[go: up one dir, main page]

JP2024176486A - Electric power distribution device and method for manufacturing the same - Google Patents

Electric power distribution device and method for manufacturing the same Download PDF

Info

Publication number
JP2024176486A
JP2024176486A JP2023095043A JP2023095043A JP2024176486A JP 2024176486 A JP2024176486 A JP 2024176486A JP 2023095043 A JP2023095043 A JP 2023095043A JP 2023095043 A JP2023095043 A JP 2023095043A JP 2024176486 A JP2024176486 A JP 2024176486A
Authority
JP
Japan
Prior art keywords
resin
movable electrode
adhesive medium
power receiving
distributing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023095043A
Other languages
Japanese (ja)
Inventor
敦 大嶽
Atsushi Otake
幸三 田村
Kozo Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2023095043A priority Critical patent/JP2024176486A/en
Priority to PCT/JP2024/016748 priority patent/WO2024252824A1/en
Publication of JP2024176486A publication Critical patent/JP2024176486A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】受配電機器1の真空バルブとモールド樹脂との接着性を向上させ、樹脂に加わる応力を緩和して強度を確保し、耐電圧性を向上させる。【解決手段】固定電極11と、可動電極21と、これらの接触子12、22の接触部を収容する収容容器を有する真空バルブ30を備え、セラミックと金属にて形成されたバルブ部材30の収容容器の外面(部分)と樹脂2との間(点線48に示す部分)に、フッ化マイカ及びフュームドシリカを含むフェノキシ樹脂層を接着材媒体として介在させて、樹脂2によるモールド体を形成する。【選択図】図2[Problem] To improve adhesion between a vacuum valve and molded resin in a power distribution device 1, to relieve stress on the resin to ensure strength and improve voltage resistance. [Solution] A vacuum valve 30 is provided having a fixed electrode 11, a movable electrode 21, and a housing container that houses the contact parts of these contacts 12, 22, and a phenoxy resin layer containing mica fluoride and fumed silica is interposed as an adhesive medium between the resin 2 and the outer surface (part) of the housing container of the valve member 30 made of ceramic and metal (part shown by dotted line 48). [Selected Figure] Figure 2

Description

本発明は受配電機器、特に好ましくは樹脂モールドされた真空遮断部を有する機器と、その製造方法に関する。 The present invention relates to power distribution equipment, particularly equipment having a resin-molded vacuum interrupter, and a method for manufacturing the same.

受配電機器、特にモールドされたタイプの真空遮断器においては多数の金属部品に加え、セラミック等からできたバルブ部の全体を樹脂にてモールドする必要がある。多くの場合、樹脂とモールドされる部材との間に線膨張係数の差がある場合が多く、真空遮断器では遮断器バルブの外縁を形成するセラミック及び金属と樹脂との間に線膨張係数の差がある。一般的に、セラミック、金属はモールド用の樹脂よりも線膨張率が低いことが多く、線膨張率の違いから樹脂割れの原因となっていた。近年では、樹脂の線膨張係数を増加させたり、樹脂の強度・破壊靭性を向上させたりして、樹脂の割れ防止の措置が取られてきた。また、モールド用の樹脂と遮断器バルブの間にシリコーンゴムを挟み込むなどして応力緩和させる場合もある。樹脂特性を変えるのは容易ではなく、それら樹脂は高価であるのが通例だからである。尚、シリコーンゴムを挟み込む場合には高価なシリコンを手間をかけてバルブの周囲に塗る、巻き付けるといった措置が必要であり、このような処理は材料のコストに加えて、人手、機械による処理といった製造コストが高くつく。 In power distribution equipment, especially molded vacuum circuit breakers, it is necessary to mold the entire valve section made of ceramics and other materials in resin in addition to the many metal parts. In many cases, there is a difference in the linear expansion coefficient between the resin and the molded parts, and in vacuum circuit breakers, there is a difference in the linear expansion coefficient between the ceramic and metal that form the outer edge of the circuit breaker valve and the resin. Generally, ceramics and metals often have a lower linear expansion coefficient than the resin used for molding, and the difference in linear expansion coefficient has been the cause of resin cracking. In recent years, measures have been taken to prevent resin cracking by increasing the linear expansion coefficient of the resin or improving the strength and fracture toughness of the resin. In addition, stress may be relieved by sandwiching silicone rubber between the resin used for molding and the circuit breaker valve. This is because it is not easy to change the resin properties, and such resins are usually expensive. In addition, when sandwiching silicone rubber, it is necessary to take measures such as painting or wrapping expensive silicone around the valve, which is time-consuming, and this type of processing requires high manufacturing costs in addition to the cost of materials, as well as manual and mechanical processing.

特許文献1には、金属電極、アルミナ製の真空バルブ等の部品を備えたモールド機器が開示されており、内蔵部品の表面に、マイカ層とモールド層を設けている。ここではマイカ層は結着剤とマイカを含むことが示されており、結着剤としてフェノキシ樹脂が好ましいことが示されている。特許文献2には、フッ素化マイカとフェノキシ樹脂とを含む繊維強化複合材料用の樹脂組成物が開示されており、更にフィラとして微粉末シリカを含有できることが示されている。 Patent Document 1 discloses a molded device equipped with components such as metal electrodes and alumina vacuum valves, with a mica layer and a molded layer provided on the surface of the built-in components. It is shown that the mica layer contains a binder and mica, and that phenoxy resin is preferred as the binder. Patent Document 2 discloses a resin composition for fiber-reinforced composite materials that contains fluorinated mica and phenoxy resin, and further indicates that finely powdered silica can be included as a filler.

特開2020-145328号公報JP 2020-145328 A 特開2001-106800号公報JP 2001-106800 A

特許文献1は遮断器向けであって、結着剤としてマイカを用いているが、マイカをフッ化することの記載や示唆は見あたらない。また、本明細書で言及するようなフュームドシリカを使用することには全く記載されていない。特許文献2には、フッ化マイカを含むフェノキシ樹脂組成物の特定の用途、即ちモールドされた受配電機器に用いる旨の記載が見あたらない。さらに、微粉末シリカの一次粒子径の記載もなく、これがフュームドシリカであるか否かの記載もない。 Patent Document 1 is intended for circuit breakers and uses mica as a binder, but there is no mention or suggestion of fluorinating the mica. There is also no mention of using fumed silica as mentioned in this specification. Patent Document 2 does not mention a specific use of a phenoxy resin composition containing fluorinated mica, namely use in molded power receiving and distribution equipment. Furthermore, there is no mention of the primary particle size of the finely powdered silica, nor is there any mention of whether or not it is fumed silica.

受配電機器、特に真空遮断器における遮断器バルブにおいては、金属部品とモールド用の樹脂とのあいだに接着層を設けて接着性を向上させ、接着層の両面に作用する応力を緩和し、なおかつ、耐電圧性を向上することが重要である。また、生産性を向上させるためにスプレー塗装の際の粘度調整を容易にすることも重要である。 In power distribution equipment, particularly in the circuit breaker valves of vacuum circuit breakers, it is important to provide an adhesive layer between the metal parts and the molding resin to improve adhesion, reduce the stress acting on both sides of the adhesive layer, and improve voltage resistance. It is also important to make it easy to adjust the viscosity when spray painting in order to improve productivity.

上記課題を解決するために、本発明の目的は、セラミックあるいは金属の表面を持つ被モールド部材とモールド用の樹脂との間に、線膨張率の差を吸収し、クラックの抑制を可能とする接着材媒体を介在させた受配電機器を提供することにある。
本発明の他の目的は、フッ化マイカ及びフュームドシリカを含むフェノキシ樹脂層を接着材媒体として用いると共に、可動電極近傍の樹脂の空気に接する表面部分に接着材媒体を塗布した受配電機器を提供することにある。
In order to solve the above problems, an object of the present invention is to provide an electric power distribution device in which an adhesive medium is interposed between a molded component having a ceramic or metal surface and a molding resin, which absorbs the difference in linear expansion coefficients and makes it possible to suppress cracks.
Another object of the present invention is to provide an electric power receiving and distributing device in which a phenoxy resin layer containing mica fluoride and fumed silica is used as an adhesive medium and the adhesive medium is applied to the surface portion of the resin in contact with the air near the movable electrode.

本願において開示される発明のうち代表的な特徴を説明すれば次のとおりである。
本発明の一つの特徴によれば、セラミックあるいは金属の表面を持つ被モールド部材をモールド用の樹脂にて覆うようにした受配電機器であって、被モールド部材の外面と樹脂との間に、フッ化マイカ及びフュームドシリカを含むフェノキシ樹脂層を接着材媒体として介在させるようにした。この接着材媒体には、更にエポキシ系樹脂を含めたり、ゴム系の微粒子を混在させたりしても良い。ゴム系の微粒子は、コアシェル型のゴム微粒子とすると良い。接着材媒体に含まれるフュームドシリカの表面を、アルキル基によって修飾するようにしても良い。
Representative features of the invention disclosed in this application are as follows.
According to one feature of the present invention, a power receiving and distributing device is provided in which a molded member having a ceramic or metal surface is covered with a molding resin, and a phenoxy resin layer containing mica fluoride and fumed silica is interposed as an adhesive medium between the outer surface of the molded member and the resin. The adhesive medium may further contain an epoxy resin or may be mixed with rubber-based fine particles. The rubber-based fine particles are preferably core-shell type rubber fine particles. The surface of the fumed silica contained in the adhesive medium may be modified with an alkyl group.

本発明の他の特徴によれば、可動電極の可動部の作用点側は、モールド用の樹脂にて覆われる空間内に配置され、この空間は大気に曝される環境下にあり、可動電極の可動方向とは直交する方向に可動電極と所定の距離を隔てるように形成された内周面を有する。本発明では、この内周面のうち、バルブ部材に近い側にフッ化マイカ及びフュームドシリカを含むフェノキシ樹脂層を塗装部材として塗布する。 According to another feature of the present invention, the action point side of the movable part of the movable electrode is placed in a space covered with a molding resin, this space is in an environment exposed to the atmosphere, and has an inner circumferential surface formed so as to be separated from the movable electrode by a predetermined distance in a direction perpendicular to the moving direction of the movable electrode. In the present invention, a phenoxy resin layer containing mica fluoride and fumed silica is applied as a coating material to the side of this inner circumferential surface closer to the valve member.

本発明のさらに他の特徴によれば、内部が真空にされた受配電部の収容容器を樹脂によってモールドされる受配電機器において、バルブ部材の外面と樹脂との間に、フッ化マイカ及びフュームドシリカを含むフェノキシ樹脂層を接着材媒体として塗布し、樹脂が塗布されたバルブ部材と、前記固定電極への接続端子と、前記可動電極への接続端子の全体を前記樹脂によってモールドすることで受配電機器を製造するようにした。 According to yet another feature of the present invention, in an electric power distribution device in which the inside of a vacuum-filled electric power distribution section is molded with resin, a layer of phenoxy resin containing mica fluoride and fumed silica is applied as an adhesive medium between the outer surface of the valve member and the resin, and the valve member to which the resin has been applied, the connection terminal to the fixed electrode, and the connection terminal to the movable electrode are all molded with the resin to manufacture the electric power distribution device.

本発明によれば受配電機器の耐電圧性を高め、バルブ部の収容容器の外面付近の樹脂の剥離によるモールド割れを防ぐことが可能となる。また、モールド割れの恐れが減少するため、モールド薄肉化による受配電機器の小形化や、耐圧性の向上が見込める。さらに、接着材媒体の塗膜の厚さに応じて粘度を自由に制御することができるため、信頼性及び耐久性の高いモールド型の受配電機器を製造することができる。 The present invention makes it possible to improve the voltage resistance of the power receiving and distribution equipment and prevent mold cracking caused by peeling of the resin near the outer surface of the container for the valve section. In addition, because the risk of mold cracking is reduced, it is possible to make the power receiving and distribution equipment more compact by making the mold thinner and to improve the pressure resistance. Furthermore, because the viscosity can be freely controlled according to the thickness of the coating of the adhesive medium, it is possible to manufacture molded power receiving and distribution equipment that is highly reliable and durable.

(A)は本発明の実施例に係る真空遮断器1の縦断面図であり、(B)はモールドされる前の真空バルブ30の縦断面図である。1A is a vertical cross-sectional view of a vacuum circuit breaker 1 according to an embodiment of the present invention, and FIG. 1B is a vertical cross-sectional view of a vacuum interrupter 30 before being molded. 図1(A)と同じ縦断面図であり、本実施例の接着材媒体40を塗布する領域を示す図である。1A is a vertical cross-sectional view similar to that of FIG. 1A, showing the area to which the adhesive medium 40 of this embodiment is applied. 真空遮断器1に用いられる接着材媒体40の成分表である。4 is a table of ingredients of an adhesive medium 40 used in the vacuum circuit breaker 1. 真空遮断器1に使用可能な接着材媒体の成分とそれらの特徴及び含有量を示す表である。1 is a table showing components of adhesive media usable in the vacuum circuit breaker 1, their characteristics and amounts. 本発明の第2の実施例に係る接着材媒体60の成分表である。11 is a table showing ingredients of an adhesive medium 60 according to a second embodiment of the present invention. 本発明の第3の実施例に係る接着材媒体の内部構造を示す図である。FIG. 11 is a diagram showing the internal structure of an adhesive medium according to a third embodiment of the present invention. 通常のフュームドシリカ表面の化学式である。1 is the chemical formula of a typical fumed silica surface. 図7で示すOHをアルコキシ類によって修飾されたフュームドシリカ表面の化学式である。FIG. 8 shows the chemical formula of the fumed silica surface in which OH has been modified with alkoxy groups.

以下、本発明の実施例を図面に基づいて説明する。なお、以下の図において、同一の部分には同一の符号を付し、繰り返しの説明は省略する。 The following describes an embodiment of the present invention with reference to the drawings. Note that in the following drawings, the same parts are given the same reference numerals and repeated explanations are omitted.

図1は、本発明が適用される真空遮断器1の構造を示す縦断面図である。図1(A)が全体の断面図であり、(B)は真空バルブ30部分の構造を示す断面図である。真空遮断器1は、高圧や特別高圧の配電設備等で広く使用される遮断器の一種であり、モールド真空遮断器とも呼ばれている。真空遮断器1は、固定電極11と可動電極21を含んで構成され、可動電極21は収容容器31内で固定電極11と対向するようして中心軸線A1に同軸に配置される。可動電極21の先端の接触子22が、固定電極11の先端の接触子12と離れることにより固定側導体10から可動側導体20に至る電路が遮断される。図1では、電路が遮断された状態を示している。また、接触子12と接触子22が当接されることにより、固定側導体10から可動側導体20に至る電路が確立される。固定電極11は、その一部が収容容器31内に挿入され、固定電極11の一端が図示しない外部の主回路に接続され、他端が樹脂2の内部で固定側導体10に接続される。 Figure 1 is a vertical cross-sectional view showing the structure of a vacuum circuit breaker 1 to which the present invention is applied. Figure 1 (A) is a cross-sectional view of the whole, and (B) is a cross-sectional view showing the structure of the vacuum valve 30 portion. The vacuum circuit breaker 1 is a type of circuit breaker that is widely used in high-voltage and extra-high-voltage distribution facilities, and is also called a molded vacuum circuit breaker. The vacuum circuit breaker 1 is configured to include a fixed electrode 11 and a movable electrode 21, and the movable electrode 21 is arranged coaxially with the central axis A1 so as to face the fixed electrode 11 in the container 31. When the contact 22 at the tip of the movable electrode 21 separates from the contact 12 at the tip of the fixed electrode 11, the electric path from the fixed conductor 10 to the movable conductor 20 is interrupted. Figure 1 shows a state in which the electric path is interrupted. Also, when the contact 12 and the contact 22 come into contact with each other, an electric path from the fixed conductor 10 to the movable conductor 20 is established. A portion of the fixed electrode 11 is inserted into the container 31, one end of the fixed electrode 11 is connected to an external main circuit (not shown), and the other end is connected to the fixed conductor 10 inside the resin 2.

固定電極11は、一端が金属製の固定側導体10に固定され、多端に接触子12が形成される。接触子12の形成される他端側は、収容容器31の内部の空間39内に位置する。固定側導体10と固定電極11は、電気的に接続された状態にある。可動電極21は、貫通孔が形成されたカップ状の摺動部材24と、摺動状態にて接続される。摺動部材24は可動側導体20と固定されることにより、可動電極21と可動側導体20は電気的に接続される。尚、図1(A)の矢印28付近で、可動電極21と摺動部材24が離間しているように図示されているが、これは説明の便宜上、摺動する状態を示すために隙間を図示した為であり、実際にはこれらは接触しながら可動側導体20が移動可能な構造として、電気的な導通状態が維持される。また、摺動部材24と可動側導体20は別体式でなく、金属の一体品として製造しても良い。 One end of the fixed electrode 11 is fixed to the fixed conductor 10 made of metal, and a contact 12 is formed at the other end. The other end where the contact 12 is formed is located in the space 39 inside the container 31. The fixed conductor 10 and the fixed electrode 11 are electrically connected. The movable electrode 21 is connected in a sliding state to a cup-shaped sliding member 24 with a through hole. The sliding member 24 is fixed to the movable conductor 20, so that the movable electrode 21 and the movable conductor 20 are electrically connected. Note that the movable electrode 21 and the sliding member 24 are shown to be separated near the arrow 28 in FIG. 1(A), but this is for convenience of explanation, as a gap is shown to show the sliding state. In reality, they are in contact with each other, and the movable conductor 20 can move, so that an electrical conduction state is maintained. In addition, the sliding member 24 and the movable conductor 20 do not have to be separate, but may be manufactured as a metal integrated product.

可動電極21は、一部が空間39内にあり、反対側部分が空間39の外部(大気圧部分)に位置し、反対側の端部が可動側絶縁棒27に接続される。可動側絶縁棒27は、図示しない駆動手段又は操作手段に接続されて、矢印29の方向に移動可能なように構成される。このように真空遮断器1によって、固定側導体10から可動側導体20への電力伝達回路が接続又は遮断される。 A portion of the movable electrode 21 is located within the space 39, and an opposite portion is located outside the space 39 (atmospheric pressure portion), with the opposite end connected to the movable insulating rod 27. The movable insulating rod 27 is connected to a drive means or operating means (not shown) and configured to be movable in the direction of the arrow 29. In this way, the vacuum circuit breaker 1 connects or disconnects the power transmission circuit from the fixed conductor 10 to the movable conductor 20.

図1(B)は、固定電極11の可動電極21の接触部位(接触子12、22)を収容する収容容器31を含む真空バルブ30部分の縦断面図である。接触子12と13は、接触抵抗を減らすために、当接する部位の面積が広くなるように、上下方向や左右方向の幅が広くなるような形状にて形成される。また、図1(B)において、接触子12と接触子22が含まれる空間39、つまり収容容器31の内部空間は真空状態とされる。収容容器31は、真空容器とも呼ばれるものであり、高度の気密性が保たれる。 Figure 1 (B) is a vertical cross-sectional view of the vacuum valve 30, including the container 31 that contains the contact portion (contacts 12, 22) of the movable electrode 21 of the fixed electrode 11. In order to reduce contact resistance, the contacts 12 and 13 are formed in a shape that increases the width in the vertical and horizontal directions so that the area of the abutting portion is increased. In addition, in Figure 1 (B), the space 39 containing the contacts 12 and 22, i.e., the internal space of the container 31, is in a vacuum state. The container 31 is also called a vacuum container, and is highly airtight.

収容容器31は、アルミナセラミックによる円筒部材32と、円筒部材32の前後に接続され、アルミニウム合金にて製造される封着金具33、34より形成される。本発明での「バルブ部材」は、収容容器に収容される部品を指すものである。固定電極11に対し可動電極21を開極する際、接触子12、22間でアークが発生してアークが持続しやすくなるが、収容容器31の内部の空間39を真空とすることで、アークを消滅させる効果がある。真空容器31には、貫通孔33aと34aが形成される。貫通孔33aには固定電極11が摺動不能状態で接触し、貫通孔34aには可動電極21が摺動可能状態にて接触する。可動電極21側の封着金具34の内側空間内には、ベローズ36が設けられる。 The container 31 is formed of a cylindrical member 32 made of alumina ceramic, and sealing metal fittings 33, 34 made of aluminum alloy, which are connected to the front and rear of the cylindrical member 32. In this invention, the "valve member" refers to the part contained in the container. When the movable electrode 21 is opened relative to the fixed electrode 11, an arc is generated between the contacts 12, 22 and the arc tends to continue, but by making the space 39 inside the container 31 a vacuum, the arc can be extinguished. Through holes 33a and 34a are formed in the vacuum container 31. The fixed electrode 11 contacts the through hole 33a in a non-slidable state, and the movable electrode 21 contacts the through hole 34a in a slidable state. A bellows 36 is provided in the inner space of the sealing metal fitting 34 on the movable electrode 21 side.

ベローズ36は、収容容器31内に設置され、可動電極21が動いても収容容器31内の真空を維持するために、可動電極21と封着金具34との摺動面となる貫通孔34aから空気が空間39内に入り込まないようにする。ベローズ36の先端であって、接触子22に近い部分には、ベローズ用アークシールド37が設けられる。また、円筒部材32の内側には、略円筒状のセラミック用アークシールド35(図1(A)参照)が設けられる。可動電極21に接続される可動側絶縁棒27(図1(A)参照)を矢印29aの方向に軸線A1に沿って移動させることで遮断操作が行われ、矢印29aと反対方向に可動側絶縁棒27を移動させることで、可動電極21の接触子22が固定電極11の接触子12との接触状態から解除される。 The bellows 36 is installed in the container 31, and prevents air from entering the space 39 through the through hole 34a, which is the sliding surface between the movable electrode 21 and the sealing metal fitting 34, in order to maintain the vacuum in the container 31 even when the movable electrode 21 moves. A bellows arc shield 37 is provided at the tip of the bellows 36, close to the contact 22. A substantially cylindrical ceramic arc shield 35 (see FIG. 1A) is provided inside the cylindrical member 32. The disconnection operation is performed by moving the movable insulating rod 27 (see FIG. 1A) connected to the movable electrode 21 along the axis A1 in the direction of the arrow 29a, and the contact 22 of the movable electrode 21 is released from contact with the contact 12 of the fixed electrode 11 by moving the movable insulating rod 27 in the opposite direction to the arrow 29a.

図1(B)にて示した真空容器31の外側表面は、図1(A)にて示されるようにエポキシ系の樹脂2により全体がモールド化された状態とされる。樹脂2は真空容器31部分の外側だけでなく、固定側導体10、固定電極11、円筒状の摺動部材24、可動側導体20も含むようにモールドされ、樹脂による成形部分が受配電機器の外形を決定する。本実施例では、この樹脂によるモールドを形成する製造段階において、特徴のある接着材媒体40(符号は後述の図3を参照)を使用するものである。 The outer surface of the vacuum vessel 31 shown in FIG. 1(B) is entirely molded with epoxy resin 2 as shown in FIG. 1(A). Resin 2 is molded to include not only the outside of the vacuum vessel 31 but also the fixed conductor 10, fixed electrode 11, cylindrical sliding member 24, and movable conductor 20, and the resin molded portion determines the outer shape of the power receiving and distributing device. In this embodiment, a distinctive adhesive medium 40 (see FIG. 3 for the symbol described below) is used in the manufacturing stage where this resin mold is formed.

接着材媒体40は真空容器31の外側表面、即ち、円筒部材32の外側表面と、封着金具33、34の外側表面に漏れなく塗布され、接着材媒体40が塗布された状態の真空バルブ30が樹脂2にモールドされることになる。つまり、この接着材媒体40(図1には符号は図示していない)は、円筒部材32及び封着金具33、34の外側表面と、樹脂2との間の接着材としての機能を果たすものである。 The adhesive medium 40 is applied without omission to the outer surface of the vacuum vessel 31, i.e., the outer surface of the cylindrical member 32 and the outer surfaces of the sealing metal fittings 33, 34, and the vacuum valve 30 with the adhesive medium 40 applied is molded in the resin 2. In other words, this adhesive medium 40 (the reference number is not shown in FIG. 1) functions as an adhesive between the outer surfaces of the cylindrical member 32 and the sealing metal fittings 33, 34 and the resin 2.

樹脂2の内部には、複数の補強用の金属部材5a、5b、6a、6b、7が鋳込まれる。金属部材5aは円筒状であって、封着金具33の角部33bに接触させた状態にて樹脂2に鋳込まれる。金属部材5bは円筒状であって、封着金具34の角部34bに接触した状態にて樹脂2に鋳込まれる。金属部材6aはリング状の部材であり、固定側導体10に接触した状態にて樹脂2に鋳込まれる。金属部材6bはリング状の部材であり、摺動部材に接触した状態にて樹脂2に鋳込まれる。 A number of reinforcing metal members 5a, 5b, 6a, 6b, and 7 are cast into the resin 2. The metal member 5a is cylindrical and is cast into the resin 2 in contact with the corner 33b of the sealing metal fitting 33. The metal member 5b is cylindrical and is cast into the resin 2 in contact with the corner 34b of the sealing metal fitting 34. The metal member 6a is a ring-shaped member and is cast into the resin 2 in contact with the fixed-side conductor 10. The metal member 6b is a ring-shaped member and is cast into the resin 2 in contact with the sliding member.

図2は、図1と同じ真空遮断器1の断面図であり、接着材媒体40(符号は後述の図3を参照)を塗る対象となる範囲を点線48にて示したものである。点線48の範囲は、断面図における部位を2次元にて示したものである。収容容器31(図1(B)参照)の外側表面全体に接着材媒体40を塗布した後に、それらの収容容器31を樹脂に鋳込むようにして外側に樹脂2によるモールド体を形成する。接着材媒体40による接着層による応力緩和によって、本来接触する2つの部材、即ち、円筒部材32と樹脂2、封着金具33、34と樹脂2との間の線膨張率の差を吸収することができるので、樹脂2にクラックが発生する恐れを解消できる。 Figure 2 is a cross-sectional view of the same vacuum interrupter 1 as in Figure 1, with the dotted line 48 indicating the area to be coated with adhesive medium 40 (see Figure 3 for the reference numerals described later). The area indicated by dotted line 48 indicates the area in the cross-sectional view in two dimensions. After applying adhesive medium 40 to the entire outer surface of the container 31 (see Figure 1 (B)), the container 31 is cast in resin to form a molded body of resin 2 on the outside. The stress relief provided by the adhesive layer of adhesive medium 40 can absorb the difference in linear expansion coefficient between the two components that would normally be in contact, i.e., between cylindrical member 32 and resin 2, and between sealing metal fittings 33, 34 and resin 2, thereby eliminating the risk of cracks occurring in resin 2.

本実施例では、セラミックあるいは金属の表面を持つ部材(図1(B)に示した真空容器31)とモールド用の樹脂2との間にフッ化マイカおよび、フュームドシリカを含むフェノキシ樹脂層が接着材媒体40(図3参照)として存在させる。これにより、接着層による応力緩和によって線膨張率の差を吸収し、クラックの抑制が可能となった。従来、接着材媒体として知られていたマイカのような扁平粒子は、耐電圧性能を向上させることが知られている。しかし、マイカはフェノキシ樹脂への分散性が悪く、懸濁や沈降、凝集を起こす問題がある。そのような不均一分散は、塗膜を形成する際に塗膜中に含まれるマイカの偏りが生じ、塗った場所によってマイカ濃度にばらつきが生じ、耐電圧性能を下げる原因となっていた。本実施例では、接着材媒体40として、フッ化マイカを含むフェノキシ樹脂を用いるようにしたので、フェノキシ樹脂への粒子の分散性の悪化を解消できた。 In this embodiment, a layer of phenoxy resin containing mica fluoride and fumed silica is placed between a member having a ceramic or metal surface (vacuum container 31 shown in FIG. 1B) and resin 2 for molding as an adhesive medium 40 (see FIG. 3). This allows the adhesive layer to absorb the difference in linear expansion coefficients and suppress cracks. Conventionally, flat particles such as mica, which have been known as adhesive media, are known to improve voltage resistance performance. However, mica has poor dispersibility in phenoxy resin, and there is a problem of suspension, sedimentation, and aggregation. Such uneven dispersion causes bias in the mica contained in the coating film when the coating film is formed, causing variation in the mica concentration depending on the location where it is applied, which causes a decrease in voltage resistance performance. In this embodiment, phenoxy resin containing mica fluoride is used as the adhesive medium 40, so the deterioration of particle dispersibility in phenoxy resin can be eliminated.

接着材媒体40の成分表を図3に示す。図3からわかるように、本塗料はフェノキシ樹脂を主たる剤とする塗料である。これにフッ化マイカを15wt%添加し、さらに石油系シンナーによって薄めている。液粘度の調整のため、フュームドシリカが3.0wt%添加されている。フュームドシリカの一次粒子径は20nmの品を使用した。また、フュームドシリカに生じた表面OH基は何の修飾もしていない。 The ingredients list of the adhesive medium 40 is shown in Figure 3. As can be seen from Figure 3, this paint is made mainly of phenoxy resin. 15 wt% mica fluoride is added to this, and it is further diluted with petroleum-based thinner. 3.0 wt% fumed silica is added to adjust the liquid viscosity. The fumed silica used has a primary particle size of 20 nm. Furthermore, the surface OH groups generated on the fumed silica are not modified in any way.

マイカと異なり、フッ化マイカはフェノキシ樹脂やそれを溶解するシンナー類に可溶または良分散するためスプレー塗装する際に均一な塗装が可能となる。不均一な塗装は塗面に凹凸を発生させ、弱点となって耐電圧性を低下させるが、本実施例の接着材媒体40は分散が良いためにそのようなことを防止できる。さらに、本実施例の接着材媒体では、フュームドシリカが微量添加される。フュームドシリカを添加することにより、接着材媒体40の粘度の調整が有効に効くため、塗布作業におけるスプレー吐出圧の高低に合わせての粘度調整が容易となる。フュームドシリカの添加量は通常では0.1wt%~5wt%の間とすると良く、スプレーにて収容容器31の外面等への塗装を行う際に、多くのスプレー塗膜厚さの変化への対応が容易となる。 Unlike mica, mica fluoride is soluble or disperses well in phenoxy resin and thinners that dissolve it, making it possible to apply uniform coating when spraying. Uneven coating creates unevenness on the coating surface, which becomes a weak point and reduces the voltage resistance, but the adhesive medium 40 of this embodiment has good dispersion and can prevent this. Furthermore, a small amount of fumed silica is added to the adhesive medium of this embodiment. By adding fumed silica, the viscosity of the adhesive medium 40 can be effectively adjusted, making it easy to adjust the viscosity to match the high and low spray discharge pressure during application work. The amount of fumed silica added is usually between 0.1 wt% and 5 wt%, which makes it easy to respond to many changes in spray coating thickness when spraying the outer surface of the storage container 31, etc.

図4の表は、従来の接着材媒体(塗液)を用いたエポキシ板52と、本実施例に係る接着材媒体40を用いて製造したエポキシ板53、54の成分及び特徴をまとめたものである。この表において、最初の例51は、接着材媒体たるエポキシ板を用いない例、即ち、図2(B)で示した真空空間を形成する構造体の外側に、直接、樹脂2をモールドするような場合である。 The table in Figure 4 summarizes the components and characteristics of epoxy board 52 made using a conventional adhesive medium (coating liquid) and epoxy boards 53 and 54 made using adhesive medium 40 according to this embodiment. In this table, the first example 51 is an example in which an epoxy board as an adhesive medium is not used, that is, a case in which resin 2 is molded directly on the outside of the structure forming the vacuum space shown in Figure 2 (B).

接着材媒体としてエポキシ系樹脂が混在する塗料が知られている。この接着材媒体(塗液)が52である。エポキシ樹脂とフェノキシ樹脂は反応の形態が似ているが、エポキシ樹脂は架橋反応を起こすために熱硬化性樹脂となる。フェノキシ樹脂が硬化後、フェノキシ由来の柔軟な層の硬さを調整するために使用することができる。塗膜の堅牢性が必要な場合に適する。 Paints that contain epoxy resins as adhesive media are known. This adhesive media (coating liquid) is 52. Epoxy resins and phenoxy resins have similar reaction forms, but epoxy resins become thermosetting resins due to crosslinking reactions. After the phenoxy resin hardens, it can be used to adjust the hardness of the flexible layer derived from the phenoxy. It is suitable when robustness of the coating film is required.

エポキシ樹脂52は、混在させるエポキシ樹脂としてビスフェノールA型エポキシ樹脂を用い、アミン系硬化剤をほぼ同量、またごくわずかなイミダゾールを更に添加する。接着材媒体(塗液)52~54の塗装をする場合は、乾燥後45μmとなるようにした。接着材媒体40へのフュームドシリカの添加量は、1wt%~3wt%の間で粘度とすることが好ましく、フュームドシリカの添加することで多くのスプレー塗膜厚さの変化への対応が容易となる。この接着材媒体40を用いたエポキシ板が54である。本実施例に係る接着材媒体40では、フッ化マイカ+フェノキシ樹脂+フュームドシリカの塗液となり、この接着材媒体40を塗装したエポキシ樹脂板54の耐圧性能を調べたところ、39.5kV/mmとなりフェノキシ樹脂層のないエポキシ樹脂51の値28kV/mmより大幅に高くなることが分かった。 Epoxy resin 52 uses bisphenol A type epoxy resin as the mixed epoxy resin, and adds almost the same amount of amine-based hardener and a very small amount of imidazole. When applying adhesive medium (coating liquid) 52-54, it is set to 45 μm after drying. The amount of fumed silica added to adhesive medium 40 is preferably between 1 wt% and 3 wt%, and adding fumed silica makes it easier to respond to changes in the thickness of many spray coatings. Epoxy board using this adhesive medium 40 is 54. The adhesive medium 40 in this embodiment is a coating liquid of mica fluoride + phenoxy resin + fumed silica, and when the pressure resistance performance of epoxy resin board 54 coated with this adhesive medium 40 was examined, it was found to be 39.5 kV/mm, which is significantly higher than the value of 28 kV/mm of epoxy resin 51 without a phenoxy resin layer.

また、-50℃から+110℃までヒートショック試験をして、耐クラック性を検査したところ、エポキシ板52~54に示すように、少なくともフェノキシ樹脂を塗布することで、クラックは発生せずこの性質はフッ化マイカやフュームドシリカを添加しても変化しなかった。以上の通り、本実施例では均一でスプレーに適した粘度に、塗装としての接着材媒体40の液特性を調整することができ、耐圧の向上、耐クラック性の向上が可能となった。 In addition, when heat shock tests were conducted from -50°C to +110°C to examine the crack resistance, as shown in epoxy boards 52 to 54, by applying at least phenoxy resin, no cracks occurred, and this property did not change even when mica fluoride or fumed silica was added. As described above, in this embodiment, the liquid properties of the adhesive medium 40 as a coating can be adjusted to a uniform viscosity suitable for spraying, making it possible to improve pressure resistance and crack resistance.

図5は、第2の実施例に係る接着材媒体60の成分とそれらの特徴及び含有量を示す表である。ここでは、真空空間を形成する接着材媒体60は、主成分たるフェノキシ樹脂61(40wt%)にエポキシ系樹脂65が5wt%混在する例である。また、フッ化マイカ62が15wt%、フュームドシリカが3wt%含まれる。フュームドシリカは一次粒子径が数十ナノメートルと非常に微細であり、表面にSi-O-Si、Si-OHなどの極性を持つ分子鎖が露出している。このため、フェノキシ樹脂との相溶性が良く、粘度を上げる効果が穏やかである。一方で、Si-OH基の一部をアルキル化処理するなどして疎水性をもたせることで、相溶性が下がり、しかしながら微細で添加量がわずかであるために凝集や沈殿を起こさず、添加濃度に対し粘度を急激に上げる特性を発揮する。特に厚塗りをしたい場合などは液の粘度が高い方が液だれを起こしにくいため、またスプレー塗布の際の吐出圧が高い場合には、粘度が高いほど均一に塗膜形成が可能となる。好ましくは、上記までに述べた接着材媒体60に含まれるフュームドシリカ64の表面がアルキル基によって修飾される。 Figure 5 is a table showing the components of the adhesive medium 60 according to the second embodiment, their characteristics, and their contents. Here, the adhesive medium 60 forming the vacuum space is an example in which the main component, phenoxy resin 61 (40 wt%), is mixed with 5 wt% of epoxy resin 65. It also contains 15 wt% of fluorinated mica 62 and 3 wt% of fumed silica. Fumed silica has a very fine primary particle diameter of several tens of nanometers, and polar molecular chains such as Si-O-Si and Si-OH are exposed on the surface. For this reason, it has good compatibility with phenoxy resin and a gentle effect of increasing viscosity. On the other hand, by making it hydrophobic by alkylating some of the Si-OH groups, the compatibility decreases, but since it is fine and the amount added is small, it does not cause aggregation or precipitation, and exhibits the characteristic of rapidly increasing the viscosity in relation to the added concentration. In particular, when a thick coating is desired, a higher viscosity liquid is less likely to drip, and when the discharge pressure during spray application is high, the higher the viscosity, the more uniform the coating film can be formed. Preferably, the surface of the fumed silica 64 contained in the adhesive medium 60 described above is modified with an alkyl group.

石油系シンナー63は薄め液であり、さらに、アミン硬化剤が3wt%含まれる。このような接着材媒体60を用いることで、図6のように乾燥後のフェノキシ樹脂61中に島状のエポキシ樹脂硬化物65が散在した内部構造を持たせることができる。このような樹脂の内部構造とすることで、乾燥後のフェノキシ樹脂61中に島状のエポキシ樹脂65の硬化物が散在した、いわゆる海島構造と呼ばれるものであり、接着材媒体60による塗膜の強靭性を向上させる効果が得られる。 The petroleum-based thinner 63 is a thinner that further contains 3 wt% amine hardener. By using such an adhesive medium 60, it is possible to obtain an internal structure in which island-shaped epoxy resin cured products 65 are scattered in the phenoxy resin 61 after drying, as shown in FIG. 6. By creating such an internal structure of the resin, island-shaped epoxy resin 65 cured products are scattered in the phenoxy resin 61 after drying, which is called a sea-island structure, and the adhesive medium 60 has the effect of improving the toughness of the coating film.

以上のように、真空バルブ30の金属部材と外側の樹脂の間に接着材媒体60が塗布される。真空遮断器1における高電界部位は主として真空バルブ30の周辺部、特にバルブの両端付近およびその周辺の金属類表面である。この部分を塗装処理することで、高耐圧化の効果がよりよく発揮される。また、線膨張係数の異なる二種の素材間でのテンションを緩和するためにクラックの発生を抑止することができる。 As described above, the adhesive medium 60 is applied between the metal components of the vacuum valve 30 and the outer resin. The high electric field areas in the vacuum circuit breaker 1 are mainly the peripheral areas of the vacuum valve 30, particularly the areas near both ends of the valve and the metal surfaces around them. By painting these areas, the effect of high voltage resistance is more pronounced. In addition, the occurrence of cracks can be suppressed by reducing tension between two materials with different linear expansion coefficients.

次に、本発明の第3の実施例について説明する。第3の実施例では、上述した接着材媒体(接着材媒体60)にゴム系の微粒子(図示せず)が含まれる例について説明する。本実施例の接着材媒体60にゴム系の微粒子が含まれても良い。ゴム系粒子はフェノキシ樹脂による接着層に柔軟性を与える効果があり、より応力緩和が必要となる場合、たとえば樹脂とセラミック、金属部品との線膨張係数の差が大きい場合に適用すると剥離を起こしにくく、接着性が向上し、かつクラックが発生しない。 Next, a third embodiment of the present invention will be described. In the third embodiment, an example will be described in which the above-mentioned adhesive medium (adhesive medium 60) contains rubber-based fine particles (not shown). The adhesive medium 60 of this embodiment may contain rubber-based fine particles. The rubber-based particles have the effect of imparting flexibility to the adhesive layer made of phenoxy resin, and when applied in cases where further stress relaxation is required, for example when there is a large difference in the linear expansion coefficient between the resin and the ceramic or metal parts, peeling is less likely to occur, adhesion is improved, and cracks do not occur.

上記のゴム系微粒子は、コアシェル型のゴム微粒子であっても良い。ゴム粒子は本実施例では二層または複数層からなるコアシェルタイプである。ゴムの粒子径は1μm以下、100nm以上が好ましい。例えば、ゴム粒子を二層として、外層はフェノキシ樹脂との相溶性が高いカルボキシル基や水酸基などが含まれたゴム粒子、例えばニトリルブタジエンゴムのような極性の高いゴム層とし、その表面にアクリル基を持たせる。内部はゴム的な弾力に富むスチレンブタジエンゴムなどが用いられる。このゴム粒子はフェノキシ樹脂に良く分散するため、均一な塗布ができ、液中で凝集や沈殿を起こすことがない。 The rubber particles may be core-shell type rubber particles. In this embodiment, the rubber particles are of the core-shell type consisting of two or more layers. The rubber particle diameter is preferably 1 μm or less and 100 nm or more. For example, the rubber particles may be made into two layers, and the outer layer may be a highly polar rubber layer such as nitrile butadiene rubber, which is rubber particles containing carboxyl groups or hydroxyl groups that are highly compatible with phenoxy resin, and the surface may have acrylic groups. The inner layer may be made of styrene butadiene rubber, which has a rubber-like elasticity. These rubber particles disperse well in the phenoxy resin, allowing for uniform application and preventing aggregation or precipitation in the liquid.

ゴム粒子の平均粒子径として700nmのものを用いた例において、図3に示した成分のうち、フェノキシ樹脂41を5wt%だけ減じ、この5wt%分ゴム粒子に代えた。この接着材媒体40Aを用いてヒートショック試験をした結果、-70℃~110℃の試験でもクラックを発生せず、また破壊靭性試験をした結果、図3に示した接着材媒体40に比較し、破壊靭性が1.7倍になることが確認された。以上のように、実施例3により樹脂2の一層の強靭化を図ることができた。 In an example using rubber particles with an average particle size of 700 nm, the phenoxy resin 41 of the components shown in Figure 3 was reduced by 5 wt%, and this 5 wt% was replaced with rubber particles. A heat shock test was conducted using this adhesive medium 40A, and no cracks were generated even in tests at -70°C to 110°C. A fracture toughness test confirmed that the fracture toughness was 1.7 times higher than that of the adhesive medium 40 shown in Figure 3. As described above, Example 3 was able to further strengthen the resin 2.

次に、本発明の第4の実施例について説明する。第4の実施例では、接着材媒体に含まれるフュームドシリカの表面がアルキル基によって修飾されている例である。図7に示すのは通常のフュームドシリカ表面の化学式であり、表面にはシリコン原子と酸素原子、また一部のシリコン原子には水酸基が結合している。このような状態では確かに媒体のチクソトロピー(粘性液体が止まった状態から、動き始めるまでの初期粘度)を上昇させる効果があるが、さらにわずかな量の添加でチクソトロピーを向上させるには、OHをエトキシ、ブトキシ等のアルコキシ類によって修飾することが効果的である。 Next, a fourth embodiment of the present invention will be described. In the fourth embodiment, the surface of the fumed silica contained in the adhesive medium is modified with an alkyl group. Figure 7 shows the chemical formula of a normal fumed silica surface, with silicon atoms and oxygen atoms on the surface, and hydroxyl groups bonded to some of the silicon atoms. This state certainly has the effect of increasing the thixotropy of the medium (the initial viscosity from when the viscous liquid is stationary until it starts to move), but to further improve the thixotropy with the addition of a small amount, it is effective to modify the OH with alkoxy groups such as ethoxy and butoxy.

図8は、図7で示したOH基がアルコキシ化されている接着材媒体の化学式である。このようなフュームドシリカもごく一般に上市されており、安価に利用することが可能である。本実施例では0.1~1wt%の塗料への添加により、同等の粘度制御効果を得た。以上のように本実施例により、ごくわずかなフュームドシリカの添加により、塗料の粘度制御が可能となる。 Figure 8 shows the chemical formula of the adhesive medium in which the OH groups shown in Figure 7 have been alkoxylated. This type of fumed silica is also widely available on the market and can be used at low cost. In this example, the same viscosity control effect was obtained by adding 0.1 to 1 wt % to the paint. As described above, this example makes it possible to control the viscosity of the paint by adding a very small amount of fumed silica.

次に、本発明の第5の実施例について説明する。第5の実施例では、接着材媒体40又は60を用いて、接着材としての使用ではなく、表面保護剤(塗料)として使用する。対象とするモールド真空遮断器1等の受配電機器は、第1~第4の実施例と同じである。 Next, a fifth embodiment of the present invention will be described. In the fifth embodiment, the adhesive medium 40 or 60 is used not as an adhesive but as a surface protective agent (paint). The target power distribution device such as a molded vacuum circuit breaker 1 is the same as in the first to fourth embodiments.

可動電極21の可動部の作用点側(可動側絶縁棒27との接続点側)は、モールド用の樹脂2にて覆われる空間内に配置され、その筒状の空間は、可動電極21の可動方向とは直交する方向に、可動電極21と所定の距離を隔てるように形成された壁面(内周面)4a~4cが形成される。このように樹脂2による筒状の覆い部分が形成され、覆い部分のうち可動電極21の移動範囲と重なる内周面の一部であって固定電極11に近い側に、即ち図2の破線90で示す部分に接着材媒体40又は60のいずれかが塗布される。この塗布領域91は、円柱状の可動電極21の軸方向A1方向に見て、樹脂2の非真空空間4を形成する筒状部分のうち、太径部4cの内側の一部と、細径部4aから太径部4bまでのテーパー部4bであって、特に高電界となる部位の壁面である。この塗布領域91はエポキシの樹脂2と空気との界面にあたる上に、真空バルブ30が位置する真空空間3よりも軸線A1方向の外側(可動側絶縁棒27側)にあって、可動側絶縁棒27が位置する部分に相当する。 The action point side of the movable part of the movable electrode 21 (the connection point side with the movable insulating rod 27) is placed in a space covered with the resin 2 for molding, and the cylindrical space has wall surfaces (inner circumferential surfaces) 4a to 4c formed to be separated from the movable electrode 21 by a predetermined distance in a direction perpendicular to the moving direction of the movable electrode 21. In this way, a cylindrical covering portion is formed with the resin 2, and either the adhesive medium 40 or 60 is applied to a part of the inner circumferential surface of the covering portion that overlaps with the moving range of the movable electrode 21 and is closer to the fixed electrode 11, that is, the part shown by the dashed line 90 in FIG. 2. This application area 91 is, as viewed in the axial direction A1 of the cylindrical movable electrode 21, a part of the inner diameter of the thick diameter portion 4c and the tapered portion 4b from the thin diameter portion 4a to the thick diameter portion 4b of the cylindrical portion that forms the non-vacuum space 4 of the resin 2, and is the wall surface of the part where the electric field is particularly high. This coating area 91 corresponds to the interface between the epoxy resin 2 and the air, and is located outside the vacuum space 3 in which the vacuum valve 30 is located in the direction of the axis A1 (on the side of the movable insulating rod 27), corresponding to the portion where the movable insulating rod 27 is located.

このように、第5の実施例では接着材媒体40又は60を接着材に用いるだけではなく、特に電界強度が高くなる部位の表面塗装をするための塗料として用いる。第5の実施例は、第1~第4の実施例と併用して用いても良いし、単独で用いても良い。電界強度が高くなる部位に積極的に本発明における接着材媒体40又は60を塗布することで、放電あるいは放電による破壊現象を防止することが可能となる。また、同じ電圧であればより薄い樹脂厚によって破壊現象を抑制できるため、本体の小形化及び軽量化が可能となる。尚、樹脂2の非真空空間4を形成する筒状部分のうち、細径部4aの内側には接着材媒体40又は60を塗布していないが、塗布するように形成することも可能である。さらに、非真空空間4を形成する筒状部分のうち、図2の塗布領域91からみて真空バルブ30と離れた側の内周面にも接着材媒体40又は60を塗布するようにしても良い。 In this way, in the fifth embodiment, the adhesive medium 40 or 60 is not only used as an adhesive, but is also used as a paint for surface coating of areas where the electric field strength is particularly high. The fifth embodiment may be used in combination with the first to fourth embodiments, or may be used alone. By actively applying the adhesive medium 40 or 60 of the present invention to areas where the electric field strength is high, it is possible to prevent discharge or breakdown due to discharge. In addition, since the breakdown phenomenon can be suppressed by a thinner resin thickness at the same voltage, it is possible to make the main body smaller and lighter. In addition, the adhesive medium 40 or 60 is not applied to the inside of the narrow diameter portion 4a of the cylindrical portion forming the non-vacuum space 4 of the resin 2, but it is possible to form it so that it is applied. Furthermore, the adhesive medium 40 or 60 may also be applied to the inner circumferential surface of the cylindrical portion forming the non-vacuum space 4 on the side away from the vacuum valve 30 as viewed from the application area 91 in FIG. 2.

以上、本発明の実施例を第1~第5の実施例に基づいて説明したが、本発明は上述の実施例だけに限定されるものではなく、その趣旨を逸脱しない範囲内で種々の変更が可能である。フェノキシ樹脂層に含まれるフッ化マイカや、フュームドシリカの含有量は、上述した例に対して適宜増減させても良い。 Although the present invention has been described above based on the first to fifth embodiments, the present invention is not limited to the above-mentioned embodiments, and various modifications are possible within the scope of the invention. The content of mica fluoride and fumed silica contained in the phenoxy resin layer may be increased or decreased as appropriate from the above-mentioned examples.

1 真空遮断器
2 樹脂
3 真空空間
4 非真空空間
5a、5b、6a、6b 金属部材
7 金属部材
10 固定側導体
11 固定電極
12 接触子
20 可動側導体
21 可動電極
22 接触子
24 摺動部材
27 可動側絶縁棒
30 真空バルブ
31 収容容器(真空容器)
32 円筒部材
33 封着金具
33a 貫通孔
33b 角部
34 封着金具
34a 貫通孔
34b 角部
35 (円筒部材用)アークシールド
36 ベローズ
37 (ベローズ用)アークシールド
39 空間
40、40A 接着材媒体
50 接着材媒体(塗液)
51 フェノキシ樹脂
52 エポキシ樹脂板
53 エポキシ樹脂
60 接着材媒体
61 フェノキシ樹脂
62 エポキシ樹脂硬化物
90 塗料塗布部(破線)
91 塗布範囲
Reference Signs List 1 Vacuum circuit breaker 2 Resin 3 Vacuum space 4 Non-vacuum space 5a, 5b, 6a, 6b Metal member 7 Metal member 10 Fixed side conductor 11 Fixed electrode 12 Contact 20 Movable side conductor 21 Movable electrode 22 Contact 24 Sliding member 27 Movable side insulating rod 30 Vacuum valve 31 Storage container (vacuum container)
32 Cylindrical member 33 Sealing metal fitting 33a Through hole 33b Corner 34 Sealing metal fitting 34a Through hole 34b Corner 35 (for cylindrical member) Arc shield 36 Bellows 37 (for bellows) Arc shield 39 Space 40, 40A Adhesive medium 50 Adhesive medium (coating liquid)
51: Phenoxy resin 52: Epoxy resin plate 53: Epoxy resin 60: Adhesive medium 61: Phenoxy resin 62: Epoxy resin cured product 90: Paint applied portion (dashed line)
91 Coating area

Claims (15)

金属製の固定電極と、金属製の可動電極と、前記固定電極と前記可動電極の接触部位を収容する収容容器を有して内部が真空にされたバルブ部材を備え、セラミック及び/又は金属にて形成された前記バルブ部材の外部を樹脂にてモールドするように製造される受配電機器であって、
前記収容容器の外面と前記樹脂との間に、フッ化マイカ及びフュームドシリカを含むフェノキシ樹脂層を接着材媒体として介在させたことを特徴とする受配電機器。
A power receiving and distributing device comprising a valve member having a container for accommodating a contact portion between the fixed electrode and the movable electrode, the inside of which is evacuated, the valve member being made of ceramic and/or metal and having an exterior molded with resin, the device comprising:
A power receiving and distributing device, characterized in that a layer of a phenoxy resin containing mica fluoride and fumed silica is interposed as an adhesive medium between the outer surface of the storage container and the resin.
前記接着材媒体に、エポキシ系樹脂が含まれることを特徴とする請求項1に記載の受配電機器。 The power receiving and distributing device according to claim 1, characterized in that the adhesive medium contains an epoxy resin. 前記接着材媒体に、ゴム系の微粒子が混在されることを特徴とする請求項1に記載の受配電機器。 The power receiving and distributing device according to claim 1, characterized in that rubber-based particles are mixed into the adhesive medium. 前記ゴム系の微粒子は、コアシェル型のゴム微粒子であることを特徴とする請求項3に記載の受配電機器。 The power receiving and distributing device according to claim 3, characterized in that the rubber-based microparticles are core-shell type rubber microparticles. 前記接着材媒体に含まれるフュームドシリカの表面が、アルキル基によって修飾されていることを特徴とする請求項1から4のいずれか一項に記載の受配電機器。 The power receiving and distributing device according to any one of claims 1 to 4, characterized in that the surface of the fumed silica contained in the adhesive medium is modified with an alkyl group. 前記可動電極の可動部の作用点側は、前記樹脂にて覆われる空間内に配置され、
前記空間は、前記可動電極の可動方向とは直交する方向に前記可動電極と所定の距離を隔てるように形成された内周面を有する前記樹脂の筒状の覆い部により形成され、
前記覆い部のうち前記可動電極の移動範囲と重なる前記内周面には、前記接着材媒体が塗布されることを特徴とする請求項1に記載の受配電機器。
the action point side of the movable part of the movable electrode is disposed in the space covered with the resin,
the space is formed by the resin cylindrical cover portion having an inner circumferential surface formed so as to be spaced a predetermined distance from the movable electrode in a direction perpendicular to a moving direction of the movable electrode,
The power receiving and distributing device according to claim 1 , wherein the adhesive medium is applied to the inner circumferential surface of the cover portion that overlaps with a range of movement of the movable electrode.
金属製の固定電極と、金属製の可動電極と、
前記固定電極と前記可動電極の接触部位を覆うセラミック及び/又は金属性の収容容器を有し、内部が真空にされたバルブ部材を樹脂によってモールドされる受配電機器の製造方法であって、
前記バルブ部材の外面と前記樹脂との間に、フッ化マイカ及びフュームドシリカを含むフェノキシ樹脂層を接着材媒体として塗布し、
樹脂が塗布されたバルブ部材と、前記固定電極への接続端子と、前記可動電極への接続端子の全体を前記樹脂によってモールドすることを特徴とする受配電機器の製造方法。
A fixed electrode made of metal, a movable electrode made of metal,
A method for manufacturing an electric power receiving and distributing device, comprising: a ceramic and/or metallic container covering a contact portion between the fixed electrode and the movable electrode; and a valve member having an inside evacuated, molded with resin, the method comprising the steps of:
Applying a layer of phenoxy resin containing mica fluoride and fumed silica as an adhesive medium between the outer surface of the valve member and the resin;
A method for manufacturing an electric power receiving and distributing device, comprising molding, with resin, a valve member coated with resin, a connection terminal to said fixed electrode, and a connection terminal to said movable electrode.
前記接着材媒体は、フェノキシ樹脂を主成分とし、フッ化マイカ及びフュームドシリカが含まれることを特徴とする請求項7に記載の受配電機器の製造方法。 The method for manufacturing a power distribution device according to claim 7, characterized in that the adhesive medium is mainly composed of phenoxy resin and contains mica fluoride and fumed silica. 前記接着材媒体には更に、エポキシ系樹脂が含まれることを特徴とする請求項8に記載の受配電機器の製造方法。 The method for manufacturing a power distribution device according to claim 8, characterized in that the adhesive medium further contains an epoxy resin. 前記接着材媒体に、ゴム系の微粒子を混在させることを特徴とする請求項8に記載の受配電機器の製造方法。 The method for manufacturing a power distribution device according to claim 8, characterized in that rubber-based fine particles are mixed into the adhesive medium. 前記ゴム系の微粒子は、コアシェル型のゴム微粒子であることを特徴とする請求項10に記載の受配電機器の製造方法。 The method for manufacturing an electric power distribution device according to claim 10, characterized in that the rubber-based microparticles are core-shell type rubber microparticles. 前記接着材媒体に含まれるフュームドシリカの表面が、アルキル基によって修飾されていることを特徴とする請求項7から11のいずれか一項に記載の受配電機器の製造方法。 The method for manufacturing an electric power receiving and distributing device according to any one of claims 7 to 11, characterized in that the surface of the fumed silica contained in the adhesive medium is modified with an alkyl group. 前記モールドする工程において、前記可動電極の可動部の周囲であって、前記可動電極とは離間するようにモールドされた前記樹脂による筒状の覆い部を形成し、
形成された前記覆い部のうち前記可動電極の移動範囲の内周面に、前記接着材媒体を塗布することを特徴とする請求項7に記載の受配電機器の製造方法。
In the molding step, a cylindrical cover portion is formed around the movable portion of the movable electrode and is molded with the resin so as to be spaced apart from the movable electrode;
The method for manufacturing an electric power receiving and distributing device according to claim 7 , further comprising applying the adhesive medium to an inner peripheral surface of the formed cover portion within a range of movement of the movable electrode.
金属製の固定電極と、金属製の可動電極と、前記固定電極と前記可動電極の接触部位を収容する収容容器を有して内部が真空にされたバルブ部材を備え、セラミック及び/又は金属にて形成された前記バルブ部材の外部を樹脂にてモールドするように製造される受配電機器であって、
前記可動電極の可動部近傍の樹脂部分は、前記可動電極とは離間する内周面を有する筒状の覆い部を有し、
前記覆い部のうち前記可動電極の移動範囲の前記内周面に、フッ化マイカ及びフュームドシリカを含むフェノキシ樹脂層が形成されていることを特徴とする受配電機器。
A power receiving and distributing device comprising a valve member having a container for accommodating a contact portion between the fixed electrode and the movable electrode, the inside of which is evacuated, the valve member being made of ceramic and/or metal and having an exterior molded with resin, the device comprising:
a resin portion in the vicinity of a movable portion of the movable electrode has a cylindrical cover portion having an inner peripheral surface spaced apart from the movable electrode;
13. An electric power receiving and distributing device, comprising: a phenoxy resin layer containing mica fluoride and fumed silica formed on the inner circumferential surface of the cover portion within a range of movement of the movable electrode.
前記フェノキシ樹脂層には、さらにエポキシ系樹脂が含まれることを特徴とする請求項14に記載の受配電機器。 The power receiving and distributing device according to claim 14, characterized in that the phenoxy resin layer further contains an epoxy-based resin.
JP2023095043A 2023-06-08 2023-06-08 Electric power distribution device and method for manufacturing the same Pending JP2024176486A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023095043A JP2024176486A (en) 2023-06-08 2023-06-08 Electric power distribution device and method for manufacturing the same
PCT/JP2024/016748 WO2024252824A1 (en) 2023-06-08 2024-05-01 Power-receiving and distribution device, and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023095043A JP2024176486A (en) 2023-06-08 2023-06-08 Electric power distribution device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2024176486A true JP2024176486A (en) 2024-12-19

Family

ID=93795231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023095043A Pending JP2024176486A (en) 2023-06-08 2023-06-08 Electric power distribution device and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP2024176486A (en)
WO (1) WO2024252824A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017165811A (en) * 2016-03-14 2017-09-21 株式会社東芝 Epoxy injection type resin composition, epoxy injection type resin insulation vacuum valve, and method for producing the same
JP7141377B2 (en) * 2019-09-24 2022-09-22 株式会社日立産機システム RAILWAY CAR SWITCH AND MANUFACTURING METHOD THEREOF

Also Published As

Publication number Publication date
WO2024252824A1 (en) 2024-12-12

Similar Documents

Publication Publication Date Title
US9508507B2 (en) Gas insulated electrical equipment
KR101119945B1 (en) Cast resin composition, insulator material and insulating structure therewith
WO2017026039A1 (en) Dc cable, composition, and method for manufacturing dc cable
EP2607420A1 (en) Composition for a composite sheet comprising core-shell type filler particles, a composite sheet comprising the same and a production method for the composite sheet
US20170213675A1 (en) Electric Switching Device For Medium and/or High-Voltage Uses
JP5269064B2 (en) Non-linear resistance material
CN106133869B (en) Circuit breaker arrangement
JP6009839B2 (en) Non-linear resistance material
WO2014112384A1 (en) Nonlinear resistive coating material, bus and stator coil
TWI414572B (en) Use of nanomaterials in secondary electrical insulation coatings
GB2025441A (en) Dielectric material for influencing electrical fields and stress control devixes made therefrom
US11569026B2 (en) Compact dry-type transformer
JP2024176486A (en) Electric power distribution device and method for manufacturing the same
JP3923542B2 (en) Resin molded product and heavy electrical equipment using the same
EP1571684A1 (en) Solid-state insulated switchgear, resin molding and method of manufacturing the resin molding thereof
WO2017221511A1 (en) Coating material, coating film, and gas insulated switchgear
WO2022123924A1 (en) Insulating resin composition, insulating member formed of cured product of same, and electrical device
US11532429B2 (en) Dry-type transformer
CN109449813A (en) A kind of highland and severe cold type solid-state insulated switchgear
JP2019121487A (en) Solid insulation switchgear
JP4046214B2 (en) Molding resin composition and electric / electronic apparatus
WO2022024181A1 (en) Thermosetting resin composition, stator coil and rotary electric machine
KR20200009863A (en) Composition for preparing electromagnetic wave shielding gasket and electromagnetic wave shielding gasket prepared therefrom
JP7612500B2 (en) Coil parts
JP2753097B2 (en) Gas insulation equipment