JP2500691B2 - Low temperature sinterable low dielectric constant inorganic composition - Google Patents
Low temperature sinterable low dielectric constant inorganic compositionInfo
- Publication number
- JP2500691B2 JP2500691B2 JP1218707A JP21870789A JP2500691B2 JP 2500691 B2 JP2500691 B2 JP 2500691B2 JP 1218707 A JP1218707 A JP 1218707A JP 21870789 A JP21870789 A JP 21870789A JP 2500691 B2 JP2500691 B2 JP 2500691B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- low
- composition
- dielectric constant
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は低温焼結性低誘電率無機組成物に関し、さら
に詳しくは、主として超高速VLSI素子を実装する多層セ
ラミック配線基板に用いられ、1000℃以下の低温での焼
結が可能で、誘電率の低い無機組成物に関するものであ
る。TECHNICAL FIELD The present invention relates to a low temperature sinterable low dielectric constant inorganic composition, and more specifically, it is mainly used for a multilayer ceramic wiring board for mounting an ultra-high speed VLSI device. The present invention relates to an inorganic composition having a low dielectric constant, which can be sintered at a low temperature of ℃ or less.
[従来の技術] 従来、ICやLSI等の半導体素子はガラスエポキシ等の
プリント回路基板あるいはアルミナセラミック基板に実
装されていたが、半導体素子の高集積化、微細化、高速
化に伴い、実装用基板に対しても高密度微細配線化、高
速伝送化、高周波数化、高熱放散化の要求が増えてき
た。従来のプリント基板には、スルーホールメッキ性、
加工性、多層化接着、高温での熱変形等の問題があり、
高密度化には限界がある。そのため、高密度実装基板と
しては未だ実用化には至っておらず、セラミック基板の
ほうが可能性を秘めている。[Prior Art] Conventionally, semiconductor elements such as ICs and LSIs have been mounted on a printed circuit board such as glass epoxy or an alumina ceramic substrate. However, as semiconductor elements become highly integrated, miniaturized, and speeded up, they are mounted. The demand for high-density fine wiring, high-speed transmission, high frequency, and high heat dissipation has also increased for substrates. The conventional printed circuit board has through-hole plating,
There are problems such as workability, multi-layer adhesion, thermal deformation at high temperature,
There is a limit to high density. Therefore, it has not yet been put to practical use as a high-density mounting board, and a ceramic board has more potential.
しかし、アルミナ基板も、1500℃以上の高温で焼結し
なければならないため、同時焼成される配線導体材料と
しては比較的抵抗の高いW、Mo等の高融点金属に限定さ
れる。したがって、パルス信号の伝送損失を考慮に入れ
た場合、配線パターンの微細化には限界が生じてしま
う。However, since the alumina substrate also has to be sintered at a high temperature of 1500 ° C. or higher, the wiring conductor material to be co-fired is limited to refractory metals such as W and Mo having relatively high resistance. Therefore, if the transmission loss of the pulse signal is taken into consideration, there is a limit to the miniaturization of the wiring pattern.
そこで開発されたのが低温焼結性多層セラミック基板
である。絶縁材料としては、アルミナとガラスの複合材
料系や結晶化ガラス系等があるが、いずれも1000℃以下
で焼結するため、配線導体材料として比抵抗の低いAu、
Ag−Pd、Cu等の低融点金属を用いることができる。ま
た、グリーンシート多層化法を使うことができるため、
高密度微細配線化に非常に有利である。Therefore, a low temperature sinterable multilayer ceramic substrate was developed. As the insulating material, there are a composite material system of alumina and glass, a crystallized glass system, etc., but since both are sintered at 1000 ° C. or lower, Au having a low specific resistance as a wiring conductor material,
A low melting point metal such as Ag-Pd or Cu can be used. Also, since the green sheet multi-layering method can be used,
Very advantageous for high-density fine wiring.
[発明が解決しようとする課題] 一方、高速伝送化に対しては、パルス信号の伝播遅延
時間が基板材料の誘電率の平方根に比例するため、基板
材料の低誘電率化が必要不可欠となる。ところが、アル
ミナ基板(誘電率=約10)はもちろんのこと、最近開発
されている低温焼結性セラミック基板もアルミナに比べ
低いものの、十分な低誘電率化は図られておらず高速化
に対してまだ改善する必要がある。[Problems to be Solved by the Invention] On the other hand, for high-speed transmission, since the propagation delay time of a pulse signal is proportional to the square root of the dielectric constant of the substrate material, it is essential to reduce the dielectric constant of the substrate material. . However, not only alumina substrates (dielectric constant = about 10), but recently developed low-temperature sinterable ceramic substrates are also lower than alumina, but they have not been sufficiently low-dielectric constant and are not suitable for high speed. Still needs improvement.
例えば、特公昭61−210195号公報および同61−218407
号公報に示される低温焼結性低誘電率無機組成物でも、
セラミック材料として誘電率の低いコーディエライト、
石英ガラス、水晶(α−石英)が用いられているにもか
かわらず、ガラスの誘電率が高い分、低誘電率化は不十
分である。For example, Japanese Patent Publication No. 61-210195 and 61-218407.
In the low temperature sinterable low dielectric constant inorganic composition shown in Japanese Patent Publication,
Cordierite, which has a low dielectric constant as a ceramic material,
Despite the use of quartz glass and quartz (α-quartz), the low permittivity is insufficient because the permittivity of glass is high.
本発明の目的はこのような従来の問題点を解決して、
十分低い誘電率を有し、かつ1000℃以下の低温焼成が可
能な高密度実装多層セラミック基板の絶縁層用無機組成
物を提供することにある。The object of the present invention is to solve such conventional problems,
An object of the present invention is to provide an inorganic composition for an insulating layer of a high-density mounted multilayer ceramic substrate, which has a sufficiently low dielectric constant and can be fired at a low temperature of 1000 ° C or lower.
[課題を解決するための手段] 本発明は、セラミック材料のコーディエライト、石英
ガラスおよびホウケイ酸系ガラスからなる3成分系無機
組成物であって、ホウケイ酸系ガラスは、酸化物換算表
記に従ったとき、主成分が酸化ケイ素:75〜85重量%、
酸化ホウ素:15〜20重量%、酸化アルミニウム:0.1〜5
重量%、I族元素酸化物:0.1〜5重量%、II族元素酸化
物:0.1〜1重量%、酸化チタン:0〜0.05重量%の組成範
囲で、合計量が100重量%になるように構成されてお
り、かつコーディエライト:X、石英ガラス:Y、ホウケイ
酸系ガラス:Z(重量%比率)と表示したとき(X+Y+
Z=100)、この3成分系組成図において以下の組成
点、 (X=0、Y=0、Z=100) (X=45、Y=0、Z=55) (X=0、Y=45、Z=55) の各点を結ぶ線上、およびこの3点に囲まれる組成範囲
にあることを特徴とする低温焼結性低誘電率無機組成物
である。[Means for Solving the Problems] The present invention is a three-component inorganic composition consisting of a cordierite ceramic material, quartz glass, and borosilicate glass, and the borosilicate glass is expressed in terms of oxide. When followed, the main component is silicon oxide: 75-85% by weight,
Boron oxide: 15 to 20% by weight, aluminum oxide: 0.1 to 5
%, Group I element oxide: 0.1 to 5% by weight, Group II element oxide: 0.1 to 1% by weight, titanium oxide: 0 to 0.05% by weight, so that the total amount becomes 100% by weight. It is composed and when displayed as cordierite: X, quartz glass: Y, borosilicate glass: Z (weight% ratio) (X + Y +
Z = 100), the following composition points in this three-component composition diagram: (X = 0, Y = 0, Z = 100) (X = 45, Y = 0, Z = 55) (X = 0, Y = 45, Z = 55), and a low-temperature sinterable low-dielectric-constant inorganic composition characterized by being in a composition range surrounded by these three points on a line connecting the points.
本発明の低温焼結性低誘電率無機組成物は、例えば次
のような材料や方法によって製造できる。即ち、ホウケ
イ酸系ガラスの調整に当たっては、目標組成となるよう
に各成分の原料を秤量してバッチを作製し、このバッチ
を1400℃以上の高温で2〜4時間加熱、溶解し、ガラス
化させる。溶解ガラスを水冷、あるいは厚い鉄板上に流
してフレーク状に成形し、得られたガラス片をアルミナ
ボールミル等で微粉砕し、平均粒径0.5〜3μmのガラ
ス粉末を得る。一方、コーディエライトや石英ガラスも
粉砕により平均粒径0.5〜5μmの微粉末とする。The low temperature sinterable low dielectric constant inorganic composition of the present invention can be produced, for example, by the following materials and methods. That is, in the preparation of borosilicate glass, the raw materials of the respective components were weighed so as to obtain the target composition to prepare a batch, and this batch was heated at a high temperature of 1400 ° C. or higher for 2 to 4 hours to be melted and vitrified. Let The molten glass is cooled with water or poured on a thick iron plate to form flakes, and the obtained glass pieces are finely pulverized with an alumina ball mill or the like to obtain glass powder having an average particle diameter of 0.5 to 3 μm. On the other hand, cordierite and quartz glass are also pulverized into fine powder having an average particle size of 0.5 to 5 μm.
前記方法で得られたガラス粉末に、前記コーディエラ
イトや石英ガラス粉末を目標組成となるように配合し、
ボールミル等で1〜3時間混合し、ホウケイ酸系ガラス
粉末とコーディエライト、石英ガラス粉末との均質な混
合粉末、即ち本発明の低温焼結性低誘電率無機組成物を
得る。なお、この際用いられるホウケイ酸系ガラス粉末
は明確化のため酸化物に換算表記したが、鉱物、酸化
物、炭酸塩、水酸化物等の系で、通常の方法により使用
してもよい。To the glass powder obtained by the above method, the cordierite or quartz glass powder is blended so as to have a target composition,
The mixture is mixed for 1 to 3 hours with a ball mill or the like to obtain a homogeneous mixed powder of borosilicate glass powder, cordierite and quartz glass powder, that is, the low temperature sinterable low dielectric constant inorganic composition of the present invention. Although the borosilicate glass powder used at this time is expressed as an oxide for clarity, it may be a system of minerals, oxides, carbonates, hydroxides or the like and may be used by a usual method.
さらに、前記によって得られた本発明の粉末状無機組
成物は、例えばグリーンシート積層法により成形され
る。即ち、粉末にビヒクルを添加混合し、高速ミキサー
やボールミル等を用い十分混練、均一に分散させてスラ
リーを調製し、これをスリップキャスティング法により
絶縁層を形成するのに適した膜厚のグリーンシートとす
る。なお、バインダや溶剤等の有機ビヒクル類は通常用
いられているもので十分であり、成分については何等限
定を要しない。Further, the powdery inorganic composition of the present invention obtained as described above is molded by, for example, a green sheet laminating method. That is, the vehicle is added to the powder and mixed, sufficiently kneaded using a high speed mixer or a ball mill, and uniformly dispersed to prepare a slurry, which is a green sheet having a film thickness suitable for forming an insulating layer by a slip casting method. And It should be noted that the organic vehicle such as the binder or the solvent may be a commonly used one, and the components are not limited in any way.
次に、上下導体を接続するスルーホールをシートに形
成した後、導体印刷をスルーホールに導体ペーストが詰
まるように印刷し、これらを所望の多層構造となるよう
に積層、熱圧着する。成形時に添加された有機ビヒクル
を除去した後、焼成すると多層セラミック配線基板が得
られる。Next, after forming through holes for connecting the upper and lower conductors in the sheet, conductor printing is performed so as to fill the through holes with the conductor paste, and these are laminated and thermocompression bonded to have a desired multilayer structure. After removing the organic vehicle added at the time of molding, baking is performed to obtain a multilayer ceramic wiring board.
次に、本発明の低温焼結性低誘電率無機組成物のホウ
ケイ酸系ガラス粉末、コーディエライトおよび石英ガラ
ス粉末の組成や、ホウケイ酸系ガラス粉末の組成につい
てそれぞれの範囲を特許請求の範囲に記したごとく限定
した理由について述べる。Next, each range is claimed for the composition of the borosilicate glass powder, cordierite and quartz glass powder of the low temperature sinterable low dielectric constant inorganic composition of the present invention, and the composition of the borosilicate glass powder. The reason for the limitation as described in will be described.
本発明に係る低温焼結性低誘電率無機組成物の成分組
成範囲を示す3成分系組成図を第1図に示す。図中、
(a),(b)および(c)は各組成点を表し、本発明
に含まれる組成範囲は図の斜線で示す範囲およびその境
界上である。FIG. 1 shows a three-component composition diagram showing the component composition range of the low temperature sinterable low dielectric constant inorganic composition according to the present invention. In the figure,
(A), (b) and (c) represent each composition point, and the composition range included in the present invention is the range shown by the diagonal lines in the figure and its boundary.
成分組成範囲を表す3成分系組成図において、Z(ホ
ウケイ酸系ガラス重量比率)が55未満の本発明の範囲に
含まれない領域では、1000℃以下での低温焼結が困難
で、かつ緻密な層が得られないため吸水が起こり、信頼
性が低下してしまう。In the three-component composition diagram showing the component composition range, in a region where Z (borosilicate glass weight ratio) is less than 55 and is not included in the range of the present invention, low temperature sintering at 1000 ° C. or less is difficult and dense. Since a different layer cannot be obtained, water absorption occurs and reliability decreases.
次に、本発明に係る低温焼結性低誘電率無機組成物の
主成分の一つであるホウケイ酸系ガラス粉末の組成につ
いて述べれば、酸化ケイ素および酸化ホウ素はいずれも
ガラスのネットワークフォーマーである。酸化ケイ素が
85重量%を超えると、ガラス化が困難で、たとえ溶解し
てもガラスの軟化点は高く、低温での焼成が難しくな
る。逆に75重量%未満ではガラスの軟化点が低くなり過
ぎたり、他の成分の増加に伴って結晶化が起こり、重要
な実装基板特性の一つである熱膨張係数に悪影響をおよ
ぼすクリストバライト等が析出し易くなったり、あるい
は最も重要な特性である誘電率が上昇してしまう。一
方、酸化ホウ素の場合、20重量%を超えると、急激にガ
ラスの軟化点は下がり、熱処理時の変形や反りが起こり
易くなる。また、15重量%未満では、酸化ケイ素の量が
多い分軟化点を下げる必要があるのに効果がなく、酸化
ケイ素の結晶化抑制作用も不十分となる。他の成分は、
ガラスの溶解性あるいは安定性を制御するために、いず
れも微量ずつ加えられているが、多すぎると誘電率や熱
膨張係数は上昇してしまう。したがって、ホウケイ酸系
ガラス粉末における酸化ケイ素と酸化ホウ素の比率が本
発明において最も重要な意味を持っている。Next, the composition of the borosilicate glass powder which is one of the main components of the low temperature sinterable low dielectric constant inorganic composition according to the present invention will be described. Silicon oxide and boron oxide are both glass network formers. is there. Silicon oxide
If it exceeds 85% by weight, vitrification is difficult, and even if it is melted, the softening point of the glass is high, making it difficult to fire at low temperature. On the other hand, if it is less than 75% by weight, the softening point of the glass becomes too low, or crystallization occurs with the increase of other components, and there is a problem such as cristobalite which adversely affects the thermal expansion coefficient which is one of the important mounting board characteristics. It is likely to be deposited, or the dielectric constant, which is the most important characteristic, is increased. On the other hand, in the case of boron oxide, when it exceeds 20% by weight, the softening point of the glass is rapidly lowered, and deformation or warpage during heat treatment is likely to occur. On the other hand, if the amount is less than 15% by weight, it is necessary to lower the softening point due to the large amount of silicon oxide, but there is no effect, and the effect of suppressing crystallization of silicon oxide becomes insufficient. The other ingredients are
In order to control the solubility or stability of the glass, both are added in small amounts, but if the amount is too large, the dielectric constant and the thermal expansion coefficient will increase. Therefore, the ratio of silicon oxide to boron oxide in the borosilicate glass powder has the most important meaning in the present invention.
[実施例] 以下、実施例および比較例により、本発明を詳細に説
明する。なお、実施例および比較例中の%表示は特に断
わりがない限り、すべて重量基準であるものとする。[Examples] Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. All percentages in the examples and comparative examples are based on weight unless otherwise specified.
実施例1〜26、比較例1〜4 第1表に示すような組成を有するガラス粉末を製造
し、更にアルコールを分散媒として48時間湿式粉砕し
た。これをふるいで整粒した後、アルコールを濾過、乾
燥させ、平均粒径1.9μm、BET比表面積12m2/gの粒度を
有するガラス粉末を得た。Examples 1 to 26, Comparative Examples 1 to 4 Glass powders having the compositions shown in Table 1 were produced and wet-ground for 48 hours using alcohol as a dispersion medium. After sieving this, the alcohol was filtered and dried to obtain a glass powder having an average particle size of 1.9 μm and a BET specific surface area of 12 m 2 / g.
次に、これらのガラス粉末と、平均粒径が2.6μm、B
ET比表面積が5m2/gのコーディエライト粉末および平均
粒径が3.7μm、BET比表面積が6m2/gの石英ガラス粉末
をそれぞれ第2表に示す比率で配合した。配合は、それ
ぞれの粉末を所定量秤量し、ボールミルで分散媒として
アルコールを用い3時間混合した後、アルコールを濾
過、乾燥させ、均質な混合粉末とした。 Next, these glass powders and an average particle size of 2.6 μm, B
ET specific surface area were compounded in the proportions shown 5 m 2 / g cordierite powder and the average particle size of 3.7 .mu.m, BET specific surface area of 6 m 2 / g of silica glass powder in Table 2, respectively. As for the blending, a predetermined amount of each powder was weighed and mixed with alcohol as a dispersion medium in a ball mill for 3 hours, and then the alcohol was filtered and dried to obtain a homogeneous mixed powder.
得られた無機組成物の評価はグリーンシート積層法に
より作製した印刷を施していない生積層体を切断、電気
炉中で有機ビヒクルの除去後焼成した試料を用い行っ
た。なお、本発明の組成範囲の試料は、空気中800〜100
0℃の温度で2時間焼成した。評価として、焼結温度
(吸水が起こらなくなる温度、即ち開空隙が消滅する温
度と定義した)、誘電率、絶縁抵抗、熱膨張係数
の測定を各々の試料について行った。吸水のチェック
は、試料を水中に入れて煮沸し、十分水を含ませた重量
と乾燥重量との差から行った。誘電率は1MHzで測定し
た。なお、電極は試料の上下面に導電性銀ペーストを塗
布後、600℃で焼き付けた。絶縁抵抗は印加電圧100Vで
測定した。熱膨張係数は室温〜250℃までの試料の伸び
から算出した。Evaluation of the obtained inorganic composition was carried out by using a sample obtained by cutting a green laminate, which was prepared by a green sheet laminating method, and which was not printed, and which was fired after removing the organic vehicle in an electric furnace. Samples in the composition range of the present invention are 800 to 100 in air.
It was baked at a temperature of 0 ° C. for 2 hours. As an evaluation, the sintering temperature (defined as the temperature at which water absorption does not occur, that is, the temperature at which open voids disappear), the dielectric constant, the insulation resistance, and the thermal expansion coefficient were measured for each sample. The water absorption was checked by placing the sample in water and boiling it, and then measuring the difference between the weight of the sample and the dry weight. The dielectric constant was measured at 1 MHz. The electrodes were baked at 600 ° C. after applying the conductive silver paste on the upper and lower surfaces of the sample. The insulation resistance was measured at an applied voltage of 100V. The coefficient of thermal expansion was calculated from the elongation of the sample from room temperature to 250 ° C.
このようにして得られた無機組成物のコーディエライ
ト、石英ガラスおよびホウケイ酸系ガラスの配合比率と
焼結温度、誘電率、絶縁抵抗および熱膨張係数の関係を
第2表に示す。Table 2 shows the relationship between the mixing ratio of cordierite, quartz glass and borosilicate glass of the inorganic composition thus obtained, and the sintering temperature, dielectric constant, insulation resistance and thermal expansion coefficient.
第2表から明らかなように、コーディエライト、石英
ガラスおよびホウケイ酸系ガラスからなる3成分系無機
組成物において、本発明の成分組成範囲内のもの(実施
例〜26)は、焼結体の吸水が起こらなくなり緻密な構造
となる温度、即ち焼結温度が1000℃以下で、誘電率も4.
04〜4.83と十分低く、絶縁抵抗がいずれも1013Ω・cm以
上と高く、絶縁性も保持されている。更に、熱膨張係数
も、13.7〜45.2×10-7/℃と低いことから、ガラスの結
晶化による高熱膨張性結晶クリストバライトの析出は起
こっていないことがわかる。As is clear from Table 2, in the three-component inorganic composition comprising cordierite, quartz glass and borosilicate glass, those within the component composition range of the present invention (Examples to 26) are sintered bodies. The temperature at which the water absorption does not occur and the structure becomes dense, that is, the sintering temperature is 1000 ° C or less, and the dielectric constant is 4.
It is sufficiently low at 04 to 4.83, insulation resistance is as high as 10 13 Ω · cm or more, and insulation is maintained. Furthermore, since the coefficient of thermal expansion is as low as 13.7 to 45.2 × 10 -7 / ° C, it is clear that the precipitation of high thermal expansion crystalline cristobalite due to the crystallization of glass does not occur.
一方、本発明の成分組成範囲外のもの(比較例1〜
4)は焼結温度が高く、1000℃以下の焼成では開空隙の
残留により一見誘電率は低くなるが、絶縁抵抗は低く、
信頼性の面で問題がある。On the other hand, those outside the component composition range of the present invention (Comparative Examples 1 to 1
In 4), the sintering temperature is high, and when firing below 1000 ° C, the dielectric constant is apparently low due to the residual open voids, but the insulation resistance is low.
There is a problem in terms of reliability.
実施例27〜52、比較例5〜8 第3表に示す組成のガラスを平均粒径2.0μm、BET比
表面積11m2/gの粉末粒度に調製した。 Examples 27 to 52, Comparative Examples 5 to 8 Glasses having the compositions shown in Table 3 were prepared to have an average particle size of 2.0 μm and a BET specific surface area of 11 m 2 / g.
これらのガラス粉末とコーディエライトおよび石英ガ
ラス粉末を第4表に示す配合比率で、実施例1〜26と同
様の方法で試料を作成、評価した。その結果を第4表に
示す。 Samples were prepared and evaluated in the same manner as in Examples 1 to 26 by using these glass powders, cordierite and quartz glass powders at the compounding ratios shown in Table 4. Table 4 shows the results.
第4表から明らかなように、コーディエライト、石英
ガラスおよびホウケイ酸系ガラスからなる3成分系無機
組成物において、本発明の成分組成範囲内のもの(実施
例27〜52)は、焼結体の吸水が起こらなくなり緻密な構
造となる温度、即ち焼結温度が1000℃以下で、誘電率も
3.98〜4.80と十分低く、絶縁抵抗がいずれも1013Ω・cm
以上と高く、絶縁性も保持されている。更に、熱膨張係
数も12.4〜43.9×10-7/℃と低いことから、ガラスの結
晶化による高熱膨張性結晶クリストバライトの析出は起
こっていないことがわかる。As is clear from Table 4, in the three-component inorganic composition consisting of cordierite, quartz glass and borosilicate glass, those within the component composition range of the present invention (Examples 27 to 52) were sintered. The temperature at which the body does not absorb water and becomes a dense structure, that is, the sintering temperature is 1000 ° C or less, the dielectric constant is also
3.98-4.80, which is sufficiently low, and the insulation resistance is 10 13 Ω ・ cm.
Higher than the above, the insulating property is maintained. Furthermore, since the coefficient of thermal expansion is as low as 12.4 to 43.9 × 10 -7 / ° C, it can be seen that precipitation of highly thermally expansive crystalline cristobalite due to crystallization of glass has not occurred.
一方、本発明の成分組成範囲外のもの(比較例5〜
8)は焼結温度が高く、1000℃以下の焼成では開空隙の
残留により一見誘電率は低くなるが、絶縁抵抗は低く信
頼性の面で問題がある。On the other hand, those having a component composition outside the range of the present invention (Comparative Examples 5
In 8), the sintering temperature is high, and when firing below 1000 ° C., the dielectric constant is apparently low due to the residual open voids, but the insulation resistance is low and there is a problem in reliability.
なお、実施例および比較例で用いた成分配合比におけ
る各組成点を第2図に示す。図中の番号1,2,……,30は
それぞれ第2表および第4表における成分配合比番号に
相当する。The composition points of the component mixture ratios used in the examples and comparative examples are shown in FIG. The numbers 1, 2, ..., 30 in the figure correspond to the compounding ratio numbers in Tables 2 and 4, respectively.
[発明の効果] 以上説明したように、本発明の低温焼結性低誘電率無
機組成物は、低温焼結性や絶縁特性、耐水性等の信頼性
を維持しながら、従来のアルミナ、ガラスセラミック
系、、結晶化ガラス系よりも低い誘電率を有するもので
ある。したがって、超高速VLSI素子実装用多層セラミッ
ク配線基板の提供が可能となり、実装の高密度化や高速
伝送化の向上に大きく寄与できる。 [Effects of the Invention] As described above, the low-temperature sinterable low-dielectric-constant inorganic composition of the present invention maintains the reliability of low-temperature sinterability, insulating properties, water resistance, etc., while maintaining the reliability of conventional alumina and glass. It has a lower dielectric constant than ceramics and crystallized glass. Therefore, it becomes possible to provide a multilayer ceramic wiring board for mounting an ultra-high-speed VLSI element, which can greatly contribute to an increase in mounting density and an improvement in high-speed transmission.
第1図は本発明の3成分系組成範囲を示す組成図、第2
図は本発明の3成分系組成範囲と実施例および比較例に
示した組成点との関係を示す図である。FIG. 1 is a composition diagram showing a three-component system composition range of the present invention, and FIG.
The figure is a diagram showing the relationship between the composition range of the three-component system of the present invention and the composition points shown in Examples and Comparative Examples.
Claims (1)
ガラスおよびホウケイ酸系ガラスからなる3成分系無機
組成物であって、ホウケイ酸系ガラスは、酸化物換算表
記に従ったとき、主成分が酸化ケイ素:75〜85重量%、
酸化ホウ素:15〜20重量%、酸化アルミニウム:0.1〜5
重量%、I族元素酸化物:0.1〜5重量%、II族元素酸化
物:0.1〜1重量%、酸化チタン:0〜0.05重量%の組成範
囲で、合計量が100重量%になるように構成されてお
り、かつコーディエライト:X、石英ガラス:Y、ホウケイ
酸系ガラス:Z(重量%比率)と表示したとき(X+Y+
Z=100)、この3成分系組成図において以下の組成
点、 (X=0、Y=0、Z=100) (X=45、Y=0、Z=55) (X=0、Y=45、Z=55) の各点を結ぶ線上、およびこの3点に囲まれる組成範囲
にあることを特徴とする低温焼結性低誘電率無機組成
物。1. A three-component inorganic composition comprising a cordierite ceramic material, quartz glass, and borosilicate glass, wherein the borosilicate glass has a major component that is oxidized according to the oxide conversion notation. Silicon: 75-85% by weight,
Boron oxide: 15 to 20% by weight, aluminum oxide: 0.1 to 5
%, Group I element oxide: 0.1 to 5% by weight, Group II element oxide: 0.1 to 1% by weight, titanium oxide: 0 to 0.05% by weight, so that the total amount becomes 100% by weight. It is composed and when displayed as cordierite: X, quartz glass: Y, borosilicate glass: Z (weight% ratio) (X + Y +
Z = 100), the following composition points in this three-component composition diagram: (X = 0, Y = 0, Z = 100) (X = 45, Y = 0, Z = 55) (X = 0, Y = 45, Z = 55), and a low-temperature sinterable low-dielectric-constant inorganic composition characterized by being in a composition range surrounded by these three points on a line connecting the points.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1218707A JP2500691B2 (en) | 1989-08-28 | 1989-08-28 | Low temperature sinterable low dielectric constant inorganic composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1218707A JP2500691B2 (en) | 1989-08-28 | 1989-08-28 | Low temperature sinterable low dielectric constant inorganic composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0383850A JPH0383850A (en) | 1991-04-09 |
JP2500691B2 true JP2500691B2 (en) | 1996-05-29 |
Family
ID=16724166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1218707A Expired - Lifetime JP2500691B2 (en) | 1989-08-28 | 1989-08-28 | Low temperature sinterable low dielectric constant inorganic composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2500691B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2757574B2 (en) * | 1991-03-14 | 1998-05-25 | 日本電気株式会社 | Method for manufacturing low dielectric constant hybrid multilayer ceramic wiring board |
JPH0590030A (en) * | 1991-09-27 | 1993-04-09 | Toko Inc | Laminated inductor |
CN113955943B (en) * | 2021-10-20 | 2023-04-11 | 陕西科技大学 | Complex phase glass ceramics and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62278145A (en) * | 1986-05-26 | 1987-12-03 | Matsushita Electric Works Ltd | Sintered material of glass ceramic |
JPS63215559A (en) * | 1987-02-27 | 1988-09-08 | 日本碍子株式会社 | Ceramic substrate |
JPH0195402A (en) * | 1987-10-07 | 1989-04-13 | Komatsu Ltd | Ceramic substrate baked at low temperature |
JPH0230641A (en) * | 1988-07-18 | 1990-02-01 | Mitsubishi Electric Corp | Ceramic substrate material |
-
1989
- 1989-08-28 JP JP1218707A patent/JP2500691B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0383850A (en) | 1991-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4749665A (en) | Low temperature fired ceramics | |
EP0472165A1 (en) | Low dielectric inorganic composition for multilayer ceramic package | |
US5206190A (en) | Dielectric composition containing cordierite and glass | |
EP0552522B1 (en) | Low dielectric, low temperature fired glass ceramics | |
EP1505040B1 (en) | Thick film dielectric compositions for use on aluminium nitride substrates | |
US5416049A (en) | Glassy binder system for ceramic substrates, thick films and the like | |
JP2757574B2 (en) | Method for manufacturing low dielectric constant hybrid multilayer ceramic wiring board | |
JP2500692B2 (en) | Low temperature sinterable low dielectric constant inorganic composition | |
JPH0723252B2 (en) | Low temperature sinterable low dielectric constant inorganic composition | |
JP2500691B2 (en) | Low temperature sinterable low dielectric constant inorganic composition | |
JPS62278145A (en) | Sintered material of glass ceramic | |
JPH0676227B2 (en) | Glass ceramic sintered body | |
JPH0617249B2 (en) | Glass ceramic sintered body | |
JPH0617250B2 (en) | Glass ceramic sintered body | |
JPH0758454A (en) | Glass ceramic multilayered substrate | |
JPH0457627B2 (en) | ||
JP2712031B2 (en) | Composition for circuit board and electronic component using the same | |
EP0445968A1 (en) | Low-temperature sinterable inorganic composition having low dielectric constant | |
JP2504368B2 (en) | Low temperature sinterable inorganic composition | |
JPS6374957A (en) | Low temperature sinterable low dielectric constant inorganic composition | |
JPH046045B2 (en) | ||
US6534161B1 (en) | Crystallized glass composition, sintered crystallized glass compact, and circuit substrate using the same | |
JPH03252354A (en) | Low-dielectric constant inorganic composition capable of sintering at low temperature | |
JPS62252340A (en) | Sintered glass and sintered glass ceramic | |
JPS62209895A (en) | Insulating paste for ceramic multilayer interconnection board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080313 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090313 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090313 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100313 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100313 Year of fee payment: 14 |