[go: up one dir, main page]

JP2025000158A - Recovery device - Google Patents

Recovery device Download PDF

Info

Publication number
JP2025000158A
JP2025000158A JP2023099850A JP2023099850A JP2025000158A JP 2025000158 A JP2025000158 A JP 2025000158A JP 2023099850 A JP2023099850 A JP 2023099850A JP 2023099850 A JP2023099850 A JP 2023099850A JP 2025000158 A JP2025000158 A JP 2025000158A
Authority
JP
Japan
Prior art keywords
gas
nitrogen
argon
combustion
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023099850A
Other languages
Japanese (ja)
Inventor
翔太 ▲高▼橋
Shota Takahashi
洋介 井本
Yosuke Imoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2023099850A priority Critical patent/JP2025000158A/en
Publication of JP2025000158A publication Critical patent/JP2025000158A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)

Abstract

To provide an argon recovery device which can be easily operated.MEANS FOR SOLVING THE PROBLEM: A collection device recovers argon from exhaust gas generated from fuel combustion, by utilizing pressure swing adsorption. The device may further comprise a supply device which supplies combustion-supporting gas when fuel is combusted. A ratio of nitrogen in the combustion-supporting gas supplied by the supply device is smaller than a ratio of nitrogen in the air. A ratio of oxygen and a ratio of argon in the combustion-supporting gas may be larger than a ratio of oxygen and a ratio of argon in the air.SELECTED DRAWING: Figure 1

Description

本発明は排ガスからアルゴンを回収する回収装置に関する。 The present invention relates to a recovery device that recovers argon from exhaust gas.

アルゴンの濃縮を妨害する酸素の量を減らすため、触媒を使って排ガス中の酸素を除去した後、アルゴンを濃縮して回収する先行技術が特許文献1に開示されている。 Patent document 1 discloses a prior art technique in which, in order to reduce the amount of oxygen that interferes with the concentration of argon, oxygen in the exhaust gas is removed using a catalyst, and then the argon is concentrated and recovered.

特許第3191113号公報Patent No. 3191113

先行技術は排ガス中の酸素を除去する操作が必要なため煩雑である。 Prior art technology is complicated because it requires operations to remove oxygen from exhaust gas.

本発明はこの問題点を解決するためになされたものであり、操作を簡易にできるアルゴンの回収装置の提供を目的とする。 The present invention was made to solve this problem, and aims to provide an argon recovery device that is easy to operate.

この目的を達成するための第1の態様は、アルゴンを含む排ガスから圧力スイング吸着を利用してアルゴンを回収する回収装置であって、排ガスは、燃料が燃焼して発生したガスである。 The first aspect to achieve this objective is a recovery device that uses pressure swing adsorption to recover argon from exhaust gas containing argon, the exhaust gas being gas generated by the combustion of fuel.

第2の態様は、第1の態様において、燃料の燃焼時に支燃性ガスを供給する供給装置を備え、支燃性ガス中の窒素の割合は、空気中の窒素の割合よりも少ない。 In the second aspect, the first aspect is provided with a supply device that supplies a combustion-supporting gas when the fuel is burned, and the proportion of nitrogen in the combustion-supporting gas is less than the proportion of nitrogen in air.

第3の態様は、第2の態様において、支燃性ガス中の酸素の割合とアルゴンの割合は、空気中の酸素の割合とアルゴンの割合よりも多い。 In the third embodiment, the proportion of oxygen and the proportion of argon in the combustion supporting gas are greater than the proportion of oxygen and the proportion of argon in air.

第4の態様は、第2又は第3の態様において、供給装置は、圧力スイング吸着を利用して空気から窒素を分離する窒素分離装置を含み、支燃性ガスは、窒素分離装置によって空気から窒素が分離されたガスを含む。 In the fourth aspect, in the second or third aspect, the supply device includes a nitrogen separator that separates nitrogen from air using pressure swing adsorption, and the combustion supporting gas includes gas in which nitrogen has been separated from air by the nitrogen separator.

第5の態様は、第1から第4の態様のいずれかにおいて、排ガスから二酸化炭素を分離する分離装置をさらに備える。 In a fifth aspect, in any one of the first to fourth aspects, a separation device is further provided for separating carbon dioxide from the exhaust gas.

第6の態様は、第1から第5の態様のいずれかにおいて、圧力スイング吸着で使われる吸着剤はゼオライトである。 In a sixth aspect, in any one of the first to fifth aspects, the adsorbent used in the pressure swing adsorption is a zeolite.

本発明によれば、燃料が燃焼して発生した排ガスは酸素の含有量が少ないため、排ガスから圧力スイング吸着を利用してアルゴンを回収できる。従って操作を簡易にできる。 According to the present invention, since the exhaust gas generated by fuel combustion contains a small amount of oxygen, argon can be recovered from the exhaust gas by using pressure swing adsorption. This simplifies the operation.

第1実施の形態における回収装置の配管系統図である。FIG. 2 is a piping diagram of the recovery device according to the first embodiment. 第2実施の形態における回収装置の配管系統図である。FIG. 11 is a piping diagram of a recovery device according to a second embodiment.

以下、本発明の好ましい実施の形態について添付図面を参照して説明する。図1は第1実施の形態における回収装置10の配管系統図である。回収装置10は、圧力スイング吸着を利用して燃焼装置11の排ガスからアルゴンを回収する装置である。 The following describes preferred embodiments of the present invention with reference to the accompanying drawings. Figure 1 is a piping diagram of a recovery device 10 in a first embodiment. The recovery device 10 is a device that recovers argon from the exhaust gas of a combustion device 11 using pressure swing adsorption.

燃焼装置11は燃料を燃焼させる装置である。燃料は、家庭ごみや事業ごみ等の可燃性廃棄物、天然ガス、石油、石炭、コークス、木炭、薪が例示されるが、燃焼させて熱源となる材料であれば特に制限はない。燃料は燃焼装置11で熱と光とを発して酸素と化合する。空気に含まれる物質のおよその体積割合は、窒素78%、酸素21%、アルゴン1%である。燃焼装置11で空気中の酸素を使って燃料が燃焼すると、空気中の割合に比べ、燃焼装置11の排ガス中の酸素の割合が減少し、二酸化炭素の割合が増加する。 The combustion device 11 is a device that burns fuel. Examples of fuel include combustible waste such as household waste and commercial waste, natural gas, oil, coal, coke, charcoal, and firewood, but there are no particular limitations as long as the material can be burned to become a heat source. The fuel emits heat and light in the combustion device 11 and combines with oxygen. The approximate volumetric proportions of substances contained in air are 78% nitrogen, 21% oxygen, and 1% argon. When the combustion device 11 burns fuel using the oxygen in the air, the proportion of oxygen in the exhaust gas from the combustion device 11 decreases and the proportion of carbon dioxide increases compared to the proportion in the air.

空気中のアルゴンを圧力スイング吸着によって濃縮すると、アルゴンと酸素は吸着特性が類似しているため、アルゴンとほぼ比例して酸素が濃縮され、アルゴンの濃縮を妨害するという問題点がある。回収装置10は、酸素が少ない燃焼装置11の排ガス中のアルゴンを圧力スイング吸着によって濃縮するため、アルゴンを濃縮して回収するときの、酸素の濃縮による悪影響を低減できる。 When argon in the air is concentrated by pressure swing adsorption, there is a problem that oxygen is concentrated in roughly proportion to argon because argon and oxygen have similar adsorption characteristics, which interferes with the concentration of argon. The recovery device 10 concentrates argon in the exhaust gas from the combustion device 11, which contains little oxygen, by pressure swing adsorption, thereby reducing the adverse effects of oxygen concentration when concentrating and recovering argon.

回収装置10は、燃焼装置11に支燃性ガスを供給する供給装置12を備えている。支燃性ガスは、燃料の燃焼を助けるのに必要なガスであり、空気、酸素、塩素、フッ素、亜酸化窒素、酸化窒素、二酸化窒素が例示される。燃焼装置11の排ガスの成分を増やさずに排ガス中の窒素の割合を低減するため、支燃性ガスは酸素が好ましい。 The recovery device 10 is equipped with a supply device 12 that supplies a combustion supporting gas to the combustion device 11. The combustion supporting gas is a gas necessary to assist the combustion of fuel, and examples of the combustion supporting gas include air, oxygen, chlorine, fluorine, nitrous oxide, nitric oxide, and nitrogen dioxide. In order to reduce the proportion of nitrogen in the exhaust gas without increasing the components of the exhaust gas from the combustion device 11, oxygen is preferable as the combustion supporting gas.

供給装置12は、圧力スイング吸着を利用して空気から窒素を分離する窒素分離装置13を含む。本実施形態では窒素分離装置13はPSA方式であり、吸着塔14,15と、空気を加圧して吸着塔14,15へ供給する加圧装置16と、を備えている。窒素を吸着する吸着剤が吸着塔14,15に収容されている。吸着剤はモレキュラーシービングカーボン、ゼオライトが例示される。加圧装置16は、空気を加圧して吸着塔14,15を適切な圧力に設定するための装置であり、圧縮機やブロワーが例示される。 The supply device 12 includes a nitrogen separation device 13 that separates nitrogen from air using pressure swing adsorption. In this embodiment, the nitrogen separation device 13 is a PSA type device, and includes adsorption towers 14, 15 and a pressurizing device 16 that pressurizes air and supplies it to the adsorption towers 14, 15. An adsorbent that adsorbs nitrogen is contained in the adsorption towers 14, 15. Examples of the adsorbent include molecular sieving carbon and zeolite. The pressurizing device 16 is a device that pressurizes the air to set the adsorption towers 14, 15 to an appropriate pressure, and examples of the pressurizing device 16 include a compressor and a blower.

加圧装置16と吸着塔14,15との間にそれぞれ三方弁(3ポート弁)17,18が配置されている。加圧装置16から吸着塔14へ空気を流す流路が三方弁17に設定されると、吸着塔15から排気管19へガスを流す流路が三方弁18に設定される。一方、吸着塔14から排気管19へガスを流す流路が三方弁17に設定されると、加圧装置16から吸着塔15へ空気を流す流路が三方弁18に設定される。これが交互に繰り返される。 Three-way valves (three-port valves) 17 and 18 are disposed between the pressurizing device 16 and the adsorption towers 14 and 15, respectively. When the flow path for flowing air from the pressurizing device 16 to the adsorption tower 14 is set in the three-way valve 17, the flow path for flowing gas from the adsorption tower 15 to the exhaust pipe 19 is set in the three-way valve 18. On the other hand, when the flow path for flowing gas from the adsorption tower 14 to the exhaust pipe 19 is set in the three-way valve 17, the flow path for flowing air from the pressurizing device 16 to the adsorption tower 15 is set in the three-way valve 18. This is repeated alternately.

加圧装置16によって加圧された空気が三方弁17を通って吸着塔14へ入ると、空気中の窒素は吸着塔14の吸着剤に吸着され、窒素が分離された分離ガス(空気に比べて窒素分圧が低いガス)は分離ガス管20に入る。分離ガスの一部は、可変絞り弁21を通って吸着塔15に入る。吸着塔15の圧力は大気圧付近まで低下するため、吸着塔15の吸着剤から窒素は脱離し、三方弁18及び排気管19を通って系外に排気される。三方弁17,18の流路の設定が繰り返し切り替わると、吸着塔14,15の吸着と再生とが交互に行われる。 When air pressurized by the pressurizer 16 enters the adsorption tower 14 through the three-way valve 17, the nitrogen in the air is adsorbed by the adsorbent in the adsorption tower 14, and the separated gas from which the nitrogen has been separated (gas with a lower nitrogen partial pressure than air) enters the separated gas pipe 20. A part of the separated gas enters the adsorption tower 15 through the variable throttle valve 21. Because the pressure in the adsorption tower 15 drops to near atmospheric pressure, the nitrogen is desorbed from the adsorbent in the adsorption tower 15 and is exhausted outside the system through the three-way valve 18 and exhaust pipe 19. When the flow path settings of the three-way valves 17 and 18 are repeatedly switched, adsorption and regeneration of the adsorption towers 14 and 15 are alternately performed.

分離ガス管20に配置された調節弁22を開くと、空気に比べて窒素濃度が低い分離ガスが、空気に比べて酸素濃度が高い支燃性ガスとして連続的に燃焼装置11に供給される。窒素が除去されている分だけ、分離ガス中のアルゴンの割合は、空気中のアルゴンの割合よりも大きくなる。燃焼装置11に侵入する空気を制限し、燃焼装置11で支燃性ガス中の酸素が燃焼に使われるようにすると、燃焼装置11の排ガス中の窒素の割合が小さくなり、相対的に排ガス中のアルゴンの割合が増加する。これによりアルゴンの回収効率を高められる。 When the control valve 22 arranged in the separated gas pipe 20 is opened, the separated gas, which has a lower nitrogen concentration than air, is continuously supplied to the combustion device 11 as a combustion supporting gas, which has a higher oxygen concentration than air. The proportion of argon in the separated gas becomes higher than the proportion of argon in the air to the extent that nitrogen has been removed. By restricting the air entering the combustion device 11 and allowing the oxygen in the combustion supporting gas to be used for combustion in the combustion device 11, the proportion of nitrogen in the exhaust gas from the combustion device 11 decreases, and the proportion of argon in the exhaust gas increases relatively. This increases the efficiency of argon recovery.

供給装置12は、深冷分離法やガス分離膜を用いて空気中の窒素を分離する装置であっても良い。但し窒素分離装置13は、圧力スイング吸着を利用して空気から窒素を分離するため、空気を冷却して液化し、蒸留して窒素と酸素とを分離する深冷分離法に比べ、窒素単位発生量当りの消費電力を小さくできる。また窒素分離装置13は、ガス分離膜に比べて窒素の分離能が高いため、分離ガス(支燃性ガス)中の窒素の割合を小さくでき、ひいては燃焼装置11の排ガス中の窒素の割合を小さくできる。 The supply device 12 may be a device that separates nitrogen from the air using a cryogenic separation method or a gas separation membrane. However, the nitrogen separation device 13 separates nitrogen from the air using pressure swing adsorption, so it can reduce the power consumption per unit of nitrogen generated compared to the cryogenic separation method, in which air is cooled and liquefied, and then distilled to separate nitrogen and oxygen. In addition, the nitrogen separation device 13 has a higher nitrogen separation ability than a gas separation membrane, so it can reduce the proportion of nitrogen in the separated gas (combustion-supporting gas), and therefore the proportion of nitrogen in the exhaust gas from the combustion device 11.

回収装置10は、燃焼装置11の下流に、除去装置23、アルゴンの分離装置24、二酸化炭素の分離装置34が順に接続されている。除去装置23は、排ガスに含まれる塵、水分、一酸化炭素、窒素酸化物(NOx)、硫黄酸化物(SOx)等の不純物のいずれか1以上を除去する装置である。 In the recovery system 10, a removal device 23, an argon separator 24, and a carbon dioxide separator 34 are connected in that order downstream of the combustion device 11. The removal device 23 is a device that removes one or more of the impurities contained in the exhaust gas, such as dust, moisture, carbon monoxide, nitrogen oxides (NOx), and sulfur oxides (SOx).

除去装置23において塵を除去する装置は、水洗塔、ベンチュリスクラバ、電気集塵器、フィルタが例示される。水分や一酸化炭素の除去は、水分や一酸化炭素を選択的に吸着する吸着剤を用いるものが例示される。吸着剤はアルミナ、活性炭、ゼオライト、錯体が例示される。窒素酸化物の除去は、苛性ソーダ等を用いる湿式法、脱硝触媒と還元剤とを用いる乾式法が例示される。硫黄酸化物の除去は、固体吸収剤を用いる乾式法、水溶液系吸収剤を用いる湿式法が例示される。分離装置24,34の上流に除去装置23が接続されると、不純物による分離装置24,34の性能の低下を低減できる。 Examples of the device for removing dust in the removal device 23 include a water washing tower, a venturi scrubber, an electric dust collector, and a filter. Examples of the removal of moisture and carbon monoxide include those using an adsorbent that selectively adsorbs moisture and carbon monoxide. Examples of the adsorbent include alumina, activated carbon, zeolite, and complexes. Examples of the removal of nitrogen oxides include a wet method using caustic soda, etc., and a dry method using a denitrification catalyst and a reducing agent. Examples of the removal of sulfur oxides include a dry method using a solid absorbent, and a wet method using an aqueous solution absorbent. If the removal device 23 is connected upstream of the separation devices 24, 34, the deterioration of the performance of the separation devices 24, 34 due to impurities can be reduced.

分離装置24は排ガスからアルゴンを分離し回収する装置であり、本実施形態ではPSA方式である。分離装置24は、吸着塔25,26と、排ガスを加圧して吸着塔25,26へ供給する加圧装置27と、を備えている。アルゴンを吸着するゼオライトからなる吸着剤が、吸着塔25,26に収容されている。加圧装置27は、排ガスを加圧して吸着塔25,26を適切な圧力に設定するための装置であり、圧縮機やブロワーが例示される。 The separation device 24 is a device that separates and recovers argon from the exhaust gas, and in this embodiment is a PSA type. The separation device 24 is equipped with adsorption towers 25, 26 and a pressurizing device 27 that pressurizes the exhaust gas and supplies it to the adsorption towers 25, 26. The adsorption towers 25, 26 contain an adsorbent made of zeolite that adsorbs argon. The pressurizing device 27 is a device that pressurizes the exhaust gas to set the adsorption towers 25, 26 to an appropriate pressure, and examples of this include a compressor and a blower.

加圧装置27と吸着塔25,26との間にそれぞれ三方弁28,29が配置されている。加圧装置27から吸着塔25へ排ガスを流す流路が三方弁28に設定されると、吸着塔26から回収管30へガスを流す流路が三方弁29に設定される。一方、吸着塔25から回収管30へガスを流す流路が三方弁28に設定されると、加圧装置27から吸着塔26へ排ガスを流す流路が三方弁29に設定される。これが交互に繰り返される。 Three-way valves 28, 29 are arranged between the pressurizing device 27 and the adsorption towers 25, 26, respectively. When the flow path for flowing exhaust gas from the pressurizing device 27 to the adsorption tower 25 is set in the three-way valve 28, the flow path for flowing gas from the adsorption tower 26 to the recovery pipe 30 is set in the three-way valve 29. On the other hand, when the flow path for flowing gas from the adsorption tower 25 to the recovery pipe 30 is set in the three-way valve 28, the flow path for flowing exhaust gas from the pressurizing device 27 to the adsorption tower 26 is set in the three-way valve 29. This is repeated alternately.

加圧装置27によって加圧された排ガスが三方弁28を通って吸着塔25へ入ると、排ガス中のアルゴンは吸着塔25の吸着剤に吸着され、アルゴンが分離されたオフガスはオフガス管31に入る。オフガスの一部は、可変絞り弁32を通って吸着塔26に入る。吸着塔26の圧力は大気圧付近まで低下するため、吸着塔26の吸着剤からアルゴンは脱離し、三方弁29及び回収管30を通ってタンク33に回収される。三方弁28,29の流路の設定が繰り返し切り替わると、吸着塔25,26の吸着と再生とが交互に行われる。 When the exhaust gas pressurized by the pressurizing device 27 enters the adsorption tower 25 through the three-way valve 28, the argon in the exhaust gas is adsorbed by the adsorbent in the adsorption tower 25, and the off-gas from which the argon has been separated enters the off-gas pipe 31. A portion of the off-gas enters the adsorption tower 26 through the variable throttle valve 32. As the pressure in the adsorption tower 26 drops to near atmospheric pressure, argon is desorbed from the adsorbent in the adsorption tower 26 and is recovered in the tank 33 through the three-way valve 29 and recovery pipe 30. When the flow path settings of the three-way valves 28 and 29 are repeatedly switched, adsorption and regeneration of the adsorption towers 25 and 26 are alternated.

分離装置34はオフガスから二酸化炭素を分離し回収する装置であり、本実施形態ではPSA方式である。分離装置34は、吸着塔35,36と、オフガスを加圧して吸着塔35,36へ供給する加圧装置37と、を備えている。二酸化炭素を吸着する吸着剤が吸着塔35,36に収容されている。吸着剤はモレキュラーシービングカーボン、ゼオライトが例示される。加圧装置37は、オフガスを加圧して吸着塔35,36を適切な圧力に設定するための装置であり、圧縮機やブロワーが例示される。 The separation device 34 is a device that separates and recovers carbon dioxide from the off-gas, and in this embodiment is a PSA system. The separation device 34 is equipped with adsorption towers 35, 36, and a pressurizing device 37 that pressurizes the off-gas and supplies it to the adsorption towers 35, 36. An adsorbent that adsorbs carbon dioxide is contained in the adsorption towers 35, 36. Examples of the adsorbent include molecular sieving carbon and zeolite. The pressurizing device 37 is a device that pressurizes the off-gas to set the adsorption towers 35, 36 to an appropriate pressure, and examples of the pressurizing device 37 include a compressor and a blower.

加圧装置37と吸着塔35,36との間にそれぞれ三方弁38,39が配置されている。加圧装置37から吸着塔35へオフガスを流す流路が三方弁38に設定されると、吸着塔36から回収管40へガスを流す流路が三方弁39に設定される。一方、吸着塔35から回収管40へガスを流す流路が三方弁38に設定されると、加圧装置37から吸着塔36へオフガスを流す流路が三方弁39に設定される。これが交互に繰り返される。 Three-way valves 38 and 39 are disposed between the pressurizing device 37 and the adsorption towers 35 and 36, respectively. When the flow path for flowing off-gas from the pressurizing device 37 to the adsorption tower 35 is set in the three-way valve 38, the flow path for flowing gas from the adsorption tower 36 to the recovery pipe 40 is set in the three-way valve 39. On the other hand, when the flow path for flowing gas from the adsorption tower 35 to the recovery pipe 40 is set in the three-way valve 38, the flow path for flowing off-gas from the pressurizing device 37 to the adsorption tower 36 is set in the three-way valve 39. This is repeated alternately.

加圧装置37によって加圧されたオフガスが三方弁38を通って吸着塔35へ入ると、オフガス中の二酸化炭素は吸着塔35の吸着剤に吸着され、二酸化炭素が分離されたガスは排気管41から系外へ排出される。二酸化炭素が分離されたガスの一部は、可変絞り弁42を通って吸着塔36に入る。吸着塔36の圧力は大気圧付近まで低下するため、吸着塔36の吸着剤から二酸化炭素は脱離し、三方弁39を通って回収管40を流れる。三方弁38,39の流路の設定が繰り返し切り替わると、吸着塔35,36の吸着と再生とが交互に行われる。 When the off-gas pressurized by the pressurizing device 37 enters the adsorption tower 35 through the three-way valve 38, the carbon dioxide in the off-gas is adsorbed by the adsorbent in the adsorption tower 35, and the gas from which the carbon dioxide has been separated is discharged to the outside of the system through the exhaust pipe 41. A part of the gas from which the carbon dioxide has been separated enters the adsorption tower 36 through the variable throttle valve 42. Because the pressure in the adsorption tower 36 drops to near atmospheric pressure, the carbon dioxide is desorbed from the adsorbent in the adsorption tower 36 and flows through the three-way valve 39 into the recovery pipe 40. When the flow path settings of the three-way valves 38 and 39 are repeatedly switched, the adsorption and regeneration of the adsorption towers 35 and 36 are alternated.

回収管40にはタンク43が接続されている。二酸化炭素濃度の高いガスがタンク43に蓄えられる。タンク43に蓄えた二酸化炭素の使い方に制限はない。一例としてタンク43に蓄えた二酸化炭素を水素と反応させメタンやメタノール等の有機化合物を合成するものが挙げられる。 A tank 43 is connected to the recovery pipe 40. Gas with a high carbon dioxide concentration is stored in the tank 43. There are no restrictions on how the carbon dioxide stored in the tank 43 can be used. One example is reacting the carbon dioxide stored in the tank 43 with hydrogen to synthesize organic compounds such as methane and methanol.

図2を参照して第2実施の形態を説明する。第1実施形態では、アルゴンを選択的に吸着する吸着剤を用いてアルゴンを回収する場合について説明した。これに対し第2実施形態では、アルゴンを選択的に吸着しない吸着剤を用いてアルゴンを回収する場合について説明する。第2実施形態では、第1実施形態において説明した部分と同一の部分に同一の符号を付して以下の説明を省略する。 The second embodiment will be described with reference to FIG. 2. In the first embodiment, the case where argon is recovered using an adsorbent that selectively adsorbs argon is described. In contrast, in the second embodiment, the case where argon is recovered using an adsorbent that does not selectively adsorb argon is described. In the second embodiment, the same parts as those described in the first embodiment are denoted by the same reference numerals, and the following description will be omitted.

図2は第2実施の形態における回収装置50の配管系統図である。回収装置50は、燃焼装置11に支燃性ガスを供給する供給装置51を備えている。供給装置51はPSA方式であり、吸着塔52,53と、空気を加圧して吸着塔52,53へ供給する加圧装置16と、を備えている。酸素を吸着する吸着剤が吸着塔52,53に収容されている。吸着剤はゼオライトが例示される。 Figure 2 is a piping diagram of the recovery device 50 in the second embodiment. The recovery device 50 is equipped with a supply device 51 that supplies combustion-supporting gas to the combustion device 11. The supply device 51 is of the PSA type and is equipped with adsorption towers 52, 53 and a pressurizing device 16 that pressurizes air and supplies it to the adsorption towers 52, 53. An adsorbent that adsorbs oxygen is stored in the adsorption towers 52, 53. An example of the adsorbent is zeolite.

加圧装置16によって加圧された空気が三方弁17を通って吸着塔52へ入ると、空気中の酸素は吸着塔52の吸着剤に吸着され、酸素が分離されたオフガス(空気に比べて酸素分圧が低いガス)は排気管54から系外へ排出される。オフガスの一部は、可変絞り弁21を通って吸着塔53に入る。吸着塔53の圧力は大気圧付近まで低下するため、吸着塔53の吸着剤から酸素は脱離し、三方弁18を通って回収管55に入る。三方弁17,18の流路の設定が繰り返し切り替わると、吸着塔52,53の吸着と再生とが交互に行われる。 When air pressurized by the pressurizer 16 enters the adsorption tower 52 through the three-way valve 17, the oxygen in the air is adsorbed by the adsorbent in the adsorption tower 52, and the off-gas from which the oxygen has been separated (gas with a lower oxygen partial pressure than air) is discharged to the outside of the system through the exhaust pipe 54. A part of the off-gas passes through the variable throttle valve 21 and enters the adsorption tower 53. Because the pressure in the adsorption tower 53 drops to near atmospheric pressure, oxygen is desorbed from the adsorbent in the adsorption tower 53 and enters the recovery pipe 55 through the three-way valve 18. When the flow path settings of the three-way valves 17 and 18 are repeatedly switched, adsorption and regeneration of the adsorption towers 52 and 53 are alternated.

回収管55に配置された調節弁56を開くと、空気に比べて酸素濃度が高く窒素濃度が低い支燃性ガスが、連続的に燃焼装置11に供給される。酸素が濃縮され窒素が除去されている分だけ、支燃性ガス中のアルゴンの割合は、空気中のアルゴンの割合よりも大きくなる。燃焼装置11に侵入する空気を制限し、燃焼装置11で支燃性ガス中の酸素が燃焼に使われるようにすると、燃焼装置11の排ガス中の窒素の割合が小さくなり、相対的に排ガス中のアルゴンの割合が増加する。これによりアルゴンの回収効率を高められる。 When the control valve 56 arranged in the recovery pipe 55 is opened, the combustion supporting gas, which has a higher oxygen concentration and a lower nitrogen concentration than air, is continuously supplied to the combustion device 11. The proportion of argon in the combustion supporting gas is greater than the proportion of argon in air to the extent that the oxygen is concentrated and the nitrogen is removed. By restricting the air entering the combustion device 11 and allowing the oxygen in the combustion supporting gas to be used for combustion in the combustion device 11, the proportion of nitrogen in the exhaust gas from the combustion device 11 decreases, and the proportion of argon in the exhaust gas increases relatively. This increases the efficiency of argon recovery.

供給装置51は、深冷分離法を用いて酸素を分離しても良い。但し供給装置51は、圧力スイング吸着を利用して空気から酸素を分離するため、深冷分離法に比べ、酸素単位発生量当りの消費電力を小さくできる。 The supply device 51 may separate oxygen using cryogenic separation. However, because the supply device 51 separates oxygen from air using pressure swing adsorption, the power consumption per unit amount of oxygen generated can be reduced compared to the cryogenic separation method.

回収装置50は、燃焼装置11の下流に、除去装置23、二酸化炭素の分離装置34、窒素の分離装置57が順に接続されている。分離装置34は排ガスから二酸化炭素を分離し回収する装置であり、本実施形態ではPSA方式である。回収管40の下流端はタンク43に接続されている。 In the recovery system 50, a removal device 23, a carbon dioxide separator 34, and a nitrogen separator 57 are connected in this order downstream of the combustion device 11. The separator 34 is a device that separates and recovers carbon dioxide from the exhaust gas, and in this embodiment, is a PSA type. The downstream end of the recovery pipe 40 is connected to a tank 43.

分離装置34によって排ガス中の二酸化炭素が分離された分離ガスは、排気管41から分離装置57へ供給される。分離装置57は分離ガスから窒素を分離しアルゴンを回収する装置であり、本実施形態ではPSA方式である。分離装置57は、吸着塔58,59と、分離ガスを加圧して吸着塔58,59へ供給する加圧装置60と、を備えている。窒素を吸着する吸着剤が吸着塔58,59に収容されている。吸着剤はモレキュラーシービングカーボン、ゼオライトが例示される。加圧装置60は、分離ガスを加圧して吸着塔58,59を適切な圧力に設定するための装置であり、圧縮機やブロワーが例示される。 The separated gas from which carbon dioxide has been separated from the exhaust gas by the separator 34 is supplied from the exhaust pipe 41 to the separator 57. The separator 57 is a device that separates nitrogen from the separated gas and recovers argon, and in this embodiment is a PSA type. The separator 57 is equipped with adsorption towers 58, 59 and a pressurizing device 60 that pressurizes the separated gas and supplies it to the adsorption towers 58, 59. The adsorption towers 58, 59 contain an adsorbent that adsorbs nitrogen. Examples of the adsorbent include molecular sieving carbon and zeolite. The pressurizing device 60 is a device that pressurizes the separated gas to set the adsorption towers 58, 59 to an appropriate pressure, and examples of the pressurizing device 60 include a compressor and a blower.

加圧装置60と吸着塔58,59との間にそれぞれ三方弁61,62が配置されている。加圧装置60から吸着塔58へ排ガスを流す流路が三方弁61に設定されると、吸着塔59から排気管63へガスを流す流路が三方弁62に設定される。一方、吸着塔58から排気管63へガスを流す流路が三方弁61に設定されると、加圧装置60から吸着塔59へ分離ガスを流す流路が三方弁62に設定される。これが交互に繰り返される。 Three-way valves 61, 62 are arranged between the pressurizing device 60 and the adsorption towers 58, 59, respectively. When the flow path for flowing exhaust gas from the pressurizing device 60 to the adsorption tower 58 is set to the three-way valve 61, the flow path for flowing gas from the adsorption tower 59 to the exhaust pipe 63 is set to the three-way valve 62. On the other hand, when the flow path for flowing gas from the adsorption tower 58 to the exhaust pipe 63 is set to the three-way valve 61, the flow path for flowing separated gas from the pressurizing device 60 to the adsorption tower 59 is set to the three-way valve 62. This is repeated alternately.

加圧装置60によって加圧された分離ガスが三方弁61を通って吸着塔58へ入ると、分離ガス中の窒素は吸着塔58の吸着剤に吸着される。吸着塔58で窒素が分離されアルゴンの濃度が高いガスは、回収管64を通ってタンク65に入る。ガスの一部は、可変絞り弁66を通って吸着塔59に入る。吸着塔59の圧力は大気圧付近まで低下するため、吸着塔59の吸着剤から窒素は脱離し、三方弁62及び排気管63を通って系外へ排出される。三方弁61,62の流路の設定が繰り返し切り替わると、吸着塔58,59の吸着と再生とが交互に行われる。 When the separated gas pressurized by the pressurizing device 60 enters the adsorption tower 58 through the three-way valve 61, the nitrogen in the separated gas is adsorbed by the adsorbent in the adsorption tower 58. The gas with a high argon concentration from which nitrogen is separated in the adsorption tower 58 enters the tank 65 through the recovery pipe 64. A portion of the gas enters the adsorption tower 59 through the variable throttle valve 66. Since the pressure in the adsorption tower 59 drops to near atmospheric pressure, the nitrogen is desorbed from the adsorbent in the adsorption tower 59 and is discharged outside the system through the three-way valve 62 and the exhaust pipe 63. When the flow path settings of the three-way valves 61 and 62 are repeatedly switched, the adsorption towers 58 and 59 alternate between adsorption and regeneration.

以上、実施の形態に基づき本発明を説明したが、本発明は上記実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。 The present invention has been described above based on the embodiments, but the present invention is in no way limited to the above embodiments, and it can be easily imagined that various improvements and modifications are possible within the scope of the invention without departing from its spirit.

例えば回収装置10の配管系統は一例であり、適宜設定できる。実施形態では窒素分離装置13、分離装置24,34,57および供給装置51が、それぞれ2つの吸着塔を備える場合について説明したが、必ずしもこれに限られるものではない。吸着塔は1つ以上の数に適宜設定される。 For example, the piping system of the recovery device 10 is an example and can be set as appropriate. In the embodiment, the nitrogen separation device 13, the separation devices 24, 34, 57, and the supply device 51 are each provided with two adsorption towers, but this is not necessarily limited to this. The number of adsorption towers can be set to one or more as appropriate.

第1実施形態ではアルゴンの分離装置24の下流に二酸化炭素の分離装置34を接続する場合について説明したが、必ずしもこれに限られるものではない。分離装置24,34の位置を入れ替えて、二酸化炭素の分離装置34の下流にアルゴンの分離装置24を接続することは当然可能である。 In the first embodiment, the carbon dioxide separator 34 is connected downstream of the argon separator 24, but this is not necessarily limited to this. It is of course possible to switch the positions of the separators 24 and 34 and connect the argon separator 24 downstream of the carbon dioxide separator 34.

第2実施形態では二酸化炭素の分離装置34の下流に窒素の分離装置57を接続する場合について説明したが、必ずしもこれに限られるものではない。分離装置34,57の位置を入れ替えて、窒素の分離装置57の下流に二酸化炭素の分離装置34を接続することは当然可能である。 In the second embodiment, the nitrogen separator 57 is connected downstream of the carbon dioxide separator 34, but this is not necessarily limited to this. It is of course possible to switch the positions of the separators 34 and 57 and connect the carbon dioxide separator 34 downstream of the nitrogen separator 57.

実施形態では窒素分離装置13、分離装置24,34,57および供給装置51がPSA方式の装置である場合について説明したが、これに限られるものではない。窒素分離装置13、分離装置24,34,57および供給装置51のいずれか1つ以上について、加圧装置16,27,37,60の下流に真空ポンプを配置し、吸着剤の脱離再生のときに真空ポンプで減圧するVSA方式やPVSA方式の装置に置き換えることは当然可能である。VSA方式やPVSA方式の装置は操作圧力が大気圧に近いため、PSA方式の装置に比べて消費電力を低減できる。 In the embodiment, the nitrogen separation device 13, the separation devices 24, 34, 57, and the supply device 51 are PSA type devices, but this is not limited to this. It is of course possible to replace any one or more of the nitrogen separation device 13, the separation devices 24, 34, 57, and the supply device 51 with a VSA type or PVSA type device in which a vacuum pump is placed downstream of the pressure device 16, 27, 37, 60 and the pressure is reduced by the vacuum pump during desorption and regeneration of the adsorbent. Since the operating pressure of the VSA type or PVSA type device is close to atmospheric pressure, power consumption can be reduced compared to the PSA type device.

10,50 回収装置
12,51 供給装置
13 窒素分離装置
34 分離装置
10, 50 Recovery device 12, 51 Supply device 13 Nitrogen separation device 34 Separation device

Claims (6)

アルゴンを含む排ガスから圧力スイング吸着を利用してアルゴンを回収する回収装置であって、
前記排ガスは、燃料が燃焼して発生したガスである回収装置。
A recovery apparatus for recovering argon from an exhaust gas containing argon by pressure swing adsorption, comprising:
A recovery device for the exhaust gas, the exhaust gas being gas generated by the combustion of fuel.
前記燃料の燃焼時に支燃性ガスを供給する供給装置を備え、
前記支燃性ガス中の窒素の割合は、空気中の窒素の割合よりも少ない請求項1記載の回収装置。
A supply device is provided for supplying a combustion supporting gas during combustion of the fuel,
2. The recovery apparatus according to claim 1, wherein the proportion of nitrogen in said combustion supporting gas is less than the proportion of nitrogen in air.
前記支燃性ガス中の酸素の割合とアルゴンの割合は、空気中の酸素の割合とアルゴンの割合よりも多い請求項2記載の回収装置。 The recovery device according to claim 2, wherein the ratio of oxygen and the ratio of argon in the combustion supporting gas are greater than the ratio of oxygen and the ratio of argon in air. 前記供給装置は、圧力スイング吸着を利用して空気から窒素を分離する窒素分離装置を含み、
前記支燃性ガスは、前記窒素分離装置によって空気から窒素が分離されたガスを含む請求項2又は3に記載の回収装置。
the supply system includes a nitrogen separator that utilizes pressure swing adsorption to separate nitrogen from air;
4. The recovery system according to claim 2, wherein the combustion supporting gas includes a gas obtained by separating nitrogen from air by the nitrogen separator.
前記排ガスから二酸化炭素を分離する分離装置をさらに備える請求項1から3のいずれかに記載の回収装置。 The recovery device according to any one of claims 1 to 3, further comprising a separation device that separates carbon dioxide from the exhaust gas. 前記圧力スイング吸着で使われる吸着剤はゼオライトである請求項1から3のいずれかに記載の回収装置。 The recovery device according to any one of claims 1 to 3, wherein the adsorbent used in the pressure swing adsorption is zeolite.
JP2023099850A 2023-06-19 2023-06-19 Recovery device Pending JP2025000158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023099850A JP2025000158A (en) 2023-06-19 2023-06-19 Recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023099850A JP2025000158A (en) 2023-06-19 2023-06-19 Recovery device

Publications (1)

Publication Number Publication Date
JP2025000158A true JP2025000158A (en) 2025-01-07

Family

ID=94129222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023099850A Pending JP2025000158A (en) 2023-06-19 2023-06-19 Recovery device

Country Status (1)

Country Link
JP (1) JP2025000158A (en)

Similar Documents

Publication Publication Date Title
KR101312914B1 (en) Carbon dioxide recovery
US8728201B2 (en) Apparatus and method for removing carbon dioxide (CO2) from the flue gas of a furnace after the energy conversion
US9295939B2 (en) Carbon dioxide recovery
CN201244430Y (en) Apparatus for collecting carbonic anhydride in coal-fired plant flue gas
RU2349371C2 (en) Method for separation of waste gas or smoke produced in process of fuel oxidation, and extraction of carbon dioxide from it
US8012446B1 (en) Recycle TSA regen gas to boiler for oxyfuel operations
US8323602B2 (en) Treatment of flue gas from an oxyfuel combustion process
AU2013248181B2 (en) A method of treating a carbon dioxide rich flue gas and a flue gas treatment system
CN101978234B (en) Separation method of blast furnace gas
CN113975950B (en) System and method for synchronously recycling carbon dioxide and nitrogen in flue gas by chemical method and PSA method
TW201241366A (en) Apparatus and system for NOx reduction in wet flue gas
KR101244129B1 (en) Mrthod for separating blast furnace gas
CN113813744B (en) Promote CO in coal fired boiler flue gas 2 System and method for capture economics
JP2021074657A (en) Carbon dioxide recovery device, hydrocarbon generator, carbon circulation system and carbon dioxide recovery method
CN103492048B (en) For the low NO of drier xthe system and method for discharge regeneration
CN114405218A (en) Low partial pressure waste gas CO2Trapping and purifying refining process
EP2644249B1 (en) System and method for producing carbon dioxide
CN116078119A (en) Carbon dioxide capturing system and method
JPH06327936A (en) Method for separating and recovering carbon dioxide in exhaust gas
JP2025000158A (en) Recovery device
JP2007015910A (en) Method for production of high-purity hydrogen
JP2007015909A (en) Method for production of high-purity hydrogen
EP2540377A1 (en) A method of cleaning a carbon dioxide rich flue gas
WO2025106783A1 (en) Hybrid carbon capture system with sorbent capture state
TW201304851A (en) A method of cleaning a carbon dioxide rich flue gas