[go: up one dir, main page]

JP2025010610A - Manufacturing method of anisotropic magnetic powder - Google Patents

Manufacturing method of anisotropic magnetic powder Download PDF

Info

Publication number
JP2025010610A
JP2025010610A JP2024186874A JP2024186874A JP2025010610A JP 2025010610 A JP2025010610 A JP 2025010610A JP 2024186874 A JP2024186874 A JP 2024186874A JP 2024186874 A JP2024186874 A JP 2024186874A JP 2025010610 A JP2025010610 A JP 2025010610A
Authority
JP
Japan
Prior art keywords
magnetic powder
anisotropic magnetic
oxide particles
particles
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2024186874A
Other languages
Japanese (ja)
Inventor
貴啓 佐々木
Takahiro Sasaki
永 前原
Hisashi Maehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Publication of JP2025010610A publication Critical patent/JP2025010610A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

To provide a method for producing an anisotropic magnetic powder excellent in magnetic properties.SOLUTION: There is provided a method for producing an anisotropic magnetic powder including the steps of: mixing iron oxide particles having an average particle diameter of 0.1 μm or more and 0.4 μm or less with oxide particles of R having an average particle diameter of 0.5 μm or more and 0.8 μm or less (R is at least one kind selected from the group consisting of Sc, Y, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu) to obtain a mixture; heat-treating the mixture under a reducing gas atmosphere to obtain partial oxide; obtaining alloy particles by reducing the partial oxide; and obtaining an anisotropic magnetic powder by nitriding the alloy particles.SELECTED DRAWING: None

Description

本発明は、異方性磁性粉末の製造方法に関する。 The present invention relates to a method for producing anisotropic magnetic powder.

特許文献1には希土類元素と鉄の酸性水溶液をアルカリ溶液に対して滴下して得た共沈物を酸化し、その後、還元及び窒化を行うことによる異方性磁性粉末の製造方法が開示されている。 Patent Document 1 discloses a method for producing anisotropic magnetic powder by dropping an acidic aqueous solution of rare earth elements and iron into an alkaline solution to obtain a coprecipitate, oxidizing the coprecipitate, and then reducing and nitriding the resulting mixture.

特許文献2には酸化鉄粒子と希土類元素の酸化物粒子との混合物を水素熱処理により還元し、さらに還元して合金を得た後、窒化することにより異方性磁性粉末を製造する方法が開示されている。 Patent Document 2 discloses a method for producing anisotropic magnetic powder by reducing a mixture of iron oxide particles and rare earth element oxide particles through hydrogen heat treatment, further reducing the mixture to obtain an alloy, and then nitriding the alloy.

特開2014-080653号公報JP 2014-080653 A 特開2010-270379号公報JP 2010-270379 A

本発明は、磁気特性に優れた異方性磁性粉末を製造する方法を提供することを目的とする。 The present invention aims to provide a method for producing anisotropic magnetic powder with excellent magnetic properties.

本発明の異方性磁性粉末の製造方法は、
平均粒子径0.1μm以上0.4μm以下の酸化鉄粒子と、平均粒子径が0.5μm以上0.8μm以下のR(RはSc、Y、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、Er、Tm、Luからなる群から選択される少なくとも1種)の酸化物粒子とを、混合し混合物を得る工程、
前記混合物を還元性ガス雰囲気下、熱処理することにより部分酸化物を得る工程、
前記部分酸化物を還元することにより、合金粒子を得る工程、および、
前記合金粒子を窒化することにより、異方性磁性粉末を得る工程を含む。
The method for producing the anisotropic magnetic powder of the present invention comprises the steps of:
A step of mixing iron oxide particles having an average particle size of 0.1 μm or more and 0.4 μm or less with oxide particles of R (R is at least one selected from the group consisting of Sc, Y, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu) having an average particle size of 0.5 μm or more and 0.8 μm or less to obtain a mixture;
a step of heat-treating the mixture in a reducing gas atmosphere to obtain a partial oxide;
obtaining alloy particles by reducing the partial oxide; and
The method includes a step of obtaining an anisotropic magnetic powder by nitriding the alloy particles.

磁気特性に優れた異方性磁性粉末の製造方法を提供することができる。 We can provide a method for producing anisotropic magnetic powder with excellent magnetic properties.

実施例1で得られた異方性磁性粉末の電子顕微鏡撮影像である。1 is an electron microscope image of the anisotropic magnetic powder obtained in Example 1. 比較例1で得られた異方性磁性粉末の電子顕微鏡撮影像である。1 is an electron microscope image of the anisotropic magnetic powder obtained in Comparative Example 1. 比較例2で得られた異方性磁性粉末の電子顕微鏡撮影像である。4 is an electron microscope image of the anisotropic magnetic powder obtained in Comparative Example 2. 比較例3で得られた異方性磁性粉末の電子顕微鏡撮影像である。1 is an electron microscope image of the anisotropic magnetic powder obtained in Comparative Example 3. 比較例4で得られた異方性磁性粉末の電子顕微鏡撮影像である。1 is an electron microscope image of the anisotropic magnetic powder obtained in Comparative Example 4. 比較例5で得られた異方性磁性粉末の電子顕微鏡撮影像である。1 is an electron microscope image of the anisotropic magnetic powder obtained in Comparative Example 5. 比較例6で得られた異方性磁性粉末の電子顕微鏡撮影像である。1 is an electron microscope image of the anisotropic magnetic powder obtained in Comparative Example 6.

以下、本発明の実施形態について詳述する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための一例であり、本発明を以下のものに限定するものではない。なお、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。さらに組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 The following describes in detail the embodiments of the present invention. However, the embodiments shown below are merely examples for embodying the technical concept of the present invention, and the present invention is not limited to the following. In this specification, the term "process" includes not only independent processes, but also processes that cannot be clearly distinguished from other processes, as long as the intended purpose of the process is achieved. Furthermore, a numerical range indicated using "~" indicates a range that includes the numerical values written before and after "~" as the minimum and maximum values, respectively. Furthermore, when multiple substances corresponding to each component are present in the composition, the content of each component in the composition means the total amount of the multiple substances present in the composition, unless otherwise specified.

本実施形態における異方性磁性粉末の製造方法は、
平均粒子径0.1μm以上0.4μm以下の酸化鉄粒子と、平均粒子径が0.5μm以上0.8μm以下のR(RはSc、Y、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、Er、Tm、Luからなる群から選択される少なくとも1種)の酸化物粒子とを、混合し混合物を得る工程(混合工程)、
前記混合物を還元性ガス雰囲気下、熱処理することにより部分酸化物を得る工程(前処理工程)、
前記部分酸化物を還元することにより、合金粒子を得る工程(還元工程)、および、
前記合金粒子を窒化することにより、異方性磁性粉末を得る工程(窒化工程)
を含むことを特徴とする。本実施形態によると上述の平均粒子径を持つ酸化鉄粒子と上述の平均粒子径をもつR(RはSc、Y、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、Er、Tm、Luからなる群から選択される少なくとも1種)の酸化物粒子とを混合することにより、混合物中の酸化鉄粒子とRの酸化物粒子の分布ムラを低減することができるので、磁気特性が改善すると考えられる。
The method for producing the anisotropic magnetic powder in this embodiment is as follows:
A step of mixing iron oxide particles having an average particle size of 0.1 μm or more and 0.4 μm or less with oxide particles of R (R is at least one selected from the group consisting of Sc, Y, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu) having an average particle size of 0.5 μm or more and 0.8 μm or less to obtain a mixture (mixing step);
a step of heat-treating the mixture in a reducing gas atmosphere to obtain a partial oxide (pretreatment step);
A step of obtaining alloy particles by reducing the partial oxide (reduction step); and
A step of obtaining anisotropic magnetic powder by nitriding the alloy particles (nitriding step).
According to this embodiment, by mixing iron oxide particles having the above-mentioned average particle size with oxide particles of R (R is at least one selected from the group consisting of Sc, Y, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu) having the above-mentioned average particle size, it is possible to reduce uneven distribution of the iron oxide particles and the oxide particles of R in the mixture, which is believed to improve the magnetic properties.

<混合工程>
混合工程とは、酸化鉄粒子と、R(RはSc、Y、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、Er、Tm、Luからなる群から選択される少なくとも1種)の酸化物粒子を混合する工程である。
<Mixing step>
The mixing step is a step of mixing iron oxide particles with oxide particles of R (R is at least one selected from the group consisting of Sc, Y, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu).

酸化鉄粒子の平均粒子径は0.1μm以上0.4μm以下であり、0.13μm以上0.35μm以下が好ましく、0.15μm以上0.25μm以下がより好ましい。平均粒子径が0.4μmを超えると、Rの酸化物粒子との混合性が低下することにより磁気特性が低下する傾向がある。平均粒径が0.1μm未満では、酸化鉄粒子中に不純物が多く含まれるため、それら不純物が後述の熱処理時にフラックスとして作用し粗大粒子が生じるため、磁気特性が低下する傾向がある。ここで、本発明における平均粒径は、レーザー回折式粒径分布測定装置を用いて乾式条件で測定した粒径である。 The average particle size of the iron oxide particles is 0.1 μm or more and 0.4 μm or less, preferably 0.13 μm or more and 0.35 μm or less, and more preferably 0.15 μm or more and 0.25 μm or less. If the average particle size exceeds 0.4 μm, the magnetic properties tend to deteriorate due to a decrease in the mixability with the oxide particles of R. If the average particle size is less than 0.1 μm, the iron oxide particles contain a large amount of impurities, which act as a flux during the heat treatment described below to produce coarse particles, and the magnetic properties tend to deteriorate. Here, the average particle size in the present invention is the particle size measured under dry conditions using a laser diffraction type particle size distribution measuring device.

Rの酸化物粒子は、Sc、Y、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、Er、Tm、Luからなる群から選択される少なくとも1種の酸化物であるが、磁気特性の点からSmの酸化物であるSmが好ましい。Rの酸化物粒子の平均粒子径は0.5μm以上0.8μm以下であり、0.53μm以上0.75μm以下が好ましく、0.55μm以上0.70μm以下がより好ましい。平均粒子径が0.5μm未満では水和反応が生じ易くなり、これにより急激に発熱が生じるため取り扱いが難しく、平均粒子径が0.8μmを超えると、酸化鉄粒子との混合性が低下するので、後述の前処理工程において酸化鉄粒子の異常成長が生じやすくなるため、磁気特性が低下する傾向がある。 The oxide particles of R are at least one oxide selected from the group consisting of Sc, Y, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu, but from the viewpoint of magnetic properties, Sm oxide Sm2O3 is preferred. The average particle size of the oxide particles of R is 0.5 μm or more and 0.8 μm or less, preferably 0.53 μm or more and 0.75 μm or less, and more preferably 0.55 μm or more and 0.70 μm or less. If the average particle size is less than 0.5 μm, hydration reaction is likely to occur, which causes rapid heat generation, making handling difficult, and if the average particle size exceeds 0.8 μm, the mixability with iron oxide particles decreases, so that abnormal growth of iron oxide particles is likely to occur in the pretreatment process described below, and magnetic properties tend to decrease.

酸化鉄粒子の平均粒子径に対して、Rの酸化物粒子の平均粒子径は4倍以下が好ましい。4倍を超えると酸化鉄粒子とRの酸化物粒子の混合性が悪化する傾向がある。 The average particle size of the R oxide particles is preferably 4 times or less than the average particle size of the iron oxide particles. If it exceeds 4 times, the mixing ability of the iron oxide particles and the R oxide particles tends to deteriorate.

Rの酸化物粒子の配合量は、酸化鉄粒子100重量部に対し32.2重量部以上36.8重量部以下が好ましく、33.2重量部以上35.3重量部以下がより好ましい。36.8重量部を超えるとRリッチの非磁性相の割合が多くなり磁気特性が低下する傾向があり、32.2重量部未満ではα-Feが生成して磁気特性、特に保磁力が低下する傾向がある。 The amount of R oxide particles is preferably 32.2 parts by weight to 36.8 parts by weight, and more preferably 33.2 parts by weight to 35.3 parts by weight, per 100 parts by weight of iron oxide particles. If it exceeds 36.8 parts by weight, the proportion of R-rich non-magnetic phase increases and the magnetic properties tend to deteriorate, while if it is less than 32.2 parts by weight, α-Fe is generated and the magnetic properties, especially the coercive force, tend to deteriorate.

酸化鉄粒子としては、マグネタイト(Fe)、ヘマタイト(Fe)が挙げられる。これらの中でも、磁気凝集しやすく、微細でも固液分離が可能であることから、マグネタイトが好ましい。 Examples of iron oxide particles include magnetite (Fe 3 O 4 ) and hematite (Fe 2 O 3 ). Among these, magnetite is preferred because it is easily magnetically agglomerated and allows solid-liquid separation even in fine particles.

酸化鉄粒子としては、上述の粒径の範囲であれば、市販のものを用いてもよいが、例えばマグネタイトの酸化鉄粒子は、鉄の水溶液にアルカリ剤を添加して作製した水酸化鉄(Fe(OH))の沈殿物を含むスラリーに対して、温度を70~90℃、pHを7.0~8.5とした条件のもと、空気などの酸素を含むガスを吹き込むことにより合成することができる(湿式酸化法)。水酸化鉄の沈殿物を作成するための鉄原料としては、入手のしやすさの点で硫酸鉄が挙げられる。アルカリ剤としては、アルカリ金属の水酸化物、アンモニアが挙げられるが、アルカリ金属の水酸化物が好ましく、特に水酸化ナトリウムは、製造コストと環境への負荷が小さい点からより好ましい。また、湿式酸化法によると、水酸化鉄粒子の沈殿物からマグネタイトの酸化鉄粒子が合成される際に再結晶化が起こるので、後述の残留するアルカリ金属濃度を低減することが容易である。 As the iron oxide particles, commercially available ones may be used as long as they are within the above-mentioned particle size range. For example, magnetite iron oxide particles can be synthesized by blowing an oxygen-containing gas such as air into a slurry containing a precipitate of iron hydroxide (Fe(OH) 2 ) prepared by adding an alkaline agent to an aqueous iron solution under conditions of a temperature of 70 to 90° C. and a pH of 7.0 to 8.5 (wet oxidation method). As an iron raw material for producing the iron hydroxide precipitate, iron sulfate can be mentioned in terms of ease of availability. As the alkaline agent, an alkali metal hydroxide or ammonia can be mentioned, but an alkali metal hydroxide is preferable, and sodium hydroxide is particularly more preferable in terms of its low manufacturing cost and environmental load. In addition, according to the wet oxidation method, recrystallization occurs when magnetite iron oxide particles are synthesized from the precipitate of iron hydroxide particles, so it is easy to reduce the concentration of residual alkali metals described below.

酸化鉄粒子中のアルカリ金属濃度は、200ppm以下とすることが好ましく、100ppm以下とすることがより好ましい。酸化鉄粒子中のアルカリ金属濃度が200ppmを超える場合、後述の還元工程時にフラックスとして作用し、粗大粒子が生じるので磁気特性が低下する傾向がある。また、上述の湿式酸化法においては、合成したマグネタイトの酸化鉄粒子のスラリーを純水で貫通洗浄することによりアルカリ金属濃度を低減することができる。ここでいう貫通洗浄とは、濾過機を開枠することなく、濾過機内の脱水ケーキを洗浄する操作のことである。 The alkali metal concentration in the iron oxide particles is preferably 200 ppm or less, and more preferably 100 ppm or less. If the alkali metal concentration in the iron oxide particles exceeds 200 ppm, it acts as a flux during the reduction process described below, and coarse particles are generated, which tends to deteriorate the magnetic properties. In addition, in the above-mentioned wet oxidation method, the alkali metal concentration can be reduced by penetrating and washing the slurry of synthesized magnetite iron oxide particles with pure water. Penetrating and washing here refers to the operation of washing the dehydrated cake in the filter without opening the filter.

酸化鉄粒子とRの酸化物粒子との混合は、酸化鉄粒子を含むスラリーと、Rの酸化物粒子を含むスラリーとを混合することにより行える。混合は、攪拌混合により行ってもよいが、混合物中の酸化鉄粒子とRの酸化物粒子の分布ムラを小さい領域(4μm)で低減できることから精密混合を行うことが好ましい。精密混合の方法としては、ビーズミルを用いた混合や、ビーズレスのラインミキサーを用いた混合が挙げられる。ビーズミルを用いる場合、ビーズ径は0.05mm以上0.5mm以下が好ましい。 The mixing of iron oxide particles and oxide particles of R can be carried out by mixing a slurry containing iron oxide particles with a slurry containing oxide particles of R. Mixing may be carried out by stirring and mixing, but precision mixing is preferred because it can reduce uneven distribution of iron oxide particles and oxide particles of R in the mixture in a small area (4 μm). Methods of precision mixing include mixing using a bead mill and mixing using a beadless line mixer. When using a bead mill, the bead diameter is preferably 0.05 mm or more and 0.5 mm or less.

混合物中の酸化鉄粒子とRの酸化物粒子の分布ムラを示す混合分布の変動係数(CV)は、23%以下が好ましく、22%以下がより好ましく、21%以下が特に好ましい。変動係数が23%を超えると、異方性磁性粉末の磁気特性が低下する傾向がある。混合分布の変動係数は、前記混合物の反射電子像を5000倍で撮影し、撮影画像を4μmに相当する角のマスに分割し、これらのマスからマスごとの酸化鉄とRの酸化物粒子の面積比を算出し、面積比のばらつきを算出することにより求められる。 The coefficient of variation (CV) of the mixed distribution, which indicates the uneven distribution of iron oxide particles and R oxide particles in the mixture, is preferably 23% or less, more preferably 22% or less, and particularly preferably 21% or less. If the coefficient of variation exceeds 23%, the magnetic properties of the anisotropic magnetic powder tend to deteriorate. The coefficient of variation of the mixed distribution is obtained by taking a backscattered electron image of the mixture at 5000x magnification, dividing the image into squares with corners equivalent to 4 μm, calculating the area ratio of iron oxide and R oxide particles for each square from these squares, and calculating the variation in the area ratio.

酸化鉄粒子とRの酸化物粒子とを混合した後、該混合物を洗浄および乾燥することが好ましい。洗浄は排水導電率が30μS/cm以下となるまで純水により行い、乾燥は約200℃以上250℃以下での噴霧乾燥により行うことができる。 After mixing the iron oxide particles and the R oxide particles, it is preferable to wash and dry the mixture. Washing can be performed with pure water until the effluent conductivity is 30 μS/cm or less, and drying can be performed by spray drying at approximately 200°C or higher and 250°C or lower.

<水酸化カルシウムの添加>
酸化鉄粒子と、Rの酸化物粒子に加えて、水酸化カルシウムを加えてもよい。酸化鉄粒子とRの酸化物粒子との混合物に水酸化カルシウムを添加すると、酸化鉄粒子間に水酸化カルシウムが存在することにより、酸化鉄粒子同士の接触を抑制できる。その結果、酸化鉄粒子同士が焼結することを抑制でき、異方性磁性粉末の分散性が向上する。水酸化カルシウムは、前処理工程、還元工程および窒化工程での高温加熱と、還元性ガスによる還元や金属Caによる還元に耐性を有する物質であり、前処理工程で水以外のガスを生じないこと、水洗工程で除去しやすいことから好ましい。
<Addition of calcium hydroxide>
In addition to the iron oxide particles and the oxide particles of R, calcium hydroxide may be added. When calcium hydroxide is added to a mixture of iron oxide particles and oxide particles of R, the presence of calcium hydroxide between the iron oxide particles can suppress contact between the iron oxide particles. As a result, sintering between the iron oxide particles can be suppressed, and the dispersibility of the anisotropic magnetic powder is improved. Calcium hydroxide is a substance that is resistant to high temperature heating in the pretreatment step, reduction step, and nitriding step, reduction by reducing gas, and reduction by metallic Ca, and is preferable because it does not generate gas other than water in the pretreatment step and is easy to remove in the water washing step.

水酸化カルシウムの平均粒子径は0.05μm以上0.8μm以下が好ましく、0.3μm以上0.5μm以下がより好ましい。平均粒子径が0.8μmを超えると酸化鉄粒子同士の焼結を抑制する効果が小さくなる傾向があり、0.05μm未満は、ビーズミルによる粉砕では作成が困難である。 The average particle size of calcium hydroxide is preferably 0.05 μm or more and 0.8 μm or less, and more preferably 0.3 μm or more and 0.5 μm or less. If the average particle size exceeds 0.8 μm, the effect of suppressing sintering of iron oxide particles tends to be reduced, and if it is less than 0.05 μm, it is difficult to produce by grinding with a bead mill.

酸化鉄粒子の平均粒子径に対して、水酸化カルシウムの平均粒子径は4倍以下が好ましい。4倍を超えると酸化鉄粒子とRの酸化物粒子の混合性が悪化する傾向がある。 The average particle size of calcium hydroxide is preferably 4 times or less than the average particle size of iron oxide particles. If it exceeds 4 times, the mixing ability of iron oxide particles and R oxide particles tends to deteriorate.

水酸化カルシウムを配合する場合、その配合量は、酸化鉄粒子100重量部に対し8重量部以上48重量部以下が好ましく、18重量部以上32重量部以下がより好ましい。48重量部を超えると磁性粉末の粒子径が小さくなり磁気特性、特に残留磁化が低下する傾向があり、8重量部未満では酸化鉄粒子同士の焼結を抑制する効果が小さくなる傾向がある。 When calcium hydroxide is added, the amount is preferably 8 parts by weight or more and 48 parts by weight or less, and more preferably 18 parts by weight or more and 32 parts by weight or less, per 100 parts by weight of iron oxide particles. If it exceeds 48 parts by weight, the particle size of the magnetic powder tends to become small and the magnetic properties, especially the residual magnetization, tend to decrease, and if it is less than 8 parts by weight, the effect of suppressing sintering of the iron oxide particles tends to decrease.

水酸化カルシウムは、前処理工程前に酸化鉄粒子と混合している状態であればよく、混合方法は特に限定されないが、酸化鉄粒子とRの酸化物粒子を含むスラリーに、水酸化カルシウムのスラリーを混合することが好ましい。混合は、攪拌混合により行ってもよいが、混合物中の酸化鉄粒子、Rの酸化物粒子、及び水酸化カルシウムの分布ムラを低減できることから精密混合を行うことが好ましい。 The calcium hydroxide may be in a state where it is mixed with the iron oxide particles before the pretreatment step, and the mixing method is not particularly limited, but it is preferable to mix a slurry of calcium hydroxide with a slurry containing iron oxide particles and oxide particles of R. The mixing may be performed by stirring and mixing, but precision mixing is preferable because it can reduce uneven distribution of the iron oxide particles, oxide particles of R, and calcium hydroxide in the mixture.

<前処理工程>
前処理工程とは、酸化鉄粒子とRの酸化物粒子との混合物を還元性ガス雰囲気下で熱処理することにより、含まれる酸化鉄の大部分が還元された部分酸化物を得る工程である。
<Pretreatment process>
The pretreatment step is a step in which a mixture of iron oxide particles and R oxide particles is heat-treated in a reducing gas atmosphere to obtain a partial oxide in which most of the contained iron oxide is reduced.

還元性ガスは水素(H)、一酸化炭素(CO)、メタン(CH)等の炭化水素ガスなどから適宜選択されるが、コストの点で水素ガスが好ましい。ガスの流量は、酸化物が飛散しない範囲で適宜調整される。前処理工程における熱処理温度(以下、前処理温度)は、300℃以上950℃以下が好ましく、より好ましくは400℃以上、さらに好ましくは750℃以上であり、好ましくは900℃未満である。前処理温度が300℃以上であると酸化鉄の還元が効率的に進行する。また950℃以下であると還元により生じる鉄粒子が粒子成長、偏析することが抑制され、所望の粒径を維持することができる。また、還元性ガスとして水素を用いる場合、使用する酸化物層の厚みを20mm以下に調整し、更に反応炉内の露点を-10℃以下に調整することが好ましい。 The reducing gas is appropriately selected from hydrocarbon gases such as hydrogen (H 2 ), carbon monoxide (CO), and methane (CH 4 ), but hydrogen gas is preferred from the viewpoint of cost. The flow rate of the gas is appropriately adjusted within a range in which oxides do not fly off. The heat treatment temperature in the pretreatment step (hereinafter, pretreatment temperature) is preferably 300° C. or higher and 950° C. or lower, more preferably 400° C. or higher, even more preferably 750° C. or higher, and preferably lower than 900° C. When the pretreatment temperature is 300° C. or higher, the reduction of iron oxide proceeds efficiently. Furthermore, when the pretreatment temperature is 950° C. or lower, particle growth and segregation of iron particles generated by reduction are suppressed, and the desired particle size can be maintained. Furthermore, when hydrogen is used as the reducing gas, it is preferable to adjust the thickness of the oxide layer used to 20 mm or less, and further adjust the dew point in the reaction furnace to −10° C. or less.

<還元工程>
還元工程とは、得られた部分酸化物を還元することにより、例えば、部分酸化物と、金属カルシウムとを混合し、窒素以外のアルゴンなどの不活性ガス雰囲気又は真空中で熱処理することにより、鉄とRとを含む合金粒子を得る工程である。
<Reduction step>
The reduction step is a step of reducing the obtained partial oxide, for example, by mixing the partial oxide with metallic calcium and heat-treating the mixture in an atmosphere of an inert gas other than nitrogen, such as argon, or in vacuum, to obtain alloy particles containing iron and R.

酸化物がカルシウム融体またはカルシウムの蒸気と接触することで還元が行われる。還元工程における熱処理温度(以下、還元温度)は700℃以上1200℃以下の範囲であり、800℃以上1100℃以下の範囲とすることが好ましい。熱処理時間は、還元反応をより均一に行う観点から、10分間以上10時間以下の範囲の時間で行うことができ、10分間を超え2時間以下の範囲で行うことが好ましい。 Reduction is carried out by contacting the oxide with calcium melt or calcium vapor. The heat treatment temperature in the reduction step (hereinafter, reduction temperature) is in the range of 700°C to 1200°C, and preferably in the range of 800°C to 1100°C. From the viewpoint of carrying out the reduction reaction more uniformly, the heat treatment time can be in the range of 10 minutes to 10 hours, and is preferably in the range of more than 10 minutes to 2 hours.

金属カルシウムは、粒状又は粉末状の形で使用されるが、その粒子径は10mm以下であることが好ましい。これにより還元反応時における粒子のネッキングをより効果的に抑制することができる。また、金属カルシウムは、反応当量(希土類酸化物を還元するのに必要な化学量論量であり、鉄の酸化物を還元するために必要な分を含む)の1.1倍量以上3.0倍量以下の割合で添加することができ、1.5倍量以上2.5倍量以下の割合で添加することが好ましい。 Metallic calcium is used in granular or powder form, with the particle size preferably being 10 mm or less. This makes it possible to more effectively suppress necking of particles during the reduction reaction. Metallic calcium can be added in an amount between 1.1 and 3.0 times the reaction equivalent (the stoichiometric amount required to reduce rare earth oxides, including the amount required to reduce iron oxides), and is preferably added in an amount between 1.5 and 2.5 times the reaction equivalent.

還元工程では、還元剤である金属カルシウムとともに、必要に応じて崩壊促進剤を使用することができる。この崩壊促進剤は、後述する水洗工程に際して、生成物の崩壊、粒状化を促進させるために適宜使用されるものであり、例えば、塩化カルシウム等のアルカリ土類金属塩、酸化カルシウム等のアルカリ土類酸化物などが挙げられる。これらの崩壊促進剤は、希土類源として使用される希土類酸化物当り1質量%以上30質量%以下、好ましくは5質量%以上30質量%以下の割合で使用される。 In the reduction step, a disintegration promoter can be used as necessary together with metallic calcium as a reducing agent. This disintegration promoter is used as appropriate to promote disintegration and granulation of the product in the water washing step described below, and examples of such disintegration promoters include alkaline earth metal salts such as calcium chloride, and alkaline earth oxides such as calcium oxide. These disintegration promoters are used in a ratio of 1% by mass to 30% by mass, preferably 5% by mass to 30% by mass, per rare earth oxide used as the rare earth source.

<窒化工程>
窒化工程とは、還元工程で得られた合金粒子を窒化処理することにより、異方性の磁性粒子を得る工程である。還元工程では多孔質塊状の焼結体が得られているため、粉砕処理を行うことなく直ちに窒素雰囲気中で熱処理して窒化することができ、窒化を均一に行うことができる。
<Nitriding process>
The nitriding process is a process for obtaining anisotropic magnetic particles by nitriding the alloy particles obtained in the reduction process. Since a porous sintered mass is obtained in the reduction process, the nitriding process can be performed uniformly by immediately subjecting the sintered mass to heat treatment in a nitrogen atmosphere without pulverization.

合金粒子の窒化処理における熱処理温度(以下、窒化温度)は、300℃以上600℃以下、特に400℃以上550℃以下の温度とし、この温度範囲で雰囲気を窒素雰囲気に置換することにより行われる。熱処理時間は、合金粒子の窒化が充分に均一に行われる程度に設定されればよく、例えば2時間以上30時間以下程度である。 The heat treatment temperature for the nitriding of alloy particles (hereinafter referred to as the nitriding temperature) is 300°C or higher and 600°C or lower, particularly 400°C or higher and 550°C or lower, and is performed by replacing the atmosphere with a nitrogen atmosphere within this temperature range. The heat treatment time may be set to a time sufficient for the nitriding of the alloy particles to be sufficiently uniform, for example, 2 hours or higher and 30 hours or lower.

<水洗工程>
水洗工程とは、窒化工程で得られた焼成体を冷水に投入することにより焼成体を崩壊させ、異方性磁性粒子と不純物を分離する工程である。窒化工程後に得られる生成物には、磁性粒子に加えて、副生するCaO、未反応の金属カルシウム等が含まれ、これらが複合した焼結塊状態となっている場合がある。そこで、その場合は、この生成物を冷却水中に投入して、CaO及び金属カルシウムを水酸化カルシウム(Ca(OH))懸濁物として磁性粒子から分離することができる。さらに残留する水酸化カルシウムは、磁性粒子を酢酸等で洗浄して充分に除去してもよい。生成物を水中に投入した際には、金属カルシウムの水による酸化及び副生CaOの水和反応によって、複合した焼結塊状の反応生成物の崩壊、すなわち微粉化が進行する。また、混合工程で水酸化カルシウムを添加した場合には、水洗工程で除去できる。表面処理を行う場合には、表面処理剤としてリン酸溶液を窒化工程で得られた磁性粒子固形分に対してPOとして0.10質量%以上10質量%以下の範囲で投入すればよい。適宜溶液から分離し乾燥することで異方性の磁性粉末が得られる。
<Water washing process>
The water washing step is a step in which the sintered body obtained in the nitriding step is put into cold water to disintegrate the sintered body and separate the anisotropic magnetic particles from impurities. The product obtained after the nitriding step may contain, in addition to the magnetic particles, by-produced CaO, unreacted metallic calcium, etc., and these may be in a composite sintered lump state. In this case, the product is put into cooling water to separate CaO and metallic calcium from the magnetic particles as a calcium hydroxide (Ca(OH) 2 ) suspension. Furthermore, the remaining calcium hydroxide may be sufficiently removed by washing the magnetic particles with acetic acid or the like. When the product is put into water, the oxidation of metallic calcium by water and the hydration reaction of by-produced CaO cause the composite sintered lump-like reaction product to disintegrate, i.e., to become fine powder. In addition, when calcium hydroxide is added in the mixing step, it can be removed in the water washing step. When performing surface treatment, a phosphoric acid solution may be put into the range of 0.10% by mass to 10% by mass as PO 4 relative to the magnetic particle solid content obtained in the nitriding step as a surface treatment agent. After appropriate separation from the solution and drying, anisotropic magnetic powder is obtained.

以上のようにして得られた異方性磁性粉末は、典型的には下記一般式
Fe(100-x-y)(式中、RはSc、Y、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、Er、Tm、およびLuからなる群から選択される少なくとも1種を示し、xは3以上30以下であり、yは5以上15以下である)
で表される。磁気特性の点より、Rとしては、Smが好ましい。
The anisotropic magnetic powder obtained as described above typically has the following general formula R x Fe (100-x-y) N y (wherein R represents at least one selected from the group consisting of Sc, Y, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu, x is 3 or more and 30 or less, and y is 5 or more and 15 or less).
From the viewpoint of magnetic properties, R is preferably Sm.

一般式において、xを3以上30以下と規定するのは、3未満では鉄成分の未反応部分(α-Fe相)が分離して窒化物の保磁力が低下し、実用的な磁石ではなくなり、30を越えると、Sc、Y、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、Er、Tm、Luからなる群から選択される少なくとも1種の元素が析出し、磁性粉末が大気中で不安定になり、残留磁束密度が低下するからである。また、yを5以上15以下と規定するのは、5未満では、ほとんど保磁力が発現できず、15を越えるとSc、Y、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、Er、Tm、Luからなる群から選択される少なくとも1種の元素、鉄自体の窒化物が生成するからである。 In the general formula, x is specified to be 3 to 30 because if it is less than 3, the unreacted portion of the iron component (α-Fe phase) separates, reducing the coercive force of the nitride and making it no longer a practical magnet, and if it exceeds 30, at least one element selected from the group consisting of Sc, Y, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu precipitates, making the magnetic powder unstable in the air and reducing the residual magnetic flux density. Also, y is specified to be 5 to 15 because if it is less than 5, almost no coercive force is expressed, and if it exceeds 15, nitrides of at least one element selected from the group consisting of Sc, Y, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu and of iron itself are formed.

<複合材料>
本発明の異方性磁性粉末と、樹脂より複合材料を作製できる。本発明の異方性磁性粉末を含むことで、高い磁気特性を有する複合材料を構成することができる。
<Composite materials>
A composite material can be produced from the anisotropic magnetic powder of the present invention and a resin. By including the anisotropic magnetic powder of the present invention, a composite material having high magnetic properties can be formed.

複合材料に含まれる樹脂は、熱硬化性樹脂であっても、熱可塑性樹脂であってもよいが、熱可塑性樹脂であることが好ましい。熱可塑性樹脂として、具体的には、ポリフェニレンサルファイド樹脂(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)、ポリアミド(PA)、ポリプロピレン(PP)、ポリエチレン(PE)等を挙げることができる。 The resin contained in the composite material may be a thermosetting resin or a thermoplastic resin, but is preferably a thermoplastic resin. Specific examples of thermoplastic resins include polyphenylene sulfide resin (PPS), polyether ether ketone (PEEK), liquid crystal polymer (LCP), polyamide (PA), polypropylene (PP), polyethylene (PE), etc.

複合材料を得る際の異方性磁性粉末と樹脂の混合比(樹脂/磁性粉末)は、0.10以上0.15以下であることが好ましく、0.11以上0.14以下であることがより好ましい。 When obtaining a composite material, the mixing ratio of the anisotropic magnetic powder and the resin (resin/magnetic powder) is preferably 0.10 or more and 0.15 or less, and more preferably 0.11 or more and 0.14 or less.

複合材料は、例えば、混練機を用いて、280℃以上330℃以下で異方性磁性粉末と樹脂とを混合することにより得ることができる。 The composite material can be obtained, for example, by mixing anisotropic magnetic powder and resin at 280°C or higher and 330°C or lower using a kneader.

<ボンド磁石>
前述の複合材料を用いることにより、ボンド磁石を製造することができる。具体的には例えば、複合材料を熱処理しながら配向磁場で磁化容易軸を揃え(配向工程)、次いで着磁磁場でパルス着磁する(着磁工程)ことにより、ボンド磁石を得ることができる。
<Bonded magnet>
The composite material described above can be used to manufacture a bonded magnet. Specifically, for example, the composite material can be heat-treated while aligning the axis of easy magnetization in an orienting magnetic field (orientation process), and then pulse-magnetized in a magnetizing magnetic field (magnetization process) to obtain a bonded magnet.

配向工程における熱処理温度は、例えば90℃以上200℃以下であることが好ましく、100℃以上150℃以下であることがより好ましい。配向工程における配向磁場の大きさは、例えば720kA/mとすることができる。また、着磁工程における着磁磁場の大きさは、例えば1500kA/m以上2500kA/m以下とすることができる。 The heat treatment temperature in the orientation process is preferably, for example, 90°C or higher and 200°C or lower, and more preferably, 100°C or higher and 150°C or lower. The magnitude of the orientation magnetic field in the orientation process can be, for example, 720 kA/m. In addition, the magnitude of the magnetization magnetic field in the magnetization process can be, for example, 1500 kA/m or higher and 2500 kA/m or lower.

以下、実施例について説明する。なお、特に断りのない限り、「%」は質量基準である。 The following are examples. Unless otherwise specified, "%" is by weight.

(1)実施例1
(混合工程)
純水988kgに鉄濃度8%の硫酸第一鉄(FeSO)を2000kg投入し、攪拌させながら25%苛性ソーダをpH=10.5になるまで加えて水酸化鉄スラリーを作成した。この水酸化鉄スラリーを70~80℃に昇温した後、pH7.5~8.5にpH制御を行いながらエアレーションを行い、酸化鉄粒子として平均粒径が0.20μmのマグネタイト(Fe)を221.3kg含むスラリーを作成した。
(1) Example 1
(Mixing process)
2000 kg of ferrous sulfate ( FeSO4 ) with an iron concentration of 8% was added to 988 kg of pure water, and 25% caustic soda was added with stirring until the pH reached 10.5 to prepare an iron hydroxide slurry. After heating this iron hydroxide slurry to 70-80°C, aeration was performed while controlling the pH to 7.5-8.5 to prepare a slurry containing 221.3 kg of magnetite ( Fe3O4 ) with an average particle size of 0.20 μm as iron oxide particles.

純水74.7kgを攪拌しながら、酸化サマリウム(Sm)74.7kgを、凝集が生じないよう少量ずつ溶解させて酸化サマリウムのスラリーを作成した。続いてこのスラリー中の酸化サマリウム粒子の平均粒径が0.70μmになるまで粉砕した。 While stirring 74.7 kg of pure water, 74.7 kg of samarium oxide (Sm 2 O 3 ) was dissolved little by little so as not to cause aggregation, to prepare a samarium oxide slurry. The samarium oxide particles in the slurry were then pulverized until the average particle size was 0.70 μm.

上記酸化サマリウムのスラリーを、上記マグネタイトのスラリーに投入して攪拌し、ビーズミル(ビーズ径0.1mm)で精密混合を行い、鉄とサマリウムがミクロレベルで均一に混合した酸化物スラリーを作成した。この酸化物スラリーを純水で排水導電率が30μS/cm以下になるまで洗浄した後、固形分濃度30~50%まで脱水し、スラリーを高濃度化した。高濃度化した酸化物スラリーをポンプで送液して約250℃で噴霧乾燥を行い、黒色のFe、Sm混合酸化物296kgが得られた。 The samarium oxide slurry was added to the magnetite slurry and stirred, then precision mixed in a bead mill (bead diameter 0.1 mm) to create an oxide slurry in which iron and samarium were mixed uniformly at a micro level. This oxide slurry was washed with pure water until the effluent conductivity was 30 μS/cm or less, and then dehydrated to a solids concentration of 30-50%, increasing the concentration of the slurry. The increased concentration of the oxide slurry was pumped and spray-dried at approximately 250°C, yielding 296 kg of black Fe, Sm mixed oxide.

(前処理工程)
上記で得られた酸化物粉296kgを水素還元炉にて約800℃にて還元し、粉中の酸素濃度を5.8質量%以下にした。水素還元粉として228kgを回収した。
(Pretreatment process)
The oxide powder (296 kg) obtained above was reduced in a hydrogen reduction furnace at about 800° C. to reduce the oxygen concentration in the powder to 5.8 mass % or less. 228 kg of hydrogen-reduced powder was recovered.

(還元工程)
上記前処理工程で得られた粉に含まれる酸素量に対して、2.25倍当量の金属カルシウム(粒径約6mm)を用意して、水素還元粉と混合した。具体的には、水素還元粉103.8gと金属カルシウム29.8gを混合してプレス成形し炉内に投入。炉内を真空排気した後、アルゴンガス(Arガス)を導入した。温度を1030℃まで上昇させて、そのまま2時間保持することにより、Fe-Sm-M合金粒子を得た。
(Reduction process)
Metal calcium (particle size: about 6 mm) was prepared in an amount 2.25 times equivalent to the amount of oxygen contained in the powder obtained in the pretreatment process, and mixed with the hydrogen-reduced powder. Specifically, 103.8 g of hydrogen-reduced powder and 29.8 g of metal calcium were mixed, press-molded, and placed in a furnace. After evacuating the furnace, argon gas (Ar gas) was introduced. The temperature was raised to 1030°C and held there for 2 hours to obtain Fe-Sm-M alloy particles.

(窒化工程)
還元工程後、100℃まで冷却した後、真空排気を行い、引き続き窒素ガスを導入しながら、温度を430℃まで上昇させて、そのまま23時間保持して、異方性磁性粉末を含む反応生成物を得た。
(Nitriding process)
After the reduction step, the mixture was cooled to 100° C., evacuated, and then the temperature was raised to 430° C. while introducing nitrogen gas. The mixture was then held at that temperature for 23 hours to obtain a reaction product containing anisotropic magnetic powder.

(水洗工程)
窒化工程で得られた塊状の反応生成物を純水3kgに投入し、30分間攪拌した。静置した後、デカンテーションにより上澄みを排水した。純水への投入、攪拌及びデカンテーションを10回繰り返した。次いで99.9%酢酸4.0gを投入して15分間攪拌した。得られたスラリーを固液分離した後、80℃で真空乾燥を3時間行って、異方性磁性粉末を得た。得られた異方性磁性粉末はSmFe17で表される。
(Water washing process)
The lump-shaped reaction product obtained in the nitriding step was put into 3 kg of pure water and stirred for 30 minutes. After standing, the supernatant was drained by decantation. The process of putting into pure water, stirring and decantation was repeated 10 times. Then, 4.0 g of 99.9% acetic acid was put in and stirred for 15 minutes. After the obtained slurry was separated into solid and liquid, it was vacuum dried at 80°C for 3 hours to obtain an anisotropic magnetic powder. The obtained anisotropic magnetic powder is represented by Sm2Fe17N3 .

(振動ミル工程)
上記で得られた異方性磁性粉末をΦ2.5mmビーズ(SUJ2)が900g入った500mlの金属製ポットへ投入して振動ミルで乾式粉砕を行った。その後、ふるいにかけて異方性磁性粉末のみを回収した。
(Vibration mill process)
The anisotropic magnetic powder obtained above was placed in a 500 ml metal pot containing 900 g of Φ2.5 mm beads (SUJ2) and dry-pulverized in a vibration mill. After that, the anisotropic magnetic powder was sieved to recover only the anisotropic magnetic powder.

(2)実施例2
混合工程において、平均粒径が0.31μmのマグネタイトのスラリー、および平均粒径が0.63μmの酸化サマリウムのスラリーを作成した以外は、実施例1と同じ方法で異方性磁性粉末を作成した。
(2) Example 2
Anisotropic magnetic powder was prepared in the same manner as in Example 1, except that in the mixing step, a magnetite slurry having an average particle size of 0.31 μm and a samarium oxide slurry having an average particle size of 0.63 μm were prepared.

(3)実施例3
(混合工程)
純水988kgに鉄濃度8%の硫酸第一鉄(FeSO)を2000kg投入し、攪拌させながら25%苛性ソーダをpH=10.5になるまで加えて水酸化鉄スラリーを作成した。この水酸化鉄スラリーを70~80℃に昇温した後、pH7.5~8.5にpH制御を行いながらエアレーションを行い、酸化鉄粒子として平均粒径が0.20μmのマグネタイト(Fe)を221.3kg含むスラリーを作成した。
(3) Example 3
(Mixing process)
2000 kg of ferrous sulfate ( FeSO4 ) with an iron concentration of 8% was added to 988 kg of pure water, and 25% caustic soda was added with stirring until the pH reached 10.5 to prepare an iron hydroxide slurry. After heating this iron hydroxide slurry to 70-80°C, aeration was performed while controlling the pH to 7.5-8.5 to prepare a slurry containing 221.3 kg of magnetite ( Fe3O4 ) with an average particle size of 0.20 μm as iron oxide particles.

純水74.7kgを攪拌しながら、酸化サマリウム(Sm)74.7kgを、凝集が生じないよう少量ずつ溶解させて酸化サマリウムのスラリーを作成した。続いてこのスラリー中の酸化サマリウム粒子の平均粒径が0.70μmになるまで粉砕した。 While stirring 74.7 kg of pure water, 74.7 kg of samarium oxide (Sm 2 O 3 ) was dissolved little by little so as not to cause aggregation, to prepare a samarium oxide slurry. The samarium oxide particles in the slurry were then pulverized until the average particle size was 0.70 μm.

上記酸化サマリウムのスラリーを、上記マグネタイトのスラリーに投入して攪拌し、ビーズミル(ビーズ径0.1mm)で精密混合を行い、鉄とサマリウムがミクロレベルで均一に混合した酸化物スラリーを作成した。この酸化物スラリーを純水で排水導電率が30μS/cm以下になるまで洗浄を行った。 The samarium oxide slurry was added to the magnetite slurry and stirred, then precision mixed using a bead mill (bead diameter 0.1 mm) to create an oxide slurry in which iron and samarium were mixed uniformly at the micro level. This oxide slurry was washed with pure water until the effluent conductivity was 30 μS/cm or less.

純水400kgを攪拌しながら水酸化カルシウム80kgを、凝集が生じないよう少量ずつ溶解させて水酸化カルシウムのスラリーを作成した。続いてこのスラリー中の水酸化カルシウム粒子の平均粒径が0.50μmになるまで粉砕した。 While stirring 400 kg of pure water, 80 kg of calcium hydroxide was dissolved in small amounts to avoid clumping, creating a calcium hydroxide slurry. The calcium hydroxide particles in this slurry were then pulverized until the average particle size was 0.50 μm.

この水酸化カルシウムのスラリーを先ほどの洗浄が終った酸化物スラリーへ投入して攪拌し、ビーズミル(ビーズ径0.1mm)で精密混合を行い、鉄とサマリウムと水酸化カルシウムがミクロレベルで均一に混合した酸化物スラリーを作成した。その後、固形分濃度30~50%まで脱水し、スラリーを高濃度化した。高濃度化した酸化物スラリーをポンプで送液して約250℃で噴霧乾燥を行い、黒色のFe、Sm、Ca混合酸化物376kgが得られた。 This calcium hydroxide slurry was added to the previously washed oxide slurry and stirred, then precision mixed in a bead mill (bead diameter 0.1 mm) to create an oxide slurry in which iron, samarium, and calcium hydroxide were mixed uniformly at a microscopic level. The slurry was then dehydrated to a solids concentration of 30-50%, increasing the concentration. The highly concentrated oxide slurry was pumped and spray-dried at approximately 250°C, yielding 376 kg of black Fe, Sm, Ca mixed oxide.

(前処理工程)
上記で得られた酸化物粉376kgを水素還元炉にて約800℃にて還元し、粉中の酸素濃度を5.8質量%以下にした。水素還元粉として315kgを回収した。
(Pretreatment process)
The oxide powder thus obtained (376 kg) was reduced in a hydrogen reduction furnace at about 800° C. to reduce the oxygen concentration in the powder to 5.8 mass % or less. 315 kg of hydrogen-reduced powder was recovered.

その後、実施例1と同じ条件で還元工程、窒化工程、水洗工程、振動ミル工程を経て、SmFe17異方性磁性粉末を作成した。 Thereafter, the mixture was subjected to a reduction process, a nitriding process, a water washing process, and a vibration mill process under the same conditions as in Example 1 to prepare anisotropic magnetic powder of Sm 2 Fe 17 N 3 .

(4)比較例1
混合工程において、平均粒径が0.15μmのマグネタイトのスラリー、および平均粒径が1.1μmの酸化サマリウムのスラリーを作成した以外は、実施例1と同じ方法で異方性磁性粉末を作成した。
(4) Comparative Example 1
Anisotropic magnetic powder was prepared in the same manner as in Example 1, except that in the mixing step, a magnetite slurry having an average particle size of 0.15 μm and a samarium oxide slurry having an average particle size of 1.1 μm were prepared.

(5)比較例2
混合工程において、平均粒径が0.22μmのマグネタイトのスラリー、および平均粒径が1.6μmの酸化サマリウムのスラリーを作成した以外は、実施例1と同じ方法で異方性磁性粉末を作成した。
(5) Comparative Example 2
Anisotropic magnetic powder was prepared in the same manner as in Example 1, except that in the mixing step, a magnetite slurry having an average particle size of 0.22 μm and a samarium oxide slurry having an average particle size of 1.6 μm were prepared.

(6)比較例3
純水988kgに鉄濃度8%の硫酸第一鉄を1000kgと、鉄濃度8%の硫酸第二鉄(Fe(SO)を1000kg投入し、攪拌させながら25%苛性ソーダをpH=9.2になるまで加えて70~80℃で熟成することにより平均粒径が0.05μmになるマグネタイトのスラリーを作成した。その後、平均粒径が0.59μmの酸化サマリウムのスラリーと混合した以外は、実施例1と同じ方法で異方性磁性粉末を作成した。
(6) Comparative Example 3
1000 kg of ferrous sulfate with an iron concentration of 8% and 1000 kg of ferric sulfate (Fe 2 (SO 4 ) 3 ) with an iron concentration of 8% were added to 988 kg of pure water, and 25% caustic soda was added while stirring until the pH reached 9.2, and the mixture was aged at 70 to 80° C. to produce a magnetite slurry with an average particle size of 0.05 μm. An anisotropic magnetic powder was produced in the same manner as in Example 1, except that the mixture was mixed with a samarium oxide slurry with an average particle size of 0.59 μm.

(7)比較例4
純水550kgを攪拌しながら、平均粒径が約5μmになるマグネタイト221kgをダマにならないように少量ずつ溶解させてマグネタイトのスラリーを作成した。このスラリーをビーズミルにて平均粒径が1.3μmになるまで粉砕した。その後、平均粒径が0.72μmの酸化サマリウムのスラリーを作成した以外は、実施例1と同じ方法で異方性磁性粉末を作成した。
(7) Comparative Example 4
While stirring 550 kg of pure water, 221 kg of magnetite with an average particle size of about 5 μm was dissolved little by little so as not to form lumps, to prepare a magnetite slurry. This slurry was pulverized in a bead mill until the average particle size became 1.3 μm. Then, anisotropic magnetic powder was prepared in the same manner as in Example 1, except that a slurry of samarium oxide with an average particle size of 0.72 μm was prepared.

(8)比較例5
混合工程において、平均粒径が0.68μmのマグネタイトのスラリー、および平均粒径が0.77μmの酸化サマリウムのスラリーを作成した以外は、比較例4と同じ方法で異方性磁性粉末を作成した。
(8) Comparative Example 5
Anisotropic magnetic powder was prepared in the same manner as in Comparative Example 4, except that in the mixing step, a magnetite slurry having an average particle size of 0.68 μm and a samarium oxide slurry having an average particle size of 0.77 μm were prepared.

(9)比較例6
(溶解工程)
純水1500kgを35℃に昇温、鉄濃度8%の硫酸第一鉄を2000kg、70%硫酸を20kg加えた後、酸化サマリウム74.7kgを投入して混合溶解した。さらにアンモニア水をpH=2.0になるまで加えてよく攪拌し、完全に溶解させた。溶液の総量を4766kgになるように純水を足して濃度調整し、これをメタル液とした。
(9) Comparative Example 6
(Dissolving process)
1500 kg of pure water was heated to 35°C, 2000 kg of ferrous sulfate with an iron concentration of 8% and 20 kg of 70% sulfuric acid were added, and then 74.7 kg of samarium oxide was added and mixed to dissolve. Ammonia water was further added until the pH was 2.0 and the mixture was thoroughly stirred to dissolve completely. Pure water was added to adjust the concentration so that the total amount of the solution was 4766 kg, and this was used as the metal solution.

(反応工程)
次に、温度が35℃に保たれた純水2500kg中に、上記で得られた35℃のメタル液を4766kgと、18%アンモニアと炭酸ガスをpH7~8で調整しながら70分かけて同時に投入。これにより、Fe、Sm炭酸塩の沈殿物が得られた。得られた沈殿物はスラリー化していた。
(Reaction step)
Next, 4766 kg of the 35°C metal solution obtained above was added to 2500 kg of pure water kept at a temperature of 35°C over a period of 70 minutes, while adjusting the pH to 7-8 with 18% ammonia and carbon dioxide gas. This resulted in the production of precipitates of Fe and Sm carbonates. The precipitate obtained was in the form of a slurry.

(洗浄工程)
得られたスラリーを純水で貫通洗浄を行い、排水導電率が150μS/cm以下になるま
で洗浄した後、約90℃で真空乾燥を行いFeおよびSmの炭酸塩の顆粒粉を得た。
(Washing process)
The obtained slurry was thoroughly washed with pure water until the effluent conductivity reached 150 μS/cm or less, and then vacuum dried at about 90° C. to obtain granular powders of Fe and Sm carbonates.

(大気焼成工程)
得られたFeおよびSmの炭酸塩448kgを900~1100℃で大気焼成し、赤褐色のFe、Sm複合酸化物309kgを得た。
(Air firing process)
The resulting Fe and Sm carbonate (448 kg) was calcined in air at 900 to 1100° C. to obtain 309 kg of a reddish brown Fe, Sm composite oxide.

上記酸化物に、実施例1の前処理工程以後の処理を行い、異方性磁性粉末を作成した。 The above oxide was subjected to the pretreatment process of Example 1 and subsequent processes to produce anisotropic magnetic powder.

(10)磁気特性の評価
上記実施例及び比較例で得られた異方性磁性粉末を、パラフィンワックスと共に試料容器に充填し、ドライヤーにてパラフィンワックスを溶融させた後、16kA/mの配向磁場にてその磁化容易磁区を揃えた。この磁場配向した試料を32kA/mの着磁磁場でパルス着磁し、最大磁場16kA/mのVSM(振動試料型磁力計)を用いて残留磁束密度(σr)、保磁力(iHc)、及び角形比(HK)を測定した。
(10) Evaluation of magnetic properties The anisotropic magnetic powders obtained in the above examples and comparative examples were filled into a sample container together with paraffin wax, and the paraffin wax was melted in a dryer, after which the easy magnetic domains were aligned in an orientation magnetic field of 16 kA/m. The magnetically oriented sample was pulse-magnetized in a magnetizing magnetic field of 32 kA/m, and the residual magnetic flux density (σr), coercive force (iHc), and squareness ratio (HK) were measured using a VSM (vibrating sample magnetometer) with a maximum magnetic field of 16 kA/m.

(11)酸化鉄と酸化サマリウムの混合分布の評価
混合分布の変動係数は、混合工程で得られた混合物の反射電子像(5000倍)の画像を4μmに相当する角のマスにて24分割し、これらのマスからマスごとのFeとSm面積比を算出して面積比のばらつきを求めた。撮影には電界放出形走査電子顕微鏡(SU8230、日立ハイテクノロジーズ 3.0KV 5000倍)を用いた。
面積比のばらつきの算出は、得られた画像の明度をエクセル上で作成したマクロを用いて0~255度までの範囲の中で、70度未満、70度以上かつ170度未満、170度以上、に3値化した。明度が大きい順に白色、水色、黒色で色分けを行ない、それぞれ酸化サマリウム粒子、酸化鉄、背景として識別した。これを4μm角に切り分け、画像解析ソフトImageJで色別の面積を測定し、白色と水色の面積比のばらつきをCV(%)で数値化して評価を行なった。
(11) Evaluation of the mixed distribution of iron oxide and samarium oxide The coefficient of variation of the mixed distribution was determined by dividing the backscattered electron image (5000x) of the mixture obtained in the mixing process into 24 squares with corners equivalent to 4 μm, calculating the Fe and Sm area ratio for each square from these squares, and determining the variation in the area ratio. A field emission scanning electron microscope (SU8230, Hitachi High-Technologies, 3.0 KV, 5000x) was used for the imaging.
The variation in the area ratio was calculated by dividing the brightness of the obtained image into three values within the range of 0 to 255 degrees using a macro created in Excel: less than 70 degrees, 70 degrees or more and less than 170 degrees, and 170 degrees or more. The images were color-coded in descending order of brightness with white, light blue, and black, and identified as samarium oxide particles, iron oxide, and background, respectively. These were cut into 4 μm squares, and the area of each color was measured using image analysis software ImageJ, and the variation in the area ratio of white to light blue was quantified using CV (%) for evaluation.

(12)異方性磁性粉末のSEM画像
実施例1及び比較例1~6で得られた磁性粉末を走査電子顕微鏡(SU3500、日立ハイテクノロジーズ 5KV 5000倍)で撮影した。その結果を図1~7に示す。比較例1~6に対して、実施例1の磁性粉末は粒子が丸くて粒径も揃っており磁気特性は良好であった。
(12) SEM images of anisotropic magnetic powders The magnetic powders obtained in Example 1 and Comparative Examples 1 to 6 were photographed with a scanning electron microscope (SU3500, Hitachi High-Technologies, 5KV, 5000x). The results are shown in Figures 1 to 7. Compared to Comparative Examples 1 to 6, the magnetic powder of Example 1 had round particles with uniform particle size and good magnetic properties.

(13)磁気特性
実施例及び比較例で得られた異方性磁性粉末の磁気特性、原料粒子の粒径、粉末粒子の混合状態および原料中の残留塩濃度を表1に示す。
(13) Magnetic Properties The magnetic properties of the anisotropic magnetic powders obtained in the Examples and Comparative Examples, the particle size of the raw material particles, the mixed state of the powder particles, and the residual salt concentration in the raw material are shown in Table 1.

Figure 2025010610000001
Figure 2025010610000001

表1より、特定の粒径の酸化鉄粒子と酸化サマリウム粒子を用いて得られた実施例1~2の磁性粉末は、比較例1~5の磁性粉末よりも残留磁束密度(σr)、保磁力(iHc)、及び角形比(HK)が向上した。また、実施例1~2の磁性粉末は、サマリウムと鉄の共沈物を酸化し、還元及び窒化を経て得られた比較例6の磁性粉末と比較しても、残留磁束密度(σr)、保磁力(iHc)、及び角形比(HK)が向上した。混合工程で水酸化カルシウムを混合した実施例3の磁性粉末は、比較例1~5の磁性粉末よりも保磁力(iHc)、及び角形比(HK)が大幅に向上した。比較例3については、混合分布のバラツキは小さいものの、磁気特性が低下している理由として、酸化鉄の粒径が小さいため洗浄においてナトリウム残留塩の低減が不十分であったためと考えられる。 From Table 1, the magnetic powders of Examples 1 and 2 obtained using iron oxide particles and samarium oxide particles of specific particle sizes had improved residual magnetic flux density (σr), coercive force (iHc), and squareness ratio (HK) compared to the magnetic powders of Comparative Examples 1 to 5. The magnetic powders of Examples 1 and 2 also had improved residual magnetic flux density (σr), coercive force (iHc), and squareness ratio (HK) compared to the magnetic powder of Comparative Example 6 obtained by oxidizing the coprecipitate of samarium and iron, followed by reduction and nitridation. The magnetic powder of Example 3, in which calcium hydroxide was mixed in the mixing process, had significantly improved coercive force (iHc) and squareness ratio (HK) compared to the magnetic powders of Comparative Examples 1 to 5. Although the variation in the mixed distribution was small for Comparative Example 3, the reason for the deterioration of the magnetic properties is thought to be that the particle size of the iron oxide was small, and therefore the reduction of residual sodium salts during washing was insufficient.

本発明の異方性磁性粉末の製造方法は、磁気特性に優れた異方性磁性粉末を、製造することができる。 The method for producing anisotropic magnetic powder of the present invention can produce anisotropic magnetic powder with excellent magnetic properties.

Claims (6)

平均粒子径0.1μm以上0.4μm以下の酸化鉄粒子と、平均粒子径が0.5μm以上0.8μm以下のR(RはSc、Y、Pr、Nd、Pm、Sm、Gd、Tb、Dy、Ho、Er、Tm、Luからなる群から選択される少なくとも1種)の酸化物粒子とを混合し混合物を得る工程、
前記混合物を還元性ガス雰囲気下、熱処理することにより部分酸化物を得る工程、
前記部分酸化物を還元することにより、合金粒子を得る工程、および、
前記合金粒子を窒化することにより、異方性磁性粉末を得る工程
を含む異方性磁性粉末の製造方法。
A step of mixing iron oxide particles having an average particle size of 0.1 μm to 0.4 μm with oxide particles of R (R is at least one selected from the group consisting of Sc, Y, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu) having an average particle size of 0.5 μm to 0.8 μm to obtain a mixture;
a step of heat-treating the mixture in a reducing gas atmosphere to obtain a partial oxide;
obtaining alloy particles by reducing the partial oxide; and
A method for producing anisotropic magnetic powder, comprising the step of nitriding the alloy particles to obtain anisotropic magnetic powder.
前記混合物の混合分布の変動係数が23%以下である請求項1に記載の異方性磁性粉末の製造方法。 The method for producing anisotropic magnetic powder according to claim 1, wherein the coefficient of variation of the mixture distribution of the mixture is 23% or less. 酸化鉄粒子がFe粒子である、
請求項1または2に記載の異方性磁性粉末の製造方法。
The iron oxide particles are Fe3O4 particles ;
A method for producing the anisotropic magnetic powder according to claim 1 or 2.
酸化鉄粒子中のアルカリ金属濃度が200ppm以下である、
請求項1~3のいずれかに記載の異方性磁性粉末の製造方法。
The alkali metal concentration in the iron oxide particles is 200 ppm or less.
A method for producing the anisotropic magnetic powder according to any one of claims 1 to 3.
RがSmである請求項1~4のいずれか1項に記載の異方性磁性粉末の製造方法。 A method for producing anisotropic magnetic powder according to any one of claims 1 to 4, in which R is Sm. 前記混合物を得る工程において、さらに、水酸化カルシウム混合する、
請求項1~5のいずれか1項に記載の異方性磁性粉末の製造方法。
In the step of obtaining the mixture, calcium hydroxide is further mixed.
A method for producing the anisotropic magnetic powder according to any one of claims 1 to 5.
JP2024186874A 2019-09-30 2024-10-23 Manufacturing method of anisotropic magnetic powder Pending JP2025010610A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019180588 2019-09-30
JP2019180588 2019-09-30
JP2020162230A JP7583247B2 (en) 2019-09-30 2020-09-28 Manufacturing method of anisotropic magnetic powder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020162230A Division JP7583247B2 (en) 2019-09-30 2020-09-28 Manufacturing method of anisotropic magnetic powder

Publications (1)

Publication Number Publication Date
JP2025010610A true JP2025010610A (en) 2025-01-22

Family

ID=75272290

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020162230A Active JP7583247B2 (en) 2019-09-30 2020-09-28 Manufacturing method of anisotropic magnetic powder
JP2024186874A Pending JP2025010610A (en) 2019-09-30 2024-10-23 Manufacturing method of anisotropic magnetic powder

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020162230A Active JP7583247B2 (en) 2019-09-30 2020-09-28 Manufacturing method of anisotropic magnetic powder

Country Status (1)

Country Link
JP (2) JP7583247B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022259949A1 (en) * 2021-06-10 2022-12-15
US20240387082A1 (en) 2021-09-27 2024-11-21 Nichia Corporation Smfen-based anisotropic magnetic powder and bonded magnet, and metohd of producing said powder and magnet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105869819A (en) 2015-10-19 2016-08-17 东莞市海天磁业股份有限公司 Method for preparing anisotropic magnetic powder
CN105355354B (en) 2015-12-15 2017-12-08 北京科技大学 A kind of samarium iron nitrogen base anisotropy rare earth permanent magnet powder and preparation method thereof
JP6332259B2 (en) 2015-12-24 2018-05-30 日亜化学工業株式会社 Anisotropic magnetic powder and method for producing the same
JP6447768B2 (en) 2017-05-17 2019-01-09 日亜化学工業株式会社 Secondary particle for anisotropic magnetic powder and method for producing anisotropic magnetic powder
JP6724972B2 (en) 2017-12-22 2020-07-15 日亜化学工業株式会社 Method for producing anisotropic magnetic powder
JP6985607B2 (en) 2018-03-22 2021-12-22 日亜化学工業株式会社 Manufacturing method of anisotropic magnetic powder

Also Published As

Publication number Publication date
JP7583247B2 (en) 2024-11-14
JP2021055188A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
US20230268105A1 (en) Anisotropic magnetic powders
JP2025010610A (en) Manufacturing method of anisotropic magnetic powder
JP6489073B2 (en) Method for producing rare earth-iron-nitrogen based magnet powder
US11685654B2 (en) Secondary particles for anisotropic magnetic powder
CN102576591A (en) Ferromagnetic particle powder, method for producing same, anisotropic magnet and bonded magnet
JP6724972B2 (en) Method for producing anisotropic magnetic powder
JP7332856B2 (en) Method for producing anisotropic magnetic powder and anisotropic magnetic powder
JP6985607B2 (en) Manufacturing method of anisotropic magnetic powder
US20240274335A1 (en) SmFeN-BASED ANISOTROPIC MAGNETIC POWDER AND BONDED MAGNET, AND PRODUCTION METHODS THEREOF
JP2010270379A (en) Method for producing rare-earth-iron-nitrogen-based magnet powder
JP4296379B2 (en) Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet
JP2004115921A (en) Sm-Fe-N BASED ALLOY POWDER AND METHOD FOR MANUFACTURING THE SAME
JP2006283094A (en) Sm-Fe-N MAGNETIC PARTICLE POWDER, ITS MANUFACTURING METHOD, AND BOND MAGNET
JP7587113B2 (en) Manufacturing method of anisotropic magnetic powder and anisotropic magnetic powder
JP3567742B2 (en) Method for producing rare earth Fe-based alloy powder
US20220406496A1 (en) METHOD OF PRODUCING SmFeN-BASED ANISOTROPIC MAGNETIC POWDER AND SmFeN-BASED ANISOTROPIC MAGNETIC POWDER
JP7360052B2 (en) Manufacturing method of anisotropic magnetic powder and anisotropic magnetic powder
JP4370555B2 (en) Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet
JP2006002187A (en) Sm-Fe-N-BASED MAGNETIC PARTICLE POWDER, AND BOND MAGNET CONTAINING THE Sm-Fe-N-BASED MAGNETIC PARTICLE POWDER
JP2006307342A (en) METHOD FOR PRODUCING Sm-Fe-N BASED MAGNETIC PARTICLE POWDER, RESIN COMPOSITION FOR BOND MAGNET COMPRISING Sm-Fe-N BASED MAGNETIC PARTICLE POWDER, AND BOND MAGNET
JP2022189752A (en) MANUFACTURING METHOD FOR SmFeN-BASED ANISOTROPIC MAGNETIC POWDER AND SmFeN-BASED ANISOTROPIC MAGNETIC POWDER
WO2023048003A1 (en) Smfen-based anisotropic magnetic powder and bonded magnet, and method for producing said powder and magnet
CN115881415A (en) Manufacturing method of SmFeN-based rare earth magnet
JP2006060049A (en) Rare earth-iron-manganese-nitrogen based magnet powder and its production method
JP2010270382A (en) Method for producing magnet powder containing rare-earth element, transition metal and nitrogen

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20241029