。FIG. 1 is a diagram showing a component system and a composition system (wt%) of the metallic adhesive material of the present invention, wherein the A component comprises at least one of Cu and Ni, and the B component comprises Ti, Nb and Zr. In the system consisting of at least one of the above and the balance being the C component consisting essentially of Ag, the A component: 10 to 60%, the B component: 0.
5 to 10%, C component: The remaining shaded area in the figure is a composition range in which desired performance as an adhesive material can be exhibited, and peeling due to deterioration in bonding strength due to a cooling / heating cycle can be prevented.
If the amount of A component is less than 10% or more than 60%, the adhesive force is not obtained, which is not preferable. On the other hand, if the content of the component B exceeds 10%, the thermal shock resistance decreases, while if it is less than 0.5%, the activity is insufficient and diffusion bonding becomes poor, which is not preferable.
上記化学成分を有する金属質接着材料は、いわゆるメ
カニカルアロイ法によって製造する必要がある。そのた
めには、各成分の金属粉末を擂潰機、ボールミル、アト
ライター等の撹拌機を用いて高速、高エネルギー下で所
要時間混合撹拌して粉砕することにより、各成分が機械
的に噛合結合したいわゆるメカニカルアロイ形態の複合
粉末を得ることができる。The metallic adhesive material having the above chemical components needs to be manufactured by a so-called mechanical alloy method. For that purpose, the metal powder of each component is mechanically interlocked by mechanically interlocking each component by mixing and stirring for a required time under high speed and high energy using a stirrer such as a crusher, a ball mill or an attritor. It is possible to obtain a so-called mechanical alloy type composite powder.
このような複合粉末にすると、接合温度を適切に選ぶ
ならば接合強度が顕著に向上できる。これは、第2図に
示すように、各成分の微粉が機械的に噛合結合されてい
るため、接合温度において緻密に隣接する各成分微粉が
表面で溶融して粒子間結合が強固になり、これが一種の
ノリの役目を果たして接合強度が増大するものと考えら
れる。因みに、そのような適切な接合温度(Ag−Cu系で
800〜900℃)を超える高温で各成分が合金化した状態で
使用した場合には、その効果が低下する現象がみられ
た。また単純混合状態では各成分が分離した混合状態に
あるために加熱しても上記効果は期待できなかった。When such a composite powder is used, the joining strength can be significantly improved if the joining temperature is appropriately selected. This is because, as shown in FIG. 2, the fine powder of each component is mechanically meshed and bonded, so that the fine powder of each component closely adjacent at the bonding temperature is melted on the surface and the bonding between the particles becomes strong, This is considered to serve as a kind of glue and increase the bonding strength. Incidentally, such an appropriate bonding temperature (in the Ag-Cu system)
When used in a state where each component was alloyed at a high temperature exceeding 800-900 ℃), the effect was observed to decrease. In the simple mixed state, the above effects could not be expected even when heated because each component was in a separated mixed state.
但し、このような複合粉末の粒度は5μm以下の粒径
(5μmのメッシュをオールパスしたもの)にし、活性
を高めたものにする必要がある。この点、本出願人の先
の提案では、複合粉末の粒径は44μm以下、好ましくは
10μm以下としたが、具体的には最低10μm近傍の粒径
を有する複合粉末について開示されているにすぎないの
で、本発明とは異なるものである。However, the particle size of such a composite powder needs to be 5 μm or less (a mesh of 5 μm is all-passed) to enhance the activity. In this respect, according to the applicant's previous proposal, the particle size of the composite powder is 44 μm or less, preferably
Although it is set to 10 μm or less, it is different from the present invention because it specifically discloses only a composite powder having a particle size in the vicinity of at least 10 μm.
第3図は、Cu−Ag系に様々な粒度及び含有量のTi粉末
を添加した複合粉末からなる金属質接着材料を用いて、
Al2O3−Cuの基材組合わせを接合した場合、熱サイクル
試験(−55℃×30min〜150℃×30min)において、可能
なサイクル回数とTi含有量との関係を調べた結果の一例
を示したものである。FIG. 3 shows a metallic adhesive material composed of a composite powder obtained by adding Ti powder of various particle sizes and contents to a Cu-Ag system,
An example of the results of investigating the relationship between the number of possible cycles and Ti content in the thermal cycle test (-55 ° C x 30 min to 150 ° C x 30 min) when joining Al 2 O 3 -Cu substrate combinations Is shown.
同図より、Ti粉末の粒度が細かくなると、少量のTi量
でも接着できるようになり、しかもTi量の少ない方が強
度が高いことがわかる。しかし、活性金属(Ti)が0.5
%未満では活性化せず、接合不良となる。なお、活性化
は焼成(結合)雰囲気の影響を受け、N2雰囲気よりも真
空下の方が活性化し易い。From the figure, it can be seen that as the grain size of the Ti powder becomes finer, it becomes possible to bond even a small amount of Ti, and the smaller the amount of Ti, the higher the strength. However, the active metal (Ti) is 0.5
If it is less than%, it is not activated, resulting in poor bonding. The activation is affected by the firing (bonding) atmosphere, and the activation is easier under vacuum than in the N 2 atmosphere.
この試験結果からも明らかなように、本発明では、複
合粉末の粒度は5μm以下の粒径に規制するものであ
る。複合粉末の粒度を粒径5μm以下に細かくすると、
少量の活性金属(Ti、Zr、Nb)のもとで強固な接合力が
得られ、特に冷熱サイクルに対しても接合力劣化を極め
て小さくすることができる。As is clear from this test result, in the present invention, the particle size of the composite powder is regulated to 5 μm or less. If the particle size of the composite powder is made smaller than 5 μm,
A strong joining force can be obtained with a small amount of active metals (Ti, Zr, Nb), and deterioration of the joining force can be made extremely small, especially even in the thermal cycle.
なお、上記粒度の複合粉末を得るには、メカニカルア
ロイング用原料として10μm以下の微粉末を使用すれば
よい。また、複合粉末は金属質接着材料全体の80%以上
を占めるのが好ましく、多少のCu、Ag、Ti粉などの各成
分粉末が混入していても支障はない。In order to obtain a composite powder having the above particle size, a fine powder of 10 μm or less may be used as a raw material for mechanical alloying. Further, it is preferable that the composite powder occupy 80% or more of the whole metallic adhesive material, and there is no problem even if some component powders such as Cu, Ag and Ti powders are mixed.
このような複合粉末から実質的になる金属質接着材料
は種々の態様で使用でき、粉末状、シート状(圧粉成形
体、粉末圧延成形体)、ペースト状などにする。なお、
使用に当たっては、Tiが含まれている場合には加熱接合
時に空気中で酸化する点等を考慮し、所定の温度で使用
するのが好ましい。The metallic adhesive material consisting essentially of such a composite powder can be used in various forms, such as powder, sheet (compacted powder compact, powder compact), and paste. In addition,
In use, when Ti is contained, it is preferable to use it at a predetermined temperature in consideration of oxidation in air at the time of heating and joining.
例えば、粉末状の金属質接着材料の場合の好ましい使
用態様としては、まず金属、セラミック等の基板上に薄
い枠をセットした後、接着材料粉末を充填して接着面に
挾み込んだ状態とし、次いで非酸化性雰囲気中又は10-3
Torr以下の減圧下で1〜100kg/cm2の荷重のもとに600〜
900℃に所要時間加熱し、接合する。なお、900℃を超え
る温度上で熱処理すると接着材料が合金化し接合効果が
低下するので、この点に留意する必要がある。For example, in the case of a powdery metallic adhesive material, as a preferable usage mode, first, a thin frame is set on a substrate such as metal or ceramic, and then the adhesive material powder is filled and the adhesive surface is sandwiched. , Then in a non-oxidizing atmosphere or 10 -3
600-under a load of 1-100 kg / cm 2 under reduced pressure of Torr or less
Heat to 900 ° C for the required time and join. It should be noted that heat treatment at a temperature above 900 ° C. alloys the adhesive material and reduces the bonding effect.
また、インサート材として使用する場合の好ましい使
用態様としては、圧粉成形体又は粉末圧延成形体を基材
間に挾み込んで接合するか、或いは接合する基材の片面
にペースト状にして印刷し乾燥した後、不活性雰囲気下
で600℃付近でバインダー分を脱脂処理し、脱脂後の膜
厚が少なくとも10μm以上で接合する。なお、600℃以
上の高温下で脱脂処理すると接合ができなくなるので留
意する。いずれの接合態様の場合でも、接合条件として
は、0.5〜10kg/cm2の荷重をかけながら10-3Torr以下の
減圧下又は不活性雰囲気中で750〜950℃、好ましくは83
0〜930℃の温度で加熱接合する。加熱温度が950℃以下
の高温であると、溶着現象が生じ、また750℃以下では
接合が不充分となる。In addition, as a preferred mode of use as an insert material, a powder compact or a powder rolling compact is sandwiched between base materials to be bonded, or a paste is printed on one surface of the base materials to be bonded. After drying and drying, the binder component is degreased at around 600 ° C. in an inert atmosphere, and bonding is performed when the degreased film thickness is at least 10 μm or more. Note that if degreasing is performed at a high temperature of 600 ° C or higher, bonding will not be possible. In either case the junction aspect, the bonding conditions, 0.5~10kg / cm 750~950 ℃ 2 of a load at 10 -3 Torr or less under a reduced pressure or in an inert atmosphere while applying, preferably 83
Heat bonding at a temperature of 0 to 930 ° C. If the heating temperature is a high temperature of 950 ° C or less, a welding phenomenon occurs, and if the heating temperature is 750 ° C or less, joining becomes insufficient.
(実施例) 次に本発明の実施例を示す。(Example) Next, the Example of this invention is shown.
実施例1 第1表に示す各種金属粉末をN2気流中で分級し、10μ
m以下の粉末とした後、同表に示す割合で配合し、アト
ライターボールミル中で7時間混合粉砕し、複合粉末を
得た。得られた複合粉末は5μm以下であり、フィッシ
ャー平均粒径を測定したところ、2.1〜3.2μmであっ
た。この複合粉末を顕微鏡組織観察したところ、各成分
粒子が機械的に噛合結合したメカニカルアロイの形態を
呈していた。Example 1 Various metal powders shown in Table 1 were classified in an N 2 stream to obtain 10 μm.
After the powder having a particle size of m or less, it was blended in a ratio shown in the same table and mixed and pulverized in an attritor ball mill for 7 hours to obtain a composite powder. The obtained composite powder was 5 μm or less, and the Fisher average particle size was 2.1 to 3.2 μm. Microscopic observation of this composite powder revealed that it was in the form of a mechanical alloy in which each component particle was mechanically meshed and bonded.
次に、50×50mm□×1.2mmtのアルミナ基板の上に厚さ
0.4mmのゴム枠を載せて縁取りをし、この枠内に上記複
合粉末を充填し、その上に同サイズで厚さ0.3mmの銅板
を載せ、アルミナ基板と銅板とを加熱接合した。なお、
加熱接合は2kg/cm2の荷重を加え、10-4Torrの減圧下で9
00℃、1時間加熱により行った。Next, on the alumina substrate of 50 × 50mm □ × 1.2mmt, the thickness
A 0.4 mm rubber frame was placed on the frame for edging, the composite powder was filled in the frame, and a copper plate of the same size and a thickness of 0.3 mm was placed on the frame, and the alumina substrate and the copper plate were heat-bonded. In addition,
For heat bonding, apply a load of 2 kg / cm 2 and under a reduced pressure of 10 -4 Torr,
The heating was performed at 00 ° C. for 1 hour.
このようにして作製した複合基板について接合試験と
冷熱サイクル試験を実施した。それらの結果を同表に併
記する。A bonding test and a thermal cycle test were carried out on the composite substrate thus manufactured. The results are shown in the same table.
なお、接合試験は、複合基板の両面に引張棒を接着
し、両端を引張試験機で引張って破壊に至らしめた。こ
の際、アルミナ板層で破壊したものを接着良好とし、接
着材料層で破壊したものを接合不良と判断した。In addition, in the bonding test, tensile rods were adhered to both surfaces of the composite substrate, and both ends were pulled by a tensile tester to reach destruction. At this time, what was broken in the alumina plate layer was judged to be good adhesion, and what was broken in the adhesive material layer was judged to be defective bonding.
また冷熱サイクル試験は、−55℃×30分間と150℃×3
0分間保持とを1サイクルとし、各サイクル終了後引張
テストを行って破壊の有無を調べ、破壊したときまでの
サイクル回数にて評価した。The thermal cycle test is -55 ° C x 30 minutes and 150 ° C x 3 minutes.
Holding for 0 minutes was set as one cycle, and after each cycle, a tensile test was performed to check the presence or absence of breakage, and the number of cycles until the breakage was evaluated.
なお、比較例として、本発明範囲外の組成のものと複
合粉末の粒径の粗いものをあげ、同様の試験を行った。
その結果を同表に併記する。As comparative examples, those having a composition outside the scope of the present invention and those having a coarse particle size of the composite powder were given and the same test was conducted.
The results are also shown in the table.
第1表より明らかなとおり、本発明範囲内の化学成分
及び複合粉末を有する接着材料を使用した本発明例の場
合には、いずれも接合状態が良好であると共に冷熱サイ
クル回数も高い。一方、複合粉末粒径が多くすぎる比較
例No.11やB成分量が多すぎる比較例No.13とNo.14は接
合状態が良好であっても、冷熱サイクル回数が極端に少
なく、またB成分量が不充分の比較例No.12は接合自体
が不可能であった。As is clear from Table 1, in the case of the examples of the present invention using the adhesive material having the chemical components and the composite powder within the scope of the present invention, the bonding state is good and the number of cooling / heating cycles is high. On the other hand, in Comparative Example No. 11 having an excessively large composite powder particle size and Comparative Examples No. 13 and No. 14 having an excessively large amount of B component, even if the bonding state is good, the number of cooling / heating cycles is extremely small, and B In Comparative Example No. 12 in which the component amounts were insufficient, joining itself was impossible.
実施例2 実施例1のNo.1、No.3、No.5で得られた複合粉末を圧
粉成形機を使用して50kgf/mm2で加圧し、30mm□×2mmt
のコイン状に成形した。 Example 2 The composite powders obtained in No. 1, No. 3 and No. 5 of Example 1 were pressed at 50 kgf / mm 2 using a powder compacting machine to obtain 30 mm □ × 2 mmt.
Was molded into a coin shape.
次いで、水素気流中で710〜720℃×1.5時間加熱焼結
した。この焼結体に焼鈍圧延を3回繰り返して施し、厚
さ0.2mmのシートを得た。このシートから50mm□のイン
サート材を切出した。Then, it was heated and sintered in a hydrogen stream at 710 to 720 ° C. for 1.5 hours. This sintered body was repeatedly annealed and rolled three times to obtain a sheet having a thickness of 0.2 mm. A 50 mm □ insert material was cut out from this sheet.
次に、実施例1と同様のアルミナ基板と銅板を準備
し、両者の間にこのシート状のインサート材を挾み、10
-3Torrの減圧雰囲気中で2kg/cm2の荷重を加え、750℃×
30分間加熱し、複合基板を得た。得られた複合基板につ
いて実施例1と同様な接合試験と冷熱サイクル試験を実
施した。それらの結果を第2表に示す。Next, the same alumina substrate and copper plate as in Example 1 were prepared, and this sheet-shaped insert material was sandwiched between the two, and
At a reduced pressure of -3 Torr, apply a load of 2 kg / cm 2 and 750 ℃
It was heated for 30 minutes to obtain a composite substrate. The bonding test and the thermal cycle test similar to those in Example 1 were performed on the obtained composite substrate. The results are shown in Table 2.
第2表より明らかなとおり、いずれの例も、本発明範
囲内の化学成分及び複合粉末を有するため、接合状態が
良好であり、冷熱サイクル回数も高い。As is clear from Table 2, in any of the examples, since the chemical components and the composite powder within the scope of the present invention are included, the bonded state is good, and the number of cooling / heating cycles is high.
実施例3 実施例1のNo.1〜No.10で得られた複合粉末を以下に
示す割合で配合し、3本ロールミルで混練してペースト
とした。 Example 3 The composite powders obtained in No. 1 to No. 10 of Example 1 were blended in the following proportions and kneaded with a three-roll mill to give a paste.
配合割合: 複合粉末 24 重量部 エチルセルロース 4.4 〃 テキサノール 5 〃 界面活性剤 0.5 〃 次に、セラミック基板として50mm×50mm×1.5mmtのア
ルミナ基板と金属板として50mm×50mm×0.3mmtの銅板を
準備し、上記ペーストをスクリーン印刷法を用いて銅板
表面に30μm厚さに印刷した。使用したスクリーンはス
テンレス鋼製200メッシュ、バイアス張りでエマルジョ
ン厚さ45μmである。Mixing ratio: 24 parts by weight of composite powder Ethyl cellulose 4.4 〃 Texanol 5 〃 Surfactant 0.5 〃 Next, prepare a 50 mm × 50 mm × 1.5 mmt alumina substrate as a ceramic substrate and a 50 mm × 50 mm × 0.3 mmt copper plate as a metal plate, The above paste was printed on the surface of a copper plate to a thickness of 30 μm using a screen printing method. The screen used is stainless steel 200 mesh, biased and has an emulsion thickness of 45 μm.
印刷後、10分間室温にてレベリングし、引続き105℃
で30分間乾燥した。乾燥後、厚膜焼成炉を使用し、窒素
雰囲気中で600℃に加熱して脱脂した。After printing, level at room temperature for 10 minutes and continue to 105 ℃
And dried for 30 minutes. After drying, a thick film firing furnace was used to degrease by heating to 600 ° C. in a nitrogen atmosphere.
脱脂処理を完了した基板にアルミナ基板を重ねた後、
10kg/cm2の荷重を加え、N2気流中又は10-4Torrの減圧雰
囲気中で850℃×15分間加熱し、接合して複合基板を得
た。After stacking the alumina substrate on the degreased substrate,
A load of 10 kg / cm 2 was applied, heating was performed at 850 ° C. for 15 minutes in a N 2 gas stream or a reduced pressure atmosphere of 10 −4 Torr, and bonded to obtain a composite substrate.
得られた複合基板につき実施例1と同様の接合試験と
冷熱サイクル試験を実施した。それらの結果を第3表に
示す。The bonding test and the thermal cycle test similar to those in Example 1 were performed on the obtained composite substrate. The results are shown in Table 3.
第3表より明らかなとおり、いずれの例も、本発明範
囲内の化学成分及び複合粉末を有するため、接合状態が
良好であると共に冷熱サイクル回数も高い。As is clear from Table 3, in each of the examples, since the chemical components and the composite powder within the scope of the present invention are included, the bonded state is good and the number of cooling / heating cycles is high.
なお、上記各実施例では、基板の組合せとしてアルミ
ナ基板と銅板の例を示したが、他の材質のセラミック、
金属の異材質又は同材質の組合せであっても、同様に使
用できることは云うまでもない。 In each of the above embodiments, an example of an alumina substrate and a copper plate was shown as a combination of substrates, but ceramics of other materials,
It goes without saying that different materials of metals or combinations of the same materials can be used similarly.
(発明の効果) 以上詳述したように、本発明に係る金属質接着材料
は、特定成分系でその化学成分を調整すると共に粉末形
態を複合粉末とし、且つ複合粉末を粒径5μm以下の細
かい粒度にしたので、接合が容易で、耐熱性及び接合強
度の優れた接合部を得ることができるのみならず、特に
冷熱サイクルに対する接合力劣化が小さい優れた効果が
得られる。しかも金属やセラミックの同材質間の接合の
みならず、異材質間の接合にも使用できる。(Effects of the Invention) As described in detail above, the metallic adhesive material according to the present invention has a chemical composition adjusted by a specific component system, a powder form is a composite powder, and the composite powder is a fine particle having a particle size of 5 μm or less. Since the grain size is adopted, not only a joined portion that is easy to join and has excellent heat resistance and joining strength can be obtained, but also an excellent effect that the joining force is less deteriorated particularly in a cooling / heating cycle can be obtained. Moreover, it can be used not only for joining metals and ceramics of the same material but also for joining different materials.
第1図は本発明に係る金属質接着材料の成分系及び組成
域を示す図、 第2図は本発明に係る金属質接着材料の粉末形態を示す
説明図、 第3図は種々の粒度の金属質接着材料におけるTi含有量
と冷熱サイクル回数の関係を示す図である。FIG. 1 is a diagram showing a component system and a composition range of the metallic adhesive material according to the present invention, FIG. 2 is an explanatory diagram showing a powder form of the metallic adhesive material according to the present invention, and FIG. It is a figure which shows the Ti content in a metallic adhesive material, and the relationship of the number of cooling / heating cycles.
Claims (3)
の少なくとも1種を10〜60%、Ti、Nb及びZrのうちの少
なくとも1種を0.5〜10%含み、残部がAg及び不可避的
不純物からなる組成を有し、かつ、各成分がメカニカル
アロイ法によって機械的に噛合結合した粒径5μm以下
の複合粉末から実質的になることを特徴とする金属質接
着材料。1. In weight% (hereinafter the same), at least one of Cu and Ni is contained in an amount of 10 to 60%, at least one of Ti, Nb and Zr is contained in an amount of 0.5 to 10%, and the balance is Ag. And a metallic adhesive material having a composition consisting of unavoidable impurities and consisting essentially of a composite powder having a particle size of 5 μm or less in which each component is mechanically meshed and bonded by a mechanical alloy method.
%、Ti、Nb及びZrのうちの少なくとも1種を0.5〜10%
含み、残部がAg及び不可避的不純物からなる組成を有
し、かつ、各成分がメカニカルアロイ法によって機械的
に噛合結合した粒径5μm以下の複合粉末から実質的に
なる粉末をシート状に成形したものであることを特徴と
する金属質接着材料。2. At least one of Cu and Ni is contained in an amount of 10 to 60.
%, At least one of Ti, Nb and Zr is 0.5-10%
A powder consisting of a composite powder having a particle size of 5 μm or less in which the balance is composed of Ag and unavoidable impurities, and each component is mechanically meshed and bonded by a mechanical alloy method is formed into a sheet. A metallic adhesive material characterized by being a thing.
%、Ti、Nb及びZrのうちの少なくとも1種を0.5〜10%
含み、残部がAg及び不可避的不純物からなる組成を有
し、かつ、各成分がメカニカルアロイ法によって機械的
に噛合結合した粒径5μm以下の複合粉末から実質的に
なる粉末を有機溶媒中に分散させペースト状にしたもの
であることを特徴とする金属質接着材料。3. At least one of Cu and Ni is contained in an amount of 10 to 60.
%, At least one of Ti, Nb and Zr is 0.5-10%
A powder consisting essentially of a composite powder with a particle size of 5 μm or less, which contains a balance of Ag and unavoidable impurities, and whose components are mechanically meshed and bonded by a mechanical alloy method, is dispersed in an organic solvent. A metallic adhesive material characterized by being formed into a paste.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21070487A JP2501835B2 (en) | 1987-08-25 | 1987-08-25 | Metallic adhesive material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21070487A JP2501835B2 (en) | 1987-08-25 | 1987-08-25 | Metallic adhesive material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6453795A JPS6453795A (en) | 1989-03-01 |
JP2501835B2 true JP2501835B2 (en) | 1996-05-29 |
Family
ID=16593717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21070487A Expired - Lifetime JP2501835B2 (en) | 1987-08-25 | 1987-08-25 | Metallic adhesive material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2501835B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1672919B (en) * | 2004-03-24 | 2010-04-28 | 住友电气工业株式会社 | Joining parts and appliances using it |
KR20140127228A (en) * | 2012-02-01 | 2014-11-03 | 미쓰비시 마테리알 가부시키가이샤 | Substrate for power modules, substrate with heat sink for power modules, power module, method for producing substrate for power modules, and paste for bonding copper member |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0345571A (en) * | 1989-07-14 | 1991-02-27 | Showa Denko Kk | Copper-ceramics composite substrate |
US5593082A (en) * | 1994-11-15 | 1997-01-14 | Tosoh Smd, Inc. | Methods of bonding targets to backing plate members using solder pastes and target/backing plate assemblies bonded thereby |
KR100332967B1 (en) * | 2000-05-10 | 2002-04-19 | 윤종용 | Method for manufacturing digital micro-mirror device(DMD) package |
US8608049B2 (en) * | 2007-10-10 | 2013-12-17 | Zimmer, Inc. | Method for bonding a tantalum structure to a cobalt-alloy substrate |
GB201121653D0 (en) * | 2011-12-16 | 2012-01-25 | Element Six Abrasives Sa | Binder materials for abrasive compacts |
JP5605423B2 (en) * | 2012-02-01 | 2014-10-15 | 三菱マテリアル株式会社 | Manufacturing method of joined body |
JP2013179263A (en) * | 2012-02-01 | 2013-09-09 | Mitsubishi Materials Corp | Power module substrate, power module substrate with heat sink, power module, and method for manufacturing power module substrate |
CN106363185B (en) * | 2016-08-26 | 2019-09-03 | 上海交通大学 | Powder metallurgy preparation method of nanophase/metal composite powder and its bulk material |
-
1987
- 1987-08-25 JP JP21070487A patent/JP2501835B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1672919B (en) * | 2004-03-24 | 2010-04-28 | 住友电气工业株式会社 | Joining parts and appliances using it |
KR20140127228A (en) * | 2012-02-01 | 2014-11-03 | 미쓰비시 마테리알 가부시키가이샤 | Substrate for power modules, substrate with heat sink for power modules, power module, method for producing substrate for power modules, and paste for bonding copper member |
KR102078891B1 (en) * | 2012-02-01 | 2020-02-18 | 미쓰비시 마테리알 가부시키가이샤 | Substrate for power modules, substrate with heat sink for power modules, power module, method for producing substrate for power modules, and paste for bonding copper member |
Also Published As
Publication number | Publication date |
---|---|
JPS6453795A (en) | 1989-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2811513B1 (en) | Method for producing substrate for power modules | |
JP4375730B2 (en) | Brazing material for joining copper and ceramics or carbon-based copper composite material and joining method therefor | |
EP2930744B1 (en) | Substrate for power modules, substrate with heat sink for power modules and power module | |
JP2501835B2 (en) | Metallic adhesive material | |
EP3150305B1 (en) | Porous aluminum composite and method for manufacturing porous aluminum composite | |
CN104072187A (en) | Joint material and jointed body | |
JPS60177992A (en) | Method for joining porous member and its product | |
JP2571233B2 (en) | Circuit board manufacturing method | |
WO2018180306A1 (en) | Molded body for joining and method for manufacturing same | |
JPH0378194B2 (en) | ||
JP3441197B2 (en) | Paste joining material for brazing | |
JPH0679988B2 (en) | Metallization method for nitride ceramics | |
JPH0347901A (en) | Material for adhesion | |
JPH0378191B2 (en) | ||
JP2006120973A (en) | Circuit board and circuit board manufacturing method | |
JPH06349315A (en) | Paste and its use | |
JP6969466B2 (en) | A method for manufacturing a molded body for joining and a joining method using the molded body for joining obtained by this method. | |
KR101825302B1 (en) | Electronic component joining alloy with excellent joining characteristic under high temperature and electronic component joining paste with the same | |
JPS635894A (en) | Adhesive material | |
WO2023286858A1 (en) | Copper/ceramic assembly, insulating circuit substrate, production method for copper/ceramic assembly, and production method for insulating circuit substrate | |
EP4378914A1 (en) | Copper/ceramic bonded body and insulated circuit board | |
JPH0378192B2 (en) | ||
JPH0257652A (en) | Metallic material for joining | |
JP2670627B2 (en) | Metallized alumina ceramics | |
JP2826840B2 (en) | Method of joining ceramic body and metal member |