JP2501738Y2 - Optical surface roughness measuring device - Google Patents
Optical surface roughness measuring deviceInfo
- Publication number
- JP2501738Y2 JP2501738Y2 JP1693590U JP1693590U JP2501738Y2 JP 2501738 Y2 JP2501738 Y2 JP 2501738Y2 JP 1693590 U JP1693590 U JP 1693590U JP 1693590 U JP1693590 U JP 1693590U JP 2501738 Y2 JP2501738 Y2 JP 2501738Y2
- Authority
- JP
- Japan
- Prior art keywords
- light
- polarized light
- measured
- linearly polarized
- surface roughness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003287 optical effect Effects 0.000 title claims description 63
- 230000003746 surface roughness Effects 0.000 title claims description 32
- 230000010287 polarization Effects 0.000 claims description 18
- 230000035559 beat frequency Effects 0.000 claims description 2
- 238000005259 measurement Methods 0.000 description 45
- 238000010586 diagram Methods 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000004439 roughness measurement Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
【考案の詳細な説明】 [産業上の利用分野] 本考案は、表面粗さ測定装置に係り、詳しくは、光の
干渉を利用して表面粗さを測定する光学式表面粗さ測定
装置に関するものである。TECHNICAL FIELD The present invention relates to a surface roughness measuring device, and more particularly, to an optical surface roughness measuring device for measuring surface roughness by utilizing light interference. It is a thing.
[従来技術] 本出願人は、表面粗さ測定装置の一種に、互いに偏波
面が直交し且つ周波数が異なる2種類の直線偏光の一方
を被測定物の表面の微小範囲に集光させるとともに、そ
の2種類の直線偏光の他方を被測定物の表面の比較的広
い範囲に平行ビームの状態で照射し、その表面で反射さ
れた計測光および参照光を、たがいに干渉させることに
よって計測ビート信号を取り出し、その表面の凹凸に対
応する計測ビート信号の位相変化、または、周波数変化
に基づいて表面粗さを測定するようにした光学式表面粗
さ測定装置を提案してきた(実願昭1-56385号)。[Prior Art] The applicant of the present invention, as a kind of surface roughness measuring device, collects one of two types of linearly polarized light whose polarization planes are orthogonal to each other and different in frequency in a minute range on the surface of the object to be measured. A measurement beat signal is obtained by irradiating the other of the two types of linearly polarized light on a relatively wide range of the surface of the DUT in the form of a parallel beam, and causing the measurement light and the reference light reflected by the surface to interfere with each other. Has been proposed, and an optical surface roughness measuring device has been proposed which measures the surface roughness based on the phase change or frequency change of the measured beat signal corresponding to the unevenness of the surface (Practical application 1- No. 56385).
かかる光学式表面粗さ測定装置においては、2種類の
直線偏光の一方は計測光として被測定物の表面の微小範
囲に集光され、他方は参照光として平行ビームの状態で
被測定物の表面の比較的広い範囲に照射されるため、被
測定物がそれらのビームの光軸と交差する方向へ相対移
動させられることにより、計測光はその被測定物の表面
の微小な凹凸に対応して光路長が変化させられるが、参
照光は微小凹凸の影響が平均化されて相殺されるため、
その表面の凹凸による位相変化や周波数変化を生じな
い。そして、それらの計測光と参照光とを干渉させるこ
とによって得られる計測ビート信号の位相や周波数変化
は、上記計測光の位相変化や周波数変化に伴って変化さ
せられるため、この位相変化や周波数変化に基づいて表
面粗さが測定され得るのである。つまり、計測光および
参照光はともに被測定物の表面に照射されるため、被測
定物を相対移動させる際の振動その他の外乱による影響
は互いに相殺されて、計測ビート信号の位相変化や周波
数変化には影響しない。In such an optical surface roughness measuring device, one of two types of linearly polarized light is condensed as a measurement light in a minute range on the surface of the object to be measured, and the other is used as a reference light in the state of a parallel beam to form a surface of the object to be measured. Since the object to be measured is relatively moved in a direction that intersects the optical axes of those beams, the measurement light corresponds to minute irregularities on the surface of the object to be measured. The optical path length can be changed, but the reference light is canceled out by averaging out the effects of minute irregularities.
There is no phase change or frequency change due to the unevenness of the surface. Then, the phase or frequency change of the measurement beat signal obtained by causing the measurement light and the reference light to interfere with each other is changed in accordance with the phase change or the frequency change of the measurement light. The surface roughness can be measured based on In other words, since the measurement light and the reference light are both radiated on the surface of the measured object, the effects of vibration and other disturbances when the measured object is moved relative to each other cancel each other out, and the phase change and frequency change of the measurement beat signal are canceled. Does not affect
第5図は、上記の光学式表面粗さ測定装置の一例を説
明する構成図である。レーザ光源30は、例えば偏波面が
互いに直交し且つ周波数が僅かに異なる2種類の直線偏
光、すなわちP偏光LPとS偏光LSとを含むレーザ光Lを
出力するゼーマンレーザから構成される。レーザ光源30
から出力されたレーザ光Lは、無偏光ビームスプリッタ
32により2本に分割され、そのうちの無偏光ビームスプ
リッタ32を透過したレーザ光は基準用光センサ34により
検出され、基準ビート信号FBが出力される。上記P偏光
LP、S偏光LSの周波数をそれぞれfp、fsとすると、基準
ビート信号FBの周波数fBは|fs−fp|となる。FIG. 5 is a configuration diagram illustrating an example of the above-described optical surface roughness measuring device. The laser light source 30 is composed of, for example, a Zeeman laser that outputs laser light L including two types of linearly polarized light whose polarization planes are orthogonal to each other and whose frequencies are slightly different, that is, P-polarized light LP and S-polarized light LS. Laser light source 30
The laser light L output from the non-polarizing beam splitter
The laser light that has been split into two by 32 and has passed through the non-polarizing beam splitter 32 is detected by the reference optical sensor 34, and the reference beat signal FB is output. P polarization above
When the frequencies of the LP and S-polarized light LS are fp and fs, respectively, the frequency fB of the reference beat signal FB is | fs−fp |.
一方無偏光ビームスプリッタ32によって反射されたレ
ーザ光Lは、同軸上に配置されたビームエキスパンダ74
によりビーム径が拡大され、横断面が円形の円形平行ビ
ームに変換された後、二重焦点レンズ76に入射させられ
る。この二重焦点レンズ76は、光学ガラスと複屈折性材
料とから構成されており入射する光線の偏波面の方向に
よって屈折率が異なるという性質を持っている。そのた
め、二重焦点レンズ76に入射されたレーザ光LのうちP
偏光LPは収束光、S偏光LSは平行光となって対物レンズ
44に入射する。対物レンズ44はその前焦点が二重焦点レ
ンズ76の後焦点に位置するように構成されているため、
収束光として入射したP偏光LPは平行光とされて被測定
物12の表面18の比較的広い範囲に照射される一方、平行
光として入射したS偏光LSは収束光として被測定物12の
表面18の一点に集光される。被測定物12は、駆動装置58
により上記対物レンズ44の光軸に直角なx-y平面内にお
いて二次元方向へ移動させられる移動テーブル60上に搭
載されており、その表面18の一点に集光されるS偏光LS
は、被測定物12が移動テーブル60により移動させられる
のに伴って表面18の微小凹凸に対応して生じるドップラ
ーシフトΔfsと、移動テーブル60の移動の際の振動その
他の外乱によるドップラーシフトΔfdとを受け、その反
射光の周波数はfs+Δfd+Δfsとなる。これに対し、円
形平行ビームの状態で表面18の比較的広い範囲に照射さ
れるP偏光LPは、表面18の微小凹凸による影響が平均化
されて全体として相殺されるため、外乱によるドップラ
ーシフトΔfdの影響を受けるだけで、その反射光の周波
数はfp+Δfdとなる。上記S偏光LSは計測光であり、P
偏光LPは参照光である。On the other hand, the laser light L reflected by the non-polarizing beam splitter 32 is the beam expander 74 arranged coaxially.
The beam diameter is expanded by and converted into a circular parallel beam having a circular cross section, which is then incident on the bifocal lens 76. The bifocal lens 76 is composed of an optical glass and a birefringent material, and has a property that the refractive index differs depending on the direction of the plane of polarization of an incident light ray. Therefore, of the laser light L incident on the bifocal lens 76, P
Polarization LP becomes convergent light, S-polarization LS becomes parallel light and objective lens
It is incident on 44. The objective lens 44 is configured such that its front focus is located at the rear focus of the bifocal lens 76,
The P-polarized light LP incident as the convergent light is made into parallel light and is irradiated onto a relatively wide area of the surface 18 of the DUT 12, while the S-polarized light LS incident as the parallel light is the convergent light on the surface of the DUT 12. It is focused on one point at 18. The device under test 12 is driven by the drive device 58.
Is mounted on a moving table 60 which can be moved in a two-dimensional direction in the xy plane perpendicular to the optical axis of the objective lens 44 by the S-polarized light LS which is condensed on one point of the surface 18 thereof.
Is a Doppler shift Δfs generated corresponding to the minute unevenness of the surface 18 as the DUT 12 is moved by the moving table 60, and a Doppler shift Δfd due to vibration or other disturbance during the movement of the moving table 60. Then, the frequency of the reflected light becomes fs + Δfd + Δfs. On the other hand, the P-polarized light LP irradiated on the relatively wide area of the surface 18 in the state of the circular parallel beam is canceled out by the Doppler shift Δfd due to the disturbance because the influence of the minute unevenness of the surface 18 is averaged and canceled out. The frequency of the reflected light is fp + Δfd only when affected by. The S-polarized light LS is measurement light, and P
The polarized LP is the reference light.
表面18で反射されたP偏光LPおよびS偏光LSは、それ
ぞれ入射経路と逆の光路を辿って無偏光ビームスプリッ
タ32に入射させられ、これを透過し計測用光センサ62に
受けられ、計測ビート信号FDが出力される。この計測ビ
ート信号FDはP偏光LPとS偏光LSとの干渉によるうなり
に対応するもので、その周波数fDは、|(fs+Δfd+Δ
fs)−(fp+Δfd)|=|fs−fp+Δfs|であり、前記外
乱によるドップラーシフトΔfdは相殺される。The P-polarized light LP and the S-polarized light LS reflected by the surface 18 are made incident on the non-polarization beam splitter 32 by following the optical paths opposite to the incident paths, transmitted through the non-polarized beam splitter 32, received by the measurement optical sensor 62, and measured by the measurement beat. The signal FD is output. This measured beat signal FD corresponds to a beat due to the interference between the P-polarized LP and the S-polarized LS, and its frequency fD is | (fs + Δfd + Δ
fs) − (fp + Δfd) | = | fs−fp + Δfs |, and the Doppler shift Δfd due to the disturbance is canceled.
上記計測ビート信号FDおよび前記基準ビート信号FBは
測定回路64に供給され、計測ビート信号FDの周波数fD
(=|fs−fp+Δfs|)から基準ビート信号FBの周波数fB
(=|fs−fp|)を減算することにより、表面18の凹凸に
よるドップラーシフトΔfsのみが取り出され、このドッ
プラーシフトΔfsを表わす信号が制御回路66へ供給され
る。制御回路66は、例えばマイクロコンピュータにて構
成され、前記駆動装置58により移動テーブル60をx-y方
向へ順次移動させつつ、測定回路64より供給される信号
(Δfs)から次式(1)に基づいて各位置の変位Zsを算
出し、被測定物12の表面18全体の表面粗さを表示器68に
三次元表示させる。The measurement beat signal FD and the reference beat signal FB are supplied to the measurement circuit 64, and the frequency fD of the measurement beat signal FD is
(= | Fs-fp + Δfs |) to the frequency fB of the reference beat signal FB
By subtracting (= | fs−fp |), only the Doppler shift Δfs due to the unevenness of the surface 18 is taken out, and a signal representing this Doppler shift Δfs is supplied to the control circuit 66. The control circuit 66 is composed of, for example, a microcomputer, and while sequentially moving the moving table 60 in the xy direction by the driving device 58, based on the signal (Δfs) supplied from the measuring circuit 64 based on the following equation (1). The displacement Zs at each position is calculated, and the surface roughness of the entire surface 18 of the object to be measured 12 is three-dimensionally displayed on the display 68.
Zs=∫(λ/2)Δfsdt ・・・(1) (λ:レーザの波長) [考案が解決しようとする課題] しかしながら、上記の方法では、対物レンズ44が一個
しかないためこのままでは被測定物60の表面粗さに応じ
て測定倍率の変更ができなかった。従って、高精度の測
定が必要でないときも、装置の調節に時間がかっかてい
た。また、測定倍率の変更をするために、対物レンズ44
を交換する場合は、測定倍率が変わればレンズの焦点距
離も変化するため、交換のたびに二重焦点レンズ76との
間の距離を微調整しなければならないというわずらわし
さがあった。Zs = ∫ (λ / 2) Δfsdt (1) (λ: wavelength of laser) [Problem to be solved by the invention] However, in the above method, since there is only one objective lens 44, the measured object is left as it is. The measurement magnification could not be changed according to the surface roughness of the object 60. Therefore, adjustment of the device was time-consuming even when high-precision measurement was not required. In addition, in order to change the measurement magnification, the objective lens 44
When the lens is replaced, the focal length of the lens also changes if the measurement magnification changes, so the distance between the lens and the bifocal lens 76 must be finely adjusted each time the lens is replaced.
本考案は、上述した問題点を解決するためになされた
ものであり、その目的とするところは、対物レンズの交
換を容易にし、被測定物の表面粗さが小さいときは二重
焦点レンズを用いた高精度な測定を行ない、比較的大き
い場合は二重焦点レンズを用いないで容易な調整ですむ
簡易的な測定ができるようにすることにある。The present invention has been made to solve the above-mentioned problems, and an object thereof is to facilitate replacement of an objective lens and use a bifocal lens when the surface roughness of an object to be measured is small. The purpose of this study is to make highly accurate measurements and to make simple measurements that do not require a bifocal lens and are easy to adjust if they are relatively large.
[課題を解決するための手段] この目的を達成するために、本考案の光学式表面粗さ
測定装置は、互いに偏波面が直交し、且つ、周波数が異
なる2種類の直線偏光を被測定物からの反射光をそれぞ
れ検出し、それら反射光のビート周波数の変化に基づい
て該被測定物の表面粗さを測定する光学式表面粗さ測定
装置において、前記2種類の直線偏光を含むレーザ光を
出力するレーザ光源装置と、前記レーザ光源装置のレー
ザ光に含まれる2種類の直線偏光のうちの一方を平行
光、他方を収束光とする二重焦点レンズを含み、一方の
直線偏光を前記被測定部材の表面上に集光させるととも
に、他方の直線偏光を平行光で、且つ、該被測定部材の
表面上において該一方の直線偏光の照射径よりも充分大
きい照射径にて照射する高精度光学系と、前記レーザ光
に含まれる2種類の直線偏光のうち一方のみを該被測定
部材の表面上に集光させる簡易光学系とを備え、前記2
種類の光学系のどちらか一方のみを使用できるように光
学系を切り替えることのできるように構成されている。[Means for Solving the Problem] In order to achieve this object, the optical surface roughness measuring device of the present invention uses two types of linearly polarized light whose polarization planes are orthogonal to each other and whose frequencies are different from each other. In the optical surface roughness measuring device for detecting the reflected light from each of the two and measuring the surface roughness of the object to be measured based on the change of the beat frequency of the reflected light, a laser beam including the two types of linearly polarized light And a bifocal lens that makes one of the two types of linearly polarized light included in the laser light of the laser light source device parallel light and the other convergent light, and outputs one linearly polarized light Highly converging light on the surface of the member to be measured and irradiating the other linearly polarized light with parallel light, and with an irradiation diameter sufficiently larger than the irradiation diameter of the one linearly polarized light on the surface of the member to be measured. Precision optics and A simple optical system for condensing only one of the two types of linearly polarized light included in the laser light on the surface of the member to be measured,
The optical systems can be switched so that only one of the two types of optical systems can be used.
[作用] 上記の構成を有する本考案の光学式表面粗さ測定装置
は、レーザ光源装置から互いに偏波面が直交しかつ周波
数が異なる2種類の直線偏光を含むレーザ光が出力され
るとともに、被測定物の表面粗さが小さいときは光学系
切り替え装置によって二重焦点レンズを含む高精度光学
系に切り替え、比較的大きいときは二重焦点レンズを含
まない簡易光学系に切り替えて測定を行なう。[Operation] In the optical surface roughness measuring device of the present invention having the above configuration, the laser light source device outputs laser light including two kinds of linearly polarized light whose polarization planes are orthogonal to each other and different in frequency, and When the surface roughness of the measured object is small, the optical system switching device switches to a high-precision optical system including a bifocal lens, and when the surface roughness is relatively large, a simple optical system not including a bifocal lens is switched to perform measurement.
二重焦点レンズを含む高精度光学系に切り替えた場合
は二重焦点レンズにより前記レーザ光源装置からのレー
ザ光に含まれる2種類の直線偏光が共通の光学軸上にお
いて平行光および集束光とされるとともに、それら2種
類の直線偏光のうちの一方の直線偏光は計測光として被
測定部材の表面に集光され、他方の直線偏光は平行光の
状態で、被測定部材の表面であって一方の直線偏光の集
光点に、その一方の直線偏光の照射径よりも充分に大き
い照射径にて照射される。上記一方および他方の直線偏
光の被測定部材からの反射光の計測ビート信号には、そ
れら一方および他方の直線偏光の集光点および照射面間
の相対的な高さ位置の変化に対応した位相シフトが発生
する。このため、上記計測ビート信号における周波数シ
フトあるいは位相変化を検出することにより、被測定部
材の表面粗さが測定され得るのである。When switching to a high-precision optical system including a bifocal lens, the bifocal lens converts two types of linearly polarized light included in the laser light from the laser light source device into parallel light and focused light on a common optical axis. At the same time, one of the two types of linearly polarized light is condensed as measurement light on the surface of the member to be measured, and the other linearly polarized light is parallel light and is The linearly polarized light is converged onto the condensing point with an irradiation diameter sufficiently larger than the irradiation diameter of the one linearly polarized light. In the measurement beat signal of the reflected light from the one or the other linearly polarized light measured member, the phase corresponding to the change in the relative height position between the condensing point of the one and the other linearly polarized light and the irradiation surface. A shift will occur. Therefore, the surface roughness of the member to be measured can be measured by detecting the frequency shift or the phase change in the measurement beat signal.
一方、二重焦点レンズを含まない簡易光学系に切り替
えた場合は上記レーザ光に含まれる2種類の直線偏光の
うち一方の直線偏光成分のみが被測定部材の表面に集光
される。上記被測定部材からの反射光には、集光点にお
ける相対的な高さ位置の変化に対応した位相シフトが発
生し、被測定部材の表面粗さが測定され得るのである。On the other hand, when switching to a simple optical system that does not include a bifocal lens, only one linearly polarized light component of the two types of linearly polarized light included in the laser light is condensed on the surface of the member to be measured. In the reflected light from the member to be measured, a phase shift corresponding to the change in the relative height position at the converging point occurs, and the surface roughness of the member to be measured can be measured.
[実施例] 以下、本考案を具体化した実施例を図面を参照して説
明する。なお、以下の第1、第2の実施例は、第5図の
従来例に本考案を適用した場合のものであり、共通する
部分には同一の符号を付して詳しい説明を省略する。[Embodiment] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The following first and second embodiments are the ones in which the present invention is applied to the conventional example of FIG. 5, and common portions are given the same reference numerals and detailed description thereof will be omitted.
第1図および第2図は本考案の第1の実施例を説明す
る構成図である。第1図においてミラー75、二重焦点レ
ンズ76および対物レンズ44はx方向に移動可能な一軸テ
ーブル50に固定されている。また偏光ビームスプリッタ
40、ミラー42および対物レンズレボルバ46も同じ一軸テ
ーブル50に固定されている。一軸テーブル50はつまみ52
をx方向に動かすことにより第2図のように光学系を切
り替えることができる。ここでミラー75、二重焦点レン
ズ76および対物レンズ44からなる前者の光学系が高精度
光学系、偏光ビームスプリッタ40、ミラー42および対物
レンズレボルバ46からなる後者の光学系が簡易光学系、
一軸テーブル50とつまみ52が光学系切り替え系である。
高精度光学系の対物レンズ44には比較的高倍率なものを
用い、簡易光学系のレボルバ46にはそれよりも低倍率の
対物レンズ45を取り付ける。第1図に示す高精度光学系
に切り替えた場合の粗さ測定の原理は従来技術と全く同
じであるので省略する。1 and 2 are block diagrams for explaining the first embodiment of the present invention. In FIG. 1, the mirror 75, the bifocal lens 76 and the objective lens 44 are fixed to a uniaxial table 50 which is movable in the x direction. Also a polarizing beam splitter
40, the mirror 42, and the objective lens revolver 46 are also fixed to the same uniaxial table 50. Uniaxial table 50 Knob 52
By moving in the x direction, the optical system can be switched as shown in FIG. Here, the former optical system consisting of the mirror 75, the bifocal lens 76 and the objective lens 44 is a high precision optical system, and the latter optical system consisting of the polarization beam splitter 40, the mirror 42 and the objective lens revolver 46 is a simple optical system,
The uniaxial table 50 and the knob 52 are an optical system switching system.
A relatively high-magnification objective lens 44 is used as the high-precision optical system, and an objective lens 45 having a lower magnification than that is attached to the revolver 46 of the simple optical system. The principle of roughness measurement when switching to the high-precision optical system shown in FIG.
第2図に示すように一軸テーブル50によって簡易光学
系に切り替えた場合はビームエキスパンダ74からのレー
ザ光Lは偏光ビームスプリッタ40によってS偏光LSとP
偏光LPとに分割される。S偏光LSは下向きに反射されて
レボルバ46に装着された対物レンズ45に入射し、P偏光
LPは偏光ビームスプリッタ40を通過してミラー42に照射
される。対物レンズ45に入射されたS偏光LSは収束光と
して被測定物12の表面18の一点に集光される。レボルバ
46を回転させることによって、対物レンズを交換し測定
倍率を変更させることができる。表面18からの反射光は
移動テーブル60により移動させられるのにともなって表
面18の微小凹凸に対応して生じるドップラーシフトΔfs
と、移動テーブル60の移動の際の振動その他の外乱によ
るドップラーシフトΔfdとを受け、その反射光の周波数
はfs+Δfd+Δfsとなる。また、ミラー42からの反射光
はミラー42が固定であるためその周波数は変化せずfpの
ままである。上記S偏光LSは計測光であり、P偏光LPは
参照光である。P偏光LPおよびS偏光LSの反射光は偏光
ビームスプリッタ40で合成されて計測用光センサ62に受
けられ、計測ビート信号FDが出力される。この計測ビー
ト信号FDはP偏光LPとS偏光LSとの干渉によるうなりに
対応するもので、その周波数fDは、|fs−fp+Δfd+Δf
s|であり外乱によるドップラーシフトΔfdの影響を受け
ているが、簡易光学系では比較的粗さの大きな被測定物
を低倍率で測定しているので表面の粗さの大きさに比較
して外乱の影響は無視できる。計測用光センサ62で受光
された計測ビート信号FDから従来方法と同様にして被測
定物12の表面18の表面粗さが計算され、表示器68で表示
される。As shown in FIG. 2, when the uniaxial table 50 is used to switch to the simple optical system, the laser beam L from the beam expander 74 is polarized by the polarization beam splitter 40 into S-polarized light LS and P-polarized light.
It is divided into polarized light LP. The S-polarized light LS is reflected downward and is incident on the objective lens 45 mounted on the revolver 46, and is P-polarized light.
The LP passes through the polarization beam splitter 40 and is applied to the mirror 42. The S-polarized light LS that has entered the objective lens 45 is condensed as a convergent light on a point on the surface 18 of the DUT 12. Revolver
By rotating 46, the objective lens can be replaced and the measurement magnification can be changed. The reflected light from the surface 18 is moved by the moving table 60 and is caused by the Doppler shift Δfs corresponding to the minute unevenness of the surface 18.
And the Doppler shift Δfd due to vibrations and other disturbances when the moving table 60 moves, the frequency of the reflected light becomes fs + Δfd + Δfs. Further, the frequency of the reflected light from the mirror 42 remains unchanged at fp because the mirror 42 is fixed. The S-polarized light LS is measurement light and the P-polarized light LP is reference light. The reflected lights of the P-polarized light LP and the S-polarized light LS are combined by the polarization beam splitter 40 and received by the measurement optical sensor 62, and the measurement beat signal FD is output. This measurement beat signal FD corresponds to a beat due to the interference between the P polarized light LP and the S polarized light LS, and its frequency fD is | fs−fp + Δfd + Δf.
s |, which is affected by the Doppler shift Δfd due to disturbance, but in the simple optical system, the object to be measured, which has a relatively large roughness, is measured at a low magnification. The influence of disturbance can be ignored. The surface roughness of the surface 18 of the DUT 12 is calculated from the measurement beat signal FD received by the measurement optical sensor 62 in the same manner as in the conventional method, and displayed on the display 68.
第3図および第4図は本考案の第2の実施例を説明す
る構成図である。3 and 4 are block diagrams for explaining the second embodiment of the present invention.
第3図において二重焦点レンズ76、対物レンズ44から
なる高精度光学系と偏光ビームスプリッタ82、ミラー84
および対物レンズ45からなる簡易光学系とがレボルバ80
に取り付けられている。レボルバ80を回転させることに
より、第4図のように高精度光学系と簡易光学系とを切
り替えることができる。ここでレボルバ80が光学系切り
替え系である。高精度光学系の対物レンズ44には比較的
高倍率なものを用い、簡易光学系の対物レンズ45にはそ
れよりも低倍率のものを用いる。第3図に示す高精度光
学系に切り替えた場合の粗さ測定の原理は従来技術およ
び前述の第1の実施例とほぼ同じであるが、二重焦点レ
ンズ76が光軸回りに90度回転された状態で取り付けられ
ているため前記2例ではS偏光LSが計測光、P偏光LPが
参照光であったのに対し、本実施例ではP偏光LPが計測
光、S偏光LSが参照光となっている。In FIG. 3, a high-precision optical system including a bifocal lens 76 and an objective lens 44, a polarization beam splitter 82, and a mirror 84.
And a simple optical system consisting of objective lens 45 is a revolver 80.
Attached to. By rotating the revolver 80, the high precision optical system and the simple optical system can be switched as shown in FIG. Here, the revolver 80 is an optical system switching system. The objective lens 44 of the high precision optical system has a relatively high magnification, and the objective lens 45 of the simple optical system has a lower magnification than that. The principle of roughness measurement when switching to the high-precision optical system shown in FIG. 3 is almost the same as the prior art and the first embodiment described above, but the bifocal lens 76 rotates 90 degrees around the optical axis. In the above-mentioned two examples, the S-polarized light LS is the measurement light and the P-polarized light LP is the reference light, so that the P-polarized light LP is the measurement light and the S-polarized light LS is the reference light in the present embodiment. Has become.
第4図に示すようにレボルバ80によって簡易光学系に
切り替えた場合はミラー75からの反射レーザ光Lは偏光
ビームスプリッタ82によってS偏光LSとP偏光LPとに分
割される。S偏光LSは反射されてミラー84に照射され、
P偏光LPは偏光ビームスプリッタ82を通過して対物レン
ズ45に入射する。対物レンズ45に入射されたP偏光LPは
収束光として被測定物12の表面18の一点に集光される。
表面18からの反射光は被測定物12が移動テーブル60によ
り移動させられるのにともなって表面18の微小凹凸に対
応して生じるドップラーシフトΔfsと、移動テーブル60
の移動の際の振動その他の外乱によるドップラーシフト
Δfdとを受け、その反射光の周波数はfp+Δfd+Δfsと
なる。また、ミラー42からの反射光はミラー42が固定で
あるためその周波数は変化せずfsのままである。上記P
偏光LPは計測光であり、S偏光LSは参照光である。P偏
光LPおよびS偏光LSの反射光は偏光ビームスプリッタ82
で合成されて計測用光センサ62に受けられ、計測ビート
信号FDが出力される。この計測ビート信号FDはP偏光LP
とS偏光LSとの干渉によるうなりに対応するもので、そ
の周波数fDは、|fp−fs+Δfd+Δfs|であり外乱による
ドップラーシフトΔfdの影響を受けているが、簡易光学
系では比較的粗さの大きな被測定物を低倍率で測定して
いるので表面の粗さの大きさに比較して外乱の影響は無
視できる。計測用光センサ62で受光された計測ビート信
号FDから従来方法と同様にして被測定物12の表面18の表
面粗さが計算され、表示器68で表示される。As shown in FIG. 4, when the revolver 80 switches to the simple optical system, the reflected laser light L from the mirror 75 is split by the polarization beam splitter 82 into S-polarized light LS and P-polarized light LP. The S-polarized LS is reflected and irradiated on the mirror 84,
The P-polarized light LP passes through the polarization beam splitter 82 and enters the objective lens 45. The P-polarized light LP incident on the objective lens 45 is condensed as a convergent light on one point on the surface 18 of the DUT 12.
The reflected light from the surface 18 is caused by the Doppler shift Δfs corresponding to the minute unevenness of the surface 18 as the DUT 12 is moved by the moving table 60 and the moving table 60.
The frequency of the reflected light is fp + Δfd + Δfs due to the Doppler shift Δfd due to vibrations and other disturbances during the movement. Further, the frequency of the reflected light from the mirror 42 remains unchanged at fs because the mirror 42 is fixed. Above P
The polarized light LP is the measurement light, and the S polarized light LS is the reference light. The P-polarized LP and S-polarized LS reflected lights are polarized beam splitter 82.
Is received by the measurement optical sensor 62, and the measurement beat signal FD is output. This measurement beat signal FD is P-polarized LP
The frequency fD is | fp−fs + Δfd + Δfs |, which is affected by the Doppler shift Δfd due to disturbance, but the simple optical system has relatively large roughness. Since the object to be measured is measured at a low magnification, the influence of disturbance can be ignored in comparison with the magnitude of surface roughness. From the measurement beat signal FD received by the measurement optical sensor 62, the surface roughness of the surface 18 of the DUT 12 is calculated in the same manner as in the conventional method, and displayed on the display 68.
以上、本考案の二つの実施例を図面に基づいて詳細に
説明したが、本考案は他の態様で実施することもでき
る。Although the two embodiments of the present invention have been described in detail with reference to the drawings, the present invention can be implemented in other modes.
例えば、前記実施例では、レーザ光源30として直交2
周波のゼーマンレーザが用いられていたが、音響光学変
調素子などを備えた周波数シフタを用いて2つの直線偏
光間に所望の周波数差を形成する形式のレーザ光源が用
いられてもよいのである。この場合には、上記音響光学
変調素子の駆動周波数信号から基準ビート信号FBを検出
することもできる。For example, in the above-described embodiment, the laser light source 30 is orthogonal 2
Although the frequency Zeeman laser was used, a laser light source of the type that forms a desired frequency difference between two linearly polarized lights by using a frequency shifter provided with an acousto-optic modulator or the like may be used. In this case, the reference beat signal FB can also be detected from the drive frequency signal of the acousto-optic modulator.
また、前記実施例では、x方向およびy方向へ駆動さ
れる移動テーブル60によって被測定物12が2方向へ移動
させられるように構成されていたが、上記x方向および
y方向のうちの一方の方向だけ移動させられて表面粗さ
が測定されてもよい。Further, in the above-described embodiment, the object to be measured 12 is moved in two directions by the moving table 60 driven in the x direction and the y direction. The surface roughness may be measured by moving in only one direction.
また、例えば偏光ビームスプリッタ40の上部に顕微鏡
鏡筒を設けて測定状態をモニタできるようにしたり、レ
ーザ光源30とビームスプリッタ32の間に光アイソレータ
を入れたりするなど、本考案は当業者の知識に基づいて
種々の変更、改良を加えた態様で実施することができ
る。Further, for example, a microscope lens barrel is provided above the polarization beam splitter 40 so that the measurement state can be monitored, or an optical isolator is inserted between the laser light source 30 and the beam splitter 32. It can be implemented in a mode in which various changes and improvements are added based on the above.
[考案の効果] 以上詳述したことから明らかなように、本考案によれ
ば、二重焦点レンズを用いた高精度光学系と、二重焦点
レンズを用いない簡易光学系を切り替えることができる
ため、対物レンズの交換が容易にでき、被測定物の表面
粗さが小さいときは二重焦点レンズを用いた高精度な測
定を行ない、比較的大きい場合は二重焦点レンズを用い
ないで容易な調整ですむ簡易的な測定ができる。[Advantages of Device] As is clear from the above description, according to the present invention, it is possible to switch between a high-precision optical system using a bifocal lens and a simple optical system not using a bifocal lens. Therefore, the objective lens can be easily replaced, and when the surface roughness of the DUT is small, high-precision measurement is performed using the bifocal lens, and when it is relatively large, it is easy without using the bifocal lens. Simple measurement can be performed with simple adjustment.
第1図から第4図までは本考案を具体化した実施例を示
すもので、第1図乃至第2図は、本考案の第1の実施例
である光学式表面粗さ測定装置の構成を説明する構成
図、第3図乃至第4図は、本考案の第2の実施例である
光学式表面粗さ測定装置の構成を説明する構成図、第5
図は従来の光学式表面粗さ測定装置の一例を説明する構
成図である。 30:レーザ光源 32:ビームスプリッタ 33:偏光子 34:基準用光センサ 74:ビームエキスパンダ 75:ミラー 76:二重焦点レンズ 44:対物レンズ 12:被測定物 18:表面 60:移動テーブル 61:偏光子 62:計測用光センサ 40:偏光ビームスプリッタ 46:レボルバ 45:対物レンズ 42:ミラー 50:一軸テーブル 52:つまみ 64:測定回路 66:制御回路 68:表示器 58:駆動装置 80:レボルバ 82:偏光ビームスプリッタ 84:ミラー LP:P偏光(直線偏光) LS:S偏光(直線偏光)1 to 4 show an embodiment in which the present invention is embodied, and FIGS. 1 and 2 show the construction of an optical surface roughness measuring apparatus according to the first embodiment of the present invention. FIGS. 3 and 4 are schematic diagrams for explaining the configuration of an optical surface roughness measuring apparatus according to a second embodiment of the present invention.
FIG. 1 is a configuration diagram illustrating an example of a conventional optical surface roughness measuring device. 30: Laser light source 32: Beam splitter 33: Polarizer 34: Reference optical sensor 74: Beam expander 75: Mirror 76: Dual focus lens 44: Objective lens 12: Object to be measured 18: Surface 60: Moving table 61: Polarizer 62: Optical sensor for measurement 40: Polarization beam splitter 46: Revolver 45: Objective lens 42: Mirror 50: Uniaxial table 52: Knob 64: Measurement circuit 66: Control circuit 68: Display 58: Drive device 80: Revolver 82 : Polarizing beam splitter 84: Mirror LP: P polarized light (linear polarized light) LS: S polarized light (linear polarized light)
Claims (1)
なる2種類の直線偏光を被測定物からの反射光をそれぞ
れ検出し、それら反射光のビート周波数の変化に基づい
て該被測定物の表面粗さを測定する光学式表面粗さ測定
装置において、 前記2種類の直線偏光を含むレーザ光を出力するレーザ
光源装置と、 前記レーザ光源装置のレーザ光に含まれる2種類の直線
偏光のうちの一方を平行光、他方を収束光とする二重焦
点レンズを含み、一方の直線偏光を前記被測定部材の表
面上に集光させるとともに、他方の直線偏光を平行光
で、且つ、該被測定部材の表面上において該一方の直線
偏光の照射径よりも充分大きい照射径にて照射する高精
度光学系と、 前記レーザ光に含まれる2種類の直線偏光のうち一方の
みを該被測定部材の表面上に集光させる簡易光学系とを
備え、 前記2種類の光学系のどちらか一方のみを使用できるよ
うに光学系を切り替えることのできることを特徴とする
光学式表面粗さ測定装置。1. Reflected light from an object to be measured detects two kinds of linearly polarized light whose polarization planes are orthogonal to each other and different in frequency, and the object to be measured is based on a change in beat frequency of the reflected light. An optical surface roughness measuring device for measuring the surface roughness of a laser light source device for outputting a laser beam containing the two types of linearly polarized light, and two types of linearly polarized light included in the laser beam of the laser light source device. A bifocal lens having one of them as parallel light and the other as converging light is included, and one linearly polarized light is condensed on the surface of the member to be measured, and the other linearly polarized light is parallel light, and A high-precision optical system that irradiates the surface of the member to be measured with an irradiation diameter that is sufficiently larger than the irradiation diameter of the one linearly polarized light, and only one of the two types of linearly polarized light included in the laser light is measured. Collected on the surface of the member It is a simple optical system causes the two optical systems the optical surface roughness measuring apparatus characterized by capable of switching the optical system to be able to use only one of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1693590U JP2501738Y2 (en) | 1990-02-22 | 1990-02-22 | Optical surface roughness measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1693590U JP2501738Y2 (en) | 1990-02-22 | 1990-02-22 | Optical surface roughness measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03109150U JPH03109150U (en) | 1991-11-08 |
JP2501738Y2 true JP2501738Y2 (en) | 1996-06-19 |
Family
ID=31520175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1693590U Expired - Lifetime JP2501738Y2 (en) | 1990-02-22 | 1990-02-22 | Optical surface roughness measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2501738Y2 (en) |
-
1990
- 1990-02-22 JP JP1693590U patent/JP2501738Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03109150U (en) | 1991-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4576479A (en) | Apparatus and method for investigation of a surface | |
CN102109414B (en) | Method and device for calibrating phase modulation of spatial light modulators by utilizing heterodyne interference | |
US8547557B2 (en) | Apparatus for determining a height map of a surface through both interferometric and non-interferometric measurements | |
JP2010071989A (en) | Method and instrument for detecting movement of measuring probe | |
US4842408A (en) | Phase shift measuring apparatus utilizing optical meterodyne techniques | |
US4798468A (en) | Interference apparatus for detecting state of wave surface | |
JPH0718963Y2 (en) | Optical surface roughness measuring device | |
JP2501738Y2 (en) | Optical surface roughness measuring device | |
JP2807965B2 (en) | Small angle cross beam orthogonal two-frequency light source for heterodyne interferometer | |
JP4536873B2 (en) | Three-dimensional shape measuring method and apparatus | |
JP2998333B2 (en) | Atomic force microscope | |
US9417050B2 (en) | Tracking type laser interferometer for objects with rotational degrees of freedom | |
US6804009B2 (en) | Wollaston prism phase-stepping point diffraction interferometer and method | |
JP2949847B2 (en) | Optical surface roughness measuring device | |
JPH0742087Y2 (en) | Optical surface roughness measuring device | |
JP2514577Y2 (en) | Optical surface roughness measuring device | |
JP2002333304A (en) | Optical heterodyne interferometer | |
JP3184914B2 (en) | Surface shape measuring method and surface shape measuring instrument | |
JP2004093452A (en) | Three-dimensional shape measuring device and method | |
JPH0460403A (en) | Aimed two-flux interferometer | |
JPH0465601A (en) | Optical heterodyne interference measuring instrument | |
JP2003042710A (en) | Optical heterodyne interferometer | |
JPH03125909A (en) | Optical apparatus for measurement | |
JPH01203914A (en) | Optical surface roughness measuring device | |
JPH03141544A (en) | Scanning electron microscope with laser displacement meter |