[go: up one dir, main page]

JP2025021981A - Manufacturing method of aluminum alloy castings - Google Patents

Manufacturing method of aluminum alloy castings Download PDF

Info

Publication number
JP2025021981A
JP2025021981A JP2023126131A JP2023126131A JP2025021981A JP 2025021981 A JP2025021981 A JP 2025021981A JP 2023126131 A JP2023126131 A JP 2023126131A JP 2023126131 A JP2023126131 A JP 2023126131A JP 2025021981 A JP2025021981 A JP 2025021981A
Authority
JP
Japan
Prior art keywords
casting
alloy
manufacturing
solution treatment
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023126131A
Other languages
Japanese (ja)
Inventor
将蔵 手島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2023126131A priority Critical patent/JP2025021981A/en
Publication of JP2025021981A publication Critical patent/JP2025021981A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

Figure 2025021981000001

【課題】延性の低下が抑制され、機械的特性に優れたアルミニウム合金鋳物の製造方法を提供すること。
【解決手段】アルミニウム合金鋳物の製造方法は、Al-Si-Mg系合金材の溶湯を鋳型内で凝固させることにより鋳物材を得る鋳造工程と、溶湯の凝固完了以降に鋳物材の鋳物温度を400℃以下まで下降させる晶出工程と、晶出工程後の鋳物材の鋳物温度を450~550℃に10分以上保持する溶体化処理工程と、溶体化処理工程後の鋳物材を冷却する冷却工程と、を有する。
【選択図】図1

Figure 2025021981000001

The present invention provides a method for producing an aluminum alloy casting in which the decrease in ductility is suppressed and mechanical properties are excellent.
[Solution] A manufacturing method for aluminum alloy castings includes a casting process in which a molten Al-Si-Mg alloy material is solidified in a mold to obtain a casting material, a crystallization process in which the casting temperature of the casting material is lowered to 400°C or lower after solidification of the molten metal is complete, a solution treatment process in which the casting temperature of the casting material after the crystallization process is maintained at 450 to 550°C for 10 minutes or more, and a cooling process in which the casting material after the solution treatment process is cooled.
[Selected Figure] Figure 1

Description

本発明はアルミニウム合金鋳物の製造方法に関する。 The present invention relates to a method for manufacturing aluminum alloy castings.

自動車の軽量化を目的として、自動車のボディ部品は、鉄系材料からアルミニウム材料への置き換えが行われている。アルミニウム材料を用いたボディ部品は、例えばプレス法、鍛造法、鋳造法等の様々な製造方法により製造され得る。これらの製造方法は、要求される製品特性や製品形状に応じて使い分けられる。ボディ部品には、安全性及び生産性の観点から、高い機械的特性(例えば、強度及び延性)が要求される。高い機械特性を得るために、例えば、Al-Si-Mg系合金を用いたアルミニウム合金鋳物(Al合金鋳物)が提案されている。 In order to reduce the weight of automobiles, the body parts of automobiles are being replaced from iron-based materials to aluminum materials. Body parts using aluminum materials can be manufactured by various manufacturing methods, such as pressing, forging, and casting. These manufacturing methods are used according to the required product characteristics and product shape. Body parts are required to have high mechanical properties (e.g., strength and ductility) from the standpoint of safety and productivity. In order to obtain high mechanical properties, for example, aluminum alloy castings (Al alloy castings) using Al-Si-Mg alloys have been proposed.

特許文献1には、全体を100質量%(単に「%」という。)として、Al:残部、Si:5~8.5%、Mg:0.35~0.7%、Ti:0.05~0.3%、Zr:0.05~0.4%、TiとZrの合計:0.2%以上であり、さらに、Sr:0.003~0.05%、Na:0.001~0.03%またはSb:0.001~0.2%の一種以上を含む鋳造用アルミニウム合金(Al合金)及びアルミニウム合金鋳物(Al合金鋳物)が開示されている。特許文献1には、このAl合金を用いると、重力鋳造や低圧鋳造によっても、初晶Alや共晶Siが微細に分散した鋳造組織からなる鋳物が得られ、この鋳物は、強度のみならず、延性や靱性にも優れ、例えば、車両用タイヤホイール等に好適であることが記載されている。 Patent Document 1 discloses an aluminum alloy (Al alloy) for casting and an aluminum alloy casting (Al alloy casting) that contains, based on the total being 100 mass% (simply referred to as "%"), the remainder being Al, 5-8.5% Si, 0.35-0.7% Mg, 0.05-0.3% Ti, 0.05-0.4% Zr, and the sum of Ti and Zr: 0.2% or more, and further contains at least one of Sr: 0.003-0.05%, Na: 0.001-0.03%, and Sb: 0.001-0.2%. Patent Document 1 describes that when this Al alloy is used, even by gravity casting or low-pressure casting, a casting made of a cast structure in which primary crystals Al and eutectic Si are finely dispersed can be obtained, and that this casting has excellent strength as well as ductility and toughness, making it suitable for use in, for example, vehicle tire wheels.

特開2017-171960号公報JP 2017-171960 A

Al合金鋳物を製造する際、強度及び延性の両立を図るために、例えばAl-Si-Mg系合金を鋳造した後、溶体化処理を行うことが好ましい。しかしながら、溶体化処理の処理条件によっては、鋳造組織中の結晶粒界に合金元素を含む化合物が晶出する場合がある。本発明者らは、結晶粒界に晶出した合金元素を含む化合物とAl合金鋳物の延性との関係について検討を重ねた結果、結晶粒界に晶出したMg系化合物を低減することにより、延性の低下が抑制され、機械的特性に優れたAl合金鋳物が得られることを見出した。 When manufacturing Al alloy castings, in order to achieve both strength and ductility, it is preferable to perform solution treatment after casting an Al-Si-Mg alloy, for example. However, depending on the conditions of the solution treatment, compounds containing alloying elements may crystallize at the grain boundaries in the cast structure. As a result of extensive research into the relationship between the compounds containing alloying elements crystallized at the grain boundaries and the ductility of Al alloy castings, the inventors have found that by reducing the Mg-based compounds crystallized at the grain boundaries, the decrease in ductility is suppressed and an Al alloy casting with excellent mechanical properties can be obtained.

本発明は、このような問題を解決するためになされたものであり、延性の低下が抑制され、機械的特性に優れたアルミニウム合金鋳物の製造方法を提供することを目的とするものである。 The present invention was made to solve these problems, and aims to provide a method for manufacturing aluminum alloy castings that suppresses the decline in ductility and has excellent mechanical properties.

一実施の形態にかかるアルミニウム合金鋳物の製造方法は、Al-Si-Mg系合金材の溶湯を鋳型内で凝固させることにより鋳物材を得る鋳造工程と、溶湯の凝固完了以降に鋳物材の鋳物温度を400℃以下まで下降させる晶出工程と、晶出工程後の鋳物材の鋳物温度を450~550℃に10分以上保持する溶体化処理工程と、溶体化処理工程後の鋳物材を冷却する冷却工程と、を有する。 The manufacturing method of an aluminum alloy casting according to one embodiment includes a casting process in which a molten Al-Si-Mg alloy material is solidified in a mold to obtain a casting material, a crystallization process in which the temperature of the casting material is lowered to 400°C or lower after the molten metal has completely solidified, a solution treatment process in which the temperature of the casting material after the crystallization process is kept at 450 to 550°C for 10 minutes or more, and a cooling process in which the casting material after the solution treatment process is cooled.

本発明により、延性の低下が抑制され、機械的特性に優れたアルミニウム合金鋳物の製造方法を提供することができる。 The present invention provides a method for producing aluminum alloy castings that suppresses the decrease in ductility and has excellent mechanical properties.

実施の形態1にかかるアルミニウム合金鋳物の製造方法を示すフローチャートである。1 is a flowchart showing a method for manufacturing an aluminum alloy casting according to a first embodiment. 図1に示すアルミニウム合金鋳物の製造方法における鋳物温度の時間変化を示すグラフである。2 is a graph showing the change in casting temperature over time in the method for producing the aluminum alloy casting shown in FIG. 1 . 鋳造組織の光学顕微鏡画像及びMg元素のEPMA画像である。1 shows an optical microscope image of the cast structure and an EPMA image of Mg element.

実施の形態1
以下、図面を参照して本発明の実施の形態について説明する。ただし、本開示が以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。以下の説明において同一又は同等の要素には、同一の符号を付し、重複する説明は省略する。
First embodiment
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. However, the present disclosure is not limited to the following embodiment. In addition, in order to clarify the description, the following description and drawings are appropriately simplified. In the following description, the same or equivalent elements are given the same reference numerals, and duplicate descriptions are omitted.

図1及び図2を参照して、本実施形態にかかるアルミニウム合金鋳物(Al合金鋳物)の製造方法について説明する。本実施形態にかかるのAl合金鋳物の製造方法は、Al-Si-Mg系合金材からAl合金鋳物を製造する方法である。図1は、実施の形態1にかかるアルミニウム合金鋳物の製造方法を示すフローチャートである。図2は、図1に示すアルミニウム合金鋳物の製造方法における鋳物温度の時間変化を示すグラフである。 The manufacturing method of an aluminum alloy casting (Al alloy casting) according to this embodiment will be described with reference to Figures 1 and 2. The manufacturing method of an Al alloy casting according to this embodiment is a method for manufacturing an Al alloy casting from an Al-Si-Mg alloy material. Figure 1 is a flow chart showing the manufacturing method of an aluminum alloy casting according to the first embodiment. Figure 2 is a graph showing the change in casting temperature over time in the manufacturing method of an aluminum alloy casting shown in Figure 1.

図1に示すように、本実施形態にかかるAl合金鋳物の製造方法は、鋳造工程(ステップS1)、晶出工程(ステップS2)、溶体化処理工程(ステップS3)、及び冷却工程(ステップS4)を有する。 As shown in FIG. 1, the method for producing an Al alloy casting according to this embodiment includes a casting process (step S1), a crystallization process (step S2), a solution treatment process (step S3), and a cooling process (step S4).

鋳造工程(ステップS1)は、Al-Si-Mg系合金材の溶湯を鋳型内で凝固させることにより鋳物材を得る鋳造工程である。鋳造工程は、例えば、Al-Si-Mg系合金材の溶湯を鋳型に充填する充填工程、及び鋳型内で当該溶湯を凝固させる凝固工程を含む。図2に示すように、充填工程では、時点T0において、例えば680℃程度に加熱された溶湯が鋳型に充填される。凝固工程では、例えば560℃程度の鋳物温度となる時点T1で溶湯の凝固が完了する。 The casting process (step S1) is a casting process in which molten Al-Si-Mg alloy material is solidified in a mold to obtain a casting material. The casting process includes, for example, a filling process in which molten Al-Si-Mg alloy material is filled into a mold, and a solidification process in which the molten metal is solidified in the mold. As shown in FIG. 2, in the filling process, at time T0, molten metal heated to, for example, about 680°C is filled into the mold. In the solidification process, solidification of the molten metal is completed at time T1, when the casting temperature reaches, for example, about 560°C.

本実施形態において、Al-Si-Mg系合金の合金組成は、Al-Si-Mg系合金全体を100質量%としたときの各元素の質量割合である。Al-Si-Mg系合金材は、Al、Si、及びMgの他に、例えばCu、Zn、Fe、及びMn等のうち少なくとも一種の元素を任意に含有してもよい。強度及び延性(伸び)等の機械的特性、耐食性、耐熱性等に優れているため、Al-Si-Mg系合金材は、AC4CH(JIS)又はADC3(JIS)であることが好ましい。AC4CHは、Cu:≦0.1質量%、Si:6.5~7.5質量%、Mg:0.25~0.45質量%、Zn:≦0.1質量%、Fe:≦0.2質量%、Mn:≦0.1質量%を含有し、残部がAlおよび不可避的不純物からなるAl-Si-Mg系合金である。ADC3は、Cu:≦0.6質量%、Si:9.0~11.0質量%、Mg:0.4~0.6質量%、Zn:≦0.5質量%、Fe:≦1.3質量%、Mn≦0.3質量%を含有し、残部がAlおよび不可避的不純物からなるAl-Si-Mg系合金である。 In this embodiment, the alloy composition of the Al-Si-Mg alloy is the mass ratio of each element when the entire Al-Si-Mg alloy is 100% by mass. In addition to Al, Si, and Mg, the Al-Si-Mg alloy material may optionally contain at least one element of, for example, Cu, Zn, Fe, and Mn. Since it has excellent mechanical properties such as strength and ductility (elongation), corrosion resistance, heat resistance, etc., the Al-Si-Mg alloy material is preferably AC4CH (JIS) or ADC3 (JIS). AC4CH is an Al-Si-Mg alloy containing Cu: ≦0.1% by mass, Si: 6.5 to 7.5% by mass, Mg: 0.25 to 0.45% by mass, Zn: ≦0.1% by mass, Fe: ≦0.2% by mass, Mn: ≦0.1% by mass, and the remainder being Al and unavoidable impurities. ADC3 is an Al-Si-Mg alloy containing Cu: ≦0.6 mass%, Si: 9.0-11.0 mass%, Mg: 0.4-0.6 mass%, Zn: ≦0.5 mass%, Fe: ≦1.3 mass%, Mn ≦0.3 mass%, and the remainder being Al and unavoidable impurities.

鋳造方法は、特に制限されないが、例えば、重力鋳造法、砂型鋳造法、又はダイカスト鋳造法等が挙げられる。AC4CHをAl-Si-Mg系合金材として用いる場合、Al合金鋳物は、重力鋳造法又は砂型鋳造法により製造されることが好ましい。ADC3をAl-Si-Mg系合金材として用いる場合、Al合金鋳物は、ダイカスト鋳造法により製造されることが好ましい。 The casting method is not particularly limited, but examples include gravity casting, sand casting, and die casting. When AC4CH is used as the Al-Si-Mg alloy material, the Al alloy casting is preferably produced by gravity casting or sand casting. When ADC3 is used as the Al-Si-Mg alloy material, the Al alloy casting is preferably produced by die casting.

Siは、鋳造時の湯流れ性(湯まわり性)を向上させ得る。Mgは、Siと共にMg-Si系化合物を形成し、機械的強度及び疲労強度を高め得る。Feは、離型性を向上させ得るため、鋳型と材料との張りつきを防止する。そして、Cu、Zn、Fe、及びMn等の任意に含有される元素は、結晶粒の微細化や強度の向上等に寄与し得る。 Si can improve the flow (running) of molten metal during casting. Mg can form Mg-Si compounds together with Si, which can increase mechanical strength and fatigue strength. Fe can improve mold releasability, preventing the material from sticking to the mold. Optional elements such as Cu, Zn, Fe, and Mn can contribute to making crystal grains finer and improving strength.

ここで、鋳造後の冷却時に、Al合金が含有するSi、Mg、Fe等の合金元素は、主に鋳造組織中の結晶粒界に化合物として晶出する。なお、結晶粒界に晶出した合金元素を含む化合物の分布は、例えば鋳造組織をEPMA(Electron Probe Micro Analyzer)で分析して得られる元素分布(EPMA画像)により確認することができる。しかしながら、結晶粒界に晶出した合金元素を含む化合物は、結晶粒界で破断、腐食等の不良を引き起こす場合がある。 Here, when cooling after casting, the alloying elements contained in the Al alloy, such as Si, Mg, and Fe, crystallize as compounds mainly at the grain boundaries in the cast structure. The distribution of compounds containing alloying elements crystallized at the grain boundaries can be confirmed, for example, from the element distribution (EPMA image) obtained by analyzing the cast structure with an EPMA (Electron Probe Micro Analyzer). However, compounds containing alloying elements crystallized at the grain boundaries may cause defects such as breakage and corrosion at the grain boundaries.

そこで、本発明者らは、結晶粒界に晶出した合金元素を含む化合物とAl合金鋳物の延性との関係について検討を重ねた結果、結晶粒界に晶出したMgを含む化合物(Mg系化合物)が延性を極端に低下させることを見出した。具体的には、重力鋳造法を用いてAl-Si-Mg系合金材としてのAC4CHを鋳造することにより、結晶粒界にSiを含む化合物(Si系化合物)が晶出した鋳物サンプル、及び結晶粒界にSiと共にMgを含む化合物(Mg-Si系化合物)が晶出した鋳物サンプルの計2種類の鋳物サンプルを作製した。そして、この2種類の鋳物サンプルについて破断伸びを比較したところ、Si系化合物が晶出した鋳物サンプルの破断伸びは27%であり、Mg-Si系化合物が晶出した鋳物サンプルの破断伸びは6%であった。 The inventors have therefore conducted extensive research into the relationship between compounds containing alloying elements crystallized at grain boundaries and the ductility of Al alloy castings, and have found that compounds containing Mg (Mg-based compounds) crystallized at grain boundaries drastically reduce ductility. Specifically, by casting AC4CH as an Al-Si-Mg-based alloy material using gravity casting, two types of casting samples were produced: one in which compounds containing Si (Si-based compounds) were crystallized at grain boundaries, and the other in which compounds containing Mg together with Si (Mg-Si-based compounds) were crystallized at grain boundaries. When the fracture elongations of these two types of casting samples were compared, the fracture elongation of the casting sample in which the Si-based compounds were crystallized was 27%, and the fracture elongation of the casting sample in which the Mg-Si-based compounds were crystallized was 6%.

そこで、本実施形態にかかるAl合金鋳物の製造方法では、鋳造後の晶出工程及び溶体化処理工程により、Al合金鋳物におけるMg-Si系化合物等のMg系化合物を低減することができる。晶出工程(ステップS2)は、溶湯の凝固完了以降に鋳物材の鋳物温度を400℃以下まで下降させる。図2に示すように、晶出工程では、鋳物材の鋳物温度を400℃以下まで下降させることで、鋳物材に含有される合金元素のうち少なくともMgを含む化合物を結晶粒界に晶出させる。晶出工程において、鋳物温度を400℃以下とする時間(時点T2~T3)は、凝固完了(時点T1)以降に鋳物材の全体が400℃以下となれば特に制限されない。生産性の観点からは、鋳物温度を400℃以下とする時間は短いほど好ましい。晶出工程において、凝固完了以降に鋳物温度が400℃以下に到達しない場合は、Mg系化合物の晶出が不十分となり得る。Mg系化合物の晶出が不十分であると、Al合金鋳物の延性が低下する虞がある。 Therefore, in the manufacturing method of the Al alloy casting according to the present embodiment, the Mg-based compounds such as Mg-Si-based compounds in the Al alloy casting can be reduced by the crystallization process and the solution treatment process after casting. In the crystallization process (step S2), the casting temperature of the casting material is lowered to 400°C or less after the solidification of the molten metal is completed. As shown in FIG. 2, in the crystallization process, the casting temperature of the casting material is lowered to 400°C or less, so that compounds containing at least Mg among the alloy elements contained in the casting material are crystallized at the grain boundaries. In the crystallization process, the time (times T2 to T3) for the casting temperature to be 400°C or less is not particularly limited as long as the entire casting material is 400°C or less after the solidification is completed (time T1). From the viewpoint of productivity, the shorter the time for the casting temperature to be 400°C or less, the more preferable. In the crystallization process, if the casting temperature does not reach 400°C or less after the solidification is completed, the crystallization of the Mg-based compounds may be insufficient. If the crystallization of Mg-based compounds is insufficient, the ductility of the Al alloy casting may decrease.

次に、溶体化処理工程(ステップS3)は、晶出工程後の鋳物材の鋳物温度を450~550℃に10分以上保持する。図2に示すように、溶体化処理工程において、鋳物温度を450~550℃に保持する保持時間(時点T4~T5)は10分以上であれば特に制限されない。生産性の観点からは、当該保持時間は10分以上の範囲で短いほど好ましい。このような溶体化処理により、晶出工程時に晶出したMg系化合物を結晶粒内に好適に固溶させることができる。溶体化処理工程において、鋳物温度が450℃未満の場合は、Mg系化合物の固溶が不十分となり得る。また、保持時間が10分未満の場合は、Mg系化合物の固溶が不十分となり得る。Mg系化合物の固溶が不十分であると、Al合金鋳物の延性が低下する虞がある。一方、溶体化処理工程において、鋳物温度が550℃を超える場合は、材料の一部が溶解する虞がある。 Next, in the solution treatment process (step S3), the casting temperature of the casting material after the crystallization process is held at 450 to 550°C for 10 minutes or more. As shown in FIG. 2, in the solution treatment process, the holding time (times T4 to T5) for holding the casting temperature at 450 to 550°C is not particularly limited as long as it is 10 minutes or more. From the viewpoint of productivity, the shorter the holding time is within the range of 10 minutes or more, the more preferable it is. By such solution treatment, the Mg-based compounds crystallized during the crystallization process can be suitably dissolved in the crystal grains. In the solution treatment process, if the casting temperature is less than 450°C, the solid solution of the Mg-based compounds may be insufficient. Also, if the holding time is less than 10 minutes, the solid solution of the Mg-based compounds may be insufficient. If the solid solution of the Mg-based compounds is insufficient, the ductility of the Al alloy casting may decrease. On the other hand, in the solution treatment process, if the casting temperature exceeds 550°C, a part of the material may dissolve.

次に、冷却工程(ステップS4)は、溶体化処理工程後の鋳物材を冷却する。冷却工程では、例えば100℃程度の鋳物温度となる時点T6で鋳物材の冷却が完了する。ここで、鋳造直後の鋳造材(鋳造まま)、及び鋳造後に2℃/min(超徐冷)、20℃/min(放冷)、20000℃/min(水冷)のいずれかの冷却速度で冷却された3種類の鋳造材の計4種類の鋳造材について破断伸びを測定したところ、破断伸びは鋳造直後よりも冷却後の方が高くなるものの、冷却速度による変化はなかった。具体的には、鋳造直後の鋳造材の破断伸びは7%であり、上記したいずれかの冷却速度で冷却された3種類の鋳造材の破断伸びはそれぞれ16%であった。したがって、冷却工程において、鋳物材を冷却する冷却速度は、特に制限されない。ただし、材料強度の観点からは、冷却速度は速いほど好ましい。 Next, in the cooling step (step S4), the casting material after the solution treatment step is cooled. In the cooling step, the cooling of the casting material is completed at time T6 when the casting temperature reaches, for example, about 100°C. Here, the fracture elongation was measured for a total of four types of casting materials, including the casting material immediately after casting (as cast) and three types of casting materials cooled after casting at a cooling rate of 2°C/min (ultra-slow cooling), 20°C/min (natural cooling), and 20,000°C/min (water cooling). The fracture elongation was higher after cooling than immediately after casting, but there was no change due to the cooling rate. Specifically, the fracture elongation of the casting material immediately after casting was 7%, and the fracture elongation of each of the three types of casting materials cooled at any of the above cooling rates was 16%. Therefore, in the cooling step, the cooling rate at which the casting material is cooled is not particularly limited. However, from the viewpoint of material strength, the faster the cooling rate, the better.

上記した鋳造工程、晶出工程、溶体化処理工程、及び冷却工程により、Al合金鋳物を得ることができる。さらに、冷却工程後のAl合金鋳物に対して、時効処理等を行なうことが好ましい。これにより、Al合金鋳物の第一相である初晶Alが時効析出により強化される。 The above-mentioned casting process, crystallization process, solution treatment process, and cooling process can produce an Al alloy casting. Furthermore, it is preferable to perform an aging treatment or the like on the Al alloy casting after the cooling process. This strengthens the primary crystal Al, which is the first phase of the Al alloy casting, by aging precipitation.

次に、図3は、鋳造組織の光学顕微鏡画像及びMg元素のEPMA画像である。図3の実施例は、本実施形態にかかるAl合金鋳物の製造方法により、ダイカスト鋳造法を用いてAl-Si-Mg系合金材としてのADC3から製造されたAl合金鋳物の鋳造組織を示している。図3の比較例は、実施例と異なり、鋳造工程後に溶体化処理を行っていないAl合金鋳物の鋳造組織を示している。 Next, Figure 3 shows an optical microscope image of the cast structure and an EPMA image of Mg element. The example in Figure 3 shows the cast structure of an Al alloy casting produced from ADC3, an Al-Si-Mg alloy material, using a die casting method according to the manufacturing method of an Al alloy casting according to this embodiment. The comparative example in Figure 3 shows the cast structure of an Al alloy casting that, unlike the example, was not subjected to solution treatment after the casting process.

図3から明らかなように、比較例のAl合金鋳物は、結晶粒界にMg系化合物が晶出した鋳造組織を有している。一方、実施例のAl合金鋳物は、比較例のAl合金鋳物と比べて、結晶粒内にMg系化合物が好適に固溶した鋳造組織を有している。 As is clear from Figure 3, the Al alloy casting of the comparative example has a cast structure in which Mg-based compounds are crystallized at the grain boundaries. On the other hand, the Al alloy casting of the example has a cast structure in which Mg-based compounds are suitably dissolved in the grains, compared to the Al alloy casting of the comparative example.

また、Si元素及びFe元素の各EPMA画像(不図示)を用いて、結晶粒界に晶出したSi系化合物及びFeを含む化合物(Fe系化合物)の挙動を確認した。具体的には、実施例において、溶体化処理工程の前後の鋳造材について鋳造組織の各EPMA画像(Si元素及びFe元素)を取得し、取得した各EPMA画像を用いてSi系化合物及Fe系化合物の存在を確認した。その結果、結晶粒界に晶出したSi系化合物及びFe系化合物は、溶体化処理工程の前後共に同様の分布で存在していた。 In addition, the behavior of the Si-based compounds and Fe-containing compounds (Fe-based compounds) crystallized at the grain boundaries was confirmed using EPMA images (not shown) of the Si element and the Fe element. Specifically, in the examples, EPMA images (Si element and Fe element) of the cast structure were obtained for the cast material before and after the solution treatment process, and the presence of the Si-based compounds and Fe-based compounds was confirmed using the obtained EPMA images. As a result, the Si-based compounds and Fe-based compounds crystallized at the grain boundaries were present in the same distribution both before and after the solution treatment process.

このように、本実施形態にかかるAl合金鋳物の製造方法は、鋳造後の晶出工程において結晶粒界にMg系化合物を十分に晶出させた後、溶体化処理工程においてMg系化合物を結晶粒内に好適に固溶させるため、Al合金鋳物において延性を低下させ得るMg系化合物を低減することができる。したがって、本実施形態にかかるAl合金鋳物の製造方法によれば、延性の低下が抑制され、機械的特性に優れたAl合金鋳物を製造することができる。本実施形態にかかるAl合金鋳物の製造方法により製造されたAl合金鋳物は、例えば高強度及び高延性が要求される自動車のボディ部品等に好適に用いることができる。 In this way, the manufacturing method of the Al alloy casting according to this embodiment allows Mg-based compounds to be sufficiently crystallized at the grain boundaries in the crystallization process after casting, and then the Mg-based compounds are suitably dissolved within the grains in the solution treatment process, thereby reducing the Mg-based compounds that can reduce the ductility of the Al alloy casting. Therefore, according to the manufacturing method of the Al alloy casting according to this embodiment, it is possible to manufacture an Al alloy casting with excellent mechanical properties by suppressing the decrease in ductility. The Al alloy casting manufactured by the manufacturing method of the Al alloy casting according to this embodiment can be suitably used, for example, for automobile body parts that require high strength and high ductility.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 The present invention is not limited to the above embodiment, and can be modified as appropriate without departing from the spirit and scope of the invention.

Claims (1)

Al-Si-Mg系合金材の溶湯を鋳型内で凝固させることにより鋳物材を得る鋳造工程と、
前記溶湯の凝固完了以降に前記鋳物材の鋳物温度を400℃以下まで下降させる晶出工程と、
晶出工程後の前記鋳物材の鋳物温度を450~550℃に10分以上保持する溶体化処理工程と、
溶体化処理工程後の鋳物材を冷却する冷却工程と、
を有するアルミニウム合金鋳物の製造方法。
A casting process in which a molten Al-Si-Mg alloy material is solidified in a mold to obtain a casting material;
a crystallization step of lowering the casting temperature of the casting material to 400° C. or less after the solidification of the molten metal is completed;
a solution treatment step of maintaining the casting temperature of the casting material after the crystallization step at 450 to 550°C for 10 minutes or more;
a cooling step of cooling the casting material after the solution treatment step;
The present invention relates to a method for producing an aluminum alloy casting having the above structure.
JP2023126131A 2023-08-02 2023-08-02 Manufacturing method of aluminum alloy castings Pending JP2025021981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023126131A JP2025021981A (en) 2023-08-02 2023-08-02 Manufacturing method of aluminum alloy castings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023126131A JP2025021981A (en) 2023-08-02 2023-08-02 Manufacturing method of aluminum alloy castings

Publications (1)

Publication Number Publication Date
JP2025021981A true JP2025021981A (en) 2025-02-14

Family

ID=94537717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023126131A Pending JP2025021981A (en) 2023-08-02 2023-08-02 Manufacturing method of aluminum alloy castings

Country Status (1)

Country Link
JP (1) JP2025021981A (en)

Similar Documents

Publication Publication Date Title
US7108042B2 (en) Aluminum diecasting alloy
JP4970709B2 (en) Casting alloy
JP2010018875A (en) High strength aluminum alloy, method for producing high strength aluminum alloy casting, and method for producing high strength aluminum alloy member
JP2005264301A (en) Cast aluminum alloy, aluminum alloy casting and method for producing the same
JP6439792B2 (en) Al-Si-Mg-based aluminum alloy for casting excellent in specific rigidity, strength and ductility, cast member made thereof and road wheel for automobile
JP7459496B2 (en) Manufacturing method for aluminum alloy forgings
GB2570026A (en) Aluminium alloy for casting
JP2001220639A (en) Aluminum alloy for casting
JP7639321B2 (en) Aluminum alloy forgings and manufacturing method thereof
JP4145242B2 (en) Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy
JP2017171960A (en) Aluminum alloys for casting and aluminum alloy castings
JP5575028B2 (en) High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method
JP2007277660A (en) Magnesium alloys and die-cast products
JP2007534839A (en) Heat-treatable Al-Zn-Mg alloys for aerospace and automotive castings
JP2005139552A (en) Aluminum alloy for casting, aluminum alloy casting and method for producing the same
JP2021070871A (en) Aluminum alloy forging and production method thereof
JP2015137388A (en) Aluminum alloy casting and manufacturing method therefor
JP2025021981A (en) Manufacturing method of aluminum alloy castings
JP6741208B2 (en) Hypereutectic Al-Si based aluminum alloy, cast member made of the same, and method for producing the aluminum alloy
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
WO2020189325A1 (en) Aluminum alloy and aluminum alloy die casting material
JP7634309B1 (en) Die cast products and their manufacturing method, and sand cast products and their manufacturing method
JP2002060881A (en) Aluminum alloy for casting and forging and method for producing casting forging
JPH11241135A (en) Aluminum alloy for casting
JP2002129271A (en) Aluminum alloy and method for producing aluminum alloy casting