[go: up one dir, main page]

JP2025016810A - Electronic device and analysis method - Google Patents

Electronic device and analysis method Download PDF

Info

Publication number
JP2025016810A
JP2025016810A JP2021200780A JP2021200780A JP2025016810A JP 2025016810 A JP2025016810 A JP 2025016810A JP 2021200780 A JP2021200780 A JP 2021200780A JP 2021200780 A JP2021200780 A JP 2021200780A JP 2025016810 A JP2025016810 A JP 2025016810A
Authority
JP
Japan
Prior art keywords
unit
circuit constants
analysis
voltage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021200780A
Other languages
Japanese (ja)
Inventor
昌幸 板垣
Masayuki Itagaki
重輔 志村
Jusuke Shimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Murata Manufacturing Co Ltd
Original Assignee
Tokyo University of Science
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science, Murata Manufacturing Co Ltd filed Critical Tokyo University of Science
Priority to JP2021200780A priority Critical patent/JP2025016810A/en
Priority to PCT/JP2022/045335 priority patent/WO2023106378A1/en
Publication of JP2025016810A publication Critical patent/JP2025016810A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

To provide an electronic apparatus and an analysis method that can perform analysis of deterioration in various deterioration modes.SOLUTION: An electronic apparatus according to an aspect of the present technique comprises a measurement unit, a storage unit, a calculation unit, and an analysis unit. The measurement unit measures, during and after charging or discharging of a battery pack formed by including a plurality of electric cells, the voltage and current of the plurality of electric cells included in the battery pack. The storage unit stores a voltage value and a current value obtained through the measurement performed by the measurement unit. The calculation unit calculates, for each of the electric cells, two or more circuit constants of an equivalent circuit of the electric cell, by using the voltage value and the current value stored in the storage unit. The analysis unit performs multivariate analysis by using information on the distribution of the two or more circuit constants in the plurality of electric cells or information on the distribution of two or more circuit constants in a plurality of normal batteries.SELECTED DRAWING: Figure 1

Description

本技術は、電子機器および解析方法に関する。 This technology relates to electronic devices and analysis methods.

二次電池の使用用途は近年、電気自動車やエネルギー貯蔵システムなど、より規模の大きな機器へと拡がってきている。規模が大きくなるほど発火した際の被害も大きくなることから、安全性を高める技術開発の重要性が高まってきている。その上で、二次電池の異常な挙動や劣化を使用中に適切に把握することが重要となる。 In recent years, the use of secondary batteries has expanded to larger-scale devices, such as electric vehicles and energy storage systems. The larger the device, the greater the damage that may occur if it catches fire, so the importance of developing technology to improve safety is growing. In addition, it is important to properly understand any abnormal behavior or deterioration of secondary batteries during use.

特許文献1では、二次電池の劣化の判断に用いる回路定数として内部抵抗が着目されている。特許文献1では、CCCV充電におけるCV充電の際中にクーロンカウンティングが行われ、その充電電気量に基づいて内部抵抗が高精度に算出される。 In Patent Document 1, the internal resistance is focused on as a circuit constant used to determine the deterioration of a secondary battery. In Patent Document 1, coulomb counting is performed during CV charging in CCCV charging, and the internal resistance is calculated with high accuracy based on the amount of charged electricity.

特開2004-152755号公報JP 2004-152755 A

しかし、特許文献1に記載の方法では、求められる回路定数が内部抵抗1つのみであり、二次電池の劣化現象を多面的に表現することができないので、二次電池の劣化の判断法としては不十分である。従って、様々な劣化モードによる劣化の解析を行うことの可能な、複数の回路定数を取り扱うことのできる電子機器および解析方法を提供することが望ましい。 However, the method described in Patent Document 1 requires only one circuit constant, the internal resistance, and is insufficient as a method for determining the deterioration of a secondary battery, since it is unable to express the deterioration phenomenon of the secondary battery from multiple perspectives. Therefore, it is desirable to provide an electronic device and an analysis method that can handle multiple circuit constants and can analyze deterioration due to various deterioration modes.

本技術の第1の側面に係る電子機器は、計測部と、記憶部と、算出部と、解析部とを備えている。計測部は、複数の単電池を含んで構成された組電池の充電もしくは放電の最中および実施後のそれぞれで、組電池に含まれる複数の単電池の電圧および電流を計測する。記憶部は、計測部での計測により得られた電圧値および電流値を記憶する。算出部は、記憶部に記憶された電圧値および電流値を用いて単電池の等価回路の2つ以上の回路定数を前記単電池ごとに算出する。解析部は、複数の単電池における2つ以上の回路定数の分布情報、または、複数の正常電池における2つ以上の回路定数の分布情報を用いて多変量解析を行う。 The electronic device according to the first aspect of the present technology includes a measurement unit, a storage unit, a calculation unit, and an analysis unit. The measurement unit measures the voltage and current of the cells included in the battery pack during and after charging or discharging the battery pack including the cells. The storage unit stores the voltage and current values obtained by the measurement in the measurement unit. The calculation unit calculates two or more circuit constants of the equivalent circuit of the cells for each cell using the voltage and current values stored in the storage unit. The analysis unit performs multivariate analysis using distribution information of the two or more circuit constants in the cells or distribution information of the two or more circuit constants in the normal cells.

本技術の第2の側面に係る電子機器は、計測部と、記憶部と、算出部と、解析部とを備えている。計測部は、単電池の充電もしくは放電の最中および実施後のそれぞれで、単電池の電圧および電流を計測する。記憶部は、計測部での計測により得られた電圧値および電流値を記憶する。算出部は、記憶部に記憶された電圧値および電流値を用いて単電池の等価回路の2つ以上の回路定数を算出する。解析部は、複数の正常電池における2つ以上の回路定数の分布情報を用いて多変量解析を行う。 The electronic device according to the second aspect of the present technology includes a measurement unit, a memory unit, a calculation unit, and an analysis unit. The measurement unit measures the voltage and current of the cell during and after charging or discharging the cell. The memory unit stores the voltage and current values obtained by the measurement in the measurement unit. The calculation unit calculates two or more circuit constants of the equivalent circuit of the cell using the voltage and current values stored in the memory unit. The analysis unit performs multivariate analysis using distribution information of two or more circuit constants in a plurality of normal batteries.

本技術の第3の側面に係る解析方法は、以下の4つの工程を含む。
(A)複数の単電池を含んで構成された組電池の充電もしくは放電の最中および実施後のそれぞれで、組電池に含まれる複数の単電池の電圧および電流を計測する計測工程
(B)計測工程で得られた電圧値および電流値を記憶する記憶工程
(C)記憶工程で記憶された電圧値および電流値を用いて単電池の等価回路の2つ以上の回路定数を単電池ごとに算出する算出工程
(D)複数の単電池における2つ以上の回路定数の分布情報、または、複数の正常電池における2つ以上の回路定数の分布情報を用いて多変量解析を行う解工程
The analysis method according to the third aspect of the present technology includes the following four steps.
(A) a measurement step of measuring the voltage and current of a plurality of cells included in a battery pack during and after charging or discharging the battery pack including a plurality of cells; (B) a storage step of storing the voltage and current values obtained in the measurement step; (C) a calculation step of calculating two or more circuit constants of an equivalent circuit of the cells for each cell using the voltage and current values stored in the storage step; (D) a solution step of performing a multivariate analysis using distribution information of two or more circuit constants in the plurality of cells or distribution information of two or more circuit constants in a plurality of normal batteries.

本技術の第4の側面に係る解析方法は、以下の4つの工程を含む。
(A)単電池の充電もしくは放電の最中および実施後のそれぞれで、単電池の電圧および電流を計測する計測工程
(B)計測工程で得られた電圧値および電流値を記憶する記憶工程
(C)記憶工程で記憶された電圧値および電流値を用いて単電池の等価回路の2つ以上の回路定数を算出する算出工程
(D)複数の正常電池における2つ以上の回路定数の分布情報を用いて多変量解析を行う解工程
The analysis method according to the fourth aspect of the present technology includes the following four steps.
(A) a measurement step of measuring the voltage and current of a single cell during and after charging or discharging the single cell; (B) a storage step of storing the voltage and current values obtained in the measurement step; (C) a calculation step of calculating two or more circuit constants of an equivalent circuit of the single cell using the voltage and current values stored in the storage step; and (D) a solution step of performing a multivariate analysis using distribution information of two or more circuit constants in a plurality of normal batteries.

本技術の第1の側面に係る電子機器および本技術の第3の側面に係る解析方法によれば、複数の単電池における2つ以上の回路定数の分布情報、または、複数の正常電池における2つ以上の回路定数の分布情報を用いて多変量解析を行うようにしたので、様々な劣化モードによる二次電池の劣化の解析を行うことが可能である。 According to the electronic device according to the first aspect of the present technology and the analysis method according to the third aspect of the present technology, a multivariate analysis is performed using distribution information of two or more circuit constants in a plurality of single cells, or distribution information of two or more circuit constants in a plurality of normal batteries, so that it is possible to analyze the deterioration of a secondary battery due to various deterioration modes.

本技術の第2の側面に係る電子機器および本技術の第4の側面に係る解析方法によれば、複数の正常電池における2つ以上の回路定数の分布情報を用いて多変量解析を行うようにしたので、様々な劣化モードによる二次電池の劣化の解析を行うことが可能である。 According to the electronic device according to the second aspect of the present technology and the analysis method according to the fourth aspect of the present technology, a multivariate analysis is performed using distribution information of two or more circuit constants in a plurality of normal batteries, so that it is possible to analyze the deterioration of a secondary battery due to various deterioration modes.

なお、本技術の効果は、必ずしもここで説明された効果に限定されるわけではなく、後述する本技術に関連する一連の効果のうちのいずれの効果でもよい。 Note that the effects of this technology are not necessarily limited to the effects described here, but may be any of a series of effects related to this technology described below.

本技術の一実施形態に係る解析装置の機能ブロック例を表す図である。FIG. 2 is a diagram illustrating an example of a functional block of an analysis device according to an embodiment of the present technology. 図1の解析装置の解析対称である二次電池の等価回路を表す図である。FIG. 2 is a diagram showing an equivalent circuit of a secondary battery that is the subject of analysis by the analysis device of FIG. 1 . 図1の解析装置における解析手順の一例を表す図である。2 is a diagram showing an example of an analysis procedure in the analysis device of FIG. 1 . 図1の解析装置における解析結果の一例を表す図である。2 is a diagram showing an example of an analysis result in the analysis device of FIG. 1 . 図1の解析装置における解析結果の一例を表す図である。2 is a diagram showing an example of an analysis result in the analysis device of FIG. 1 . 図1の解析装置における解析結果の一例を表す図である。2 is a diagram showing an example of an analysis result in the analysis device of FIG. 1 . 図1の解析装置における解析結果の一例を表す図である。2 is a diagram showing an example of an analysis result in the analysis device of FIG. 1 . 図1の解析装置における解析結果の一例を表す図である。2 is a diagram showing an example of an analysis result in the analysis device of FIG. 1 . 図1の解析装置における解析結果の一例を表す図である。2 is a diagram showing an example of an analysis result in the analysis device of FIG. 1 . 図1の解析装置における解析結果の一例を表す図である。2 is a diagram showing an example of an analysis result in the analysis device of FIG. 1 . 図1の解析装置における解析結果の一例を表す図である。2 is a diagram showing an example of an analysis result in the analysis device of FIG. 1 . 図1の解析装置における解析結果の一例を表す図である。2 is a diagram showing an example of an analysis result in the analysis device of FIG. 1 . 本技術の一実施形態に係る解析装置の機能ブロックの一変形例を表す図である。FIG. 13 is a diagram illustrating a modified example of a functional block of an analysis device according to an embodiment of the present technology. 本技術の一実施形態に係る解析装置の機能ブロックの一変形例を表す図である。FIG. 13 is a diagram illustrating a modified example of a functional block of an analysis device according to an embodiment of the present technology.

以下、本技術を実施するための形態について、図面を参照して詳細に説明する。 Below, the form for implementing this technology will be explained in detail with reference to the drawings.

<1.実施形態>
[構成]
本技術の一実施形態に係る解析装置10の構成について説明する。解析装置10は、二次電池の劣化状態を解析する装置である。本実施の形態では、解析装置10の解析対象である二次電池が組電池20となっている。組電池20は、例えば、リチウムイオン二次電池である。組電池20は、複数の単電池21を含んで構成されている。各単電池21は、単位セルであってもよく、単位セルが複数個接続された電池ブロックであってもよい。各単電池21において、複数の二次電池が直列に接続されていてもよいし、複数の二次電池が並列に接続されていてもよい。
1. Embodiment
[composition]
A configuration of an analysis device 10 according to an embodiment of the present technology will be described. The analysis device 10 is a device that analyzes the deterioration state of a secondary battery. In the present embodiment, a secondary battery that is an analysis target of the analysis device 10 is an assembled battery 20. The assembled battery 20 is, for example, a lithium ion secondary battery. The assembled battery 20 is configured to include a plurality of single cells 21. Each single cell 21 may be a unit cell, or may be a battery block in which a plurality of unit cells are connected. In each single cell 21, a plurality of secondary batteries may be connected in series, or a plurality of secondary batteries may be connected in parallel.

解析装置10は、例えば、図1に示したように、充放電部11、電圧計測部12、電流計測部13、一時記憶部14、回路定数算出部15および多変量解析部16を備えている。 As shown in FIG. 1, the analysis device 10 includes, for example, a charge/discharge unit 11, a voltage measurement unit 12, a current measurement unit 13, a temporary storage unit 14, a circuit constant calculation unit 15, and a multivariate analysis unit 16.

充放電部11は、解析装置10に設置された組電池20を放電させたり、充電したりする装置である。充放電部11は、充電として、例えば、CCCV充電を行うことが可能となっている。充放電部11は、例えば発電機およびコンバータ等を含む充電回路を有している。この充電回路は、組電池20を充電するための電圧を制御する。 The charging/discharging unit 11 is a device that discharges and charges the assembled battery 20 installed in the analysis device 10. The charging/discharging unit 11 is capable of, for example, CCCV charging as a charging method. The charging/discharging unit 11 has a charging circuit that includes, for example, a generator and a converter. This charging circuit controls the voltage for charging the assembled battery 20.

電圧計測部12は、組電池20に含まれる各単電池21の電圧を計測する計測回路を有している。なお、図1には、各単電池21の正極および負極に配線が接続され、その配線を介して取得した電圧を計測することにより、各単電池21の電圧を計測する構成が例示されているが、各単電池21の電圧の計測方法は、この方法に限定されるものではない。電圧計測部12は、計測回路で計測した電圧についてのデータ(電圧値)を一時記憶部14に格納する。電圧計測部12は、組電池20の充電もしくは放電の最中および実施後のそれぞれで、各単電池21の電圧を計測する(図3ステップS102,S106)。 The voltage measurement unit 12 has a measurement circuit that measures the voltage of each cell 21 included in the battery pack 20. Note that FIG. 1 illustrates a configuration in which wiring is connected to the positive and negative electrodes of each cell 21, and the voltage of each cell 21 is measured by measuring the voltage obtained through the wiring, but the method of measuring the voltage of each cell 21 is not limited to this method. The voltage measurement unit 12 stores data (voltage value) on the voltage measured by the measurement circuit in the temporary storage unit 14. The voltage measurement unit 12 measures the voltage of each cell 21 during and after charging or discharging the battery pack 20 (steps S102 and S106 in FIG. 3).

電流計測部13は、組電池20に含まれる各単電池21の電流を計測する計測回路を有している。なお、図1には、組電池20の正極および負極に配線が接続され、その配線を介して取得した電流を計測することにより、各単電池21の電流を計測する構成が例示されているが、各単電池21の電流の計測方法は、この方法に限定されるものではない。電流計測部13は、計測回路で計測した電流についてのデータ(電流値)を一時記憶部14に格納する。電流計測部13は、組電池20の充電もしくは放電の最中および実施後のそれぞれで、各単電池21の電流(つまり、組電池20の電流)を計測する(図3ステップS102,S106)。 The current measurement unit 13 has a measurement circuit that measures the current of each cell 21 included in the battery pack 20. Note that FIG. 1 illustrates a configuration in which wiring is connected to the positive and negative electrodes of the battery pack 20, and the current of each cell 21 is measured by measuring the current obtained through the wiring, but the method of measuring the current of each cell 21 is not limited to this method. The current measurement unit 13 stores data (current value) on the current measured by the measurement circuit in the temporary storage unit 14. The current measurement unit 13 measures the current of each cell 21 (i.e., the current of the battery pack 20) during and after charging or discharging the battery pack 20 (steps S102 and S106 in FIG. 3).

一時記憶部14は、例えば、揮発性メモリもしくは不揮発性メモリを含んで構成されている。一時記憶部14には、電圧計測部12によって計測された単電池21ごとの電圧値や、電流計測部13によって計測された単電池21ごとの電流値が記憶される。一時記憶部14には、組電池20の充電もしくは放電の最中および実施後のそれぞれで計測された電圧値および電流値が記憶される(図3ステップS103,S107)。 The temporary storage unit 14 is configured to include, for example, a volatile memory or a non-volatile memory. The temporary storage unit 14 stores the voltage value of each cell 21 measured by the voltage measurement unit 12 and the current value of each cell 21 measured by the current measurement unit 13. The temporary storage unit 14 stores the voltage value and current value measured during and after charging or discharging the battery pack 20 (steps S103 and S107 in FIG. 3).

回路定数算出部15は、一時記憶部14に記憶された、単電池21ごとの、充電もしくは放電の最中および実施後のそれぞれの電圧値および電流値を用いて、単電池21の等価回路の2つ以上の回路定数を単電池21ごとに算出する(図3ステップS109)。 The circuit constant calculation unit 15 calculates two or more circuit constants of the equivalent circuit of each cell 21 using the voltage and current values during and after charging or discharging for each cell 21 stored in the temporary storage unit 14 (step S109 in FIG. 3).

図2は、各単電池21の等価回路を表したものである。各単電池21は、図2に示したように、インダクタンスL、溶液抵抗Rs、電荷移動抵抗Rct、ワールブルクインピーダンスσ、電気二重層容量Cdlに関連する定位相素子CPEおよび微分容量C’の6個の素子からなる等価回路によって表現される。この6個の素子が有する、以下の8個の回路定数が、カーブフィッティングによって算出される。 Figure 2 shows the equivalent circuit of each cell 21. As shown in Figure 2, each cell 21 is represented by an equivalent circuit consisting of six elements: inductance L, solution resistance Rs, charge transfer resistance Rct, Warburg impedance σ, constant phase element CPE related to electric double layer capacitance Cdl, and differential capacitance C'. The following eight circuit constants of these six elements are calculated by curve fitting.

(8個の回路定数)
・インダクタンスL
・溶液抵抗Rs
・電荷移動抵抗Rct
・ワールブルクインピーダンスσ
・定位相素子CPEを記述すためのパラメータpおよびT(以下、それぞれをCPE(p)、CPE(T)と記載する)
・微分容量C’
・電気二重層容量Cdl
(8 circuit constants)
Inductance L
Solution resistance Rs
・Charge transfer resistance Rct
・Warburg impedance σ
Parameters p and T for describing the constant phase element CPE (hereinafter referred to as CPE(p) and CPE(T) respectively)
Differential capacitance C'
Electric double layer capacitance Cdl

インダクタンスL、溶液抵抗Rs、電荷移動抵抗Rct、ワールブルクインピーダンスσ、パラメータCPE(p)、パラメータCPE(T)および微分容量C’については、例えば、北斗電工社製の解析ソフトウエアEISの出力として得られる。電気二重層容量Cdlについては、板垣昌幸著「電気化学インピーダンス法」丸善出版(p.84)に記載の以下の式で算出される。
Cdl=CPE(T)(1/CPE(p))・Rct((1-CPE(p))/CPE(p))
The inductance L, solution resistance Rs, charge transfer resistance Rct, Warburg impedance σ, parameter CPE(p), parameter CPE(T) and differential capacitance C′ can be obtained, for example, as the output of analysis software EIS manufactured by Hokuto Denko Corp. The electric double layer capacitance Cdl is calculated by the following formula described in "Electrochemical Impedance Method" by Masayuki Itagaki, Maruzen Publishing (p. 84).
Cdl=CPE(T) (1/CPE(p))・Rct ((1-CPE(p))/CPE(p))

多変量解析部16は、複数の単電池21における2つ以上の回路定数の分布情報を導出し、それにより得られた分布情報を用いて多変量解析を行う(図3ステップS110)。多変量解析部16は、多変量解析の手法として、例えば、マハラノビス・タグチ法、または、ワンクラス・サポートベクターマシン法を用いる。以下に、マハラノビス・タグチ法を用いた多変量解析について詳細に説明する。多変量解析部16は、例えば、下記の多変量解析を行うことにより、各単電池21について異常度aiを導出する。 The multivariate analysis unit 16 derives distribution information of two or more circuit constants in the multiple single cells 21, and performs multivariate analysis using the distribution information thus obtained (step S110 in FIG. 3). The multivariate analysis unit 16 uses, for example, the Mahalanobis-Taguchi method or the one-class support vector machine method as a method of multivariate analysis. Multivariate analysis using the Mahalanobis-Taguchi method is described in detail below. The multivariate analysis unit 16 derives the degree of anomaly ai for each single cell 21, for example, by performing the following multivariate analysis.

(試料とするリチウムイオン電池の調整)
主な正極活物質がリン酸鉄リチウム(LiFePO4, LFP)であり、また主な負極活物質が黒鉛である市販リチウムイオン電池US18650FTC1(定格容量1.05Ah)を13本用意した。これらは全て、同一製造ロットのものである。このうち10本について、まず電圧が2.0Vを下回るまで0.2時間率相当の電流値(定格容量が1.05Ahであり、1時間率の電流値Itが1.05Aであるため、0.2時間率の電流値Iは0.2I=210mAである)で定電流放電し、その後速やかに、設定電流1.05A(=1It)、設定電圧3.6VのCCCV充電(設定電圧に到達するまでは設定電流値での定電流充電を行い、設定電圧に到達したら定電圧充電を行う2ステップの充電)を行い、これを充電開始後2.5hに停止した。この10本のリチウムイオン電池は、満充電状態を維持したままそれぞれ45℃、50℃、…、90℃の計10水準の温度に設定された恒温槽の中に各1本ずつ入れ、そのまま25日間保存することによって劣化させた。
(Preparation of sample lithium-ion battery)
Thirteen commercially available lithium-ion batteries US18650FTC1 (rated capacity 1.05 Ah) whose main positive electrode active material is lithium iron phosphate (LiFePO4, LFP) and whose main negative electrode active material is graphite were prepared. All of these were from the same manufacturing lot. Ten of these batteries were first discharged at a constant current equivalent to a 0.2 hour rate until the voltage fell below 2.0 V (the rated capacity was 1.05 Ah, and the current value It at the 1 hour rate was 1.05 A, so the current value I at the 0.2 hour rate was 0.2I = 210 mA), and then immediately charged at a set current of 1.05 A (= 1 It) and a set voltage of 3.6 V (a two-step charge in which constant current charging at a set current value is performed until the set voltage is reached, and constant voltage charging is performed when the set voltage is reached), and this was stopped 2.5 h after the start of charging. While maintaining the 10 lithium-ion batteries in a fully charged state, each one was placed in a thermostatic chamber set to a total of 10 different temperatures: 45°C, 50°C, ..., 90°C, and left there for 25 days to deteriorate.

(交流インピーダンスの測定)
電池の回路定数を測定するにあたり、まずは充電状態の調整を行った。23℃の恒温槽の中に入れ、設定電流1.05A(=1It)、設定電圧3.6VのCCCV充電を行った。このCCCV充電は、定電圧充電中の電流値が105mA(=0.1It)を下回った時点で停止した。その後、電池を開放状態にして1h静置し、交流インピーダンス測定を行った。交流インピーダンス測定には、Bio-Logic 社製のSP-240を使用した。測定条件について、まず、制御は電圧で規制されるポテンショスタティックモードとし、振幅の実効値は5mVに設定した。また、測定中にバイアス電流が流れないよう、中心電圧と開回路電圧とが一致するようにした。周波数掃引の範囲は10kHzから1mHzまでとし、周波数1桁あたり測定点が5点ずつとなるような対数掃引を行った。なお、各周波数について2 回ずつ測定を行い、ランダムノイズの低減を図った。用意した13本のリチウムイオン電池について、上述の劣化の工程を経ていない3本のリチウムイオン電池については交流インピーダンス測定を4回ずつ、上述の劣化の工程を経た10本のリチウムイオン電池については交流インピーダンス測定を1回のみ行った。
(AC impedance measurement)
To measure the circuit constant of the battery, the charging state was adjusted first. The battery was placed in a thermostatic bath at 23°C and CCCV charging was performed with a set current of 1.05A (=1It) and a set voltage of 3.6V. This CCCV charging was stopped when the current value during constant voltage charging fell below 105mA (=0.1It). After that, the battery was left in an open state for 1h, and AC impedance measurement was performed. SP-240 manufactured by Bio-Logic was used for AC impedance measurement. Regarding the measurement conditions, first, the control was set to a potentiostatic mode regulated by voltage, and the effective value of the amplitude was set to 5mV. In addition, the center voltage and the open circuit voltage were made to match so that no bias current would flow during the measurement. The frequency sweep range was from 10kHz to 1mHz, and a logarithmic sweep was performed with five measurement points per digit of frequency. In addition, measurements were performed twice for each frequency to reduce random noise. Of the 13 lithium-ion batteries prepared, the AC impedance was measured four times for each of the three lithium-ion batteries that had not undergone the above-mentioned deterioration process, and the AC impedance was measured only once for the ten lithium-ion batteries that had undergone the above-mentioned deterioration process.

(多変量解析)
上述の劣化の工程を経ていない3本のリチウムイオン電池について、それぞれ交流インピーダンス測定を4回ずつ実施することによって得られた12組のデータ(それぞれ8 個の回路定数を含む)を、以下の式(1)に示すように12個のベクトルxiとして定義した(iは1~12の整数)。
(Multivariate analysis)
For three lithium-ion batteries that had not undergone the above-mentioned deterioration process, AC impedance measurements were performed four times for each battery. The obtained data (each set of data including eight circuit constants) were defined as twelve vectors x (where i is an integer from 1 to 12) as shown in the following formula (1).

次に、各回路定数の12組のデータの平均値のベクトルμと、分散共分散行列Σを、それぞれ式(2)および式(3)により求めた。

Next, the average value vector μ of the 12 sets of data for each circuit constant and the variance-covariance matrix Σ were calculated using equations (2) and (3), respectively.

次に、上述の劣化の工程を経た10本のリチウムイオン電池から得られた10組のデータ(こちらも、それぞれ8個の回路定数を含む)を、式(4) に示すように10個の追加のベクトルxiとして定義した(iは13~22の整数)。そして、計22個すべてのベクトルに対して、式(5)に従って異常度aiを求めた。

Next, 10 sets of data (each also including 8 circuit constants) obtained from 10 lithium-ion batteries that had undergone the above-mentioned degradation process were defined as 10 additional vectors x, as shown in formula (4) (i is an integer between 13 and 22). Then, the degree of anomaly a was calculated for all 22 vectors in total according to formula (5).

比較のため、多変量ではなく1つの回路定数のみを用いた異常度の算出も行った(図4~図11)。また、すべての結果に対して、F分布表における95%分位点と99%分位点から、異常か否かを判定するための閾値の計算を行った。 For comparison, we also calculated the degree of abnormality using only one circuit constant rather than multiple variables (Figures 4 to 11). In addition, for all results, we calculated thresholds for determining whether or not there was an abnormality from the 95th and 99th percentiles in the F-distribution table.

また、8個のすべての回路定数を用いて計算した異常度の結果を図12に示す。いずれの図も、横軸の「A」~「L」は上述の劣化の工程を経ていない電池から得たデータとなっており、これは式(5)におけるi=1,2,…、12に対応している。また、横軸の「M」~「V」は上述の劣化の工程を経た電池から得たデータとなっており、これは式(5)における i=13,14,…、22にそれぞれ対応している。「A」~「L」は、上述の劣化の工程を経ていないため、以降の考察では、これらを良品の電池(正常電池)から得られたデータであると見なした。一方「M」~「V」は、それぞれ保存温度45℃、50℃、…、90℃で保存された電池から得られたデータであり、Zに近づくほど劣化の度合いが大きい、いずれも不良品の電池から得られたデータであると見なした。 Figure 12 shows the results of the abnormality calculation using all eight circuit constants. In both figures, "A" to "L" on the horizontal axis are data obtained from batteries that have not undergone the above-mentioned deterioration process, which corresponds to i = 1, 2, ..., 12 in formula (5). Also, "M" to "V" on the horizontal axis are data obtained from batteries that have undergone the above-mentioned deterioration process, which corresponds to i = 13, 14, ..., 22 in formula (5). Since "A" to "L" have not undergone the above-mentioned deterioration process, in the following discussion, these are considered to be data obtained from good batteries (normal batteries). On the other hand, "M" to "V" are data obtained from batteries stored at storage temperatures of 45°C, 50°C, ..., 90°C, respectively, and are considered to be data obtained from defective batteries, with the degree of deterioration increasing as the value approaches Z.

図4および図5より、良品と見なした「A」~「L」の電池と、不良品と見なした「M」~「V」の電池との間に、明確な異常度の差異は見られなかった。すなわち、インピーダンスLおよび溶液抵抗Rsの1つのみ用いて良品・不良品の判定を行うことはできないことが判った。 Figures 4 and 5 show that there is no clear difference in the degree of abnormality between the "A" to "L" batteries that were deemed to be good products and the "M" to "V" batteries that were deemed to be bad products. In other words, it was found that it is not possible to determine whether a product is good or bad using only one of the impedance L and the solution resistance Rs.

図6、図7、図10より、良品と見なした「A」~「L」の電池と、不良品と見なした「M」~「V」の電池との間に、不良品の方が高い異常度となるという傾向がみられた。しかしながら、両者に明確な差があるとは言えず、すなわち、パラメータCPE(p)、パラメータCPE(T)および微分容量C’のいずれか1つのみ用いて良品・不良品の判定を行うことは困難であることが判った。 Figures 6, 7 and 10 show that there is a tendency for the defective batteries to have a higher degree of abnormality than the "A" to "L" batteries that were deemed to be good products, and the "M" to "V" batteries that were deemed to be defective products. However, there is no clear difference between the two, which means that it is difficult to determine whether a product is good or defective using only one of the parameters CPE(p), CPE(T) and differential capacity C'.

図8および図9より、良品と見なした「A」~「L」の電池と、不良品と見なした「M」~「V」の電池との間に、不良品の方が高い異常度となるという、はっきりとした傾向がみられた。すなわち、電荷移動抵抗Rctおよびワールブルクインピーダンスσは、それぞれ1つの回路定数のみを使用した場合でも、良品・不良品の判定が可能であることが示唆された。一方で、どちらの回路定数を用いた場合でも、「M」「N」など劣化の度合いが小さい場合に異常度が95%の閾値を下回り、良品との有意な差異を見いだすことが難しく、よって、感度の点でやや問題があることが判った。 Figures 8 and 9 show a clear tendency for the defective batteries to have a higher degree of abnormality than the "A" to "L" batteries, which were deemed to be good products, and the "M" to "V" batteries, which were deemed to be defective products. In other words, it was suggested that the charge transfer resistance Rct and the Warburg impedance σ can be used to determine whether a product is good or defective even when only one circuit constant is used. On the other hand, regardless of which circuit constant is used, when the degree of deterioration is small, such as "M" and "N", the degree of abnormality falls below the 95% threshold, making it difficult to find a significant difference from a good product, and therefore it was found that there is a slight problem in terms of sensitivity.

図11より、良品と見なした「A」~「L」の電池と、不良品と見なした「M」~「V」の電池との間に、不良品の異常が高くなるというはっきりとした傾向がみられた。「M」「N」でも99%閾値を超える異常度となっており、すなわち、電気二重層容量Cdlは、1つの回路定数のみを使用した場合でも、良品・不良品の判定を可能であることが判った。 Figure 11 shows a clear tendency for the defective batteries to have higher abnormalities than the "A" to "L" batteries, which were deemed to be good products, and the "M" to "V" batteries, which were deemed to be defective products. Even "M" and "N" batteries had abnormalities that exceeded the 99% threshold. In other words, it was found that the electric double layer capacitance Cdl can be used to determine whether a product is good or defective even when only one circuit constant is used.

図12より、良品と見なした「A」~「L」の電池と、不良品と見なした「M」~「V」の電池との間に、不良品の異常が高くなるというはっきりとした傾向がみられた。図11と図12とを見比べると、図11では、良品と見なした「A」~「L」においても、ものによっては95%の閾値に近い異常度となっているものが散見される。一方で、図12では、「A」~「L」の異常度はいずれも大変小さく、すなわち、マハラノビス・タグチ法を用いて8個すべての回路定数を用いると、より高感度に良品・不良品の判断が出来ることが判った。 Figure 12 shows a clear tendency for the degree of abnormality to be higher for defective batteries, between "A" through "L" batteries considered to be good and "M" through "V" batteries considered to be defective. Comparing Figures 11 and 12, in Figure 11, even among "A" through "L" batteries considered to be good, some have an abnormality level close to the 95% threshold. On the other hand, in Figure 12, the abnormality levels for "A" through "L" are all very small, which means that by using all eight circuit constants using the Mahalanobis-Taguchi method, it is possible to judge whether a product is good or defective with greater sensitivity.

以上のことから、多変量解析部16は、多変量解析において選択する、複数の単電池21における2つ以上の回路定数として、少なくとも、過渡応答の原因となる物理現象と関係する回路定数を含む。そのような回路定数としては、少なくとも、電気二重層容量Cdlまたは電荷移動抵抗Rctが該当する。 For the above reasons, the multivariate analysis unit 16 selects two or more circuit constants in the plurality of single cells 21 in the multivariate analysis, which include at least a circuit constant related to a physical phenomenon that causes a transient response. Such circuit constants include at least the electric double layer capacitance Cdl or the charge transfer resistance Rct.

多変量解析において選択する、複数の単電池21における2つ以上の回路定数としては、例えば、電気二重層容量Cdlと、インダクタンスL、溶液抵抗Rs、電荷移動抵抗Rct、ワールブルクインピーダンスσ、パラメータCPE(p)、パラメータCPE(T)および微分容量C’のうちの少なくとも1つとが該当する。また、多変量解析において選択する、複数の単電池21における2つ以上の回路定数としては、例えば、電荷移動抵抗Rctと、インダクタンスL、溶液抵抗Rs、ワールブルクインピーダンスσ、パラメータCPE(p)、パラメータCPE(T)および微分容量C’のうちの少なくとも1つとが該当する。 The two or more circuit constants in the plurality of single cells 21 selected in the multivariate analysis include, for example, the electric double layer capacitance Cdl and at least one of the inductance L, the solution resistance Rs, the charge transfer resistance Rct, the Warburg impedance σ, the parameter CPE(p), the parameter CPE(T), and the differential capacitance C'. The two or more circuit constants in the plurality of single cells 21 selected in the multivariate analysis include, for example, the charge transfer resistance Rct and at least one of the inductance L, the solution resistance Rs, the Warburg impedance σ, the parameter CPE(p), the parameter CPE(T), and the differential capacitance C'.

[効果]
次に、解析装置10の効果について説明する。
[effect]
Next, the effects of the analysis device 10 will be described.

二次電池の使用用途は近年、電気自動車やエネルギー貯蔵システムなど、より規模の大きな機器へと拡がってきている。規模が大きくなるほど発火した際の被害も大きくなることから、安全性を高める技術開発の重要性が高まってきている。その上で、二次電池の異常な挙動や劣化を使用中に適切に把握することが重要となる。 In recent years, the use of secondary batteries has expanded to larger-scale devices, such as electric vehicles and energy storage systems. The larger the device, the greater the damage that may occur if it catches fire, so the importance of developing technology to improve safety is growing. In addition, it is important to properly understand any abnormal behavior or deterioration of secondary batteries during use.

特許文献1では、二次電池の劣化の判断に用いる回路定数として内部抵抗が着目されている。特許文献1では、CCCV充電におけるCV充電の際中にクーロンカウンティングが行われ、その充電電気量に基づいて内部抵抗が高精度に算出される。しかし、特許文献1に記載の方法では、二次電池の過渡応答を表現することができないので、多面的な劣化の解析ができず、二次電池の劣化の判断法としては不十分である。 In Patent Document 1, attention is focused on the internal resistance as a circuit constant used to determine the deterioration of a secondary battery. In Patent Document 1, coulomb counting is performed during CV charging in CCCV charging, and the internal resistance is calculated with high precision based on the amount of charged electricity. However, the method described in Patent Document 1 cannot express the transient response of a secondary battery, so it cannot analyze deterioration from multiple angles, and is therefore insufficient as a method for determining the deterioration of a secondary battery.

一方、本実施の形態では、複数の単電池21における2つ以上の回路定数の分布情報、または、複数の正常電池における2つ以上の回路定数の分布情報を用いて多変量解析を行うようにしたので、二次電池の過渡応答に起因するような劣化モードを含む、多面的な解析を行うことが可能である。 In contrast, in this embodiment, a multivariate analysis is performed using distribution information of two or more circuit constants in multiple single cells 21, or distribution information of two or more circuit constants in multiple normal batteries, making it possible to perform a multifaceted analysis, including degradation modes caused by the transient response of the secondary battery.

なお、本実施の形態において、多変量解析部16は、例えば、図13に示したように、複数の単電池21における2つ以上の回路定数の分布情報の代わりに、記憶部17に記憶した分布情報を用いて多変量解析を行ってもよい。記憶部17に記憶した分布情報は、複数の正常電池における2つ以上の回路定数の分布情報である。 In this embodiment, the multivariate analysis unit 16 may perform multivariate analysis using distribution information stored in the memory unit 17 instead of distribution information of two or more circuit constants in a plurality of single cells 21, as shown in FIG. 13, for example. The distribution information stored in the memory unit 17 is distribution information of two or more circuit constants in a plurality of normal batteries.

このとき、多変量解析において選択する、複数の正常電池における2つ以上の回路定数としては、例えば、電気二重層容量Cdlと、インダクタンスL、溶液抵抗Rs、電荷移動抵抗Rct、ワールブルクインピーダンスσ、パラメータCPE(p)、パラメータCPE(T)および微分容量C’のうちの少なくとも1つとが該当する。また、多変量解析において選択する、複数の正常電池における2つ以上の回路定数としては、例えば、電荷移動抵抗Rctと、インダクタンスL、溶液抵抗Rs、ワールブルクインピーダンスσ、パラメータCPE(p)、パラメータCPE(T)および微分容量C’のうちの少なくとも1つとが該当する。 In this case, the two or more circuit constants in the multiple normal batteries selected in the multivariate analysis include, for example, electric double layer capacitance Cdl and at least one of inductance L, solution resistance Rs, charge transfer resistance Rct, Warburg impedance σ, parameter CPE(p), parameter CPE(T), and differential capacitance C'. Also, the two or more circuit constants in the multiple normal batteries selected in the multivariate analysis include, for example, charge transfer resistance Rct and at least one of inductance L, solution resistance Rs, Warburg impedance σ, parameter CPE(p), parameter CPE(T), and differential capacitance C'.

なお、本実施の形態において、解析装置10の解析対象である二次電池が、例えば、図14に示したように、単電池30であってもよい。このとき、単電池30は、単位セルであってもよく、単位セルが複数個接続された電池ブロックであってもよい。単電池30において、複数の二次電池が直列に接続されていてもよいし、複数の二次電池が並列に接続されていてもよい。また、このとき、多変量解析部16は、例えば、図14に示したように、複数の単電池21における2つ以上の回路定数の分布情報の代わりに、記憶部17に記憶した分布情報を用いて多変量解析を行ってもよい。記憶部17に記憶した分布情報は、複数の正常電池における2つ以上の回路定数の分布情報である。 In this embodiment, the secondary battery to be analyzed by the analysis device 10 may be, for example, a single battery 30 as shown in FIG. 14. In this case, the single battery 30 may be a unit cell or a battery block in which a plurality of unit cells are connected. In the single battery 30, a plurality of secondary batteries may be connected in series, or a plurality of secondary batteries may be connected in parallel. In this case, the multivariate analysis unit 16 may perform multivariate analysis using distribution information stored in the memory unit 17 instead of distribution information of two or more circuit constants in a plurality of single batteries 21 as shown in FIG. 14. The distribution information stored in the memory unit 17 is distribution information of two or more circuit constants in a plurality of normal batteries.

10…解析装置、11…充放電部、12…電圧計測部、13…電流計測部、14…一時記憶部、15…回路定数算出部、16…多変量解析部、17…記憶部、20…組電池、21…単電池、30…単電池。 10...analysis device, 11...charging/discharging unit, 12...voltage measurement unit, 13...current measurement unit, 14...temporary storage unit, 15...circuit constant calculation unit, 16...multivariate analysis unit, 17...storage unit, 20...battery pack, 21...single cell, 30...single cell.

Claims (12)

複数の単電池を含んで構成された組電池の充電もしくは放電の最中および実施後のそれぞれで、前記組電池に含まれる前記複数の単電池の電圧および電流を計測する計測部と、
前記計測部での計測により得られた電圧値および電流値を記憶する記憶部と、
前記記憶部に記憶された前記電圧値および前記電流値を用いて前記単電池の等価回路の2つ以上の回路定数を前記単電池ごとに算出する算出部と、
前記複数の単電池における前記2つ以上の回路定数の分布情報、または、複数の正常電池における前記2つ以上の回路定数の分布情報を用いて多変量解析を行う解析部と
を備えた
電子機器。
a measurement unit that measures a voltage and a current of a plurality of single cells included in a battery pack configured to include a plurality of single cells during and after charging or discharging the battery pack;
a storage unit that stores the voltage value and the current value obtained by the measurement by the measurement unit;
a calculation unit that calculates two or more circuit constants of an equivalent circuit of the battery cell for each battery cell by using the voltage value and the current value stored in the storage unit;
and an analysis unit that performs multivariate analysis using distribution information of the two or more circuit constants in the plurality of single cells or distribution information of the two or more circuit constants in a plurality of normal batteries.
単電池の充電もしくは放電の最中および実施後のそれぞれで、前記単電池の電圧および電流を計測する計測部と、
前記計測部での計測により得られた電圧値および電流値を記憶する記憶部と、
前記記憶部に記憶された前記電圧値および前記電流値を用いて前記単電池の等価回路の2つ以上の回路定数を算出する算出部と、
複数の正常電池における前記2つ以上の回路定数の分布情報を用いて多変量解析を行う解析部と
を備えた
電子機器。
A measurement unit that measures the voltage and current of the battery cell during and after charging or discharging the battery cell;
a storage unit that stores the voltage value and the current value obtained by the measurement by the measurement unit;
a calculation unit that calculates two or more circuit constants of an equivalent circuit of the battery cell using the voltage value and the current value stored in the storage unit;
and an analysis unit that performs multivariate analysis using distribution information of the two or more circuit constants in a plurality of normal batteries.
前記多変量解析の手法は、マハラノビス・タグチ法である
請求項1または請求項2に記載の電子機器。
The electronic device according to claim 1 , wherein the multivariate analysis method is a Mahalanobis-Taguchi method.
前記多変量解析の手法は、ワンクラス・サポートベクターマシン法である
請求項1または請求項2に記載の電子機器。
The electronic device according to claim 1 , wherein the multivariate analysis method is a one-class support vector machine method.
前記2つ以上の回路定数には、電気二重層容量が含まれる
請求項1から請求項4のいずれか一項に記載の電子機器。
The electronic device according to claim 1 , wherein the two or more circuit constants include an electric double layer capacitance.
前記2つ以上の回路定数には、電荷移動抵抗が含まれる
請求項1から請求項4のいずれか一項に記載の電子機器。
The electronic device according to claim 1 , wherein the two or more circuit constants include a charge transfer resistance.
複数の単電池を含んで構成された組電池の充電もしくは放電の最中および実施後のそれぞれで、前記組電池に含まれる前記複数の単電池の電圧および電流を計測する計測工程と、
前記計測工程で得られた電圧値および電流値を記憶する記憶工程と、
前記記憶工程で記憶された前記電圧値および前記電流値を用いて前記単電池の等価回路の2つ以上の回路定数を前記単電池ごとに算出する算出工程と、
前記複数の単電池における前記2つ以上の回路定数の分布情報、または、複数の正常電池における前記2つ以上の回路定数の分布情報を用いて多変量解析を行う解析工程と
を含む
解析方法。
a measuring step of measuring a voltage and a current of a plurality of single cells included in a battery pack during and after charging or discharging the battery pack including the plurality of single cells;
a storage step of storing the voltage value and the current value obtained in the measurement step;
a calculation step of calculating, for each of the unit cells, two or more circuit constants of an equivalent circuit of the unit cells using the voltage value and the current value stored in the storage step;
and performing a multivariate analysis using distribution information of the two or more circuit constants in the plurality of unit cells or distribution information of the two or more circuit constants in a plurality of normal batteries.
単電池の充電もしくは放電の最中および実施後のそれぞれで、前記単電池の電圧および電流を計測する計測工程と、
前記計測工程で得られた電圧値および電流値を記憶する記憶工程と、
前記記憶工程で記憶された前記電圧値および前記電流値を用いて前記単電池の等価回路の2つ以上の回路定数を算出する算出工程と、
複数の正常電池における前記2つ以上の回路定数の分布情報を用いて多変量解析を行う解工程と
を含む
解析方法。
measuring the voltage and current of the cell during and after charging or discharging the cell;
a storage step of storing the voltage value and the current value obtained in the measurement step;
a calculation step of calculating two or more circuit constants of an equivalent circuit of the battery cell using the voltage value and the current value stored in the storage step;
and a solution step of performing a multivariate analysis using distribution information of the two or more circuit constants in a plurality of normal batteries.
前記多変量解析の手法は、マハラノビス・タグチ法である
請求項7または請求項8に記載の解析方法。
The analysis method according to claim 7 or 8, wherein the multivariate analysis is performed using a Mahalanobis-Taguchi method.
前記多変量解析の手法は、ワンクラス・サポートベクターマシン法である
請求項7または請求項8に記載の解析方法。
The analysis method according to claim 7 or 8, wherein the multivariate analysis method is a one-class support vector machine method.
前記2つ以上の回路定数には、電気二重層容量が含まれる
請求項7から請求項10のいずれか一項に記載の解析方法。
The analysis method according to claim 7 , wherein the two or more circuit constants include an electric double layer capacitance.
前記2つ以上の回路定数には、電荷移動抵抗が含まれる
請求項7から請求項10のいずれか一項に記載の解析方法。
The analysis method according to claim 7 , wherein the two or more circuit constants include a charge transfer resistance.
JP2021200780A 2021-12-10 2021-12-10 Electronic device and analysis method Pending JP2025016810A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021200780A JP2025016810A (en) 2021-12-10 2021-12-10 Electronic device and analysis method
PCT/JP2022/045335 WO2023106378A1 (en) 2021-12-10 2022-12-08 Electronic appliance and analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021200780A JP2025016810A (en) 2021-12-10 2021-12-10 Electronic device and analysis method

Publications (1)

Publication Number Publication Date
JP2025016810A true JP2025016810A (en) 2025-02-05

Family

ID=86730466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021200780A Pending JP2025016810A (en) 2021-12-10 2021-12-10 Electronic device and analysis method

Country Status (2)

Country Link
JP (1) JP2025016810A (en)
WO (1) WO2023106378A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130069660A1 (en) * 2010-02-17 2013-03-21 Julien Bernard Method for in situ battery diagnostic by electrochemical impedance spectroscopy
CN108463736B (en) * 2016-01-20 2020-06-30 三菱电机株式会社 Abnormality detection device and abnormality detection system
JP7106792B2 (en) * 2018-05-15 2022-07-27 日新電機株式会社 Storage battery deterioration diagnosis data extraction device and storage battery deterioration diagnosis data extraction method
JP7153196B2 (en) * 2018-12-26 2022-10-14 トヨタ自動車株式会社 BATTERY CHARACTERISTICS EVALUATION DEVICE AND BATTERY CHARACTERISTICS EVALUATION METHOD
JP2020125968A (en) * 2019-02-04 2020-08-20 富士通株式会社 Battery deterioration diagnosis device, battery deterioration analysis circuit, and battery deterioration diagnosis program

Also Published As

Publication number Publication date
WO2023106378A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
Goud et al. An online method of estimating state of health of a Li-ion battery
Cen et al. Lithium‐ion battery SOC/SOH adaptive estimation via simplified single particle model
CN106918789B (en) A kind of SOC-SOH combines online real-time estimation and on-line amending method
CN102565710B (en) Method and apparatus for assessing battery state of health
CN102468521B (en) Method and apparatus for assessing battery state of health
KR101227417B1 (en) A method for the SOC estimation of Li-ion battery and a system for its implementation
CN111036575B (en) A Lithium-ion Battery Sorting Method Based on Temperature Change Analysis
Kalogiannis et al. Incremental capacity analysis of a lithium-ion battery pack for different charging rates
Stroe et al. Electrochemical impedance spectroscopy-based electric circuit modeling of lithium–sulfur batteries during a discharging state
Thingvad et al. Characterization of nmc lithium-ion battery degradation for improved online state estimation
CN108363016B (en) Quantitative diagnosis method of battery micro-short circuit based on artificial neural network
CN106405424B (en) Method and device for metering residual electric quantity of lithium ion battery
Ahmed et al. A scaling approach for improved open circuit voltage modeling in Li-ion batteries
CN119535238B (en) A lithium battery health status assessment method based on deep learning
Barai et al. The influence of temperature and charge-discharge rate on open circuit voltage hysteresis of an LFP Li-ion battery
JP7574471B2 (en) Secondary battery diagnostic method, charge/discharge control method, diagnostic device, management system, and diagnostic program
Banaei et al. Real time condition monitoring in Li-Ion batteries via battery impulse response
CN119064791A (en) Battery consistency evaluation method, evaluation device and computer storage medium
CN118795348A (en) Sage-Husa adaptive filtering multi-parameter constraint energy storage battery power state assessment method
CN116203441B (en) Method and device for testing temperature entropy coefficient of lithium ion battery
JP2021022455A (en) Determination device, power supply system equipped with determination device, and determination method
JP2025016810A (en) Electronic device and analysis method
KR102803936B1 (en) Method for diagnosing lithium plating in lithium ion batteries using electrochemical impedance spectroscopy
Stroe et al. Electric circuit modeling of lithium-sulfur batteries during discharging state
Hammou et al. Experimental analysis of the effects of discharge current-rates on the parameters of the electrical equivalent circuit for NMC and LCO Li-ion batteries