[go: up one dir, main page]

JP2024532753A - Spring steel and spring steel wire, and their manufacturing method - Google Patents

Spring steel and spring steel wire, and their manufacturing method Download PDF

Info

Publication number
JP2024532753A
JP2024532753A JP2024508098A JP2024508098A JP2024532753A JP 2024532753 A JP2024532753 A JP 2024532753A JP 2024508098 A JP2024508098 A JP 2024508098A JP 2024508098 A JP2024508098 A JP 2024508098A JP 2024532753 A JP2024532753 A JP 2024532753A
Authority
JP
Japan
Prior art keywords
steel wire
permanent deformation
spring steel
present
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2024508098A
Other languages
Japanese (ja)
Inventor
クァンホ キム,
ソクファン チェ,
ミョンス チェ,
ヨンス チョン,
Original Assignee
ポスコ カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポスコ カンパニー リミテッド filed Critical ポスコ カンパニー リミテッド
Publication of JP2024532753A publication Critical patent/JP2024532753A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/02Drawing metal wire or like flexible metallic material by drawing machines or apparatus in which the drawing action is effected by drums
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Springs (AREA)
  • Metal Extraction Processes (AREA)

Abstract

Figure 2024532753000001

【課題】素材内の転位密度を増加させるか、または平均結晶粒径を減少させて永久変形抵抗性に優れたばね用鋼及び鋼線、及びその製造方法を開示する。
【解決手段】重量%で、C:0.4~0.7%、Si:1.2~2.3%、Mn:0.2~0.8%、Cr:0.2~0.8%を含み、残部がFe(鉄)及びその他の不可避な不純物からなる鋼を伸線して鋼線を製造する段階、前記伸線した鋼線を850~1000℃で加熱した後、1秒以上維持するオーステナイト化段階、及び 前記オーステナイト化段階後、25~80℃で焼き入れを行った後、350~500℃で焼き戻しが行われる段階を含むことを特徴とし、重量%で、V:0.01~0.3%、Nb:0.005~0.05%、Ti:0.001~0.15%及びMo:0.01~0.4%からなる群から選ばれる1種以上をさらに含み、バウシンガー(Bauschinger)ねじり試験で得られるヒステリシスループ(Hysteresis loop)の面積が206mm以上であることを特徴とする。
【選択図】図4

Figure 2024532753000001

The present invention discloses a spring steel and steel wire having excellent resistance to permanent deformation by increasing the dislocation density in the material or decreasing the average crystal grain size, and a method for manufacturing the same.
The present invention relates to a method for producing a steel wire, the method including the steps of: drawing a steel containing, by weight, 0.4-0.7% C, 1.2-2.3% Si, 0.2-0.8% Mn, 0.2-0.8% Cr, and the balance being Fe (iron) and other unavoidable impurities; heating the drawn steel wire to 850-1000°C and maintaining the temperature for 1 second or more to effect austenitization; and The austenitizing step is followed by a step of quenching at 25 to 80°C and then tempering at 350 to 500°C. The steel further comprises, by weight%, at least one selected from the group consisting of V: 0.01 to 0.3%, Nb: 0.005 to 0.05%, Ti: 0.001 to 0.15%, and Mo: 0.01 to 0.4%, and the area of the hysteresis loop obtained by a Bauschinger torsion test is 206 mm2 or more.
[Selected figure] Figure 4

Description

本発明は、ばね用鋼及びばね用鋼線、及びそれらの製造方法に係り、より詳しくは、素材内の転位密度を増加させるか、または平均結晶粒径を減少させて永久変形抵抗性が向上したばね用鋼及びばね用鋼線、及びそれらの製造方法に関する。 The present invention relates to spring steel and spring steel wire, and their manufacturing methods, and more specifically to spring steel and spring steel wire with improved resistance to permanent deformation by increasing the dislocation density in the material or decreasing the average crystal grain size, and their manufacturing methods.

近年、自動車の燃費向上を目的として自動車用素材の軽量化が大きく求められている。特にサスペンションスプリングの場合には軽量化要求に対応するために現在焼き入れ、焼き戻し後の強度が1800MPa以上となる高強度素材を用いたばね設計が適用されている。 In recent years, there has been a strong demand for lighter automotive materials in order to improve fuel efficiency. In particular, in the case of suspension springs, in order to meet the demand for lighter weight, spring designs are now being applied that use high-strength materials with strengths of 1800 MPa or more after quenching and tempering.

しかし、現在、利用可能なばね用鋼が高応力条件下で使用されると、耐久性の悪化及び永久変形の増加などの問題が発生しやすい。ばねの永久変形(抵抗性)とは、ばね使用中に加えられる動的及び静的荷重によって発生する塑性変形に対する抵抗性であり、一般的に、ばねの初期高さに対して一定時間使用後の高さの変化を意味する。したがって、永久変形の増加は、ばねの高さを減少させて車両の高さが低くなり、結果としてバンパーの高さが低くなり、安全性の観点から深刻な問題を引き起こす。したがって、ばねの高応力設計を可能にするために、高い永久変形抵抗性を有するばね用鋼が要求されている。 However, when currently available spring steels are used under high stress conditions, problems such as deterioration of durability and increased permanent deformation are likely to occur. The permanent deformation (resistance) of a spring is the resistance to plastic deformation caused by dynamic and static loads applied during the use of the spring, and generally refers to the change in height of the spring after a certain period of use relative to its initial height. Therefore, an increase in permanent deformation reduces the spring height, lowering the vehicle height, and as a result, the bumper height is reduced, causing serious problems from the perspective of safety. Therefore, there is a demand for spring steels with high permanent deformation resistance to enable high stress design of springs.

ばね用鋼材に含まれるSiが永久変形抵抗性を向上させるのに有効であることが明らかとなり、永久変形抵抗性に優れたばね用鋼としてSAE9254に対応する鋼が普及している。しかし、高応力ばねに対する要求が増え続けて、永久変形抵抗性をさらに増大させることができる方案に対する要求も増加している。 It has become clear that the silicon contained in spring steel is effective in improving permanent deformation resistance, and steel that meets SAE9254 is widely used as spring steel with excellent permanent deformation resistance. However, as the demand for high-stress springs continues to increase, so too does the demand for methods that can further increase permanent deformation resistance.

特許文献1には、パーライト(pearlite)組織中のフェライト(ferrite)内に直径50nm以下の(V、Cr)炭化物、炭窒化物及びVとCrの複合炭化物、複合炭窒化物の合計が10個/μm以上含有される場合に永久変形抵抗性に優れていると開示されている。しかし、(V、Cr)炭化物、炭窒化物及びVとCrの複合炭化物、複合炭窒化物は、いずれもVが主成分であるため、850℃以上の温度では急速に溶解する。したがって、加熱温度が900℃以上の現在のばね加工工程では、特許文献1に開示された析出物による永久変形抵抗性の向上は期待し難い。また、最近、V合金鉄の価格が幾何級数的に上昇したので、特許文献1に開示した内容は、製造原価の側面でも不利な点として作用しうる。 Patent Document 1 discloses that the permanent deformation resistance is excellent when the total number of (V, Cr) carbides, carbonitrides, and V and Cr composite carbides and composite carbonitrides with a diameter of 50 nm or less is 10 /μm2 or more in ferrite in the pearlite structure. However, since (V, Cr) carbides, carbonitrides, and V and Cr composite carbides and composite carbonitrides are all mainly composed of V, they rapidly dissolve at temperatures of 850°C or higher. Therefore, in the current spring processing process in which the heating temperature is 900°C or higher, it is difficult to expect the improvement in permanent deformation resistance due to the precipitates disclosed in Patent Document 1. In addition, since the price of V ferroalloy has recently risen exponentially, the contents disclosed in Patent Document 1 may also act as a disadvantage in terms of manufacturing costs.

特開2002-180199号公報JP 2002-180199 A

上述した問題を解決するための本発明の目的は、素材内の転位密度を増加させるか、または平均結晶粒径を減少させて永久変形抵抗性に優れたばね用鋼及びばね用鋼線、及びそれらの製造方法を提供することである。 The objective of the present invention to solve the above problems is to provide a spring steel and spring steel wire that have excellent resistance to permanent deformation by increasing the dislocation density in the material or decreasing the average crystal grain size, and a manufacturing method thereof.

本発明の永久変形抵抗性に優れたばね用鋼線は、重量%で、C:0.4~0.7%、Si:1.2~2.3%、Mn:0.2~0.8%、Cr:0.2~0.8%を含み、残部がFe(鉄)及びその他の不可避な不純物からなり、転位密度が1.16×1015/m以上であり、平均結晶粒径が8.4μm以下である。 The spring steel wire of the present invention having excellent resistance to permanent deformation contains, by weight, 0.4 to 0.7% C, 1.2 to 2.3% Si, 0.2 to 0.8% Mn, 0.2 to 0.8% Cr, with the balance being Fe (iron) and other unavoidable impurities, has a dislocation density of 1.16 x 1015 / m2 or more, and an average crystal grain size of 8.4 μm or less.

また、本発明の永久変形抵抗性に優れたばね用鋼線は、重量%で、V:0.01~0.3%、Nb:0.005~0.05%、Ti:0.001~0.15%及びMo:0.01~0.4%からなる群から選ばれる1種以上をさらに含む。 The spring steel wire of the present invention, which has excellent resistance to permanent deformation, further contains, by weight, one or more selected from the group consisting of V: 0.01-0.3%, Nb: 0.005-0.05%, Ti: 0.001-0.15%, and Mo: 0.01-0.4%.

また、本発明の永久変形抵抗性に優れたばね用鋼線は、バウシンガー(Bauschinger)ねじり試験で得られるヒステリシスループ(Hysteresis loop)の面積が206mm以上である。 In addition, the spring steel wire of the present invention having excellent resistance to permanent deformation has a hysteresis loop area of 206 mm2 or more obtained in a Bauschinger torsion test.

また、本発明の永久変形抵抗性に優れたばね用鋼線の製造方法は、重量%で、C:0.4~0.7%、Si:1.2~2.3%、Mn:0.2~0.8%、Cr:0.2~0.8%を含み、残部がFe(鉄)及びその他の不可避な不純物からなる鋼を伸線して鋼線を製造する段階、前記伸線した鋼線を850~1000℃で加熱した後、1秒以上維持するオーステナイト化段階、及び前記オーステナイト化段階後、25~80℃で焼き入れを行った後、350~500℃で焼き戻しが行われる段階を含む。 The method for producing a spring steel wire with excellent resistance to permanent deformation according to the present invention includes the steps of producing a steel wire by drawing a steel containing, by weight, 0.4-0.7% C, 1.2-2.3% Si, 0.2-0.8% Mn, 0.2-0.8% Cr, with the remainder being Fe (iron) and other unavoidable impurities, heating the drawn steel wire to 850-1000°C and maintaining this temperature for at least 1 second, and quenching the wire at 25-80°C after the austenitizing step, followed by tempering at 350-500°C.

また、本発明の永久変形抵抗性に優れたばね用鋼線の製造方法において、前記鋼は、重量%で、V:0.01~0.3%、Nb:0.005~0.05%、Ti:0.001~0.15%及びMo:0.01~0.4%からなる群から選ばれる1種以上をさらに含む。 In addition, in the method for producing a spring steel wire having excellent resistance to permanent deformation according to the present invention, the steel further contains, by weight percent, one or more selected from the group consisting of V: 0.01-0.3%, Nb: 0.005-0.05%, Ti: 0.001-0.15%, and Mo: 0.01-0.4%.

また、本発明の永久変形抵抗性に優れたばね用鋼は、重量%で、C:0.4~0.7%、Si:1.2~2.3%、Mn:0.2~0.8%、Cr:0.2~0.8%を含み、残部がFe(鉄)及びその他の不可避な不純物からなり、転位密度が0.11×1015/m以上であり、平均結晶粒径が9.6μm以下である。 The spring steel of the present invention having excellent resistance to permanent deformation contains, by weight, 0.4 to 0.7% C, 1.2 to 2.3% Si, 0.2 to 0.8% Mn, 0.2 to 0.8% Cr, with the balance being Fe (iron) and other unavoidable impurities, has a dislocation density of 0.11 x 1015 / m2 or more, and an average crystal grain size of 9.6 μm or less.

また、本発明の一実施例による永久変形抵抗性に優れたばね用鋼は、重量%で、V:0.01~0.3%、Nb:0.005~0.05%、Ti:0.001~0.15%及びMo:0.01~0.4%からなる群から選ばれる1種以上をさらに含む。 In addition, the spring steel with excellent permanent deformation resistance according to one embodiment of the present invention further contains, by weight percent, one or more selected from the group consisting of V: 0.01-0.3%, Nb: 0.005-0.05%, Ti: 0.001-0.15%, and Mo: 0.01-0.4%.

また、本発明の永久変形抵抗性に優れたばね用鋼の製造方法は、重量%で、C:0.4~0.7%、Si:1.2~2.3%、Mn:0.2~0.8%、Cr:0.2~0.8%を含み、残部がFe(鉄)及びその他の不可避な不純物からなるビレットを製造する段階、前記ビレットを960~1100℃で加熱する段階、及び855~920℃で仕上げ圧延する段階を含む。 The method for producing spring steel with excellent permanent deformation resistance of the present invention includes the steps of producing a billet containing, by weight, 0.4-0.7% C, 1.2-2.3% Si, 0.2-0.8% Mn, 0.2-0.8% Cr, and the remainder being Fe (iron) and other unavoidable impurities, heating the billet at 960-1100°C, and finish rolling at 855-920°C.

また、本発明の永久変形抵抗性に優れたばね用鋼の製造方法において、前記ビレットは、重量%で、V:0.01~0.3%、Nb:0.005~0.05%、Ti:0.001~0.15%及びMo:0.01~0.4%からなる群から選ばれる1種以上をさらに含む。 In addition, in the manufacturing method of spring steel with excellent permanent deformation resistance of the present invention, the billet further contains, by weight percent, one or more selected from the group consisting of V: 0.01-0.3%, Nb: 0.005-0.05%, Ti: 0.001-0.15%, and Mo: 0.01-0.4%.

本発明によれば、素材内の転位密度を増加させるか、または平均結晶粒径を減少させて永久変形抵抗性が向上したばね用鋼及び鋼線、及びその製造方法を提供しうる。 The present invention provides spring steel and steel wire with improved resistance to permanent deformation by increasing the dislocation density in the material or decreasing the average crystal grain size, and a manufacturing method thereof.

本発明及び比較例によるばね用鋼の平均結晶粒径と鋼線のヒステリシスループの面積との関係を示すグラフである。1 is a graph showing the relationship between the average crystal grain size and the area of the hysteresis loop of a steel wire for spring steels according to the present invention and comparative examples. 本発明及び比較例によるばね用鋼線の平均結晶粒径と鋼線のヒステリシスループの面積との関係を示すグラフである。1 is a graph showing the relationship between the average crystal grain size and the area of the hysteresis loop of a spring steel wire according to the present invention and a comparative example. 本発明及び比較例によるばね用鋼の転位密度と鋼線のヒステリシスループの面積との関係を示すグラフである。1 is a graph showing the relationship between dislocation density and the area of the hysteresis loop of a steel wire in spring steels according to the present invention and a comparative example. 本発明及び比較例によるばね用鋼線の転位密度と鋼線のヒステリシスループの面積との関係を示すグラフである。1 is a graph showing the relationship between dislocation density and the area of the hysteresis loop of a spring steel wire according to the present invention and a comparative example.

本発明の永久変形抵抗性に優れたばね用鋼線は、重量%で、C:0.4~0.7%、Si:1.2~2.3%、Mn:0.2~0.8%、Cr:0.2~0.8%を含み、残部がFe(鉄)及びその他の不可避な不純物からなり、転位密度が1.16×1015/m以上であり、平均結晶粒径が8.4μm以下であってもよい。 The spring steel wire of the present invention having excellent resistance to permanent deformation may contain, by weight, 0.4 to 0.7% C, 1.2 to 2.3% Si, 0.2 to 0.8% Mn, 0.2 to 0.8% Cr, with the balance being Fe (iron) and other unavoidable impurities, have a dislocation density of 1.16 x 1015 / m2 or more, and an average crystal grain size of 8.4 μm or less.

以下、本発明の好ましい実施形態を説明する。しかし、本発明の実施形態は、様々な異なる形態に変形されてもよく、本発明の技術思想が以下で説明する実施形態に限定されるものではない。また、本発明の実施形態は、当技術分野において平均的な知識を有する者に本発明をより完全に説明するために提供されるものである。 The following describes preferred embodiments of the present invention. However, the embodiments of the present invention may be modified in various different forms, and the technical concept of the present invention is not limited to the embodiments described below. Furthermore, the embodiments of the present invention are provided to more completely explain the present invention to those with average knowledge in the art.

本出願で使用される用語は、単に特定の例示を説明するために使用されるものである。したがって、例えば、単数の表現は、文脈上明らかに単数でなければならないものでない限り、複数の表現を含む。さらに、本出願で使用される「含む」または「備える」などの用語は、明細書上に記載された特徴、段階、機能、構成要素、またはそれらを組み合わせたものが存在することを明確に指すために使用されるものであり、他の特徴や段階、機能、構成要素またはそれらを組み合わせたものの存在を予備的に排除するために使用されるものではないことに留意しなければならない。 The terms used in this application are merely used to describe specific examples. Thus, for example, singular expressions include plural expressions unless the context clearly requires the singular. Furthermore, it should be noted that the terms "include" or "comprise" used in this application are used to clearly indicate the presence of features, steps, functions, components, or combinations thereof described in the specification, and are not used to preliminarily exclude the presence of other features, steps, functions, components, or combinations thereof.

一方、特に定義のない限り、本明細書で使用されるすべての用語は、本発明が属する技術分野で通常の知識を有する者によって一般に理解されるのと同じ意味を持つものとみなすべきである。したがって、本明細書で明確に定義しない限り、特定の用語が過度に理想的または形式的な意味で解釈されるべきではない。例えば、本明細書において単数の表現は、文脈上、明らかに例外のない限り、複数の表現を含む。 On the other hand, unless otherwise defined, all terms used herein should be considered to have the same meaning as commonly understood by a person of ordinary skill in the art to which the present invention pertains. Therefore, unless expressly defined herein, certain terms should not be interpreted in an overly ideal or formal sense. For example, in this specification, singular expressions include plural expressions unless there is a clear exception in the context.

また、本明細書において「約」、「実質的に」などは、言及した意味に固有の製造及び物質の許容誤差が提示されるとき、その数値またはその数値に近い意味で使用され、本発明の理解を助けるために正確かつ絶対的な数値が言及された開示内容を非良心的な侵害者が不当に用いることを防止するために使用される。 In addition, in this specification, the terms "about," "substantially," and the like are used to mean a numerical value or a value close to that value when the tolerances of manufacturing and materials inherent in the referred meaning are presented, and are used to prevent unscrupulous infringers from unfairly using the disclosure content in which precise and absolute numerical values are mentioned to aid in the understanding of the present invention.

本発明の永久変形抵抗性に優れたばね用鋼は、重量%で、C:0.4~0.7%、Si:1.2~2.3%、Mn:0.2~0.8%、Cr:0.2~0.8%を含み、残部がFe(鉄)及びその他の不可避な不純物からなる。 The spring steel of the present invention, which has excellent resistance to permanent deformation, contains, by weight, 0.4-0.7% C, 1.2-2.3% Si, 0.2-0.8% Mn, and 0.2-0.8% Cr, with the remainder being Fe (iron) and other unavoidable impurities.

以下、前記合金組成を限定した理由について具体的に説明する。 The reasons for limiting the alloy composition are explained in detail below.

C(炭素)の含量は、0.4~0.7%であってもよい。 The C (carbon) content may be 0.4-0.7%.

Cは、ばねの強度を確保するために添加される必須元素である。これを考慮してCは、0.4%以上添加されてもよい。しかし、Cの含量が過剰な場合には、焼き入れ、焼き戻しの熱処理時に双晶(twin)型マルテンサイト組織が形成されて素材の割れが発生するため、疲労寿命が著しく低下する。また、Cの含量の過剰な場合には欠陥感受性が高くなり、表面に腐食ピットが発生する場合、疲労寿命や破壊応力が著しく低下する。これを考慮してC含量の上限は、0.7%に制限されてもよい。 C is an essential element that is added to ensure the strength of the spring. Taking this into consideration, C may be added in an amount of 0.4% or more. However, if the C content is excessive, twin martensite structures are formed during the heat treatments of quenching and tempering, causing cracks in the material and significantly reducing the fatigue life. In addition, if the C content is excessive, defect sensitivity increases, and if corrosion pits occur on the surface, the fatigue life and fracture stress are significantly reduced. Taking this into consideration, the upper limit of the C content may be limited to 0.7%.

Si(シリコン)の含量は1.2~2.3%であってもよい。 The Si (silicon) content may be 1.2-2.3%.

Siは、フェライト内に固溶して強度を強化させ、変形抵抗性を向上させるのに優れた効果を有する元素である。これを考慮してSiは、1.2%以上添加されてもよく、より好ましくは、1.4%以上添加されてもよい。しかし、Siの含量が過剰な場合には、変形抵抗性の向上効果が飽和し、熱処理時に表面脱炭を起こすことができる。これを考慮してSi含量の上限は、2.3%に制限されてもよい。 Si is an element that has an excellent effect of dissolving in ferrite to strengthen the strength and improve deformation resistance. Taking this into consideration, Si may be added in an amount of 1.2% or more, and more preferably 1.4% or more. However, if the Si content is excessive, the effect of improving deformation resistance becomes saturated and surface decarburization may occur during heat treatment. Taking this into consideration, the upper limit of the Si content may be limited to 2.3%.

Mn(マンガン)の含量は、0.2~0.8%であってもよい。 The Mn (manganese) content may be 0.2-0.8%.

Mnは、鋼材の焼入性を向上させて強度を確保する役割を果たす元素である。これを考慮してMnは、0.2%以上添加されてもよい。しかし、Mnの含量が過剰な場合には、焼入性が過度に増加し、熱間圧延後の冷却時に硬組織が発生しやすく、MnS介在物の生成が増加し、耐腐食疲労特性が低下することがある。これを考慮してMn含量の上限は、0.8%に制限されてもよい。 Mn is an element that plays a role in improving the hardenability of steel and ensuring its strength. Taking this into consideration, Mn may be added in an amount of 0.2% or more. However, if the Mn content is excessive, the hardenability increases excessively, hard tissue is likely to occur during cooling after hot rolling, and the formation of MnS inclusions increases, which may result in a decrease in corrosion fatigue resistance. Taking this into consideration, the upper limit of the Mn content may be limited to 0.8%.

Cr(クロム)の含量は、0.2~0.8%であってもよい。 The Cr (chromium) content may be 0.2-0.8%.

Crは、耐酸化性、テンパー軟化性、表面脱炭防止及び焼入性を確保するのに有用な元素である。これを考慮してCrは、0.2%以上添加されてもよい。しかし、Crの含量が過剰である場合には、変形抵抗性の低下により、むしろ、強度が劣ることがある。これを考慮してCr含量の上限は、0.8%に制限されてもよい。 Cr is a useful element for ensuring oxidation resistance, temper softening, prevention of surface decarburization, and hardenability. Taking this into consideration, Cr may be added in an amount of 0.2% or more. However, if the Cr content is excessive, the strength may be deteriorated due to a decrease in deformation resistance. Taking this into consideration, the upper limit of the Cr content may be limited to 0.8%.

また、本発明の永久変形抵抗性に優れたばね用鋼は、重量%で、V:0.01~0.3%、Nb:0.005~0.05%、Ti:0.001~0.15%及びMo:0.01~0.4%からなる群から選ばれる1種以上をさらに含んでもよい。 The spring steel with excellent permanent deformation resistance of the present invention may further contain, by weight percent, one or more selected from the group consisting of V: 0.01-0.3%, Nb: 0.005-0.05%, Ti: 0.001-0.15%, and Mo: 0.01-0.4%.

V(バナジウム)の含量は、0.01~0.3%であってもよい。 The V (vanadium) content may be 0.01-0.3%.

Vは、強度の向上及び結晶粒の微細化に寄与する元素である。また、Vは、CやNと結合して炭/窒化物を形成できるが、形成された炭/窒化物は、水素のトラップサイトとして作用して鋼材内での水素侵入を抑制し、腐食発生を減少させる役割を果たすことができる。これを考慮してVは、0.01%以上添加されてもよい。しかし、Vの含量が過剰である場合には、製造原価が上昇することがある。これを考慮してV含量の上限は、0.3%に制限されてもよい。 V is an element that contributes to improving strength and refining crystal grains. In addition, V can combine with C and N to form carbonitrides, which act as hydrogen trapping sites to inhibit hydrogen penetration into the steel material and reduce the occurrence of corrosion. Taking this into consideration, V may be added in an amount of 0.01% or more. However, if the V content is excessive, manufacturing costs may increase. Taking this into consideration, the upper limit of the V content may be limited to 0.3%.

Nb(ニオブ)の含量は、0.005~0.05%であってもよい。 The Nb (niobium) content may be 0.005-0.05%.

Nbは、CやNと結合して炭/窒化物を形成して組織微細化に寄与し、水素のトラップサイトとして作用する元素である。これを考慮してNbは、0.005%以上添加されてもよい。しかし、Nbの含量が過剰な場合には、粗大炭/窒化物が形成されて鋼材の延性が低下することがある。これを考慮してNb含量の上限は、0.05%に制限されてもよい。 Nb is an element that combines with C and N to form carbonitrides, contributing to refinement of the structure and acting as a trapping site for hydrogen. Taking this into consideration, 0.005% or more of Nb may be added. However, if the Nb content is excessive, coarse carbonitrides may be formed, reducing the ductility of the steel. Taking this into consideration, the upper limit of the Nb content may be limited to 0.05%.

Ti(チタン)の含量は、0.001~0.15%であってもよい。 The Ti (titanium) content may be 0.001-0.15%.

Tiは、析出強化を通じて強度と靭性を向上させ、粒子微細化に寄与する元素である。また、Tiは、CやNと結合して炭/窒化物を形成できるが、形成された炭/窒化物は、水素のトラップサイトとして作用することができ、析出硬化を起こすことにより、ばね特性を改善させることができる。これを考慮してTiは、0.001%以上添加されてもよい。しかし、Tiの含量が過剰な場合には、製造原価が上昇し、析出物によるばね特性改善効果が飽和する。また、Tiの含量が過剰な場合には、オーステナイト熱処理時に母材に粗大な合金炭化物量が増加して非金属介在物と同様の作用をするため、疲労特性及び析出強化効果が低下することがある。これを考慮してTi含量の上限は、0.15%に制限されてもよい。 Ti is an element that improves strength and toughness through precipitation strengthening and contributes to grain refinement. In addition, Ti can combine with C and N to form carbonitrides, which can act as hydrogen trapping sites and cause precipitation hardening, thereby improving spring properties. In consideration of this, Ti may be added in an amount of 0.001% or more. However, if the Ti content is excessive, the manufacturing cost increases and the spring property improvement effect due to the precipitation saturates. In addition, if the Ti content is excessive, the amount of coarse alloy carbides increases in the base material during austenite heat treatment, acting similarly to nonmetallic inclusions, which may reduce fatigue properties and precipitation strengthening effects. In consideration of this, the upper limit of the Ti content may be limited to 0.15%.

Mo(モリブデン)の含量は、0.01~0.4%であってもよい。 The Mo (molybdenum) content may be 0.01-0.4%.

Moは、CやNと結合して炭/窒化物を形成して組織微細化に寄与し、水素のトラップサイトとして作用する元素である。これを考慮してMoは、0.01%以上添加されてもよい。しかし、Moの含量が過剰な場合には、熱間圧延後の冷却時に硬組織が発生しやすく、粗大な炭/窒化物が形成されて鋼の延性が低下することがある。これを考慮してMo含量の上限は、0.4%に制限されてもよい。 Mo is an element that combines with C and N to form carbonitrides, contributing to refinement of the structure and acting as a trapping site for hydrogen. Taking this into consideration, Mo may be added at 0.01% or more. However, if the Mo content is excessive, hard structures are likely to form during cooling after hot rolling, and coarse carbonitrides may form, reducing the ductility of the steel. Taking this into consideration, the upper limit of the Mo content may be limited to 0.4%.

本発明の残りの成分は、鉄(Fe)である。ただし、通常の鉄鋼製造過程では、原料や周囲の環境から意図しない不純物が不可避的に混入することがあるため、これを排除することはできない。これらの不純物は、通常の製造過程の技術者であれば、誰でも知ることができるので、そのすべての内容を特に本明細書で言及するものではない。 The remaining component of the present invention is iron (Fe). However, in the normal steel manufacturing process, unintended impurities may be unavoidably mixed in from the raw materials or the surrounding environment, and it is not possible to eliminate these. These impurities are known to any engineer of normal manufacturing processes, so the contents of all of them will not be specifically mentioned in this specification.

本発明の他の態様は、前記永久変形抵抗性に優れたばね用鋼の成分と同じ組成からなる鋼線を提供する。前記各成分の数値限定理由は、上述した通りである。 Another aspect of the present invention provides a steel wire having the same composition as the spring steel having excellent resistance to permanent deformation. The reasons for limiting the numerical values of each of the components are as described above.

本発明の永久変形抵抗性に優れたばね用鋼は、前記合金成分組成比を制御することにより、微細組織としてフェライトとパーライトの混合組織を含んでもよく、ベイナイトやマルテンサイトは存在しなくてもよい。 The spring steel of the present invention, which has excellent resistance to permanent deformation, may contain a mixed structure of ferrite and pearlite as a microstructure by controlling the composition ratio of the alloy components, and bainite and martensite may not be present.

一方、本発明の発明者らは、ばね用鋼の永久変形抵抗性に及ぼす様々な影響因子を検討し、以下の事実を見出した。 Meanwhile, the inventors of the present invention have investigated various influencing factors that affect the permanent deformation resistance of spring steel and have discovered the following facts:

ばねの永久変形は、素材の降伏強度よりも低い応力レベルで多数のローディングサイクル(loading cycles)にかけて発生する周期的塑性変形(plastic deformation)またはマイクロクリープ(microcreep)によって発生する。材料が変形されると、材料内では新しい転位(dislocation)が生成されるか、またはすでに存在していた転位は、移動しながら互いに結合したり消滅したりして、最終的に転位密度(dislocation density)が変化することになる。 The permanent deformation of a spring occurs through cyclic plastic deformation or microcreep, which occurs over many loading cycles at stress levels lower than the yield strength of the material. When a material is deformed, new dislocations are generated within the material, or existing dislocations move and merge or disappear, ultimately changing the dislocation density.

一般的に圧延や成形、加工などは一度に降伏点(yield point)を超える変形量を与えるために転位密度が増加し、加工硬化現象が現れる。しかし、ばねのように降伏点を超えない低い応力レベルで周期的な塑性変形やマイクロクリープ現象を受けると、むしろ、長時間にわたって転位密度が減少し、最終的にばねが永久変形する。しかし、ばねは、製品の特性上、安定性を考慮して降伏点よりも低い応力レベルで作動しなければならないため、一定期間使用後の転位密度が減少するのはやむを得ない現象である。 Generally, rolling, forming, and processing cause deformation that exceeds the yield point at one time, which increases the dislocation density and results in work hardening. However, when a spring is subjected to cyclic plastic deformation or microcreep at a low stress level that does not exceed the yield point, the dislocation density decreases over a long period of time, and the spring ultimately becomes permanently deformed. However, because springs must operate at a stress level lower than the yield point for stability reasons due to the product's characteristics, it is inevitable that the dislocation density will decrease after a certain period of use.

したがって、ばねの永久変形抵抗性を向上させるためには、ばねの製造時、素材内の転位密度を高めるか、または、ばね使用中の転位が結晶粒界に頻繁に積み重なる(pile-up)ことで、消滅する速度を減少させることが最も好ましい。 Therefore, in order to improve the permanent deformation resistance of a spring, it is most preferable to increase the dislocation density in the material when manufacturing the spring, or to reduce the rate at which dislocations disappear by frequently piling up at grain boundaries during use of the spring.

ばね製造時の素材内の転位密度を高めるためには、熱間圧延による線材の製造時から転位密度を高めなければならず、そのためには、より低い温度で圧延するか、または冷却する方法が効果的である。また、転位が結晶粒界に頻繁に積み重なるようにするためには、結晶粒を微細化して結晶粒界まで転位が動く距離を短くし、より頻繁に結晶粒界と出会うようにしなければならない。 To increase the dislocation density in the material when manufacturing springs, the dislocation density must be increased from the time of manufacturing the wire rod by hot rolling. To achieve this, it is effective to roll at a lower temperature or to cool it. Also, to ensure that dislocations pile up frequently at the grain boundaries, the grains must be refined to shorten the distance that the dislocations travel to the grain boundaries, so that they encounter the grain boundaries more frequently.

したがって、本発明の永久変形抵抗性に優れたばね用鋼は、転位密度が0.11×1015/m以上であってもよい。 Therefore, the spring steel having excellent permanent deformation resistance according to the present invention may have a dislocation density of 0.11×10 15 /m 2 or more.

また、本発明の永久変形抵抗性に優れたばね用鋼は、平均結晶粒径が9.6μm以下であってもよい。 The spring steel of the present invention, which has excellent resistance to permanent deformation, may also have an average grain size of 9.6 μm or less.

また、本発明の永久変形抵抗性に優れたばね用鋼線は、転位密度が1.16×1015/m以上であってもよい。 Moreover, the spring steel wire excellent in permanent deformation resistance of the present invention may have a dislocation density of 1.16×10 15 /m 2 or more.

また、本発明の永久変形抵抗性に優れたばね用鋼線は、平均結晶粒径が8.4μm以下であってもよい。 The spring steel wire of the present invention, which has excellent resistance to permanent deformation, may also have an average crystal grain size of 8.4 μm or less.

一方、ばねの永久変形とは、ばねの初期高さに対して一定時間使用後の高さの変化を意味するため、ばね状態で測定することが一般的であるが、鋼線状態でも測定可能にした方法がバウシンガー(Bauschinger)ねじり試験である。バウシンガー(Bauschinger)ねじり試験は、鋼線を降伏強度以上の荷重を与えて15°/minの速度でねじった後、荷重除去後に降伏強度以上の荷重を与えて15°/minの速度でねじって行った。このとき、トルク-ツイストアングル曲線上に重なる部分をヒステリシスループ(Hysteresis loop)という。ヒステリシスループ(Hysteresis loop)の面積が大きいほどばねの永久変形抵抗性が大きくなる。 Meanwhile, the permanent deformation of a spring means the change in height of the spring after it has been used for a certain period of time compared to its initial height, so it is generally measured in the spring state, but the Bauschinger torsion test allows it to be measured in the steel wire state as well. In the Bauschinger torsion test, a steel wire is twisted at a speed of 15°/min with a load equal to or greater than the yield strength, and then after the load is removed, it is twisted at a speed of 15°/min with a load equal to or greater than the yield strength. The part that overlaps with the torque-twist angle curve at this time is called the hysteresis loop. The larger the area of the hysteresis loop, the greater the spring's resistance to permanent deformation.

したがって、本発明の永久変形抵抗性に優れたばね用鋼線で前記バウシンガー(Bauschinger)ねじり試験を行うと、ヒステリシスループ(Hysteresis loop)の面積が206mm以上であってもよい。 Therefore, when the Bauschinger torsion test is performed on the spring steel wire having excellent permanent deformation resistance according to the present invention, the area of the hysteresis loop may be 206 mm2 or more.

次に、本発明の永久変形抵抗性に優れたばね用鋼及び鋼線の製造方法についてそれぞれ説明する。 Next, we will explain the manufacturing method of the spring steel and steel wire of the present invention that have excellent resistance to permanent deformation.

本発明の永久変形抵抗性に優れたばね用鋼の製造方法は、重量%で、C:0.4~0.7%、Si:1.2~2.3%、Mn:0.2~0.8%、Cr:0.2~0.8%を含み、残部がFe(鉄)及びその他の不可避な不純物からなり、微細組織としてフェライトとパーライトの混合組織を含み、転位密度が0.11×1015/m以上のビレットを製造する段階、前記ビレットを960~1100℃で加熱する段階、及び855~920℃で仕上げ圧延及び巻き取る段階を含んでもよい。 The method for producing spring steel having excellent permanent deformation resistance according to the present invention may include the steps of producing a billet containing, by weight, 0.4-0.7% C, 1.2-2.3% Si, 0.2-0.8% Mn, 0.2-0.8% Cr, the balance being Fe (iron) and other unavoidable impurities, having a mixed structure of ferrite and pearlite as a microstructure, and having a dislocation density of 0.11 x 1015 / m2 or more, heating the billet at 960-1100°C, and finish rolling and coiling at 855-920°C.

各合金元素の成分比を限定した理由は、上述した通りであり、以下、各製造段階についてより詳細に説明する。 The reasons for limiting the composition ratio of each alloy element are as described above, and each manufacturing step will be explained in more detail below.

上述したように、ばねの永久変形抵抗性を向上させるためには、ばね用鋼及び鋼線の転位密度を高めるか、または結晶粒を微細化しなければならない。また、転位密度を高めるか、または結晶粒を微細化するためには、ビレット加熱温度と仕上げ圧延温度を適切に制御する必要がある。 As mentioned above, in order to improve the permanent deformation resistance of springs, the dislocation density of spring steel and steel wire must be increased or the crystal grains must be refined. In addition, in order to increase the dislocation density or refine the crystal grains, the billet heating temperature and the finish rolling temperature must be appropriately controlled.

本発明のビレットの加熱温度は、960~1100℃の範囲とすることが好ましい。ビレットの加熱温度が低すぎると、圧延ロールの負荷が大きくなる。また、ビレットの加熱温度が低すぎると、鋳造時に生成され得る粗大炭化物がすべて溶解しないため、オーステナイト内に合金元素が均一に分布しないことがある。これを考慮してビレットの加熱温度は、960℃以上であってもよい。一方、加熱温度が高すぎると、ビレットの結晶粒径が大きくなり、同じ圧延条件で熱間圧延しても最終線材での結晶粒径が大きくなる。これを考慮してビレットの加熱温度の上限は、1100℃に制限されてもよい。 The heating temperature of the billet of the present invention is preferably in the range of 960 to 1100°C. If the heating temperature of the billet is too low, the load on the rolling rolls will be large. Also, if the heating temperature of the billet is too low, the coarse carbides that may be generated during casting will not all dissolve, and the alloy elements may not be uniformly distributed in the austenite. Taking this into consideration, the heating temperature of the billet may be 960°C or higher. On the other hand, if the heating temperature is too high, the grain size of the billet will become large, and even if hot rolling is performed under the same rolling conditions, the grain size of the final wire will become large. Taking this into consideration, the upper limit of the heating temperature of the billet may be limited to 1100°C.

本発明の仕上げ圧延温度は、855~920℃の範囲とすることが好ましい。仕上げ圧延温度が低すぎると、圧延ロールの負荷が大きくなる。これを考慮して仕上げ圧延温度は、855℃以上であってもよい。一方、仕上げ圧延温度が高すぎると、冷却開始前のオーステナイト結晶粒径が大きくなり、最終冷却後の結晶粒径が大きくなってしまう。これを考慮して仕上げ圧延温度の上限は、920℃に制限されてもよい。 The finish rolling temperature in the present invention is preferably in the range of 855 to 920°C. If the finish rolling temperature is too low, the load on the rolling rolls will be large. Taking this into consideration, the finish rolling temperature may be 855°C or higher. On the other hand, if the finish rolling temperature is too high, the austenite grain size before the start of cooling will be large, and the grain size after final cooling will be large. Taking this into consideration, the upper limit of the finish rolling temperature may be limited to 920°C.

本発明の永久変形抵抗性に優れたばね用鋼線の製造方法は、前記鋼を伸線して鋼線を製造する段階、前記伸線した鋼線を850~1000℃で加熱した後、1秒以上維持するオーステナイト化段階、及び前記オーステナイト化段階後、25~80℃で焼き入れを行った後、350~500℃で焼き戻しが行われる段階を含んでもよい。 The method for producing a spring steel wire having excellent resistance to permanent deformation according to the present invention may include a step of producing a steel wire by drawing the steel, an austenitizing step of heating the drawn steel wire at 850 to 1000°C and maintaining the temperature for at least 1 second, and a step of quenching the wire at 25 to 80°C after the austenitizing step and tempering the wire at 350 to 500°C.

まず、本発明の永久変形抵抗性に優れたばね用鋼を伸線して鋼線を製造する。 First, the spring steel of the present invention, which has excellent resistance to permanent deformation, is drawn to produce a steel wire.

その後、オーステナイト化段階を経る。前記オーステナイト化段階では、前記鋼線を850~1000℃の温度範囲で熱処理する。 Then, the steel wire undergoes an austenitizing step, in which the steel wire is heat treated at a temperature range of 850 to 1000°C.

一方、ばね用鋼線を製造するために、最近、誘導加熱熱処理(Induction heat treatment)設備を活用する場合が多くなっている。誘導加熱熱処理設備を使用するとき、熱処理保持時間が1秒未満の場合には、フェライト及びパーライト組織が十分に加熱されず、オーステナイトに変態しないことがある。したがって、前記オーステナイト化段階において熱処理保持時間は、1秒以上であってもよい。 Meanwhile, induction heat treatment equipment is now often used to manufacture spring steel wire. When using induction heat treatment equipment, if the heat treatment holding time is less than 1 second, the ferrite and pearlite structures may not be heated sufficiently and may not transform into austenite. Therefore, the heat treatment holding time in the austenitizing step may be 1 second or more.

次に、前記オーステナイト化段階を経た鋼線を25~80℃の範囲で焼き入れを行い、350~500℃の範囲で焼き戻し(テンパリング)を行う。前記焼き戻しは、本発明が所望の機械的物性を確保するための段階で、靭性及び強度を確保するために必要である。 Next, the steel wire that has undergone the austenitizing step is quenched at a temperature in the range of 25 to 80°C, and then tempered at a temperature in the range of 350 to 500°C. The tempering step is a step in which the present invention secures the desired mechanical properties, and is necessary to ensure toughness and strength.

前記焼き戻し温度が低すぎると、靭性が確保されず、成形及び製品状態で破損するおそれがある。これを考慮して焼き戻し温度は、350℃以上であってもよい。一方、焼き戻し温度が高すぎると、強度が急激に減少して高強度の確保が難しくなることがある。これを考慮して焼き戻し温度の上限は、500℃に制限されてもよい。 If the tempering temperature is too low, toughness will not be ensured and there is a risk of breakage during forming and in the finished product state. Taking this into consideration, the tempering temperature may be 350°C or higher. On the other hand, if the tempering temperature is too high, the strength will decrease rapidly and it may become difficult to ensure high strength. Taking this into consideration, the upper limit of the tempering temperature may be limited to 500°C.

以下、本発明について実施例を通じてより詳細に説明する。しかし、このような実施例の記載は、本発明の実施を例示するためのものであり、このような実施例の記載によって本発明が制限されるものではない。本発明の権利範囲は、特許請求の範囲に記載された事項と、これから合理的に類推される事項によって決定されるものであるためである。 Hereinafter, the present invention will be described in more detail through examples. However, the description of such examples is intended to illustrate the implementation of the present invention, and the present invention is not limited by the description of such examples. This is because the scope of the present invention is determined by the matters described in the claims and matters that can be reasonably inferred from them.

{実施例}
下記表1に示す合金組成を有するビレットを製造した後、前記ビレットを下記表1に示す条件で加熱及び仕上げ圧延した後、巻き取ってばね用鋼を製造した。
{Example}
A billet having the alloy composition shown in Table 1 below was produced, and then the billet was heated and finish-rolled under the conditions shown in Table 1 below, and then coiled to produce spring steel.

その後、前記ばね用鋼をASTM E8規格に合わせて伸線加工した後、975℃で15分間加熱するオーステナイト化段階を行った。次に、70℃の油に浸して急冷(焼き入れ)させた後、390℃で30分間保持する焼き戻しを行い、ばね用鋼線を製造した。 The spring steel was then drawn in accordance with the ASTM E8 standard, and then heated at 975°C for 15 minutes to undergo an austenitization step. It was then immersed in oil at 70°C for rapid cooling (quenching), and then tempered at 390°C for 30 minutes to produce spring steel wire.

Figure 2024532753000002
Figure 2024532753000002

鋼の結晶粒径及び転位密度と鋼線の結晶粒径、転位密度、バウシンガーねじり試験のヒステリシスループの面積及び焼き入れ、焼き戻し熱処理後の引張強度は、下記表2に示した。 The crystal grain size and dislocation density of the steel and the crystal grain size, dislocation density, area of the hysteresis loop in the Bauschinger torsion test, and tensile strength after quenching and tempering heat treatment of the steel wire are shown in Table 2 below.

結晶粒径は、モデル名がJSM 7200Fの後方散乱電子回折パターン分析器(Electron Backscatter Diffraction,EBSD)を用いて任意の5箇所の方位を分析して測定した。平均結晶粒径は、任意の5箇所で行った結晶粒径の平均を意味する。 The grain size was measured by analyzing the orientation of five randomly selected locations using a JSM 7200F electron backscatter diffraction pattern analyzer (EBSD). The average grain size refers to the average of the grain sizes measured at five random locations.

転位密度は、モデル名がFEI Technai Osirisの透過電子顕微鏡(Transmission electron microscope,TEM)で写真を撮影した後、単位面積当たりに含まれる転位数を観察して測定した。 The dislocation density was measured by taking a photograph using a transmission electron microscope (TEM) (model name: FEI Technai Osiris) and then observing the number of dislocations per unit area.

バウシンガー(Bauschinger)ねじり試験は、鋼線を降伏強度以上の荷重を与えて15°/minの速度でねじった後、荷重除去後に降伏強度以上の荷重を与えて15°/minの速度でねじって行った。このとき、トルク-ツイストアングル曲線上に重なる部分をヒステリシスループ(Hysteresis loop)という。 In the Bauschinger torsion test, a steel wire is twisted at a speed of 15°/min with a load equal to or greater than the yield strength, and then after the load is removed, it is twisted at a speed of 15°/min with a load equal to or greater than the yield strength. The part that overlaps with the torque-twist angle curve at this time is called the hysteresis loop.

焼き入れ、焼き戻し熱処理後の引張強度は、万能材料試験機(Universal test machine,UTM)を通じて測定した。 The tensile strength after quenching and tempering heat treatment was measured using a universal test machine (UTM).

Figure 2024532753000003
Figure 2024532753000003

実施例1~3は、合金組成及び製造条件が本発明で提案するところを満たした。したがって、鋼の平均結晶粒径が9.6μm以下、鋼の転位密度が0.11×1015/m以上、鋼線の平均結晶粒径が8.4μm以下、鋼線の転位密度が1.16×1015/m以上及びバウシンガーねじり試験のヒステリシスループの面積が206mm以上を満たした。 In Examples 1 to 3, the alloy composition and manufacturing conditions satisfied the requirements proposed by the present invention, i.e., the average crystal grain size of the steel was 9.6 μm or less, the dislocation density of the steel was 0.11×10 15 /m 2 or more, the average crystal grain size of the steel wire was 8.4 μm or less, the dislocation density of the steel wire was 1.16×10 15 /m 2 or more, and the area of the hysteresis loop in the Bauschinger torsion test was 206 mm 2 or more.

比較例1は、合金組成が本発明で提案するところを満たしたが、仕上げ圧延温度が855~920℃の範囲を満足しなかった。したがって、比較例1は、鋼の平均結晶粒径が15.6μm、鋼線の平均結晶粒径が12.3μmと粗大な結晶粒が現れた。これにより、バウシンガーねじり試験で得られたヒステリシスループの面積が163mmと非常に低く、永久変形抵抗性に劣っていた。 In Comparative Example 1, the alloy composition satisfied the requirements of the present invention, but the finish rolling temperature did not satisfy the range of 855 to 920°C. Therefore, in Comparative Example 1, the average grain size of the steel was 15.6 μm, and the average grain size of the steel wire was 12.3 μm, resulting in coarse grains. As a result, the area of the hysteresis loop obtained in the Bauschinger torsion test was very low at 163 mm2 , and the permanent deformation resistance was poor.

比較例2は、合金組成が本発明で提案するところを満たしたが、ビレット加熱温度が960~1100℃の範囲を満足しなかった。したがって、比較例2は、鋼の平均結晶粒径が13.8μm、鋼線の平均結晶粒径が11.4μmと粗大な結晶粒が現れた。これにより、バウシンガーねじり試験で得られたヒステリシスループの面積が184mmと非常に低く、永久変形抵抗性に劣っていた。 In Comparative Example 2, the alloy composition satisfied the range proposed by the present invention, but the billet heating temperature did not satisfy the range of 960 to 1100°C. Therefore, in Comparative Example 2, the average crystal grain size of the steel was 13.8 μm, and the average crystal grain size of the steel wire was 11.4 μm, resulting in coarse crystal grains. As a result, the area of the hysteresis loop obtained in the Bauschinger torsion test was very low at 184 mm2 , and the permanent deformation resistance was poor.

比較例3は、合金組成が本発明で提案するところを満たしたが、仕上げ圧延温度が855~920℃の範囲を満足しなかった。したがって、比較例3は、鋼の平均結晶粒径が11.4μm、鋼線の平均結晶粒径が10.7μmと粗大な結晶粒が現れた。これにより、バウシンガーねじり試験で得られたヒステリシスループの面積が205mmと低く、永久変形抵抗性に劣っていた。 In Comparative Example 3, the alloy composition satisfied the range proposed by the present invention, but the finish rolling temperature did not satisfy the range of 855 to 920°C. Therefore, in Comparative Example 3, the average crystal grain size of the steel was 11.4 μm, and the average crystal grain size of the steel wire was 10.7 μm, resulting in coarse crystal grains. As a result, the area of the hysteresis loop obtained in the Bauschinger torsion test was low at 205 mm2 , and the permanent deformation resistance was poor.

図1及び図2は、鋼及び鋼線の平均結晶粒径による鋼線のヒステリシスループの面積を示すグラフである。図1及び図2を参照すると、平均結晶粒径が小さいほどヒステリシスループの面積が大きくなることが分かる。すなわち、平均結晶粒径が小さいほど永久変形抵抗性に優れていることが確認できる。 Figures 1 and 2 are graphs showing the area of the hysteresis loop of steel wire as a function of the average crystal grain size of the steel and steel wire. Referring to Figures 1 and 2, it can be seen that the smaller the average crystal grain size, the larger the area of the hysteresis loop. In other words, it can be confirmed that the smaller the average crystal grain size, the better the permanent deformation resistance.

図3及び図4は、鋼及び鋼線の転位密度による鋼線のヒステリシスループの面積を示すグラフである。図3及び図4を参照すると、転位密度が大きいほどヒステリシスループの面積が大きくなることが分かる。すなわち、転位密度が大きいほど永久変形抵抗性に優れていることが確認できる。 Figures 3 and 4 are graphs showing the area of the hysteresis loop of steel wire as a function of the dislocation density of steel and steel wire. Referring to Figures 3 and 4, it can be seen that the area of the hysteresis loop increases as the dislocation density increases. In other words, it can be confirmed that the higher the dislocation density, the better the permanent deformation resistance.

本発明によれば、素材内の転位密度を増加させるか、または平均結晶粒径を減少させて永久変形抵抗性が向上したばね用鋼及び鋼線、及びその製造方法を提供しうる。 The present invention provides spring steel and steel wire with improved resistance to permanent deformation by increasing the dislocation density in the material or decreasing the average crystal grain size, and a manufacturing method thereof.

Claims (9)

重量%で、C:0.4~0.7%、Si:1.2~2.3%、Mn:0.2~0.8%、Cr:0.2~0.8%を含み、残部がFe及びその他の不可避な不純物からなり、
転位密度が1.16×1015/m以上であり、
平均結晶粒径が8.4μm以下であることを特徴とする永久変形抵抗性に優れたばね用鋼線
In weight percent, it contains C: 0.4-0.7%, Si: 1.2-2.3%, Mn: 0.2-0.8%, Cr: 0.2-0.8%, and the balance is Fe and other unavoidable impurities.
The dislocation density is 1.16×10 15 /m 2 or more,
A spring steel wire having excellent resistance to permanent deformation and characterized in that the average crystal grain size is 8.4 μm or less.
重量%で、V:0.01~0.3%、Nb:0.005~0.05%、Ti:0.001~0.15%及びMo:0.01~0.4%からなる群から選ばれる1種以上をさらに含むことを特徴とする請求項1に記載の永久変形抵抗性に優れたばね用鋼線。 The spring steel wire with excellent resistance to permanent deformation according to claim 1, further comprising, by weight, one or more selected from the group consisting of V: 0.01-0.3%, Nb: 0.005-0.05%, Ti: 0.001-0.15%, and Mo: 0.01-0.4%. バウシンガー(Bauschinger)ねじり試験で得られるヒステリシスループ(Hysteresis loop)の面積が206mm以上であることを特徴とする請求項1に記載の永久変形抵抗性に優れたばね用鋼線。 2. The spring steel wire having excellent resistance to permanent deformation according to claim 1, characterized in that the area of a hysteresis loop obtained in a Bauschinger torsion test is 206 mm2 or more. 重量%で、C:0.4~0.7%、Si:1.2~2.3%、Mn:0.2~0.8%、Cr:0.2~0.8%を含み、残部がFe(鉄)及びその他の不可避な不純物をからなる鋼を伸線して鋼線を製造する段階、
前記伸線した鋼線を850~1000℃で加熱した後、1秒以上維持するオーステナイト化段階、及び
前記オーステナイト化段階後、25~80℃で焼き入れを行った後、350~500℃で焼き戻しが行われる段階を含むことを特徴とする永久変形抵抗性に優れたばね用鋼線の製造方法。
A step of producing a steel wire by wiredrawing a steel containing, by weight%, 0.4 to 0.7% C, 1.2 to 2.3% Si, 0.2 to 0.8% Mn, 0.2 to 0.8% Cr, and the balance being Fe (iron) and other unavoidable impurities;
austenitizing the drawn steel wire at 850 to 1000°C and maintaining the temperature for at least 1 second; and after the austenitizing, quenching the drawn steel wire at 25 to 80°C and tempering the wire at 350 to 500°C.
前記鋼は、重量%で、V:0.01~0.3%、Nb:0.005~0.05%、Ti:0.001~0.15%及びMo:0.01~0.4%からなる群から選ばれる1種以上をさらに含むことを特徴とする請求項4に記載の永久変形抵抗性に優れたばね用鋼線の製造方法。 The method for manufacturing spring steel wire with excellent resistance to permanent deformation according to claim 4, characterized in that the steel further contains, by weight percent, one or more selected from the group consisting of V: 0.01-0.3%, Nb: 0.005-0.05%, Ti: 0.001-0.15%, and Mo: 0.01-0.4%. 重量%で、C:0.4~0.7%、Si:1.2~2.3%、Mn:0.2~0.8%、Cr:0.2~0.8%を含み、残部がFe及びその他の不可避な不純物からなり、
転位密度が0.11×1015/m以上であり、
平均結晶粒径が9.6μm以下であることを特徴とする永久変形抵抗性に優れたばね用鋼。
In weight percent, it contains C: 0.4-0.7%, Si: 1.2-2.3%, Mn: 0.2-0.8%, Cr: 0.2-0.8%, and the balance is Fe and other unavoidable impurities.
The dislocation density is 0.11×10 15 /m 2 or more,
A spring steel having excellent resistance to permanent deformation, characterized in that the average crystal grain size is 9.6 μm or less.
重量%で、V:0.01~0.3%、Nb:0.005~0.05%、Ti:0.001~0.15%及びMo:0.01~0.4%からなる群から選ばれる1種以上をさらに含むことを特徴とする請求項6に記載の永久変形抵抗性に優れたばね用鋼。 The spring steel with excellent resistance to permanent deformation according to claim 6, further comprising, by weight, one or more selected from the group consisting of V: 0.01-0.3%, Nb: 0.005-0.05%, Ti: 0.001-0.15%, and Mo: 0.01-0.4%. 重量%で、C:0.4~0.7%、Si:1.2~2.3%、Mn:0.2~0.8%、Cr:0.2~0.8%を含み、残部がFe(鉄)及びその他の不可避な不純物からなるビレットを製造する段階、
前記ビレットを960~1100℃で加熱する段階、及び
855~920℃で仕上げ圧延する段階を含むことを特徴とする永久変形抵抗性に優れたばね用鋼の製造方法。
A step of producing a billet containing, by weight percent, 0.4-0.7% C, 1.2-2.3% Si, 0.2-0.8% Mn, 0.2-0.8% Cr, and the balance being Fe (iron) and other unavoidable impurities;
The method for producing spring steel having excellent resistance to permanent deformation comprises the steps of heating the billet at 960 to 1100°C, and finish rolling the billet at 855 to 920°C.
前記ビレットは、重量%で、V:0.01~0.3%、Nb:0.005~0.05%、Ti:0.001~0.15%及びMo:0.01~0.4%からなる群から選ばれる1種以上をさらに含むことを特徴とする請求項8に記載の永久変形抵抗性に優れたばね用鋼の製造方法。

9. The method for producing a spring steel having excellent permanent deformation resistance according to claim 8, wherein the billet further contains, by weight%, one or more selected from the group consisting of V: 0.01 to 0.3%, Nb: 0.005 to 0.05%, Ti: 0.001 to 0.15%, and Mo: 0.01 to 0.4%.

JP2024508098A 2021-08-11 2022-07-13 Spring steel and spring steel wire, and their manufacturing method Pending JP2024532753A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020210106248A KR20230024115A (en) 2021-08-11 2021-08-11 Steel and steel wire for spring, and method for manufacturing the same
KR10-2021-0106248 2021-08-11
PCT/KR2022/010194 WO2023018028A2 (en) 2021-08-11 2022-07-13 Steel and steel wire, which are for spring, and manufacturing methods therefor

Publications (1)

Publication Number Publication Date
JP2024532753A true JP2024532753A (en) 2024-09-10

Family

ID=85200246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2024508098A Pending JP2024532753A (en) 2021-08-11 2022-07-13 Spring steel and spring steel wire, and their manufacturing method

Country Status (6)

Country Link
US (1) US20240344185A1 (en)
EP (1) EP4368739A2 (en)
JP (1) JP2024532753A (en)
KR (1) KR20230024115A (en)
CN (1) CN117795117A (en)
WO (1) WO2023018028A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117625895A (en) * 2023-10-24 2024-03-01 湖南华菱涟源钢铁有限公司 Heat treatment method of spring steel and obtained spring steel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3940263B2 (en) 2000-12-20 2007-07-04 株式会社神戸製鋼所 Spring steel, spring steel wire and spring with excellent sag resistance
JP4027956B2 (en) * 2006-01-23 2007-12-26 株式会社神戸製鋼所 High strength spring steel having excellent brittle fracture resistance and method for producing the same
KR100833051B1 (en) * 2006-12-20 2008-05-27 주식회사 포스코 High-strength spring steel wire, manufacturing method of the steel wire
KR101767838B1 (en) * 2016-06-16 2017-08-14 주식회사 포스코 Wire rod and steel wire for spring having hydrogen embrittlement resistance and method for manufacturing the same
KR102020385B1 (en) * 2017-09-29 2019-11-04 주식회사 포스코 Steel wire rod and steel wire for spring having corrosion fatigue resistance and method of manufacturing thereof
KR20200017776A (en) * 2018-08-09 2020-02-19 주식회사 포스코 Austenitic stainless steel with improved resistance to hydrogen brittleness and manufscturing methof thereof

Also Published As

Publication number Publication date
CN117795117A (en) 2024-03-29
WO2023018028A3 (en) 2023-04-13
US20240344185A1 (en) 2024-10-17
KR20230024115A (en) 2023-02-20
WO2023018028A2 (en) 2023-02-16
EP4368739A2 (en) 2024-05-15

Similar Documents

Publication Publication Date Title
KR102470965B1 (en) Steel sheet having excellent toughness, ductility and strength, and manufacturing method thereof
JP6893560B2 (en) Tempered martensitic steel with low yield ratio and excellent uniform elongation and its manufacturing method
KR102722875B1 (en) Heat treatment method for high-strength steel and products obtained therefrom
WO2001048258A1 (en) Bar or wire product for use in cold forging and method for producing the same
KR102178711B1 (en) Non-heat treated wire rod having excellent strength and impact toughness and method for manufacturing thereof
JP2017179596A (en) High carbon steel sheet and manufacturing method therefor
US5897717A (en) High strength spring steel and process for producing same
JP6460883B2 (en) Manufacturing method of heat-treated steel wire with excellent workability
JP7133705B2 (en) Wire rod for spring, steel wire with improved toughness and corrosion fatigue characteristics, and method for producing the same
JP2024532753A (en) Spring steel and spring steel wire, and their manufacturing method
KR101789944B1 (en) Coil spring, and method for manufacturing same
CN113966404B (en) Non-heat-treated wire rod having excellent drawability and impact toughness and method for manufacturing the same
CN114929923B (en) Wire rod and steel wire for ultra-high strength spring and method for manufacturing the same
JP5001874B2 (en) Cold forming spring having high fatigue strength and high corrosion fatigue strength, and method for producing spring steel wire
JP4252351B2 (en) Cold forming spring having high fatigue strength and high corrosion fatigue strength and steel for spring
KR102448754B1 (en) High-strength wire rod with excellent heat treatment property and resistance of hydrogen delayed fracture, heat treatment parts using the same, and methods for manufacturing thereof
KR100398378B1 (en) The method of manufacturing wire rods for the stabilizer of automobile
KR20110075316A (en) Steel wire for high toughness spring with excellent fatigue life, spring and manufacturing method thereof
KR0146799B1 (en) Manufacturing method of high strength steel pipe stabilizer with excellent corrosion resistance
JP2024543998A (en) Cold forging wire rod, steel part and manufacturing method thereof with improved delayed fracture resistance
JP2003055741A (en) Oil-tempered wire for cold-formed coil springs
JP2024500152A (en) Wire rods and parts with improved delayed fracture resistance and their manufacturing method
JP2024521927A (en) Spring wire rod, steel wire, spring with improved strength and fatigue limit, and manufacturing method thereof
KR20230048866A (en) Method and wire rod for cold forging having improved drilling properties
JP2024526116A (en) Ultra-high strength steel plate with excellent bending properties and high yield ratio and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20250212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20250325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20250625