JP2024153497A - Positive electrode for non-aqueous electrolyte storage element and non-aqueous electrolyte storage element - Google Patents
Positive electrode for non-aqueous electrolyte storage element and non-aqueous electrolyte storage element Download PDFInfo
- Publication number
- JP2024153497A JP2024153497A JP2023067430A JP2023067430A JP2024153497A JP 2024153497 A JP2024153497 A JP 2024153497A JP 2023067430 A JP2023067430 A JP 2023067430A JP 2023067430 A JP2023067430 A JP 2023067430A JP 2024153497 A JP2024153497 A JP 2024153497A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- electrode active
- nonaqueous electrolyte
- storage element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003860 storage Methods 0.000 title claims abstract description 163
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 155
- 239000007774 positive electrode material Substances 0.000 claims abstract description 152
- 239000011230 binding agent Substances 0.000 claims abstract description 53
- -1 lithium transition metal Chemical class 0.000 claims abstract description 47
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 39
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 34
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 33
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 33
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 28
- 239000002905 metal composite material Substances 0.000 claims abstract description 26
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 20
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 18
- 239000013078 crystal Substances 0.000 claims abstract description 15
- 229910052796 boron Inorganic materials 0.000 claims abstract description 14
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 14
- 239000010941 cobalt Substances 0.000 claims abstract description 14
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 14
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 13
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 12
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 11
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 10
- 239000010703 silicon Substances 0.000 claims abstract description 10
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000010937 tungsten Substances 0.000 claims abstract description 10
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 9
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 9
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 9
- 239000011593 sulfur Substances 0.000 claims abstract description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000011574 phosphorus Substances 0.000 claims abstract description 8
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 30
- 239000011572 manganese Substances 0.000 claims description 12
- 239000010936 titanium Substances 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 10
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 229910021311 NaFeO2 Inorganic materials 0.000 claims description 4
- 230000014759 maintenance of location Effects 0.000 abstract description 31
- 230000007423 decrease Effects 0.000 abstract description 22
- 229910006525 α-NaFeO2 Inorganic materials 0.000 abstract description 2
- 229910006596 α−NaFeO2 Inorganic materials 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 72
- 239000000758 substrate Substances 0.000 description 54
- 230000000052 comparative effect Effects 0.000 description 45
- 239000007773 negative electrode material Substances 0.000 description 33
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 31
- 239000002245 particle Substances 0.000 description 30
- 229910052751 metal Inorganic materials 0.000 description 28
- 239000000463 material Substances 0.000 description 26
- 238000000034 method Methods 0.000 description 25
- 239000011888 foil Substances 0.000 description 23
- 239000006258 conductive agent Substances 0.000 description 19
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 18
- 239000000203 mixture Substances 0.000 description 17
- 230000005611 electricity Effects 0.000 description 15
- 229910052799 carbon Inorganic materials 0.000 description 13
- 238000007600 charging Methods 0.000 description 13
- 239000003575 carbonaceous material Substances 0.000 description 12
- 238000005259 measurement Methods 0.000 description 11
- 229910000838 Al alloy Inorganic materials 0.000 description 10
- 239000002033 PVDF binder Substances 0.000 description 10
- 239000003792 electrolyte Substances 0.000 description 10
- 229910001416 lithium ion Inorganic materials 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 9
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 239000002562 thickening agent Substances 0.000 description 9
- 150000005678 chain carbonates Chemical class 0.000 description 8
- 150000005676 cyclic carbonates Chemical class 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 239000003125 aqueous solvent Substances 0.000 description 7
- 239000000945 filler Substances 0.000 description 7
- 229910002804 graphite Inorganic materials 0.000 description 7
- 239000010439 graphite Substances 0.000 description 7
- 239000007784 solid electrolyte Substances 0.000 description 7
- 239000003990 capacitor Substances 0.000 description 6
- 238000007599 discharging Methods 0.000 description 6
- 229910003002 lithium salt Inorganic materials 0.000 description 6
- 159000000002 lithium salts Chemical class 0.000 description 6
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 239000011889 copper foil Substances 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 229920002943 EPDM rubber Polymers 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- 229910021314 NaFeO 2 Inorganic materials 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 239000006230 acetylene black Substances 0.000 description 4
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 4
- 150000002484 inorganic compounds Chemical class 0.000 description 4
- 229910010272 inorganic material Inorganic materials 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- 238000007086 side reaction Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000011029 spinel Substances 0.000 description 4
- 229910052596 spinel Inorganic materials 0.000 description 4
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 4
- RBYFNZOIUUXJQD-UHFFFAOYSA-J tetralithium oxalate Chemical compound [Li+].[Li+].[Li+].[Li+].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O RBYFNZOIUUXJQD-UHFFFAOYSA-J 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 3
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 3
- 229910011328 LiNi0.6Co0.2Mn0.2O2 Inorganic materials 0.000 description 3
- 229910001290 LiPF6 Inorganic materials 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 229910000323 aluminium silicate Inorganic materials 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- 229910021389 graphene Inorganic materials 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 229920000447 polyanionic polymer Polymers 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- ZPFAVCIQZKRBGF-UHFFFAOYSA-N 1,3,2-dioxathiolane 2,2-dioxide Chemical compound O=S1(=O)OCCO1 ZPFAVCIQZKRBGF-UHFFFAOYSA-N 0.000 description 2
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 2
- DSMUTQTWFHVVGQ-UHFFFAOYSA-N 4,5-difluoro-1,3-dioxolan-2-one Chemical compound FC1OC(=O)OC1F DSMUTQTWFHVVGQ-UHFFFAOYSA-N 0.000 description 2
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 description 2
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- GUUVPOWQJOLRAS-UHFFFAOYSA-N Diphenyl disulfide Chemical compound C=1C=CC=CC=1SSC1=CC=CC=C1 GUUVPOWQJOLRAS-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910016104 LiNi1 Inorganic materials 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229920000388 Polyphosphate Polymers 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- 229910052586 apatite Inorganic materials 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 2
- 229910001632 barium fluoride Inorganic materials 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- 229910001593 boehmite Inorganic materials 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 2
- 229910001634 calcium fluoride Inorganic materials 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 150000001786 chalcogen compounds Chemical class 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000010280 constant potential charging Methods 0.000 description 2
- 238000010277 constant-current charging Methods 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 2
- TXCDCPKCNAJMEE-UHFFFAOYSA-N dibenzofuran Chemical compound C1=CC=C2C3=CC=CC=C3OC2=C1 TXCDCPKCNAJMEE-UHFFFAOYSA-N 0.000 description 2
- DGTVXEHQMSJRPE-UHFFFAOYSA-M difluorophosphinate Chemical compound [O-]P(F)(F)=O DGTVXEHQMSJRPE-UHFFFAOYSA-M 0.000 description 2
- QXYJCZRRLLQGCR-UHFFFAOYSA-N dioxomolybdenum Chemical compound O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 229920001973 fluoroelastomer Polymers 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052901 montmorillonite Inorganic materials 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 2
- 239000010450 olivine Substances 0.000 description 2
- 229910052609 olivine Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 2
- 239000002006 petroleum coke Substances 0.000 description 2
- 239000011301 petroleum pitch Substances 0.000 description 2
- 239000001205 polyphosphate Substances 0.000 description 2
- 235000011176 polyphosphates Nutrition 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 239000002203 sulfidic glass Substances 0.000 description 2
- 229920005608 sulfonated EPDM Polymers 0.000 description 2
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical compound CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- YTZKOQUCBOVLHL-UHFFFAOYSA-N tert-butylbenzene Chemical compound CC(C)(C)C1=CC=CC=C1 YTZKOQUCBOVLHL-UHFFFAOYSA-N 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- VSKCGJBMHRNFCZ-UHFFFAOYSA-N (2,2-dioxo-1,3,2-dioxathiolan-4-yl)methyl methanesulfonate Chemical compound CS(=O)(=O)OCC1COS(=O)(=O)O1 VSKCGJBMHRNFCZ-UHFFFAOYSA-N 0.000 description 1
- WDXYVJKNSMILOQ-UHFFFAOYSA-N 1,3,2-dioxathiolane 2-oxide Chemical compound O=S1OCCO1 WDXYVJKNSMILOQ-UHFFFAOYSA-N 0.000 description 1
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 1
- IOBWAHRFIPQEQL-UHFFFAOYSA-N 1,3-difluoro-2-methoxybenzene Chemical compound COC1=C(F)C=CC=C1F IOBWAHRFIPQEQL-UHFFFAOYSA-N 0.000 description 1
- OTGQPYSISUUHAF-UHFFFAOYSA-N 1,3-difluoro-5-methoxybenzene Chemical compound COC1=CC(F)=CC(F)=C1 OTGQPYSISUUHAF-UHFFFAOYSA-N 0.000 description 1
- HUDMAQLYMUKZOZ-UHFFFAOYSA-N 1,4-difluoro-2-methoxybenzene Chemical compound COC1=CC(F)=CC=C1F HUDMAQLYMUKZOZ-UHFFFAOYSA-N 0.000 description 1
- GUYHXQLLIISBQF-UHFFFAOYSA-N 1-cyclohexyl-2-fluorobenzene Chemical compound FC1=CC=CC=C1C1CCCCC1 GUYHXQLLIISBQF-UHFFFAOYSA-N 0.000 description 1
- YAOIFBJJGFYYFI-UHFFFAOYSA-N 1-cyclohexyl-4-fluorobenzene Chemical compound C1=CC(F)=CC=C1C1CCCCC1 YAOIFBJJGFYYFI-UHFFFAOYSA-N 0.000 description 1
- MBDUIEKYVPVZJH-UHFFFAOYSA-N 1-ethylsulfonylethane Chemical compound CCS(=O)(=O)CC MBDUIEKYVPVZJH-UHFFFAOYSA-N 0.000 description 1
- KLECYOQFQXJYBC-UHFFFAOYSA-N 1-fluoro-2-phenylbenzene Chemical group FC1=CC=CC=C1C1=CC=CC=C1 KLECYOQFQXJYBC-UHFFFAOYSA-N 0.000 description 1
- CRMJLJFDPNJIQA-UHFFFAOYSA-N 2,4-difluoro-1-methoxybenzene Chemical compound COC1=CC=C(F)C=C1F CRMJLJFDPNJIQA-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- QHTJSSMHBLGUHV-UHFFFAOYSA-N 2-methylbutan-2-ylbenzene Chemical compound CCC(C)(C)C1=CC=CC=C1 QHTJSSMHBLGUHV-UHFFFAOYSA-N 0.000 description 1
- IFDLFCDWOFLKEB-UHFFFAOYSA-N 2-methylbutylbenzene Chemical compound CCC(C)CC1=CC=CC=C1 IFDLFCDWOFLKEB-UHFFFAOYSA-N 0.000 description 1
- HHCHLHOEAKKCAB-UHFFFAOYSA-N 2-oxaspiro[3.5]nonane-1,3-dione Chemical compound O=C1OC(=O)C11CCCCC1 HHCHLHOEAKKCAB-UHFFFAOYSA-N 0.000 description 1
- SYIUWAVTBADRJG-UHFFFAOYSA-N 2H-pyran-2,6(3H)-dione Chemical compound O=C1CC=CC(=O)O1 SYIUWAVTBADRJG-UHFFFAOYSA-N 0.000 description 1
- AYKYXWQEBUNJCN-UHFFFAOYSA-N 3-methylfuran-2,5-dione Chemical compound CC1=CC(=O)OC1=O AYKYXWQEBUNJCN-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- SROHGOJDCAODGI-UHFFFAOYSA-N 4,5-diphenyl-1,3-dioxol-2-one Chemical compound O1C(=O)OC(C=2C=CC=CC=2)=C1C1=CC=CC=C1 SROHGOJDCAODGI-UHFFFAOYSA-N 0.000 description 1
- OYOKPDLAMOMTEE-UHFFFAOYSA-N 4-chloro-1,3-dioxolan-2-one Chemical compound ClC1COC(=O)O1 OYOKPDLAMOMTEE-UHFFFAOYSA-N 0.000 description 1
- IXIDQWJXRMPFRX-UHFFFAOYSA-N 4-ethyl-1,3-dioxol-2-one Chemical compound CCC1=COC(=O)O1 IXIDQWJXRMPFRX-UHFFFAOYSA-N 0.000 description 1
- SJHAYVFVKRXMKG-UHFFFAOYSA-N 4-methyl-1,3,2-dioxathiolane 2-oxide Chemical compound CC1COS(=O)O1 SJHAYVFVKRXMKG-UHFFFAOYSA-N 0.000 description 1
- HXXOPVULXOEHTK-UHFFFAOYSA-N 4-methyl-1,3-dioxol-2-one Chemical compound CC1=COC(=O)O1 HXXOPVULXOEHTK-UHFFFAOYSA-N 0.000 description 1
- VMAJRFCXVOIAAS-UHFFFAOYSA-N 4-phenyl-1,3-dioxol-2-one Chemical compound O1C(=O)OC=C1C1=CC=CC=C1 VMAJRFCXVOIAAS-UHFFFAOYSA-N 0.000 description 1
- ZKOGUIGAVNCCKH-UHFFFAOYSA-N 4-phenyl-1,3-dioxolan-2-one Chemical compound O1C(=O)OCC1C1=CC=CC=C1 ZKOGUIGAVNCCKH-UHFFFAOYSA-N 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910005933 Ge—P Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910018130 Li 2 S-P 2 S 5 Inorganic materials 0.000 description 1
- 229910000578 Li2CoPO4F Inorganic materials 0.000 description 1
- 229910010142 Li2MnSiO4 Inorganic materials 0.000 description 1
- 229910011304 Li3V2 Inorganic materials 0.000 description 1
- 229910013375 LiC Inorganic materials 0.000 description 1
- 229910011279 LiCoPO4 Inorganic materials 0.000 description 1
- 229910052493 LiFePO4 Inorganic materials 0.000 description 1
- 229910010835 LiI-Li2S-P2S5 Inorganic materials 0.000 description 1
- 229910010840 LiI—Li2S—P2S5 Inorganic materials 0.000 description 1
- 229910000668 LiMnPO4 Inorganic materials 0.000 description 1
- 229910013131 LiN Inorganic materials 0.000 description 1
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 1
- 229910013385 LiN(SO2C2F5)2 Inorganic materials 0.000 description 1
- 229910013392 LiN(SO2CF3)(SO2C4F9) Inorganic materials 0.000 description 1
- 229910002991 LiNi0.5Co0.2Mn0.3O2 Inorganic materials 0.000 description 1
- 229910011456 LiNi0.80Co0.15Al0.05O2 Inorganic materials 0.000 description 1
- 229910015872 LiNi0.8Co0.1Mn0.1O2 Inorganic materials 0.000 description 1
- 229910013084 LiNiPO4 Inorganic materials 0.000 description 1
- 229910012265 LiPO2F2 Inorganic materials 0.000 description 1
- 229910012672 LiTiO Inorganic materials 0.000 description 1
- 229910001228 Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229910006095 SO2F Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001450 anions Chemical group 0.000 description 1
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical class COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 238000001636 atomic emission spectroscopy Methods 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- WLLOZRDOFANZMZ-UHFFFAOYSA-N bis(2,2,2-trifluoroethyl) carbonate Chemical compound FC(F)(F)COC(=O)OCC(F)(F)F WLLOZRDOFANZMZ-UHFFFAOYSA-N 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- CCAFPWNGIUBUSD-UHFFFAOYSA-N diethyl sulfoxide Chemical compound CCS(=O)CC CCAFPWNGIUBUSD-UHFFFAOYSA-N 0.000 description 1
- SXWUDUINABFBMK-UHFFFAOYSA-L dilithium;fluoro-dioxido-oxo-$l^{5}-phosphane Chemical compound [Li+].[Li+].[O-]P([O-])(F)=O SXWUDUINABFBMK-UHFFFAOYSA-L 0.000 description 1
- YNQRWVCLAIUHHI-UHFFFAOYSA-L dilithium;oxalate Chemical class [Li+].[Li+].[O-]C(=O)C([O-])=O YNQRWVCLAIUHHI-UHFFFAOYSA-L 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 1
- BDUPRNVPXOHWIL-UHFFFAOYSA-N dimethyl sulfite Chemical compound COS(=O)OC BDUPRNVPXOHWIL-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 1
- LTYMSROWYAPPGB-UHFFFAOYSA-N diphenyl sulfide Chemical compound C=1C=CC=CC=1SC1=CC=CC=C1 LTYMSROWYAPPGB-UHFFFAOYSA-N 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000011883 electrode binding agent Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- XVOCEVMHNRHJMX-UHFFFAOYSA-N ethyl-hydroxy-oxogermane Chemical compound CC[Ge](O)=O XVOCEVMHNRHJMX-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- VANNPISTIUFMLH-UHFFFAOYSA-N glutaric anhydride Chemical compound O=C1CCCC(=O)O1 VANNPISTIUFMLH-UHFFFAOYSA-N 0.000 description 1
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000008282 halocarbons Chemical group 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- IGILRSKEFZLPKG-UHFFFAOYSA-M lithium;difluorophosphinate Chemical compound [Li+].[O-]P(F)(F)=O IGILRSKEFZLPKG-UHFFFAOYSA-M 0.000 description 1
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- GBPVMEKUJUKTBA-UHFFFAOYSA-N methyl 2,2,2-trifluoroethyl carbonate Chemical compound COC(=O)OCC(F)(F)F GBPVMEKUJUKTBA-UHFFFAOYSA-N 0.000 description 1
- VUQUOGPMUUJORT-UHFFFAOYSA-N methyl 4-methylbenzenesulfonate Chemical compound COS(=O)(=O)C1=CC=C(C)C=C1 VUQUOGPMUUJORT-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- MBABOKRGFJTBAE-UHFFFAOYSA-N methyl methanesulfonate Chemical compound COS(C)(=O)=O MBABOKRGFJTBAE-UHFFFAOYSA-N 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- MHYFEEDKONKGEB-UHFFFAOYSA-N oxathiane 2,2-dioxide Chemical compound O=S1(=O)CCCCO1 MHYFEEDKONKGEB-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- YVBBRRALBYAZBM-UHFFFAOYSA-N perfluorooctane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F YVBBRRALBYAZBM-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- ISXOBTBCNRIIQO-UHFFFAOYSA-N tetrahydrothiophene 1-oxide Chemical compound O=S1CCCC1 ISXOBTBCNRIIQO-UHFFFAOYSA-N 0.000 description 1
- HNKJADCVZUBCPG-UHFFFAOYSA-N thioanisole Chemical compound CSC1=CC=CC=C1 HNKJADCVZUBCPG-UHFFFAOYSA-N 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- CFJRPNFOLVDFMJ-UHFFFAOYSA-N titanium disulfide Chemical compound S=[Ti]=S CFJRPNFOLVDFMJ-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、非水電解質蓄電素子用正極及び非水電解質蓄電素子に関する。 The present invention relates to a positive electrode for a non-aqueous electrolyte storage element and a non-aqueous electrolyte storage element.
リチウムイオン二次電池に代表される非水電解質二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。また、非水電解質二次電池以外の非水電解質蓄電素子として、リチウムイオンキャパシタや電気二重層キャパシタ等のキャパシタ等も広く普及している。 Non-aqueous electrolyte secondary batteries, such as lithium ion secondary batteries, are widely used in electronic devices such as personal computers and communication terminals, as well as automobiles, due to their high energy density. In addition to non-aqueous electrolyte secondary batteries, capacitors such as lithium ion capacitors and electric double layer capacitors are also widely used as non-aqueous electrolyte storage elements.
非水電解質蓄電素子の正極に含まれる活物質として、コバルト元素、ニッケル元素、マンガン元素等の遷移金属元素を含むリチウム遷移金属複合酸化物が各種開発され、広く用いられている(特許文献1、2参照)。
Various lithium transition metal composite oxides containing transition metal elements such as cobalt, nickel, and manganese have been developed and are widely used as active materials contained in the positive electrodes of nonaqueous electrolyte storage elements (see
正極活物質が、α-NaFeO2型結晶構造を有し、ニッケル元素と、コバルト元素と、アルミニウム元素及びマンガン元素の少なくとも一方とを含むリチウム遷移金属複合酸化物を含有することで、非水電解質蓄電素子のエネルギー密度を向上できる。しかしながら、このようなリチウム遷移金属複合酸化物を含有する正極活物質を含む正極を用いた非水電解質蓄電素子は、高温環境下での保存後における容量維持率が十分でないという課題がある。 The positive electrode active material contains a lithium transition metal composite oxide having an α- NaFeO2 type crystal structure and containing nickel, cobalt, and at least one of aluminum and manganese, thereby improving the energy density of the nonaqueous electrolyte storage element. However, a nonaqueous electrolyte storage element using a positive electrode containing a positive electrode active material containing such a lithium transition metal composite oxide has a problem in that the capacity retention rate after storage in a high-temperature environment is insufficient.
本発明は、非水電解質蓄電素子の高温環境下での保存後における容量維持率の低下を抑制できる非水電解質蓄電素子用正極を提供することを目的とする。また、高温環境下での保存後における容量維持率の低下を抑制できる非水電解質蓄電素子を提供することを目的とする。 The present invention aims to provide a positive electrode for a nonaqueous electrolyte storage element that can suppress a decrease in the capacity retention rate after storage in a high-temperature environment. It also aims to provide a nonaqueous electrolyte storage element that can suppress a decrease in the capacity retention rate after storage in a high-temperature environment.
本発明の一側面の非水電解質蓄電素子用正極は、正極活物質及びバインダを含有する正極活物質層を備え、上記正極活物質が、α-NaFeO2型結晶構造を有し、ニッケル元素と、コバルト元素と、アルミニウム元素及びマンガン元素の少なくとも一方とを含むリチウム遷移金属複合酸化物を含有し、上記正極活物質の表面に、タングステン元素、ホウ素元素、硫黄元素、リン元素、ケイ素元素、チタン元素、窒素元素、ゲルマニウム元素、アルミニウム元素、ジルコニウム元素又はこれらの組み合わせである異種元素が存在し、引張伸度が1.0%以下である。 A positive electrode for a non-aqueous electrolyte storage element according to one aspect of the present invention comprises a positive electrode active material layer containing a positive electrode active material and a binder, the positive electrode active material having an α- NaFeO2 type crystal structure and containing a lithium transition metal composite oxide containing nickel, cobalt, and at least one of aluminum and manganese, a different element selected from tungsten, boron, sulfur, phosphorus, silicon, titanium, nitrogen, germanium, aluminum, zirconium, or a combination thereof is present on a surface of the positive electrode active material, and the positive electrode active material has a tensile elongation of 1.0% or less.
本発明の他の一側面の非水電解質蓄電素子は、当該非水電解質蓄電素子用正極を備える。 A nonaqueous electrolyte storage element according to another aspect of the present invention includes a positive electrode for the nonaqueous electrolyte storage element.
本発明の一側面に係る非水電解質蓄電素子用正極は、非水電解質蓄電素子の高温環境下での保存後における容量維持率の低下を抑制できる。また、本発明の一側面に係る非水電解質蓄電素子によれば、高温環境下での保存後における容量維持率の低下を抑制できる。 The positive electrode for a nonaqueous electrolyte storage element according to one aspect of the present invention can suppress the decrease in the capacity retention rate of the nonaqueous electrolyte storage element after storage in a high-temperature environment. Furthermore, the nonaqueous electrolyte storage element according to one aspect of the present invention can suppress the decrease in the capacity retention rate of the nonaqueous electrolyte storage element after storage in a high-temperature environment.
初めに、本明細書によって開示される非水電解質蓄電素子用正極及び非水電解質蓄電素子の概要について説明する。 First, we will provide an overview of the positive electrode for a nonaqueous electrolyte storage element and the nonaqueous electrolyte storage element disclosed in this specification.
(1)本発明の一実施形態に係る非水電解質蓄電素子用正極は、正極活物質及びバインダを含有する正極活物質層を備え、上記正極活物質が、α-NaFeO2型結晶構造を有し、ニッケル元素と、コバルト元素と、アルミニウム元素及びマンガン元素の少なくとも一方とを含むリチウム遷移金属複合酸化物を含有し、上記正極活物質の表面に、タングステン元素、ホウ素元素、硫黄元素、リン元素、ケイ素元素、チタン元素、窒素元素、ゲルマニウム元素、アルミニウム元素、ジルコニウム元素又はこれらの組み合わせである異種元素が存在し、引張伸度が1.0%以下である。 (1) A positive electrode for a non-aqueous electrolyte storage element according to one embodiment of the present invention comprises a positive electrode active material layer containing a positive electrode active material and a binder, the positive electrode active material having an α-NaFeO2 type crystal structure and containing a lithium transition metal composite oxide containing nickel, cobalt, and at least one of aluminum and manganese, a different element selected from tungsten, boron, sulfur, phosphorus, silicon, titanium, nitrogen, germanium, aluminum, zirconium, or a combination thereof is present on a surface of the positive electrode active material, and the positive electrode active material has a tensile elongation of 1.0% or less.
上記(1)に記載の非水電解質蓄電素子用正極によれば、非水電解質蓄電素子の高温環境下での保存後における容量維持率の低下を抑制できる。この理由は定かではないが、以下の理由が推測される。当該非水電解質蓄電素子用正極においては、正極活物質が、α-NaFeO2型結晶構造を有し、ニッケル元素と、コバルト元素と、アルミニウム元素及びマンガン元素の少なくとも一方とを含むリチウム遷移金属複合酸化物を含有することで、非水電解質蓄電素子のエネルギー密度を向上できる。
一方、α-NaFeO2型結晶構造を有し、上記リチウム遷移金属複合酸化物を含有する正極活物質は、非水電解質との間の副反応によりフッ化物等の副生成物が生成されやすく、この副生成物とバインダとの反応が、高温環境下におけるバインダの膨張の要因になると考えられる。当該非水電解質蓄電素子用正極は、上記正極活物質の表面に上記異種元素が存在することで、上記正極活物質の表面が適切に被覆され、非水電解質との間の副反応が抑制される。その結果、上記副生成物の生成が抑制されることで、高温環境下におけるバインダの膨張が抑制されるという効果が得られるものと推測される。
さらに、正極の引張伸度を1.0%以下と小さくすることで、非水電解質の分解生成物とバインダが反応してバインダが膨張しても、正極活物質層が膨張し難いため、容量維持率の低下を抑制できる。従って、上記(1)に記載の非水電解質蓄電素子用正極は、非水電解質蓄電素子の高温環境下での保存後における容量維持率の低下を抑制できると推測される。
The positive electrode for a nonaqueous electrolyte storage element described in (1) above can suppress a decrease in the capacity retention rate of a nonaqueous electrolyte storage element after storage in a high-temperature environment. The reason for this is unclear, but the following reason is presumed. In the positive electrode for a nonaqueous electrolyte storage element, the positive electrode active material has an α- NaFeO2 crystal structure and contains a lithium transition metal composite oxide containing nickel, cobalt, and at least one of aluminum and manganese, thereby improving the energy density of the nonaqueous electrolyte storage element.
On the other hand, a positive electrode active material having an α-NaFeO 2 type crystal structure and containing the lithium transition metal composite oxide is likely to generate by-products such as fluorides due to a side reaction with the non-aqueous electrolyte, and it is believed that the reaction between the by-products and the binder is a factor in the expansion of the binder in a high-temperature environment. In the positive electrode for a non-aqueous electrolyte storage element, the surface of the positive electrode active material is appropriately covered by the presence of the different elements on the surface of the positive electrode active material, and the side reaction with the non-aqueous electrolyte is suppressed. As a result, it is presumed that the suppression of the generation of the by-products results in the effect of suppressing the expansion of the binder in a high-temperature environment.
Furthermore, by making the tensile elongation of the positive electrode small to 1.0% or less, even if the binder expands due to a reaction between the decomposition products of the nonaqueous electrolyte and the binder, the positive electrode active material layer is unlikely to expand, so that the decrease in the capacity retention rate can be suppressed. Therefore, it is presumed that the positive electrode for a nonaqueous electrolyte storage element described in (1) above can suppress the decrease in the capacity retention rate after storage of the nonaqueous electrolyte storage element in a high-temperature environment.
ここで、「異種元素」は、正極活物質の表面の少なくとも一部に存在していればよい。上記「異種元素」とは、正極活物質に含まれる元素の含有量が、正極活物質に含まれるリチウム元素と異種元素とを除く金属元素に対して4.0mol%以下である元素をいう。すなわち、正極活物質がタングステン元素、ホウ素元素、硫黄元素、リン元素、ケイ素元素、チタン元素、窒素元素、ゲルマニウム元素、アルミニウム元素、及びジルコニウム元素のいずれかの元素を、正極活物質に含まれるリチウム元素と異種元素とを除く金属元素に対して4.0mol%超含む場合、当該元素は異種元素に含まない。「引張伸度[%]」は、長さ170mm、幅20mmに正極を裁断して測定試料とし、オートグラフを用い、JIS-K-7161(2014)に準拠して測定する。正極は正極基材に対して正極活物質層を両面に備えたものであり、測定環境は20℃前後の室温にて実施するものとする。測定試料は次の手順で準備する。非水電解質蓄電素子を組み立てる前の正極が準備できる場合には、そのまま用いる。組み立て後の非水電解質蓄電素子から準備する場合は、まず非水電解質蓄電素子を、0.1Cの電流で、通常使用時の放電終止電圧まで定電流放電し、放電された状態とする。なお、「通常使用時」とは、当該非水電解質蓄電素子について推奨され、又は指定される充放電条件を採用して当該非水電解質蓄電素子を使用する場合である。この放電された状態の非水電解質蓄電素子を解体し、正極を取り出して、ジメチルカーボネートにより正極に付着した成分(電解質等)を十分に洗浄した後、室温にて24時間減圧乾燥を行う。非水電解質蓄電素子の解体から測定対象とする正極の準備までの作業は、露点-40℃以下の乾燥空気雰囲気中で行う。 Here, the "heterogeneous element" may be present on at least a part of the surface of the positive electrode active material. The "heterogeneous element" refers to an element whose content in the positive electrode active material is 4.0 mol% or less with respect to the metal elements excluding the lithium element and the heterogeneous elements contained in the positive electrode active material. That is, when the positive electrode active material contains any of the elements tungsten, boron, sulfur, phosphorus, silicon, titanium, nitrogen, germanium, aluminum, and zirconium in an amount of more than 4.0 mol% with respect to the metal elements excluding the lithium element and the heterogeneous elements contained in the positive electrode active material, the element is not included in the heterogeneous elements. The "tensile elongation [%]" is measured by cutting the positive electrode into a measurement sample having a length of 170 mm and a width of 20 mm, using an autograph, in accordance with JIS-K-7161 (2014). The positive electrode is provided with a positive electrode active material layer on both sides of the positive electrode substrate, and the measurement environment is performed at room temperature of about 20 ° C. The measurement sample is prepared in the following procedure. If the positive electrode before assembling the nonaqueous electrolyte storage element can be prepared, it is used as is. When preparing from an assembled nonaqueous electrolyte storage element, the nonaqueous electrolyte storage element is first discharged at a constant current of 0.1 C to the discharge end voltage during normal use to make it in a discharged state. Note that "normal use" refers to the use of the nonaqueous electrolyte storage element under the recommended or specified charge and discharge conditions for the nonaqueous electrolyte storage element. The nonaqueous electrolyte storage element in this discharged state is disassembled, the positive electrode is removed, and the components (electrolyte, etc.) attached to the positive electrode are thoroughly washed with dimethyl carbonate, and then dried under reduced pressure at room temperature for 24 hours. The operations from disassembling the nonaqueous electrolyte storage element to preparing the positive electrode to be measured are carried out in a dry air atmosphere with a dew point of -40°C or less.
(2)上記(1)に記載の非水電解質蓄電素子用正極において、上記正極活物質層の上記バインダの含有量が0.5質量%以上2.0質量%以下であってもよい。 (2) In the positive electrode for a nonaqueous electrolyte storage element described in (1) above, the content of the binder in the positive electrode active material layer may be 0.5% by mass or more and 2.0% by mass or less.
上記(2)に記載の非水電解質蓄電素子用正極によれば、上記バインダの含有量を上記下限以上かつ上記上限以下とすることで、正極の引張伸度を低減し、非水電解質蓄電素子の高温環境下での保存後における容量維持率の低下を抑制する効果を向上できる。 According to the positive electrode for a nonaqueous electrolyte storage element described in (2) above, by setting the content of the binder to be equal to or greater than the lower limit and equal to or less than the upper limit, the tensile elongation of the positive electrode can be reduced, and the effect of suppressing the decrease in the capacity retention rate of the nonaqueous electrolyte storage element after storage in a high-temperature environment can be improved.
(3)上記(1)又は(2)に記載の非水電解質蓄電素子用正極において、上記バインダがフッ素樹脂であってもよい。 (3) In the positive electrode for a nonaqueous electrolyte storage element described in (1) or (2) above, the binder may be a fluororesin.
上記(3)に記載の非水電解質蓄電素子用正極によれば、上記バインダがフッ素樹脂であることで、非水電解質蓄電素子の高温環境下での保存後における容量維持率の低下を抑制する効果がより発揮される。 According to the positive electrode for a nonaqueous electrolyte storage element described in (3) above, the binder is a fluororesin, which enhances the effect of suppressing the decrease in the capacity retention rate of the nonaqueous electrolyte storage element after storage in a high-temperature environment.
(4)本発明の一実施形態に係る非水電解質蓄電素子は、上記(1)から(3)のいずれか一つに記載の非水電解質蓄電素子用正極を備える。 (4) A nonaqueous electrolyte storage element according to one embodiment of the present invention comprises a positive electrode for a nonaqueous electrolyte storage element described in any one of (1) to (3) above.
上記(4)に記載の非水電解質蓄電素子によれば、上記(1)から(3)のいずれか一つに記載の非水電解質蓄電素子用正極を備えるので、高温環境下での保存後における容量維持率の低下を抑制できる。 The nonaqueous electrolyte storage element described in (4) above includes a positive electrode for a nonaqueous electrolyte storage element described in any one of (1) to (3) above, and therefore can suppress a decrease in the capacity retention rate after storage in a high-temperature environment.
本発明の一実施形態に係る非水電解質蓄電素子用正極の構成、非水電解質蓄電素子の構成、蓄電装置の構成、及び非水電解質蓄電素子の製造方法、並びにその他の実施形態について詳述する。なお、各実施形態に用いられる各構成部材(各構成要素)の名称は、背景技術に用いられる各構成部材(各構成要素)の名称と異なる場合がある。 The configuration of a positive electrode for a nonaqueous electrolyte storage element according to one embodiment of the present invention, the configuration of a nonaqueous electrolyte storage element, the configuration of a storage device, and a method for manufacturing a nonaqueous electrolyte storage element, as well as other embodiments, will be described in detail. Note that the names of the components (elementary components) used in each embodiment may differ from the names of the components (elementary components) used in the background art.
<非水電解質蓄電素子用正極>
当該非水電解質蓄電素子用正極(以下、単に正極ともいう。)は、正極基材と、当該正極基材に直接又は中間層を介して配される正極活物質層とを有する。
<Positive electrode for non-aqueous electrolyte storage element>
The positive electrode for a nonaqueous electrolyte storage element (hereinafter also simply referred to as the positive electrode) has a positive electrode substrate and a positive electrode active material layer disposed on the positive electrode substrate directly or via an intermediate layer.
[正極基材]
正極基材は、導電性を有する。「導電性」を有するか否かは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が10-2Ω・cmを閾値として判定する。正極基材の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はこれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ、及びコストの観点からアルミニウム又はアルミニウム合金が好ましい。正極基材としては、箔、蒸着膜、メッシュ、多孔質材料等が挙げられ、コストの観点から箔が好ましい。したがって、正極基材としてはアルミニウム箔又はアルミニウム合金箔が好ましい。アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)又はJIS-H-4160(2006年)に規定されるA1085、A3003、A1N30等が例示できる。
[Positive electrode substrate]
The positive electrode substrate has electrical conductivity. Whether or not the substrate has "electrical conductivity" is determined by using a volume resistivity of 10 -2 Ω·cm measured in accordance with JIS-H-0505 (1975) as a threshold value. As the material of the positive electrode substrate, metals such as aluminum, titanium, tantalum, stainless steel, and alloys thereof are used. Among these, aluminum or aluminum alloys are preferred from the viewpoints of potential resistance, high electrical conductivity, and cost. As the positive electrode substrate, foil, vapor deposition film, mesh, porous material, etc. are mentioned, and foil is preferred from the viewpoint of cost. Therefore, aluminum foil or aluminum alloy foil is preferred as the positive electrode substrate. As the aluminum or aluminum alloy, A1085, A3003, A1N30, etc., as specified in JIS-H-4000 (2014) or JIS-H-4160 (2006) can be exemplified.
正極基材の平均厚さは、3μm以上50μm以下が好ましく、5μm以上40μm以下がより好ましく、8μm以上30μm以下がさらに好ましく、10μm以上25μm以下が特に好ましい。正極基材の平均厚さを上記の範囲とすることで、正極基材の強度を高めつつ、非水電解質蓄電素子の体積当たりのエネルギー密度を高めることができる。「平均厚さ」とは、任意の10カ所で測定した厚さの平均値を意味する。他の部材等の「平均厚さ」も同様に定義される。 The average thickness of the positive electrode substrate is preferably 3 μm or more and 50 μm or less, more preferably 5 μm or more and 40 μm or less, even more preferably 8 μm or more and 30 μm or less, and particularly preferably 10 μm or more and 25 μm or less. By setting the average thickness of the positive electrode substrate within the above range, it is possible to increase the strength of the positive electrode substrate while increasing the energy density per volume of the nonaqueous electrolyte storage element. "Average thickness" means the average value of thicknesses measured at any 10 points. The "average thickness" of other components, etc. is defined in the same manner.
中間層は、正極基材と正極活物質層との間に配される層である。中間層は、炭素粒子等の導電剤を含むことで正極基材と正極活物質層との接触抵抗を低減する。中間層の構成は特に限定されず、例えば、バインダ及び導電剤を含む。 The intermediate layer is a layer disposed between the positive electrode substrate and the positive electrode active material layer. The intermediate layer contains a conductive agent such as carbon particles to reduce the contact resistance between the positive electrode substrate and the positive electrode active material layer. The configuration of the intermediate layer is not particularly limited, and may include, for example, a binder and a conductive agent.
正極活物質層は、正極活物質及びバインダを含有する。正極活物質層は、必要に応じて、導電剤、増粘剤、フィラー等の任意成分を含む。 The positive electrode active material layer contains a positive electrode active material and a binder. The positive electrode active material layer may contain optional components such as a conductive agent, a thickener, and a filler, as necessary.
正極活物質は、α-NaFeO2型結晶構造を有し、ニッケル元素と、コバルト元素と、アルミニウム元素及びマンガン元素の少なくとも一方とを含むリチウム遷移金属複合酸化物を含有する。正極活物質としては、α-NaFeO2型結晶構造を有し、ニッケル元素、コバルト元素及びマンガン元素を含むリチウム遷移金属複合酸化物、又はニッケル元素、コバルト元素及びアルミニウム元素を含むリチウム遷移金属複合酸化物が好ましい。このようなリチウム遷移金属複合酸化物を用いることで、エネルギー密度を高くすること等ができる。 The positive electrode active material contains a lithium transition metal composite oxide having an α-NaFeO 2 type crystal structure and containing nickel, cobalt, and at least one of aluminum and manganese. As the positive electrode active material, a lithium transition metal composite oxide having an α-NaFeO 2 type crystal structure and containing nickel, cobalt, and manganese, or a lithium transition metal composite oxide containing nickel, cobalt, and aluminum, is preferable. By using such a lithium transition metal composite oxide, it is possible to increase the energy density, etc.
リチウム遷移金属複合酸化物としては、下記式1で表される化合物が好ましい。
Li1+αMe1-αO2 ・・・1
式1中、MeはNiと、Coと、Al及びMnの少なくとも一方とを含む金属元素(Liを除く)である。0≦α<1である。
The lithium transition metal composite oxide is preferably a compound represented by the following
Li 1+α Me 1-α O 2 ...1
In
式1中のMeは、実質的にNi、Co及びMnの三元素、又はNi、Co及びAlの三元素から構成されていることがさらに好ましい。但し、Meは、その他の金属元素が含有されていてもよい。
It is more preferable that Me in
電気容量がより大きくなること等の観点から、式1で表される化合物における各構成元素の好適な含有量(組成比)は以下の通りである。なお、モル比は、原子数比に等しい。
From the viewpoint of achieving a larger electric capacity, the preferred contents (composition ratios) of the constituent elements in the compound represented by
式1中、Meに対するNiのモル比(Ni/Me)の下限としては、0.1が好ましく、0.2又は0.3がより好ましい場合もある。一方、このモル比(Ni/Me)の上限としては、0.9が好ましく、0.8、0.7、0.6、0.5又は0.4がより好ましい場合もある。
In
式1中、Meに対するCoのモル比(Co/Me)の下限としては、0.05が好ましく、0.1、0.2又は0.3がより好ましい場合もある。一方、このモル比(Co/Me)の上限としては、0.7が好ましく、0.5又は0.4がより好ましい場合もある。
In
式1中、Meに対するMnのモル比(Mn/Me)の下限としては、0.05が好ましく、0.1、0.2又は0.3がより好ましい場合もある。一方、このモル比(Mn/Me)の上限としては、0.6が好ましく、0.5又は0.4がより好ましい場合もある。
In
式1中、Meに対するAlのモル比(Al/Me)としては、0.04超が好ましく、0.05以上がより好ましい場合もある。一方、このモル比(Al/Me)の上限としては、0.20が好ましく、0.10、0.08がより好ましい場合もある。
In
式1中、Meに対するLiのモル比(Li/Me)、即ち、(1+α)/(1-α)の上限としては、1.6が好ましく、1.4又は1.2がより好ましい場合もある。
In
なお、リチウム遷移金属複合酸化物の組成比は、次の方法により完全放電状態としたときの組成比をいう。まず、非水電解質蓄電素子を、0.05Cの放電電流で通常使用時の下限電圧まで定電流放電する。解体し、正極を取り出し、金属Liを対極とした試験電池を組み立て、正極活物質1gあたり10mAの放電電流で、正極電位が3.0V vs.Li/Li+となるまで定電流放電を行い、正極を完全放電状態に調整する。再解体し、正極を取り出す。ジメチルカーボネートを用いて、取り出した正極に付着した成分(電解質等)を十分に洗浄し、室温にて24時間減圧乾燥後、正極活物質のリチウム遷移金属複合酸化物を採取する。採取したリチウム遷移金属複合酸化物を測定に供する。非水電解質蓄電素子の解体から測定用のリチウム遷移金属複合酸化物の採取までの作業は露点-60℃以下のアルゴン雰囲気中で行う。 The composition ratio of the lithium transition metal composite oxide refers to the composition ratio when the lithium transition metal composite oxide is in a fully discharged state by the following method. First, the non-aqueous electrolyte storage element is discharged at a constant current of 0.05C to the lower limit voltage during normal use. Dismantled, the positive electrode is removed, and a test battery is assembled with metal Li as the counter electrode. A constant current discharge is performed at a discharge current of 10 mA per 1 g of positive electrode active material until the positive electrode potential becomes 3.0 V vs. Li/Li + , and the positive electrode is adjusted to a fully discharged state. Dismantled again, the positive electrode is removed. Dimethyl carbonate is used to thoroughly wash the components (electrolyte, etc.) attached to the removed positive electrode, and the lithium transition metal composite oxide of the positive electrode active material is collected after drying under reduced pressure at room temperature for 24 hours. The collected lithium transition metal composite oxide is subjected to measurement. The operation from dismantling the non-aqueous electrolyte storage element to collecting the lithium transition metal composite oxide for measurement is performed in an argon atmosphere with a dew point of -60°C or less.
好適なリチウム遷移金属複合酸化物としては、例えばLiNi1/3Co1/3Mn1/3O2、LiNi3/5Co1/5Mn1/5O2、LiNi1/2Co1/5Mn3/10O2、LiNi1/2Co3/10Mn1/5O2、LiNi8/10Co1/10Mn1/10O2、LiNi0.80Co0.15Al0.05O2等を挙げることができる。 Suitable examples of lithium transition metal composite oxides include LiNi1 /3Co1 / 3Mn1 /3O2, LiNi3 / 5Co1 / 5Mn1 / 5O2 , LiNi1/ 2Co1 / 5Mn3 / 10O2, LiNi1/ 2Co3 /10Mn1 / 5O2 , LiNi8 / 10Co1 / 10Mn1 / 10O2 , LiNi0.80Co0.15Al0.05O2 , and the like .
正極活物質粒子は、上記したニッケル元素と、コバルト元素と、アルミニウム元素及びマンガン元素の少なくとも一方とを含むリチウム遷移金属複合酸化物以外のその他の正極活物質粒子を含有してもよい。上記その他の正極活物質粒子としては、公知の正極活物質の中から適宜選択できる。リチウムイオン二次電池用の正極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。その他の正極活物質としては、例えば、スピネル型結晶構造を有するリチウム遷移金属複合酸化物、ポリアニオン化合物、カルコゲン化合物、硫黄等が挙げられる。スピネル型結晶構造を有するリチウム遷移金属複合酸化物として、LixMn2O4、LixNiγMn(2-γ)O4等が挙げられる。ポリアニオン化合物として、LiFePO4、LiMnPO4、LiNiPO4、LiCoPO4、Li3V2(PO4)3、Li2MnSiO4、Li2CoPO4F等が挙げられる。カルコゲン化合物として、二硫化チタン、二硫化モリブデン、二酸化モリブデン等が挙げられる。これらの材料中の原子又はポリアニオンは、他の元素からなる原子又はアニオン種で一部が置換されていてもよい。これらの材料は表面が他の材料で被覆されていてもよい。 The positive electrode active material particles may contain other positive electrode active material particles other than the lithium transition metal composite oxide containing at least one of the above-mentioned nickel element, cobalt element, aluminum element, and manganese element. The other positive electrode active material particles can be appropriately selected from known positive electrode active materials. As the positive electrode active material for lithium ion secondary batteries, a material capable of absorbing and releasing lithium ions is usually used. As the other positive electrode active material, for example, lithium transition metal composite oxides having a spinel crystal structure, polyanion compounds, chalcogen compounds, sulfur, etc. can be mentioned. As the lithium transition metal composite oxides having a spinel crystal structure, Li x Mn 2 O 4 , Li x Ni γ Mn (2-γ) O 4 , etc. can be mentioned. Examples of polyanion compounds include LiFePO4 , LiMnPO4 , LiNiPO4 , LiCoPO4 , Li3V2 ( PO4 ) 3 , Li2MnSiO4 , and Li2CoPO4F . Examples of chalcogen compounds include titanium disulfide , molybdenum disulfide, and molybdenum dioxide . Atoms or polyanions in these materials may be partially substituted with atoms or anion species of other elements. Surfaces of these materials may be coated with other materials.
正極活物質粒子の材料は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。なかでも、正極活物質粒子は、上記ニッケル元素と、コバルト元素と、アルミニウム元素及びマンガン元素の少なくとも一方とを含むリチウム遷移金属複合酸化物を、使用する全正極活物質粒子のうち50質量%以上(好ましくは70質量%から100質量%、より好ましくは80質量%から100質量%)の割合で含有することが好ましく、実質的に上記ニッケル元素と、コバルト元素と、アルミニウム元素及びマンガン元素の少なくとも一方とを含むリチウム遷移金属複合酸化物のみからなる正極活物質を用いることがより好ましい。 The material of the positive electrode active material particles may be used alone or in combination of two or more. In particular, the positive electrode active material particles preferably contain lithium transition metal composite oxide containing the above nickel element, cobalt element, and at least one of aluminum element and manganese element in a proportion of 50 mass% or more (preferably 70 mass% to 100 mass%, more preferably 80 mass% to 100 mass%) of the total positive electrode active material particles used, and it is more preferable to use a positive electrode active material consisting essentially of lithium transition metal composite oxide containing the above nickel element, cobalt element, and at least one of aluminum element and manganese element.
正極活物質は、通常、粒子(粉体)である。正極活物質の平均粒径は、例えば、0.1μm以上20μm以下とすることが好ましい。正極活物質の平均粒径を上記下限以上とすることで、正極活物質の製造又は取り扱いが容易になる。正極活物質の平均粒径を上記上限以下とすることで、正極活物質層の電子伝導性が向上する。なお、正極活物質と他の材料との複合体を用いる場合、該複合体の平均粒径を正極活物質の平均粒径とする。「平均粒径」とは、JIS-Z-8825(2013年)に準拠し、粒子を溶媒で希釈した希釈液に対しレーザ回折・散乱法により測定した粒径分布に基づき、JIS-Z-8819-2(2001年)に準拠し計算される体積基準積算分布が50%となる値を意味する。 The positive electrode active material is usually a particle (powder). The average particle size of the positive electrode active material is preferably, for example, 0.1 μm or more and 20 μm or less. By setting the average particle size of the positive electrode active material to the above lower limit or more, the positive electrode active material can be easily manufactured or handled. By setting the average particle size of the positive electrode active material to the above upper limit or less, the electronic conductivity of the positive electrode active material layer is improved. When a composite of the positive electrode active material and another material is used, the average particle size of the composite is taken as the average particle size of the positive electrode active material. "Average particle size" means a value at which the volume-based cumulative distribution calculated in accordance with JIS-Z-8819-2 (2001) is 50% based on the particle size distribution measured by a laser diffraction/scattering method for a diluted solution obtained by diluting particles with a solvent in accordance with JIS-Z-8825 (2013).
粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。粉砕方法として、例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェットミル、旋回気流型ジェットミル又は篩等を用いる方法が挙げられる。粉砕時には水、あるいはヘキサン等の非水溶媒を共存させた湿式粉砕を用いることもできる。分級方法としては、篩や風力分級機等が、乾式、湿式ともに必要に応じて用いられる。 In order to obtain powder with a specified particle size, a pulverizer or a classifier is used. Examples of pulverization methods include those using a mortar, ball mill, sand mill, vibrating ball mill, planetary ball mill, jet mill, counter jet mill, swirling airflow type jet mill, or a sieve. Wet pulverization in the presence of water or a non-aqueous solvent such as hexane can also be used during pulverization. As for classification methods, sieves and air classifiers are used as necessary for both dry and wet methods.
正極活物質層における正極活物質の含有量は、50質量%以上99質量%以下が好ましく、70質量%以上98質量%以下がより好ましく、80質量%以上95質量%以下がさらに好ましい。正極活物質の含有量を上記の範囲とすることで、正極活物質層の高エネルギー密度化と製造性を両立できる。 The content of the positive electrode active material in the positive electrode active material layer is preferably 50% by mass or more and 99% by mass or less, more preferably 70% by mass or more and 98% by mass or less, and even more preferably 80% by mass or more and 95% by mass or less. By setting the content of the positive electrode active material within the above range, it is possible to achieve both high energy density and manufacturability of the positive electrode active material layer.
当該非水電解質蓄電素子用正極においては、上記正極活物質の表面に、タングステン元素、ホウ素元素、硫黄元素、リン元素、ケイ素元素、チタン元素、窒素元素、ゲルマニウム元素、アルミニウム元素、ジルコニウム元素又はこれらの組み合わせである異種元素が存在する。当該非水電解質蓄電素子用正極は、正極活物質の表面に上記異種元素が存在することで、高温環境下での正極活物質と非水電解質との副反応が低減される。上記異種元素の中でも、タングステン元素、ホウ素元素、ケイ素元素、チタン元素、窒素元素、ゲルマニウム元素、アルミニウム元素、ジルコニウム元素又はこれらの組み合わせが、高温環境下での正極活物質と非水電解質との副反応がより低減されるという点で好ましく、タングステン元素、ホウ素元素又はこれらの組み合わせがより好ましい。なお、異種元素は、正極活物質の表面の少なくとも一部に存在していればよい。異種元素は、正極活物質の表面に点在していてもよく、被覆層を形成していてもよい。また、異種元素は、正極活物質の内部にも存在していてもよい。正極活物質が二次粒子である場合、異種元素は、正極活物質の一次粒子の粒界に存在していてもよい。異種元素は正極活物質の表面に正極活物質とは異なる化合物として存在していてもよい。正極活物質に含まれる各異種元素の含有量は正極活物質に含まれるリチウム元素と異種元素とを除く金属元素に対して4.0mol%以下である。すなわち、正極活物質がタングステン元素、ホウ素元素、硫黄元素、リン元素、ケイ素元素、チタン元素、窒素元素、ゲルマニウム元素、アルミニウム元素、及びジルコニウム元素のいずれかの元素を、正極活物質に含まれるリチウム元素と異種元素とを除く金属元素に対して4.0mol%超含む場合、当該元素は異種元素に含まない。 In the positive electrode for a non-aqueous electrolyte storage element, a different element, which is a tungsten element, a boron element, a sulfur element, a phosphorus element, a silicon element, a titanium element, a nitrogen element, a germanium element, an aluminum element, a zirconium element, or a combination thereof, is present on the surface of the positive electrode active material. In the positive electrode for a non-aqueous electrolyte storage element, the presence of the different element on the surface of the positive electrode active material reduces side reactions between the positive electrode active material and the non-aqueous electrolyte in a high-temperature environment. Among the different elements, tungsten element, boron element, silicon element, titanium element, nitrogen element, germanium element, aluminum element, zirconium element, or a combination thereof is preferred in that side reactions between the positive electrode active material and the non-aqueous electrolyte in a high-temperature environment are further reduced, and tungsten element, boron element, or a combination thereof is more preferred. The different element may be present on at least a part of the surface of the positive electrode active material. The different element may be scattered on the surface of the positive electrode active material, or may form a coating layer. The heterogeneous elements may also be present inside the positive electrode active material. When the positive electrode active material is a secondary particle, the heterogeneous elements may be present at the grain boundaries of the primary particles of the positive electrode active material. The heterogeneous elements may be present on the surface of the positive electrode active material as a compound different from the positive electrode active material. The content of each heterogeneous element contained in the positive electrode active material is 4.0 mol% or less with respect to the metal elements excluding the lithium element and the heterogeneous elements contained in the positive electrode active material. That is, when the positive electrode active material contains any of the elements tungsten, boron, sulfur, phosphorus, silicon, titanium, nitrogen, germanium, aluminum, and zirconium in an amount of more than 4.0 mol% with respect to the metal elements excluding the lithium element and the heterogeneous elements contained in the positive electrode active material, the element is not included in the heterogeneous elements.
正極活物質に含まれる異種元素の含有量の下限としては、正極活物質に含まれるリチウム元素と異種元素とを除く金属元素に対して0.2mol%以上1.5mol%以下が好ましく、0.5mol%以上1.2mol%以下がより好ましい。上記正極活物質に含まれる異種元素の含有量が、正極活物質に含まれるリチウム元素と異種元素とを除く金属元素に対して上記範囲であることで、当該非水電解質蓄電素子用正極を備える非水電解質蓄電素子の高温環境下での保存後における容量維持率の低下をより向上できる。なお、異種元素が複数存在する場合、上記異種元素の含有量は、各異種元素の含有量とする。 The lower limit of the content of the heterogeneous elements contained in the positive electrode active material is preferably 0.2 mol% to 1.5 mol%, more preferably 0.5 mol% to 1.2 mol%, based on the metal elements excluding the lithium element and heterogeneous elements contained in the positive electrode active material. When the content of the heterogeneous elements contained in the positive electrode active material is within the above range based on the metal elements excluding the lithium element and heterogeneous elements contained in the positive electrode active material, the decrease in the capacity retention rate after storage in a high-temperature environment of a nonaqueous electrolyte storage element having the positive electrode for the nonaqueous electrolyte storage element can be further improved. When multiple heterogeneous elements are present, the content of the heterogeneous elements refers to the content of each heterogeneous element.
本発明において、窒素元素以外の上記異種元素及び正極活物質に含まれるリチウム元素と異種元素とを除く金属元素の含有量は、高周波誘導結合プラズマ発光分光分析法(ICP)により求めることができる。窒素元素以外の上記異種元素及び正極活物質に含まれる金属元素の含有量の測定は、以下の手順で行う。初めに、上記した方法により完全放電状態とした正極から正極活物質を採取し、マイクロ波分解法により、正極活物質及び異種元素を溶解可能な酸に正極活物質を全溶解させる。次に、この溶液を純水で一定量に希釈し、測定溶液とする。そして、マルチ型ICP発光分光分析装置ICPE-9820(島津製作所社製)を用い、ICP発光分光分析により上記測定溶液の異種元素及び正極活物質に含まれる金属元素の濃度を測定する。得られた異種元素及び正極活物質に含まれる金属元素の濃度から、正極活物質中の異種元素及び正極活物質に含まれる金属元素の含有量を定量する。なお、上記測定溶液の異種元素及び正極活物質に含まれる金属元素の濃度の算出においては、既知の濃度の異種元素及び正極活物質に含まれる金属元素の溶液から検量線を作成し、上記測定溶液の異種元素及び正極活物質に含まれる金属元素の濃度を求める検量線法を用いることができる。また、窒素元素の含有量は、以下の手順で、酸素・窒素分析装置により求めることができる。上記した方法により完全放電状態とした正極から正極活物質を採取し、酸素・窒素分析装置により、正極活物資中の窒素元素を窒素ガスとして抽出して熱伝導度検出器で検出し、窒素元素の含有量を定量する。なお、正極活物質の表面に異種元素が存在していることは、走査型電子顕微鏡-エネルギー分散型エックス線分析装置(SEM-EDX)、電子プローブマイクロアナライザ(EPMA)等で正極活物質表面の異種元素及び正極活物質に含まれる金属元素の分布を観察することにより確認することができる。 In the present invention, the content of the above-mentioned heterogeneous elements other than the nitrogen element and the metal elements excluding the lithium element and the heterogeneous elements contained in the positive electrode active material can be determined by high-frequency inductively coupled plasma optical emission spectroscopy (ICP). The content of the above-mentioned heterogeneous elements other than the nitrogen element and the metal elements contained in the positive electrode active material is measured by the following procedure. First, the positive electrode active material is collected from the positive electrode that has been fully discharged by the above-mentioned method, and the positive electrode active material is completely dissolved in an acid capable of dissolving the positive electrode active material and the heterogeneous elements by a microwave decomposition method. Next, this solution is diluted to a certain amount with pure water to obtain a measurement solution. Then, using a multi-type ICP optical emission spectrometer ICPE-9820 (manufactured by Shimadzu Corporation), the concentration of the heterogeneous elements and the metal elements contained in the positive electrode active material of the measurement solution is measured by ICP optical emission spectroscopy. From the obtained concentrations of the heterogeneous elements and the metal elements contained in the positive electrode active material, the content of the heterogeneous elements in the positive electrode active material and the metal elements contained in the positive electrode active material is quantified. In addition, in calculating the concentration of the heterogeneous elements in the measurement solution and the metal elements contained in the positive electrode active material, a calibration curve method can be used in which a calibration curve is created from a solution of heterogeneous elements and metal elements contained in the positive electrode active material of known concentrations, and the concentration of the heterogeneous elements in the measurement solution and the metal elements contained in the positive electrode active material is calculated. In addition, the content of the nitrogen element can be calculated using an oxygen/nitrogen analyzer in the following procedure. A positive electrode active material is collected from a positive electrode that has been fully discharged by the above method, and the nitrogen element in the positive electrode active material is extracted as nitrogen gas using an oxygen/nitrogen analyzer and detected by a thermal conductivity detector, and the content of the nitrogen element is quantified. In addition, the presence of heterogeneous elements on the surface of the positive electrode active material can be confirmed by observing the distribution of the heterogeneous elements on the surface of the positive electrode active material and the metal elements contained in the positive electrode active material using a scanning electron microscope-energy dispersive X-ray analyzer (SEM-EDX), an electron probe microanalyzer (EPMA), or the like.
導電剤は、導電性を有する材料であれば特に限定されない。このような導電剤としては、例えば、炭素質材料、金属、導電性セラミックス等が挙げられる。炭素質材料としては、黒鉛、非黒鉛質炭素、グラフェン系炭素等が挙げられる。非黒鉛質炭素としては、カーボンナノファイバー、ピッチ系炭素繊維、カーボンブラック等が挙げられる。カーボンブラックとしては、ファーネスブラック、アセチレンブラック、ケッチェンブラック等が挙げられる。グラフェン系炭素としては、グラフェン、カーボンナノチューブ(CNT)、フラーレン等が挙げられる。導電剤の形状としては、粉状、繊維状等が挙げられる。導電剤としては、これらの材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。また、これらの材料を複合化して用いてもよい。例えば、カーボンブラックとCNTとを複合化した材料を用いてもよい。これらの中でも、電子伝導性及び塗工性の観点よりカーボンブラックが好ましく、中でもアセチレンブラックが好ましい。 The conductive agent is not particularly limited as long as it is a material having electrical conductivity. Examples of such conductive agents include carbonaceous materials, metals, conductive ceramics, etc. Examples of carbonaceous materials include graphite, non-graphitic carbon, graphene-based carbon, etc. Examples of non-graphitic carbon include carbon nanofibers, pitch-based carbon fibers, carbon black, etc. Examples of carbon black include furnace black, acetylene black, ketjen black, etc. Examples of graphene-based carbon include graphene, carbon nanotubes (CNT), fullerene, etc. Examples of the conductive agent include powder and fiber. As the conductive agent, one of these materials may be used alone, or two or more types may be mixed and used. These materials may also be used in combination. For example, a material in which carbon black and CNT are combined may be used. Among these, carbon black is preferred from the viewpoint of electronic conductivity and coatability, and acetylene black is preferred among them.
正極活物質層における導電剤の含有量は、1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。導電剤の含有量を上記の範囲とすることで、非水電解質蓄電素子のエネルギー密度を高めることができる。 The content of the conductive agent in the positive electrode active material layer is preferably 1% by mass or more and 10% by mass or less, and more preferably 3% by mass or more and 9% by mass or less. By setting the content of the conductive agent in the above range, the energy density of the nonaqueous electrolyte storage element can be increased.
バインダとしては、例えば、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリアクリル、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子等が挙げられる。これらの中でも、非水電解質蓄電素子の高温環境下での保存後における容量維持率の低下を抑制する効果がより発揮される観点から、フッ素樹脂が好ましく、ポリフッ化ビニリデンがより好ましい。 Examples of binders include thermoplastic resins such as fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), polyethylene, polypropylene, polyacrylic, polyimide, etc.; elastomers such as ethylene-propylene-diene rubber (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluororubber, etc.; polysaccharide polymers, etc. Among these, fluororesins are preferred, and polyvinylidene fluoride is more preferred, from the viewpoint of being more effective in suppressing the decrease in the capacity retention rate of the non-aqueous electrolyte storage element after storage in a high-temperature environment.
上記正極活物質層が含有するバインダの重量平均分子量の下限としては、70万が好ましく、80万がより好ましい。一方、上記バインダの重量平均分子量の上限としては、特に限定されないが、例えば150万であってもよい。上記バインダの重量平均分子量が上記下限以上かつ上記上限以下であることで、正極合剤ペーストの塗布性を良好に維持するとともに、非水電解質蓄電素子の高温環境下での保存後における容量維持率の低下を抑制する効果をより向上できる。上記「重量平均分子量」とは、JIS-K-7252-1(2008)「プラスチック-サイズ排除クロマトグラフィーによる高分子の平均分子量及び分子量分布の求め方-第1部:通則」に準拠して、ゲル浸透クロマトグラフィー(GPC)を用いて測定される重量平均分子量を意味する。 The lower limit of the weight average molecular weight of the binder contained in the positive electrode active material layer is preferably 700,000, and more preferably 800,000. On the other hand, the upper limit of the weight average molecular weight of the binder is not particularly limited, but may be, for example, 1.5 million. By having the weight average molecular weight of the binder be equal to or greater than the lower limit and equal to or less than the upper limit, the application properties of the positive electrode mixture paste can be maintained well, and the effect of suppressing the decrease in the capacity retention rate after storage of the non-aqueous electrolyte storage element in a high-temperature environment can be further improved. The "weight average molecular weight" refers to the weight average molecular weight measured using gel permeation chromatography (GPC) in accordance with JIS-K-7252-1 (2008) "Plastics - Method for determining the average molecular weight and molecular weight distribution of polymers by size exclusion chromatography - Part 1: General rules".
正極活物質層における上記バインダの含有量の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1.0質量%がさらに好ましい。上記バインダの含有量の上限としては、4.0質量%が好ましく、2.5質量%がより好ましく、2.0質量%がさらに好ましい。バインダの含有量を上記下限以上かつ上記上限以下とすることで、正極の引張伸度を低減し、非水電解質蓄電素子の高温環境下での保存後における容量維持率の低下を抑制する効果を向上できる。 The lower limit of the binder content in the positive electrode active material layer is preferably 0.1 mass%, more preferably 0.5 mass%, and even more preferably 1.0 mass%. The upper limit of the binder content is preferably 4.0 mass%, more preferably 2.5 mass%, and even more preferably 2.0 mass%. By setting the binder content to be equal to or greater than the lower limit and equal to or less than the upper limit, the tensile elongation of the positive electrode can be reduced, and the effect of suppressing the decrease in the capacity retention rate after storage of the nonaqueous electrolyte storage element in a high-temperature environment can be improved.
増粘剤としては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。増粘剤がリチウム等と反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させてもよい。 Examples of thickeners include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose. If the thickener has a functional group that reacts with lithium or the like, this functional group may be deactivated in advance by methylation or the like.
フィラーは、特に限定されない。フィラーとしては、ポリプロピレン、ポリエチレン等のポリオレフィン、二酸化ケイ素、酸化アルミニウム、二酸化チタン、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の無機酸化物、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物、炭酸カルシウム等の炭酸塩、フッ化カルシウム、フッ化バリウム、硫酸バリウム等の難溶性のイオン結晶、窒化アルミニウム、窒化ケイ素等の窒化物、タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。 The filler is not particularly limited. Examples of the filler include polyolefins such as polypropylene and polyethylene, inorganic oxides such as silicon dioxide, aluminum oxide, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, and aluminosilicates, hydroxides such as magnesium hydroxide, calcium hydroxide, and aluminum hydroxide, carbonates such as calcium carbonate, sparingly soluble ion crystals such as calcium fluoride, barium fluoride, and barium sulfate, nitrides such as aluminum nitride and silicon nitride, substances derived from mineral resources such as talc, montmorillonite, boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, and mica, or man-made products thereof.
正極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Nb、W等の遷移金属元素を正極活物質、導電剤、バインダ、増粘剤、フィラー以外の成分として含有してもよい。 The positive electrode active material layer may contain typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, typical metallic elements such as Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, and Ba, and transition metallic elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb, and W as components other than the positive electrode active material, conductive agent, binder, thickener, and filler.
正極活物質層の平均厚さは、30μm以上100μm以下が好ましく、40μm以上90μm以下がより好ましい。正極活物質層の平均厚さを上記範囲とすることで、非水電解質蓄電素子の容量と出力とを適切な範囲で両立できるという利点がある。なお、上記正極活物質層の平均厚さは、正極活物質層が正極基材の両面に設けられている場合は、それぞれ設けた2層の平均厚さの合計の値である。 The average thickness of the positive electrode active material layer is preferably 30 μm or more and 100 μm or less, and more preferably 40 μm or more and 90 μm or less. By setting the average thickness of the positive electrode active material layer within the above range, it is possible to achieve both the capacity and output of the nonaqueous electrolyte storage element within an appropriate range. Note that, when the positive electrode active material layer is provided on both sides of the positive electrode substrate, the average thickness of the positive electrode active material layer is the sum of the average thicknesses of the two layers provided on each side.
正極基材の平均厚さに対する正極活物質層の平均厚さの比としては、10以上20以下が好ましく、12以上15以下がより好ましい。正極基材の平均厚さに対する正極活物質層の平均厚さの比を上記範囲とすることで、正極の引張伸度をより低減することができる。 The ratio of the average thickness of the positive electrode active material layer to the average thickness of the positive electrode substrate is preferably 10 to 20, and more preferably 12 to 15. By setting the ratio of the average thickness of the positive electrode active material layer to the average thickness of the positive electrode substrate within the above range, the tensile elongation of the positive electrode can be further reduced.
正極活物質層の多孔度の上限としては、40%が好ましく、35%がより好ましい。一方、この多孔度の下限としては、25%が好ましく、30%がより好ましい。正極活物質層の多孔度を40%以下とすることで、正極活物質粒子同士の接触を良好にできる。正極活物質層の多孔度を25%以上とすることで、正極基材の変形を抑制できる。また、多孔度が上記範囲内であることで、正極の引張伸度を低減し、当該非水電解質蓄電素子の高温環境下での保存後における容量維持率の低下を抑制する効果を向上できる。 The upper limit of the porosity of the positive electrode active material layer is preferably 40%, more preferably 35%. On the other hand, the lower limit of this porosity is preferably 25%, more preferably 30%. By setting the porosity of the positive electrode active material layer to 40% or less, the contact between the positive electrode active material particles can be improved. By setting the porosity of the positive electrode active material layer to 25% or more, deformation of the positive electrode substrate can be suppressed. In addition, by setting the porosity within the above range, the tensile elongation of the positive electrode can be reduced, and the effect of suppressing the decrease in the capacity retention rate of the nonaqueous electrolyte storage element after storage in a high-temperature environment can be improved.
ここで、正極活物質層の「多孔度」とは、正極活物質層を構成する各成分の真密度から算出される正極活物質層の真密度と充填密度とから、下記式により求められる値をいう。上記充填密度とは、正極活物質層の質量を正極活物質層の見かけの体積で除した値をいう。上記見かけの体積とは、空隙部分を含む体積をいい、正極活物質層においては、厚さと面積との積として求めることができる。
多孔度(%)=100-(充填密度/真密度)×100
Here, the "porosity" of the positive electrode active material layer refers to a value calculated from the true density of the positive electrode active material layer calculated from the true density of each component constituting the positive electrode active material layer and the packing density by the following formula. The packing density refers to a value obtained by dividing the mass of the positive electrode active material layer by the apparent volume of the positive electrode active material layer. The apparent volume refers to a volume including voids, and in the case of the positive electrode active material layer, it can be calculated as the product of the thickness and the area.
Porosity (%) = 100 - (filling density/true density) x 100
正極の引張伸度としては、1.0%以下であり、0.8%以下が好ましく、0.6%以下がより好ましく、0.4%以下がさらに好ましい。正極の引張伸度を1.0%以下とすることで、当該非水電解質蓄電素子における高温環境下での保存後における容量維持率の低下の抑制効果が良好である。正極の引張伸度の下限は、例えば0%であってもよく、0.1%が好ましい場合もある。正極の引張伸度は、正極活物質の微小圧縮強度、バインダの種類及び含有量、正極基材の材質及び平均厚さ、正極活物質層の平均厚さ及び多孔度等により調整することができる。 The tensile elongation of the positive electrode is 1.0% or less, preferably 0.8% or less, more preferably 0.6% or less, and even more preferably 0.4% or less. By setting the tensile elongation of the positive electrode to 1.0% or less, the effect of suppressing the decrease in the capacity retention rate after storage in a high-temperature environment in the nonaqueous electrolyte storage element is good. The lower limit of the tensile elongation of the positive electrode may be, for example, 0%, and 0.1% may be preferable. The tensile elongation of the positive electrode can be adjusted by the microcompressive strength of the positive electrode active material, the type and content of the binder, the material and average thickness of the positive electrode substrate, the average thickness and porosity of the positive electrode active material layer, etc.
<非水電解質蓄電素子の構成>
本発明の一実施形態に係る非水電解質蓄電素子(以下、単に「蓄電素子」ともいう。)は、正極、負極及びセパレータを有する電極体と、非水電解質と、上記電極体及び非水電解質を収容する容器と、を備える。電極体は、通常、複数の正極及び複数の負極がセパレータを介して重ねられた積層型、又は、正極及び負極がセパレータを介して重ねられた状態で巻回された巻回型である。非水電解質は、正極、負極及びセパレータに含浸された状態で存在する。非水電解質蓄電素子の一例として、非水電解質二次電池(以下、単に「二次電池」ともいう。)について説明する。
<Configuration of Nonaqueous Electrolyte Energy Storage Element>
A nonaqueous electrolyte storage element (hereinafter, also simply referred to as "storage element") according to one embodiment of the present invention includes an electrode assembly having a positive electrode, a negative electrode, and a separator, a nonaqueous electrolyte, and a container that contains the electrode assembly and the nonaqueous electrolyte. The electrode assembly is usually a laminated type in which a plurality of positive electrodes and a plurality of negative electrodes are stacked with a separator interposed therebetween, or a wound type in which a positive electrode and a negative electrode are stacked with a separator interposed therebetween and wound. The nonaqueous electrolyte exists in a state in which it is impregnated in the positive electrode, the negative electrode, and the separator. As an example of a nonaqueous electrolyte storage element, a nonaqueous electrolyte secondary battery (hereinafter, also simply referred to as "secondary battery") will be described.
(正極)
当該非水電解質蓄電素子が備える正極は、上記したとおりである。当該非水電解質蓄電素子は当該正極を備えるので、高温環境下での保存後における容量維持率の低下を抑制できる。
(Positive electrode)
The positive electrode of the nonaqueous electrolyte storage element is as described above. Since the nonaqueous electrolyte storage element includes the positive electrode, it is possible to suppress a decrease in the capacity retention rate after storage in a high-temperature environment.
(負極)
負極は、負極基材と、当該負極基材に直接又は中間層を介して配される負極活物質層とを有する。中間層の構成は特に限定されず、例えば上記正極で例示した構成から選択することができる。
(Negative electrode)
The negative electrode has a negative electrode substrate and a negative electrode active material layer disposed on the negative electrode substrate directly or via an intermediate layer. The configuration of the intermediate layer is not particularly limited and can be selected from the configurations exemplified for the positive electrode.
負極基材は、導電性を有する。負極基材の材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼、アルミニウム等の金属又はこれらの合金、炭素質材料等が用いられる。これらの中でも銅又は銅合金が好ましい。負極基材としては、箔、蒸着膜、メッシュ、多孔質材料等が挙げられ、コストの観点から箔が好ましい。したがって、負極基材としては銅箔又は銅合金箔が好ましい。銅箔の例としては、圧延銅箔、電解銅箔等が挙げられる。 The negative electrode substrate is conductive. Metals such as copper, nickel, stainless steel, nickel-plated steel, and aluminum, or alloys thereof, carbonaceous materials, etc. are used as the material of the negative electrode substrate. Among these, copper or copper alloys are preferred. Examples of the negative electrode substrate include foil, vapor deposition film, mesh, and porous materials, and foil is preferred from the viewpoint of cost. Therefore, copper foil or copper alloy foil is preferred as the negative electrode substrate. Examples of copper foil include rolled copper foil and electrolytic copper foil.
負極基材の平均厚さは、2μm以上35μm以下が好ましく、3μm以上30μm以下がより好ましく、4μm以上25μm以下がさらに好ましく、5μm以上20μm以下が特に好ましい。負極基材の平均厚さを上記の範囲とすることで、負極基材の強度を高めつつ、非水電解質蓄電素子の体積当たりのエネルギー密度を高めることができる。 The average thickness of the negative electrode substrate is preferably 2 μm or more and 35 μm or less, more preferably 3 μm or more and 30 μm or less, even more preferably 4 μm or more and 25 μm or less, and particularly preferably 5 μm or more and 20 μm or less. By setting the average thickness of the negative electrode substrate within the above range, it is possible to increase the strength of the negative electrode substrate while increasing the energy density per volume of the nonaqueous electrolyte storage element.
負極活物質層は、負極活物質を含む。負極活物質層は、必要に応じて導電剤、バインダ、増粘剤、フィラー等の任意成分を含む。 The negative electrode active material layer contains a negative electrode active material. The negative electrode active material layer contains optional components such as a conductive agent, a binder, a thickener, and a filler as necessary.
負極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等の遷移金属元素を負極活物質、導電剤、バインダ、増粘剤、フィラー以外の成分として含有してもよい。 The negative electrode active material layer may contain typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, typical metallic elements such as Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, and Ba, and transition metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, and W as components other than the negative electrode active material, conductive agent, binder, thickener, and filler.
負極活物質としては、公知の負極活物質の中から適宜選択できる。リチウムイオン二次電池用の負極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。負極活物質としては、例えば、金属Li;Si、Sn等の金属又は半金属;Si酸化物、Ti酸化物、Sn酸化物等の金属酸化物又は半金属酸化物;Li4Ti5O12、LiTiO2、TiNb2O7等のチタン含有酸化物;ポリリン酸化合物;炭化ケイ素;黒鉛(グラファイト)、非黒鉛質炭素(易黒鉛化性炭素又は難黒鉛化性炭素)等の炭素材料等が挙げられる。これらの材料の中でも、黒鉛及び非黒鉛質炭素が好ましい。負極活物質層においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The negative electrode active material can be appropriately selected from known negative electrode active materials. As the negative electrode active material for lithium ion secondary batteries, a material capable of absorbing and releasing lithium ions is usually used. Examples of the negative electrode active material include metal Li; metals or semimetals such as Si and Sn; metal oxides or semimetal oxides such as Si oxide, Ti oxide, and Sn oxide; titanium-containing oxides such as Li 4 Ti 5 O 12 , LiTiO 2, and TiNb 2 O 7 ; polyphosphate compounds; silicon carbide; carbon materials such as graphite and non-graphitic carbon (easily graphitized carbon or non-graphitizable carbon). Among these materials, graphite and non-graphitic carbon are preferred. In the negative electrode active material layer, one of these materials may be used alone, or two or more may be mixed and used.
「黒鉛」とは、充放電前又は放電された状態において、エックス線回折法により決定される(002)面の平均格子面間隔(d002)が0.33nm以上0.34nm未満の炭素材料をいう。黒鉛としては、天然黒鉛、人造黒鉛が挙げられる。入出力特性に優れるという観点で、天然黒鉛が好ましい。 "Graphite" refers to a carbon material having an average lattice spacing (d 002 ) of the (002) plane determined by X-ray diffraction before charging and discharging or after discharging of 0.33 nm or more and less than 0.34 nm. Examples of graphite include natural graphite and artificial graphite. Natural graphite is preferred from the viewpoint of excellent input/output characteristics.
「非黒鉛質炭素」とは、充放電前又は放電された状態においてエックス線回折法により決定される(002)面の平均格子面間隔(d002)が0.34nm以上0.42nm以下の炭素材料をいう。非黒鉛質炭素としては、難黒鉛化性炭素や、易黒鉛化性炭素が挙げられる。非黒鉛質炭素としては、例えば、樹脂由来の材料、石油ピッチまたは石油ピッチ由来の材料、石油コークスまたは石油コークス由来の材料、植物由来の材料、アルコール由来の材料等が挙げられる。 "Non-graphitic carbon" refers to a carbon material having an average lattice spacing (d002) of 0.34 nm or more and 0.42 nm or less of ( 002 ) plane determined by X-ray diffraction before charging and discharging or in a discharged state. Examples of non-graphitic carbon include carbon that is difficult to graphitize and carbon that is easy to graphitize. Examples of non-graphitic carbon include resin-derived materials, petroleum pitch or petroleum pitch-derived materials, petroleum coke or petroleum coke-derived materials, plant-derived materials, and alcohol-derived materials.
ここで、黒鉛等の炭素材料の「放電された状態」とは、負極活物質である炭素材料から、充放電に伴い吸蔵放出可能なリチウムイオン等の電荷輸送イオンが十分に放出されるように放電された状態を意味する。例えば、負極活物質として炭素材料を含む負極を作用極として、リチウム金属(Li)電極を対極として用いた半電池において、開回路電圧が0.7V以上である状態である。 Here, the "discharged state" of a carbon material such as graphite means a state in which the carbon material, which is the negative electrode active material, is discharged so that charge transport ions such as lithium ions that can be absorbed and released during charging and discharging are sufficiently released. For example, in a half cell using a negative electrode containing a carbon material as the negative electrode active material as the working electrode and a lithium metal (Li) electrode as the counter electrode, the open circuit voltage is 0.7 V or more.
「難黒鉛化性炭素」とは、上記d002が0.36nm以上0.42nm以下の炭素材料をいう。 The term "non-graphitizable carbon" refers to a carbon material having the above d002 of 0.36 nm or more and 0.42 nm or less.
「易黒鉛化性炭素」とは、上記d002が0.34nm以上0.36nm未満の炭素材料をいう。 The term "graphitizable carbon" refers to a carbon material having the above d002 of 0.34 nm or more and less than 0.36 nm.
負極活物質は、通常、粒子(粉体)である。負極活物質の平均粒径は、例えば、1nm以上100μm以下とすることができる。負極活物質が炭素材料、チタン含有酸化物又はポリリン酸化合物である場合、その平均粒径は、1μm以上100μm以下であってもよい。負極活物質が、Si、Sn、Si酸化物、又は、Sn酸化物等である場合、その平均粒径は、1nm以上1μm以下であってもよい。負極活物質の平均粒径を上記下限以上とすることで、負極活物質の製造又は取り扱いが容易になる。負極活物質の平均粒径を上記上限以下とすることで、負極活物質層の電子伝導性が向上する。粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。粉砕方法及び分級方法は、例えば、上記正極で例示した方法から選択できる。負極活物質が金属Li等の金属である場合、負極活物質は、箔状であってもよい。 The negative electrode active material is usually a particle (powder). The average particle size of the negative electrode active material can be, for example, 1 nm or more and 100 μm or less. When the negative electrode active material is a carbon material, a titanium-containing oxide, or a polyphosphate compound, the average particle size may be 1 μm or more and 100 μm or less. When the negative electrode active material is Si, Sn, Si oxide, Sn oxide, or the like, the average particle size may be 1 nm or more and 1 μm or less. By setting the average particle size of the negative electrode active material to the above lower limit or more, the negative electrode active material can be easily manufactured or handled. By setting the average particle size of the negative electrode active material to the above upper limit or less, the electronic conductivity of the negative electrode active material layer is improved. In order to obtain powder with a predetermined particle size, a pulverizer, a classifier, or the like is used. The pulverizing method and the classifying method can be selected from, for example, the methods exemplified for the positive electrode. When the negative electrode active material is a metal such as metallic Li, the negative electrode active material may be in the form of a foil.
負極活物質層における負極活物質の含有量は、60質量%以上99質量%以下が好ましく、90質量%以上98質量%以下がより好ましい。負極活物質の含有量を上記の範囲とすることで、負極活物質層の高エネルギー密度化と製造性を両立できる。 The content of the negative electrode active material in the negative electrode active material layer is preferably 60% by mass or more and 99% by mass or less, and more preferably 90% by mass or more and 98% by mass or less. By setting the content of the negative electrode active material in the above range, it is possible to achieve both high energy density and manufacturability of the negative electrode active material layer.
導電剤、増粘剤、フィラー等の任意成分は、上記正極で例示した材料から選択できる。 Optional components such as conductive agents, thickeners, and fillers can be selected from the materials exemplified for the positive electrode above.
バインダとしては、例えば、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリアクリル、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子等が挙げられる。 Examples of binders include thermoplastic resins such as fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), polyethylene, polypropylene, polyacrylic, and polyimide; elastomers such as ethylene-propylene-diene rubber (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), and fluororubber; polysaccharide polymers, etc.
負極活物質層におけるバインダの含有量は、1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。バインダの含有量を上記の範囲とすることで、負極活物質を安定して保持することができる。 The binder content in the negative electrode active material layer is preferably 1% by mass or more and 10% by mass or less, and more preferably 3% by mass or more and 9% by mass or less. By setting the binder content within the above range, the negative electrode active material can be stably maintained.
(セパレータ)
セパレータは、公知のセパレータの中から適宜選択できる。セパレータとして、例えば、基材層のみからなるセパレータ、基材層の一方の面又は双方の面に耐熱粒子とバインダとを含む耐熱層が形成されたセパレータ等を使用することができる。セパレータの基材層の形状としては、例えば、織布、不織布、多孔質樹脂フィルム等が挙げられる。これらの形状の中でも、強度の観点から多孔質樹脂フィルムが好ましく、非水電解質の保液性の観点から不織布が好ましい。セパレータの基材層の材料としては、シャットダウン機能の観点から例えばポリエチレン、ポリプロピレン等のポリオレフィンが好ましく、耐酸化分解性の観点から例えばポリイミドやアラミド等が好ましい。セパレータの基材層として、これらの樹脂を複合した材料を用いてもよい。
(Separator)
The separator can be appropriately selected from known separators. For example, a separator consisting of only a substrate layer, a separator in which a heat-resistant layer containing heat-resistant particles and a binder is formed on one or both surfaces of the substrate layer, etc. can be used as the separator. Examples of the shape of the substrate layer of the separator include woven fabric, nonwoven fabric, and porous resin film. Among these shapes, a porous resin film is preferred from the viewpoint of strength, and a nonwoven fabric is preferred from the viewpoint of non-aqueous electrolyte retention. As the material of the substrate layer of the separator, polyolefins such as polyethylene and polypropylene are preferred from the viewpoint of shutdown function, and polyimide and aramid are preferred from the viewpoint of oxidation decomposition resistance. A material obtained by combining these resins may be used as the substrate layer of the separator.
耐熱層に含まれる耐熱粒子は、1気圧の空気雰囲気下で室温から500℃まで昇温したときの質量減少が5%以下であるものが好ましく、室温から800℃まで昇温したときの質量減少が5%以下であるものがさらに好ましい。質量減少が所定以下である材料として無機化合物が挙げられる。無機化合物として、例えば、酸化鉄、酸化ケイ素、酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の酸化物;窒化アルミニウム、窒化ケイ素等の窒化物;炭酸カルシウム等の炭酸塩;硫酸バリウム等の硫酸塩;フッ化カルシウム、フッ化バリウム、チタン酸バリウム等の難溶性のイオン結晶;シリコン、ダイヤモンド等の共有結合性結晶;タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。無機化合物として、これらの物質の単体又は複合体を単独で用いてもよく、2種以上を混合して用いてもよい。これらの無機化合物の中でも、非水電解質蓄電素子の安全性の観点から、酸化ケイ素、酸化アルミニウム、又はアルミノケイ酸塩が好ましい。 The heat-resistant particles contained in the heat-resistant layer preferably have a mass loss of 5% or less when heated from room temperature to 500°C under an air atmosphere at 1 atmosphere, and more preferably have a mass loss of 5% or less when heated from room temperature to 800°C. Examples of materials with a mass loss of a predetermined amount or less include inorganic compounds. Examples of inorganic compounds include oxides such as iron oxide, silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, and aluminosilicate; nitrides such as aluminum nitride and silicon nitride; carbonates such as calcium carbonate; sulfates such as barium sulfate; sparingly soluble ion crystals such as calcium fluoride, barium fluoride, and barium titanate; covalent crystals such as silicon and diamond; mineral resource-derived substances such as talc, montmorillonite, boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, and mica, or artificial products thereof. As the inorganic compound, these substances may be used alone or in the form of a complex, or two or more of them may be mixed and used. Among these inorganic compounds, silicon oxide, aluminum oxide, or aluminosilicates are preferred from the viewpoint of the safety of the nonaqueous electrolyte storage element.
セパレータの空孔率は、強度の観点から80体積%以下が好ましく、放電性能の観点から20体積%以上が好ましい。ここで、「空孔率」とは、体積基準の値であり、水銀ポロシメータでの測定値を意味する。 The porosity of the separator is preferably 80% by volume or less from the viewpoint of strength, and 20% by volume or more from the viewpoint of discharge performance. Here, "porosity" refers to a volume-based value measured using a mercury porosimeter.
セパレータとして、ポリマーと非水電解質とで構成されるポリマーゲルを用いてもよい。ポリマーとして、例えば、ポリアクリロニトリル、ポリエチレンオキシド、ポリプロピレンオキシド、ポリメチルメタアクリレート、ポリビニルアセテート、ポリビニルピロリドン、ポリフッ化ビニリデン等が挙げられる。ポリマーゲルを用いると、漏液を抑制する効果がある。セパレータとして、上述したような多孔質樹脂フィルム又は不織布等とポリマーゲルを併用してもよい。 As the separator, a polymer gel composed of a polymer and a non-aqueous electrolyte may be used. Examples of polymers include polyacrylonitrile, polyethylene oxide, polypropylene oxide, polymethyl methacrylate, polyvinyl acetate, polyvinylpyrrolidone, polyvinylidene fluoride, etc. Using a polymer gel has the effect of suppressing leakage. As the separator, a polymer gel may be used in combination with the porous resin film or nonwoven fabric as described above.
(非水電解質)
非水電解質としては、公知の非水電解質の中から適宜選択できる。非水電解質には、非水電解液を用いてもよい。非水電解液は、非水溶媒と、この非水溶媒に溶解されている電解質塩とを含む。
(Non-aqueous electrolyte)
The nonaqueous electrolyte may be appropriately selected from known nonaqueous electrolytes. The nonaqueous electrolyte may be a nonaqueous electrolyte solution. The nonaqueous electrolyte solution includes a nonaqueous solvent and an electrolyte salt dissolved in the nonaqueous solvent.
非水溶媒としては、公知の非水溶媒の中から適宜選択できる。非水溶媒としては、環状カーボネート、鎖状カーボネート、カルボン酸エステル、リン酸エステル、スルホン酸エステル、エーテル、アミド、ニトリル等が挙げられる。非水溶媒として、これらの化合物に含まれる水素原子の一部がハロゲンに置換されたものを用いてもよい。 The non-aqueous solvent can be appropriately selected from known non-aqueous solvents. Examples of non-aqueous solvents include cyclic carbonates, chain carbonates, carboxylate esters, phosphate esters, sulfonate esters, ethers, amides, and nitriles. Non-aqueous solvents in which some of the hydrogen atoms contained in these compounds are substituted with halogens may also be used.
環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、クロロエチレンカーボネート、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)、スチレンカーボネート、1-フェニルビニレンカーボネート、1,2-ジフェニルビニレンカーボネート等が挙げられる。これらの中でもECが好ましい。 Examples of cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinylethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), difluoroethylene carbonate (DFEC), styrene carbonate, 1-phenylvinylene carbonate, 1,2-diphenylvinylene carbonate, etc. Among these, EC is preferred.
鎖状カーボネートとしては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジフェニルカーボネート、トリフルオロエチルメチルカーボネート、ビス(トリフルオロエチル)カーボネート等が挙げられる。これらの中でもEMCが好ましい。 Examples of chain carbonates include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diphenyl carbonate, trifluoroethyl methyl carbonate, bis(trifluoroethyl) carbonate, etc. Among these, EMC is preferred.
非水溶媒として、環状カーボネート又は鎖状カーボネートを用いることが好ましく、環状カーボネートと鎖状カーボネートとを併用することがより好ましい。環状カーボネートを用いることで、電解質塩の解離を促進して非水電解液のイオン伝導度を向上させることができる。鎖状カーボネートを用いることで、非水電解液の粘度を低く抑えることができる。環状カーボネートと鎖状カーボネートとを併用する場合、環状カーボネートと鎖状カーボネートとの体積比率(環状カーボネート:鎖状カーボネート)としては、例えば、5:95から50:50の範囲とすることが好ましい。 As the non-aqueous solvent, it is preferable to use a cyclic carbonate or a chain carbonate, and it is more preferable to use a combination of a cyclic carbonate and a chain carbonate. By using a cyclic carbonate, it is possible to promote dissociation of the electrolyte salt and improve the ionic conductivity of the non-aqueous electrolyte. By using a chain carbonate, it is possible to keep the viscosity of the non-aqueous electrolyte low. When a cyclic carbonate and a chain carbonate are used in combination, it is preferable that the volume ratio of the cyclic carbonate to the chain carbonate (cyclic carbonate:chain carbonate) is, for example, in the range of 5:95 to 50:50.
電解質塩としては、公知の電解質塩から適宜選択できる。電解質塩としては、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、オニウム塩等が挙げられる。これらの中でもリチウム塩が好ましい。 The electrolyte salt can be appropriately selected from known electrolyte salts. Examples of the electrolyte salt include lithium salts, sodium salts, potassium salts, magnesium salts, onium salts, etc. Among these, lithium salts are preferred.
リチウム塩としては、LiPF6、LiPO2F2、LiBF4、LiClO4、LiN(SO2F)2等の無機リチウム塩、リチウムビス(オキサレート)ボレート(LiBOB)、リチウムジフルオロオキサレートボレート(LiFOB)、リチウムビス(オキサレート)ジフルオロホスフェート(LiFOP)等のシュウ酸リチウム塩、LiSO3CF3、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiN(SO2CF3)(SO2C4F9)、LiC(SO2CF3)3、LiC(SO2C2F5)3等のハロゲン化炭化水素基を有するリチウム塩等が挙げられる。これらの中でも、無機リチウム塩が好ましく、LiPF6がより好ましい。 Examples of the lithium salt include inorganic lithium salts such as LiPF6 , LiPO2F2 , LiBF4 , LiClO4 , and LiN( SO2F ) 2 ; lithium oxalate salts such as lithium bis(oxalate)borate (LiBOB), lithium difluorooxalateborate (LiFOB), and lithium bis(oxalate)difluorophosphate ( LiFOP ) ; and lithium salts having a halogenated hydrocarbon group such as LiSO3CF3 , LiN( SO2CF3 ) 2 , LiN( SO2C2F5 ) 2 , LiN ( SO2CF3 ) ( SO2C4F9 ) , LiC( SO2CF3 ) 3 , and LiC( SO2C2F5 ) 3 . Among these, inorganic lithium salts are preferred, and LiPF6 is more preferred.
非水電解液における電解質塩の含有量は、20℃1気圧下において、0.1mol/dm3以上2.5mol/dm3以下であると好ましく、0.3mol/dm3以上2.0mol/dm3以下であるとより好ましく、0.5mol/dm3以上1.7mol/dm3以下であるとさらに好ましく、0.7mol/dm3以上1.5mol/dm3以下であると特に好ましい。電解質塩の含有量を上記の範囲とすることで、非水電解液のイオン伝導度を高めることができる。 The content of the electrolyte salt in the nonaqueous electrolyte solution is preferably 0.1 mol/dm 3 or more and 2.5 mol/dm 3 or less, more preferably 0.3 mol/dm 3 or more and 2.0 mol/dm 3 or less, even more preferably 0.5 mol/dm 3 or more and 1.7 mol/dm 3 or less, and particularly preferably 0.7 mol/dm 3 or more and 1.5 mol/dm 3 or less, at 20° C. and 1 atmospheric pressure. By setting the content of the electrolyte salt in the above range, the ionic conductivity of the nonaqueous electrolyte solution can be increased.
非水電解液は、非水溶媒及び電解質塩以外に、添加剤を含んでもよい。添加剤としては、例えば、リチウムビス(オキサレート)ボレート(LiBOB)、リチウムジフルオロオキサレートボレート(LiFOB)、リチウムビス(オキサレート)ジフルオロホスフェート(LiFOP)等のシュウ酸塩;リチウムビス(フルオロスルホニル)イミド(LiFSI)等のイミド塩;ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分ハロゲン化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等のハロゲン化アニソール化合物;ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物;亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、メタンスルホン酸メチル、ブスルファン、トルエンスルホン酸メチル、硫酸ジメチル、硫酸エチレン、スルホラン、ジメチルスルホン、ジエチルスルホン、ジメチルスルホキシド、ジエチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルフィド、4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド、1,3-プロペンスルトン、1,3-プロパンスルトン、1,4-ブタンスルトン、1,4-ブテンスルトン、パーフルオロオクタン、ホウ酸トリストリメチルシリル、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリル、モノフルオロリン酸リチウム、ジフルオロリン酸リチウム等が挙げられる。これら添加剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The non-aqueous electrolyte may contain additives in addition to the non-aqueous solvent and electrolyte salt. Examples of additives include oxalates such as lithium bis(oxalate)borate (LiBOB), lithium difluorooxalateborate (LiFOB), and lithium bis(oxalate)difluorophosphate (LiFOP); imide salts such as lithium bis(fluorosulfonyl)imide (LiFSI); aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran; partial halides of the above aromatic compounds such as 2-fluorobiphenyl, o-cyclohexylfluorobenzene, and p-cyclohexylfluorobenzene; halogenated anisole compounds such as 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole, and 3,5-difluoroanisole; vinylene carbonate, methylvinylene carbonate, ethylvinylene carbonate, succinic anhydride, glutaric anhydride, and maleic anhydride. , citraconic anhydride, glutaconic anhydride, itaconic anhydride, cyclohexanedicarboxylic anhydride; ethylene sulfite, propylene sulfite, dimethyl sulfite, methyl methanesulfonate, busulfan, methyl toluenesulfonate, dimethyl sulfate, ethylene sulfate, sulfolane, dimethyl sulfone, diethyl sulfone, dimethyl sulfoxide, diethyl sulfoxide, tetramethylene sulfoxide, diphenyl sulfide, 4,4'-bis(2,2-dioxo-1,3,2-dioxathiolane). , 4-methylsulfonyloxymethyl-2,2-dioxo-1,3,2-dioxathiolane, thioanisole, diphenyl disulfide, dipyridinium disulfide, 1,3-propene sultone, 1,3-propane sultone, 1,4-butane sultone, 1,4-butene sultone, perfluorooctane, tristrimethylsilyl borate, tristrimethylsilyl phosphate, tetrakistrimethylsilyl titanate, lithium monofluorophosphate, lithium difluorophosphate, etc. These additives may be used alone or in combination of two or more.
非水電解液に含まれる添加剤の含有量は、非水電解液全体の質量に対して0.01質量%以上10質量%以下であると好ましく、0.1質量%以上7質量%以下であるとより好ましく、0.2質量%以上5質量%以下であるとさらに好ましく、0.3質量%以上3質量%以下であると特に好ましい。添加剤の含有量を上記の範囲とすることで、高温保存後の容量維持性能又はサイクル性能を向上させたり、安全性をより向上させたりすることができる。 The content of the additives contained in the non-aqueous electrolyte is preferably 0.01% by mass to 10% by mass, more preferably 0.1% by mass to 7% by mass, even more preferably 0.2% by mass to 5% by mass, and particularly preferably 0.3% by mass to 3% by mass. By setting the content of the additives within the above range, it is possible to improve the capacity retention performance or cycle performance after high-temperature storage, and to further improve safety.
非水電解質には、固体電解質を用いてもよく、非水電解液と固体電解質とを併用してもよい。 A solid electrolyte may be used as the non-aqueous electrolyte, or a non-aqueous electrolyte solution and a solid electrolyte may be used in combination.
固体電解質としては、リチウム、ナトリウム、カルシウム等のイオン伝導性を有し、常温(例えば15℃から25℃)において固体である任意の材料から選択できる。固体電解質としては、例えば、硫化物固体電解質、酸化物固体電解質、窒化物固体電解質、ポリマー固体電解質、ゲルポリマー電解質等が挙げられる。 The solid electrolyte can be selected from any material that has ionic conductivity such as lithium, sodium, calcium, etc., and is solid at room temperature (e.g., 15°C to 25°C). Examples of the solid electrolyte include sulfide solid electrolytes, oxide solid electrolytes, nitride solid electrolytes, polymer solid electrolytes, and gel polymer electrolytes.
硫化物固体電解質としては、リチウムイオン二次電池の場合、例えば、Li2S-P2S5、LiI-Li2S-P2S5、Li10Ge-P2S12等が挙げられる。 In the case of a lithium ion secondary battery, examples of the sulfide solid electrolyte include Li 2 S—P 2 S 5 , LiI—Li 2 S—P 2 S 5 , and Li 10 Ge—P 2 S 12 .
本実施形態の非水電解質蓄電素子の形状については特に限定されるものではなく、例えば、円筒型電池、角型電池、扁平型電池、コイン型電池、ボタン型電池等が挙げられる。 The shape of the nonaqueous electrolyte storage element of this embodiment is not particularly limited, and examples include cylindrical batteries, square batteries, flat batteries, coin batteries, button batteries, etc.
図1に角型電池の一例としての非水電解質蓄電素子1を示す。なお、同図は、容器内部を透視した図としている。セパレータを挟んで巻回された正極及び負極を有する電極体2が角型の容器3に収納される。正極は正極リード41を介して正極端子4と電気的に接続されている。負極は負極リード51を介して負極端子5と電気的に接続されている。
Figure 1 shows a nonaqueous
<蓄電装置の構成>
本実施形態の非水電解質蓄電素子は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源、パーソナルコンピュータ、通信端末等の電子機器用電源、又は電力貯蔵用電源等に、複数の非水電解質蓄電素子を集合して構成した蓄電ユニット(バッテリーモジュール)を備える蓄電装置として搭載することができる。この場合、蓄電装置に含まれる少なくとも一つの非水電解質蓄電素子に対して、本発明の技術が適用されていればよい。
図2に、電気的に接続された二以上の非水電解質蓄電素子1が集合した蓄電ユニット20をさらに集合した蓄電装置30の一例を示す。蓄電装置30は、二以上の非水電解質蓄電素子1を電気的に接続するバスバ(図示せず)、二以上の蓄電ユニット20を電気的に接続するバスバ(図示せず)等を備えていてもよい。蓄電ユニット20又は蓄電装置30は、一以上の非水電解質蓄電素子1の状態を監視する状態監視装置(図示せず)を備えていてもよい。
<Configuration of Power Storage Device>
The nonaqueous electrolyte storage element of the present embodiment can be mounted as an electricity storage device including an electricity storage unit (battery module) constituted by assembling a plurality of nonaqueous electrolyte storage elements in an automobile power source such as an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), etc., a power source for electronic devices such as a personal computer and a communication terminal, or a power storage power source, etc. In this case, it is sufficient that the technology of the present invention is applied to at least one of the nonaqueous electrolyte storage elements included in the electricity storage device.
2 shows an example of an
<非水電解質蓄電素子の製造方法>
本実施形態の非水電解質蓄電素子の製造方法は、公知の方法から適宜選択できる。当該製造方法は、例えば、電極体を準備することと、非水電解質を準備することと、電極体及び非水電解質を容器に収容することと、を備える。電極体を準備することは、正極及び負極を準備することと、セパレータを介して正極及び負極を重ねる又は巻回することにより電極体を形成することとを備える。
<Method of Manufacturing Nonaqueous Electrolyte Storage Element>
The method for producing the nonaqueous electrolyte storage element of the present embodiment can be appropriately selected from known methods. The method for producing the nonaqueous electrolyte storage element of the present embodiment includes, for example, preparing an electrode body, preparing a nonaqueous electrolyte, and housing the electrode body and the nonaqueous electrolyte in a container. The preparation of the electrode body includes preparing a positive electrode and a negative electrode, and stacking or winding the positive electrode and the negative electrode with a separator interposed therebetween to form the electrode body.
正極の作製は、例えば正極基材に直接又は中間層を介して、正極合剤ペーストを塗布し、乾燥させることにより行うことができる。乾燥後、必要に応じてプレス等を行ってもよい。正極合剤ペーストには、正極活物質、バインダ及び任意成分である導電剤等、正極活物質層を構成する各成分が含まれる。正極合剤ペーストには、通常さらに分散媒が含まれる。上記正極活物質の表面に、タングステン元素、ホウ素元素、硫黄元素、リン元素、ケイ素元素、チタン元素、窒素元素、ゲルマニウム元素、アルミニウム元素、ジルコニウム元素又はこれらの組み合わせである異種元素を存在させる方法としては、例えば、正極活物質粒子を上記異種元素のイオン等を含有する溶液に浸漬する方法や、上記異種元素のイオン等を含有する溶液を正極活物質粒子に噴霧する方法、正極活物質粒子と上記異種元素を含む化合物とを混合する方法等を挙げることができる。上記異種元素を存在させる方法の後に熱処理をおこなってもよい。また、上記異種元素を存在させる方法は、正極合剤ペーストを調製する前に行うことができる。 The positive electrode can be produced, for example, by applying a positive electrode mixture paste directly or through an intermediate layer to the positive electrode substrate and drying it. After drying, pressing or the like may be performed as necessary. The positive electrode mixture paste contains each component constituting the positive electrode active material layer, such as a positive electrode active material, a binder, and an optional conductive agent. The positive electrode mixture paste usually further contains a dispersion medium. Examples of methods for making a different element such as tungsten element, boron element, sulfur element, phosphorus element, silicon element, titanium element, nitrogen element, germanium element, aluminum element, zirconium element, or a combination thereof present on the surface of the positive electrode active material include a method of immersing positive electrode active material particles in a solution containing ions of the different elements, a method of spraying a solution containing ions of the different elements onto positive electrode active material particles, and a method of mixing positive electrode active material particles with a compound containing the different elements. Heat treatment may be performed after the method for making the different elements present. In addition, the method of making the above-mentioned different elements present can be carried out before preparing the positive electrode mixture paste.
非水電解質を容器に収容することは、公知の方法から適宜選択できる。例えば、非水電解質に非水電解液を用いる場合、容器に形成された注入口から非水電解液を注入した後、注入口を封止すればよい。非水電解質蓄電素子を構成する各部材の詳細は上述の通りである。 The method of storing the nonaqueous electrolyte in the container can be appropriately selected from known methods. For example, when a nonaqueous electrolyte solution is used as the nonaqueous electrolyte, the nonaqueous electrolyte solution can be injected through an injection port formed in the container, and then the injection port can be sealed. Details of each component constituting the nonaqueous electrolyte storage element are as described above.
本実施形態の非水電解質蓄電素子は、高温環境下での保存後における容量維持率の低下を抑制できる。 The nonaqueous electrolyte storage element of this embodiment can suppress the decrease in capacity retention rate after storage in a high-temperature environment.
<その他の実施形態>
尚、本発明の非水電解質蓄電素子は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもよい。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成又は周知技術に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。また、ある実施形態の構成に対して周知技術を付加することができる。
<Other embodiments>
The nonaqueous electrolyte storage element of the present invention is not limited to the above-described embodiment, and various modifications may be made without departing from the scope of the present invention. For example, the configuration of one embodiment may be added to the configuration of another embodiment, and part of the configuration of one embodiment may be replaced with the configuration of another embodiment or a well-known technique. Furthermore, part of the configuration of one embodiment may be deleted. Also, a well-known technique may be added to the configuration of one embodiment.
上記実施形態では、非水電解質蓄電素子が充放電可能な非水電解質二次電池(例えばリチウムイオン二次電池)として用いられる場合について説明したが、非水電解質蓄電素子の種類、形状、寸法、容量等は任意である。本発明は、種々の二次電池、電気二重層キャパシタ又はリチウムイオンキャパシタ等のキャパシタにも適用できる。 In the above embodiment, the nonaqueous electrolyte storage element is used as a chargeable and dischargeable nonaqueous electrolyte secondary battery (e.g., a lithium ion secondary battery), but the type, shape, size, capacity, etc. of the nonaqueous electrolyte storage element are arbitrary. The present invention can also be applied to various secondary batteries, electric double layer capacitors, lithium ion capacitors, and other capacitors.
上記実施形態では、正極及び負極がセパレータを介して積層された電極体について説明したが、電極体は、セパレータを備えなくてもよい。例えば、正極又は負極の活物質層上に導電性を有さない層が形成された状態で、正極及び負極が直接接してもよい。 In the above embodiment, the electrode body in which the positive electrode and the negative electrode are stacked with a separator interposed therebetween has been described, but the electrode body may not include a separator. For example, the positive electrode and the negative electrode may be in direct contact with each other in a state in which a non-conductive layer is formed on the active material layer of the positive electrode or the negative electrode.
以下、実施例によって本発明をさらに具体的に説明する。本発明は以下の実施例に限定されない。 The present invention will be described in more detail below with reference to examples. The present invention is not limited to the following examples.
[実施例1]
(正極の作製)
正極活物質であるLiNi0.6Co0.2Mn0.2O2(NCM622)、導電剤であるアセチレンブラック(AB)、バインダである高分子量型ポリフッ化ビニリデン(重量平均分子量80万以上)及び分散媒であるN-メチルピロリドン(NMP)を用いて正極合剤ペーストを調製した。正極活物質、導電剤及びバインダの質量比率は95:4:1(固形分換算)とした。また、正極活物質は、予め表面に異種元素としてホウ素元素を存在させたものを用い、ホウ素化合物により、正極活物質の表面の少なくとも一部が被覆(コート)されるようにした。異種元素であるホウ素元素の含有量は、正極活物質に含まれるリチウム元素と異種元素とを除く金属元素に対して1.0mol%であった。正極基材としての平均厚さ15μmのアルミニウム箔(A1085)の両面に正極合剤ペーストを塗布し、乾燥した。その後、ロールプレスを行い、正極を得た。正極活物質層の塗布質量は2.0g/100cm2であり、平均厚さは120μmであった。なお、正極活物質層の塗布質量及び平均厚さは、正極基材の両面にそれぞれ設けた2層の合計の値である。また、上記測定方法により測定した正極の引張伸度[%]は、0.2%であった。
[Example 1]
(Preparation of Positive Electrode)
A positive electrode mixture paste was prepared using LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM622) as a positive electrode active material, acetylene black (AB) as a conductive agent, high molecular weight polyvinylidene fluoride (weight average molecular weight 800,000 or more) as a binder, and N-methylpyrrolidone (NMP) as a dispersion medium. The mass ratio of the positive electrode active material, the conductive agent, and the binder was 95:4:1 (solid content conversion). In addition, the positive electrode active material was used in which boron element was present as a different element on the surface in advance, and at least a part of the surface of the positive electrode active material was coated with the boron compound. The content of the boron element as a different element was 1.0 mol% with respect to the metal elements excluding the lithium element and the different elements contained in the positive electrode active material. The positive electrode mixture paste was applied to both sides of an aluminum foil (A1085) with an average thickness of 15 μm as a positive electrode substrate, and dried. Then, roll pressing was performed to obtain a positive electrode. The coating mass of the positive electrode active material layer was 2.0 g/100 cm2 , and the average thickness was 120 μm. The coating mass and average thickness of the positive electrode active material layer are the total values of the two layers provided on both sides of the positive electrode substrate. The tensile elongation [%] of the positive electrode measured by the above measurement method was 0.2%.
(負極の作製)
負極活物質である黒鉛、バインダであるスチレンブタジエンゴム(SBR)、増粘剤であるカルボキシメチルセルロース(CMC)及び分散媒である水を混合して負極合剤ペーストを調製した。なお、負極活物質、バインダ及び増粘剤の質量比率は97:2:1(固形分換算)とした。負極基材としての銅箔の両面に負極合剤ペーストを塗布し、乾燥した。その後、ロールプレスを行い、負極を得た。負極活物質層の塗布質量は1.0g/100cm2であった。なお、負極活物質層の塗布質量は、負極基材の両面にそれぞれ設けた2層の合計の値である。
(Preparation of negative electrode)
A negative electrode mixture paste was prepared by mixing graphite as a negative electrode active material, styrene butadiene rubber (SBR) as a binder, carboxymethyl cellulose (CMC) as a thickener, and water as a dispersion medium. The mass ratio of the negative electrode active material, binder, and thickener was 97:2:1 (solid content conversion). The negative electrode mixture paste was applied to both sides of copper foil as a negative electrode substrate, and dried. Then, roll pressing was performed to obtain a negative electrode. The coating mass of the negative electrode active material layer was 1.0 g/100 cm 2. The coating mass of the negative electrode active material layer is the total value of the two layers provided on both sides of the negative electrode substrate.
(非水電解質)
エチレンカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを30:35:35の体積比率で混合した溶媒に、1.0mol/dm3の濃度でLiPF6を溶解させ、非水電解質を得た。
(Non-aqueous electrolyte)
LiPF6 was dissolved at a concentration of 1.0 mol/ dm3 in a solvent in which ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate were mixed in a volume ratio of 30:35:35 to obtain a non-aqueous electrolyte.
(セパレータ)
セパレータとして、厚さが20μmのポリオレフィン製微多孔膜を用いた。
(Separator)
As the separator, a polyolefin microporous film having a thickness of 20 μm was used.
(非水電解質蓄電素子の組み立て)
上記正極と負極とセパレータとを用いて巻回型の電極体を得た。電極体を角型の容器に収納し、非水電解質を注入して封口して、実施例1の非水電解質蓄電素子を得た。
(Assembly of non-aqueous electrolyte storage element)
The positive electrode, the negative electrode, and the separator were used to obtain a wound electrode body, which was then housed in a rectangular container, into which a nonaqueous electrolyte was poured and the container was sealed to obtain a nonaqueous electrolyte storage element of Example 1.
[実施例2から実施例4及び比較例1]
バインダである高分子量型ポリフッ化ビニリデンの含有量及び正極の引張伸度を表1に記載の通りに変更した以外は実施例1と同様にして、実施例2から実施例4及び比較例1の各非水電解質蓄電素子を得た。なお、正極の引張伸度は、バインダの含有量を変更することにより調整した。また、正極合剤ペーストにおけるバインダの含有量は表1に記載の通りとし、導電剤の含有量は4質量%とし、正極活物質の含有量は残部とした。
[Examples 2 to 4 and Comparative Example 1]
The nonaqueous electrolyte storage elements of Examples 2 to 4 and Comparative Example 1 were obtained in the same manner as in Example 1, except that the content of the high molecular weight polyvinylidene fluoride binder and the tensile elongation of the positive electrode were changed as shown in Table 1. The tensile elongation of the positive electrode was adjusted by changing the content of the binder. The content of the binder in the positive electrode mixture paste was as shown in Table 1, the content of the conductive agent was 4 mass%, and the content of the positive electrode active material was the remainder.
[実施例5]
正極活物質としてLiNi0.6Co0.2Mn0.2O2(NCM622)をLiNi0.5Co0.2Mn0.3O2(NCM523)に変更した以外は実施例1と同様にして、実施例5の非水電解質蓄電素子を得た。
[Example 5]
A nonaqueous electrolyte storage element of Example 5 was obtained in the same manner as in Example 1 , except that the positive electrode active material was changed from LiNi0.6Co0.2Mn0.2O2 ( NCM622 ) to LiNi0.5Co0.2Mn0.3O2 ( NCM523 ).
[実施例6]
正極活物質としてLiNi0.6Co0.2Mn0.2O2(NCM622)をLiNi0.8Co0.1Mn0.1O2(NCM811)に変更した以外は実施例1と同様にして、実施例6の非水電解質蓄電素子を得た。
[Example 6]
A nonaqueous electrolyte storage element of Example 6 was obtained in the same manner as in Example 1 , except that the positive electrode active material was changed from LiNi0.6Co0.2Mn0.2O2 ( NCM622 ) to LiNi0.8Co0.1Mn0.1O2 ( NCM811 ).
[実施例7から実施例10]
正極基材としてアルミニウム箔(A1085)の代わりにアルミニウム合金箔(A3003)を用い、バインダの含有量及び正極の引張伸度を表1に記載の通りに変更した以外は実施例1と同様にして、実施例7から実施例10の非水電解質蓄電素子を得た。なお、正極の引張伸度は、バインダの含有量を変更することにより調整した。また、正極合剤ペーストにおけるバインダの含有量は表1に記載の通りとし、導電剤の含有量は4質量%とし、正極活物質の含有量は残部とした。
[Examples 7 to 10]
Non-aqueous electrolyte storage elements of Examples 7 to 10 were obtained in the same manner as in Example 1, except that an aluminum alloy foil (A3003) was used instead of an aluminum foil (A1085) as the positive electrode substrate, and the binder content and the tensile elongation of the positive electrode were changed as shown in Table 1. The tensile elongation of the positive electrode was adjusted by changing the binder content. The binder content in the positive electrode mixture paste was as shown in Table 1, the conductive agent content was 4 mass%, and the positive electrode active material content was the remainder.
[比較例2]
正極活物質の表面に異種元素が存在しないこと以外は実施例2と同様にして、比較例2の非水電解質蓄電素子を得た。
[Comparative Example 2]
A nonaqueous electrolyte storage element of Comparative Example 2 was obtained in the same manner as in Example 2, except that no different element was present on the surface of the positive electrode active material.
[比較例3]
バインダとして低分子量型ポリフッ化ビニリデン(重量平均分子量50万以上80万未満)を用い、引張伸度を表1に記載の通りに変更した以外は比較例1と同様にして、比較例3の非水電解質蓄電素子を得た。なお、正極の引張伸度は、バインダの種類を変更することにより調整した。
[Comparative Example 3]
A nonaqueous electrolyte storage element of Comparative Example 3 was obtained in the same manner as Comparative Example 1, except that a low molecular weight polyvinylidene fluoride (weight average molecular weight of 500,000 or more and less than 800,000) was used as the binder and the tensile elongation was changed as shown in Table 1. The tensile elongation of the positive electrode was adjusted by changing the type of binder.
[比較例4]
正極活物質の表面に異種元素が存在しないこと以外は比較例3と同様にして、比較例4の非水電解質蓄電素子を得た。
[Comparative Example 4]
A nonaqueous electrolyte storage element of Comparative Example 4 was obtained in the same manner as in Comparative Example 3, except that no different element was present on the surface of the positive electrode active material.
[比較例5]
バインダとして低分子量型ポリフッ化ビニリデン(重量平均分子量50万以上80万未満)を用い、正極活物質、導電剤及びバインダの質量比率を93.5:4:2.5(固形分換算)としたこと以外は実施例1と同様にして正極合剤ペーストを調製した。正極基材としての平均厚さ15μmのアルミニウム箔(A1085)の両面に正極合剤ペーストを塗布し、乾燥した。しかしながら、ロールプレスを行うと正極活物質層が正極基材から剥離し、正極基材との密着が確保できなかったため、比較例5の正極及び非水電解質蓄電素子を作製することができなかった。
[Comparative Example 5]
A positive electrode mixture paste was prepared in the same manner as in Example 1, except that a low molecular weight polyvinylidene fluoride (weight average molecular weight of 500,000 or more and less than 800,000) was used as the binder, and the mass ratio of the positive electrode active material, the conductive agent and the binder was 93.5:4:2.5 (solid content equivalent). The positive electrode mixture paste was applied to both sides of an aluminum foil (A1085) having an average thickness of 15 μm as a positive electrode substrate, and dried. However, when the roll press was performed, the positive electrode active material layer peeled off from the positive electrode substrate, and the adhesion with the positive electrode substrate could not be ensured, so the positive electrode and nonaqueous electrolyte storage element of Comparative Example 5 could not be produced.
[比較例6]
正極基材としてアルミニウム箔(A1085)の代わりにアルミニウム合金箔(A3003)を用いた以外は比較例1と同様にして、比較例6の非水電解質蓄電素子を得た。
[Comparative Example 6]
A nonaqueous electrolyte storage element of Comparative Example 6 was obtained in the same manner as in Comparative Example 1, except that an aluminum alloy foil (A3003) was used instead of the aluminum foil (A1085) as the positive electrode substrate.
[比較例7]
正極基材としてアルミニウム箔(A1085)の代わりにアルミニウム合金箔(A3003)を用いた以外は比較例2と同様にして、比較例7の非水電解質蓄電素子を得た。
[Comparative Example 7]
A nonaqueous electrolyte storage element of Comparative Example 7 was obtained in the same manner as in Comparative Example 2, except that an aluminum alloy foil (A3003) was used instead of the aluminum foil (A1085) as the positive electrode substrate.
[比較例8]
正極基材としてアルミニウム箔(A1085)の代わりにアルミニウム合金箔(A3003)を用いた以外は比較例3と同様にして、比較例8の非水電解質蓄電素子を得た。
[Comparative Example 8]
A nonaqueous electrolyte storage element of Comparative Example 8 was obtained in the same manner as in Comparative Example 3, except that an aluminum alloy foil (A3003) was used instead of the aluminum foil (A1085) as the positive electrode substrate.
[比較例9]
正極基材としてアルミニウム箔(A1085)の代わりにアルミニウム合金箔(A3003)を用いた以外は比較例4と同様にして、比較例9の非水電解質蓄電素子を得た。
[Comparative Example 9]
A nonaqueous electrolyte storage element of Comparative Example 9 was obtained in the same manner as in Comparative Example 4, except that an aluminum alloy foil (A3003) was used instead of the aluminum foil (A1085) as the positive electrode substrate.
[比較例10]
正極基材としてアルミニウム箔(A1085)の代わりにアルミニウム合金箔(A3003)を用いた以外は比較例5と同様にして、正極基材としての平均厚さ15μmのアルミニウム合金箔(A3003)の両面に正極合剤ペーストを塗布し、乾燥した。しかしながら、ロールプレスを行うと正極活物質層が正極基材から剥離し、正極基材との密着が確保できなかったため、比較例10の正極及び非水電解質蓄電素子を作製することができなかった。
[Comparative Example 10]
Except for using an aluminum alloy foil (A3003) instead of the aluminum foil (A1085) as the positive electrode substrate, the positive electrode mixture paste was applied to both sides of an aluminum alloy foil (A3003) having an average thickness of 15 μm as the positive electrode substrate, and then dried in the same manner as in Comparative Example 5. However, when roll pressing was performed, the positive electrode active material layer peeled off from the positive electrode substrate, and adhesion to the positive electrode substrate could not be ensured, so that the positive electrode and nonaqueous electrolyte storage element of Comparative Example 10 could not be produced.
[評価]
(初期放電容量の測定)
得られた実施例1から実施例10、比較例1から比較例4、及び比較例6から比較例9の各非水電解質蓄電素子について、25℃の温度環境下、充電電流0.1Cで4.2Vまで定電流充電を行った後、4.2Vで定電圧充電をおこなった。充電の終了条件は総充電時間が15時間になるまでとした。10分間の休止時間を設けた後、放電電流0.1Cで2.75Vまで定電流放電をおこない、10分間の休止時間を設けた。続いて、充電電流1.0Cで4.2Vまで定電流充電を行った後、4.2Vで定電圧充電をおこなった。充電の終了条件は総充電時間が3時間になるまでとした。10分間の休止時間を設けた後、放電電流1.0Cで2.75Vまで定電流放電をおこなった。この放電電流1.0Cでの放電容量を「初期放電容量」とした。
[evaluation]
(Measurement of initial discharge capacity)
For each of the obtained nonaqueous electrolyte storage elements of Example 1 to Example 10, Comparative Example 1 to Comparative Example 4, and Comparative Example 6 to Comparative Example 9, constant current charging was performed at a charging current of 0.1C to 4.2V in a temperature environment of 25°C, and then constant voltage charging was performed at 4.2V. The charging termination condition was set to a total charging time of 15 hours. After a 10-minute rest period, constant current discharging was performed at a discharge current of 0.1C to 2.75V, and a 10-minute rest period was set. Subsequently, constant current charging was performed at a charging current of 1.0C to 4.2V, and then constant voltage charging was performed at 4.2V. The charging termination condition was set to a total charging time of 3 hours. After a 10-minute rest period, constant current discharging was performed at a discharge current of 1.0C to 2.75V. The discharge capacity at this discharge current of 1.0C was set as the "initial discharge capacity".
(高温環境下で保存後の容量維持率)
上記初期放電容量の測定後の実施例1から実施例10、比較例1から比較例4、及び比較例6から比較例9の各非水電解質蓄電素子について、25℃の温度環境下、充電電流1.0Cで4.2Vまで定電流充電したのちに、4.2Vで定電圧充電した。充電の終了条件は、充電電流が0.2Cになるまでとした。このようにして充電した後、60℃の恒温槽内にて14日間静置した。14日経過後、上記各非水電解質蓄電素子を、25℃の環境下で3時間静置したのちに、放電電流1.0Cで2.75Vまで定電流放電した。このときの放電容量を「高温環境下で保存後の放電容量」とした。上記初期放電容量に対する高温環境下での保存後の放電容量の百分率を「高温環境下で保存後の容量維持率[%]」とした。高温環境下で保存後の容量維持率を表1に示す。
(Capacity retention rate after storage in high temperature environment)
After the measurement of the initial discharge capacity, each of the nonaqueous electrolyte storage elements of Examples 1 to 10, Comparative Examples 1 to 4, and Comparative Examples 6 to 9 was charged at a constant current of 1.0 C to 4.2 V in a temperature environment of 25 ° C., and then charged at a constant voltage of 4.2 V. The charging termination condition was that the charging current was until the charging current reached 0.2 C. After charging in this manner, the element was left standing in a thermostatic chamber at 60 ° C. for 14 days. After 14 days had passed, each of the nonaqueous electrolyte storage elements was left standing in a 25 ° C. environment for 3 hours, and then discharged at a constant current of 1.0 C to 2.75 V. The discharge capacity at this time was defined as "discharge capacity after storage in a high temperature environment". The percentage of the discharge capacity after storage in a high temperature environment relative to the initial discharge capacity was defined as "capacity retention rate [%] after storage in a high temperature environment". The capacity retention rate after storage in a high temperature environment is shown in Table 1.
表1に示されるように、正極活物質が、α-NaFeO2型結晶構造を有し、ニッケル元素と、コバルト元素と、アルミニウム元素及びマンガン元素の少なくとも一方とを含むリチウム遷移金属複合酸化物を含有し、正極活物質の表面に異種元素が存在し、引張伸度が1.0%以下である正極を備える実施例1から実施例10は、正極基材の種類によらず比較例1から比較例4及び比較例6から比較例9と比較して高温環境下で保存後の容量維持率の低下が抑制されていることがわかる。 As shown in Table 1, in Examples 1 to 10 in which the positive electrode active material has an α-NaFeO 2 type crystal structure, contains a lithium transition metal composite oxide containing nickel, cobalt, and at least one of aluminum and manganese, has a different element present on the surface of the positive electrode active material, and is provided with a positive electrode having a tensile elongation of 1.0% or less, it is understood that, regardless of the type of positive electrode substrate, the decrease in capacity retention rate after storage in a high temperature environment is suppressed compared to Comparative Examples 1 to 4 and Comparative Examples 6 to 9.
バインダの含有量が大きい比較例1、比較例3、比較例6及び比較例8は、高分子量型バインダと低分子量型バインダのどちらを含有したかによらず、また正極基材の種類にもよらず、高温環境下での保存後における容量維持率の低下が大きくなった。これは、バインダの含有量が大きいために、高温環境下での保存時にバインダの膨張が大きくなったためと考えられる。低分子量型バインダの含有量を低減した比較例5及び比較例10は、ロールプレス時の正極活物質層の剥離により、正極の作製自体が困難であった。また、正極活物質の表面に異種元素が存在しない比較例2及び比較例7も、正極基材の種類によらず、高温環境下での保存後における容量維持率の低下が大きくなった。特に、低分子量型バインダの含有量が大きく、かつ正極活物質の表面に異種元素が存在しない比較例4及び比較例9は、正極基材の種類によらず、高温環境下での保存後における容量維持率の低下が非常に大きくなった。 In Comparative Example 1, Comparative Example 3, Comparative Example 6, and Comparative Example 8, which have a large binder content, the capacity retention rate after storage in a high-temperature environment decreased significantly, regardless of whether the binder contained a high-molecular-weight binder or a low-molecular-weight binder, and regardless of the type of positive electrode substrate. This is thought to be because the binder expanded significantly during storage in a high-temperature environment due to the large binder content. In Comparative Example 5 and Comparative Example 10, which have a reduced low-molecular-weight binder content, the positive electrode itself was difficult to manufacture due to peeling of the positive electrode active material layer during roll pressing. In Comparative Example 2 and Comparative Example 7, in which no foreign elements were present on the surface of the positive electrode active material, the capacity retention rate after storage in a high-temperature environment decreased significantly, regardless of the type of positive electrode substrate. In particular, in Comparative Example 4 and Comparative Example 9, in which the low-molecular-weight binder content was large and no foreign elements were present on the surface of the positive electrode active material, the capacity retention rate after storage in a high-temperature environment decreased significantly, regardless of the type of positive electrode substrate.
以上の結果、当該正極は、非水電解質蓄電素子の高温環境下での保存後における容量維持率の低下を抑制できることが示された。 The above results show that the positive electrode can suppress the decrease in capacity retention rate of a non-aqueous electrolyte storage element after storage in a high-temperature environment.
本発明は、パーソナルコンピュータ、通信端末等の電子機器、自動車等の電源として使用される非水電解質蓄電素子等に適用できる。 The present invention can be applied to nonaqueous electrolyte storage elements used as power sources for electronic devices such as personal computers and communication terminals, and automobiles.
1 非水電解質蓄電素子
2 電極体
3 容器
4 正極端子
41 正極リード
5 負極端子
51 負極リード
20 蓄電ユニット
30 蓄電装置
Claims (4)
上記正極活物質が、α-NaFeO2型結晶構造を有し、ニッケル元素と、コバルト元素と、アルミニウム元素及びマンガン元素の少なくとも一方とを含むリチウム遷移金属複合酸化物を含有し、
上記正極活物質の表面に、タングステン元素、ホウ素元素、硫黄元素、リン元素、ケイ素元素、チタン元素、窒素元素、ゲルマニウム元素、アルミニウム元素、ジルコニウム元素又はこれらの組み合わせである異種元素が存在し、
引張伸度が1.0%以下である非水電解質蓄電素子用正極。 A positive electrode active material layer containing a positive electrode active material and a binder,
the positive electrode active material contains a lithium transition metal composite oxide having an α- NaFeO2 type crystal structure and containing nickel, cobalt, and at least one of aluminum and manganese;
a different element selected from a group consisting of tungsten, boron, sulfur, phosphorus, silicon, titanium, nitrogen, germanium, aluminum, zirconium, and combinations thereof, is present on a surface of the positive electrode active material;
A positive electrode for a non-aqueous electrolyte storage element, having a tensile elongation of 1.0% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023067430A JP2024153497A (en) | 2023-04-17 | 2023-04-17 | Positive electrode for non-aqueous electrolyte storage element and non-aqueous electrolyte storage element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023067430A JP2024153497A (en) | 2023-04-17 | 2023-04-17 | Positive electrode for non-aqueous electrolyte storage element and non-aqueous electrolyte storage element |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024153497A true JP2024153497A (en) | 2024-10-29 |
Family
ID=93258376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023067430A Pending JP2024153497A (en) | 2023-04-17 | 2023-04-17 | Positive electrode for non-aqueous electrolyte storage element and non-aqueous electrolyte storage element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2024153497A (en) |
-
2023
- 2023-04-17 JP JP2023067430A patent/JP2024153497A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023286718A1 (en) | Power storage element | |
JP7665941B2 (en) | Energy storage element | |
JP2022091626A (en) | Power storage element | |
JP7552227B2 (en) | Energy storage element | |
JP7709111B2 (en) | Positive electrode mixture for non-aqueous electrolyte storage element, positive electrode for non-aqueous electrolyte storage element, and non-aqueous electrolyte storage element | |
JP7666012B2 (en) | Energy storage element | |
JP7532898B2 (en) | Positive electrode and storage element | |
JP7683485B2 (en) | Energy storage element and energy storage device | |
JP7581762B2 (en) | Positive electrode for energy storage element and energy storage element | |
JP2024153497A (en) | Positive electrode for non-aqueous electrolyte storage element and non-aqueous electrolyte storage element | |
JP7631754B2 (en) | Energy storage element | |
JP7676834B2 (en) | Non-aqueous electrolyte storage element | |
JP7665962B2 (en) | Positive electrode for non-aqueous electrolyte storage element and non-aqueous electrolyte storage element | |
EP4459693A1 (en) | Power storage element and power storage device | |
JP7604838B2 (en) | Energy storage element | |
US20240379942A1 (en) | Positive electrode for nonaqueous electrolyte energy storage device, nonaqueous electrolyte energy storage device, and energy storage apparatus | |
EP4322258A1 (en) | Nonaqueous electrolyte power storage element and power storage device | |
US20240055662A1 (en) | Nonaqueous electrolyte energy storage device, electronic device, and automobile | |
WO2023100801A1 (en) | Nonaqueous electrolyte power storage element, device, and method for using nonaqueous electrolyte power storage element | |
EP4485606A1 (en) | Nonaqueous electrolyte power storage element | |
JP2025034927A (en) | Positive electrode for non-aqueous electrolyte storage element, method for producing positive electrode for non-aqueous electrolyte storage element, and non-aqueous electrolyte storage element | |
JP2024131835A (en) | Non-aqueous electrolyte storage element | |
WO2024147290A1 (en) | Nonaqueous-electrolyte electricity storage element | |
WO2025047668A1 (en) | Nonaqueous electrolyte power storage element | |
JP2024098452A (en) | Nonaqueous electrolyte power storage device |