JP2024138817A - High-strength aluminum alloy material with excellent SCC resistance and manufacturing method - Google Patents
High-strength aluminum alloy material with excellent SCC resistance and manufacturing method Download PDFInfo
- Publication number
- JP2024138817A JP2024138817A JP2023049515A JP2023049515A JP2024138817A JP 2024138817 A JP2024138817 A JP 2024138817A JP 2023049515 A JP2023049515 A JP 2023049515A JP 2023049515 A JP2023049515 A JP 2023049515A JP 2024138817 A JP2024138817 A JP 2024138817A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- strength
- scc resistance
- treatment
- alloy material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 24
- 239000000956 alloy Substances 0.000 title claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 239000000463 material Substances 0.000 claims abstract description 22
- 238000005266 casting Methods 0.000 claims abstract description 12
- 239000013078 crystal Substances 0.000 claims abstract description 12
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 229910052802 copper Inorganic materials 0.000 claims abstract description 3
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 3
- 239000002245 particle Substances 0.000 claims description 12
- 230000032683 aging Effects 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 238000000265 homogenisation Methods 0.000 claims description 6
- 238000010791 quenching Methods 0.000 claims description 5
- 230000000171 quenching effect Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 abstract description 4
- 230000000052 comparative effect Effects 0.000 description 8
- 230000035882 stress Effects 0.000 description 8
- 230000007797 corrosion Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 238000005336 cracking Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 4
- 229910018571 Al—Zn—Mg Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 229910017708 MgZn2 Inorganic materials 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Landscapes
- Extrusion Of Metal (AREA)
Abstract
Description
本発明は、耐応力腐食割れ性(耐SCC性)に優れるとともに、高強度を有するアルミニウム合金材及び製造方法に関する。 The present invention relates to an aluminum alloy material that has excellent stress corrosion cracking resistance (SCC resistance) and high strength, and a manufacturing method thereof.
車両や産業機械等の分野では、軽量化が要求されていることから、Al-Zn-Mg系の高強度材が検討されている。
また、車両や産業機械に用いられる構造部材等にあっては、部材に大きな応力が負荷されることもあり、優れた耐応力腐食割れ性(耐SCC性)も要求される。
しかし、Al-Zn-Mg系合金材においては、高強度になればなる程、耐SCC性の低下を招く恐れがあった。
In the fields of vehicles and industrial machinery, there is a demand for weight reduction, and therefore Al-Zn-Mg high strength materials are being investigated.
Furthermore, structural members used in vehicles and industrial machinery are sometimes subjected to large stresses, and therefore are required to have excellent stress corrosion cracking resistance (SCC resistance).
However, in the case of Al-Zn-Mg alloy materials, the higher the strength, the more likely it is that the lower the SCC resistance will be.
例えば、特許文献1には、Al-Zn-Mg系の合金を用いた押出材であって、表面再結晶の厚さが肉厚の7%以下、表面再結晶の平均粒径を150μm以下にすることで、耐応力腐食割れ性を改善している。
しかし、強度は約450MPaレベルであり、充分に高強度とは言えない。
For example,
However, the strength is at a level of about 450 MPa, which is not sufficiently high.
本発明は、引張強さ650MPa以上の高強度でありながら、耐SCC性に優れるアルミニウム合金材及び製造方法の提供を目的とする。 The present invention aims to provide an aluminum alloy material and manufacturing method that has high strength (tensile strength of 650 MPa or more) and excellent SCC resistance.
本発明において、押出加工に用いるためのアルミニウム合金鋳造材は、以下質量%で、Zn:8.0%~10.0%,Mg:1.5~3.5%,Cu:0.20~2.50%,Zr:0.15~0.25%及び残部がAlと不可避的不純物からなるアルミニウム合金を用いた鋳造材であって、均質化処理により平均結晶粒径が50μm以下に制御されていることを特徴とする。
このように、平均結晶粒径が50μm以下の鋳造材を用いて押出加工すると、以下に説明する加工条件にて耐SCC性に優れた高強度のアルミニウム合金材が得られる。
In the present invention, the aluminum alloy casting material for use in extrusion processing is a casting material using an aluminum alloy containing, in mass %, the following: Zn: 8.0% to 10.0%, Mg: 1.5 to 3.5%, Cu: 0.20 to 2.50%, Zr: 0.15 to 0.25%, with the balance being Al and unavoidable impurities, and is characterized in that the average crystal grain size is controlled to 50 μm or less by homogenization treatment.
In this way, when a cast material having an average crystal grain size of 50 μm or less is extruded under the processing conditions described below, a high-strength aluminum alloy material having excellent SCC resistance can be obtained.
このような鋳造材は、上記組成からなる710~750℃の溶湯を用いて、丸棒形状(ビレット)に金型鋳造し、その後に450~500℃×10~30hrの均質化処理をすることで得られる。 Such casting materials are obtained by using molten metal of the above composition at 710-750°C, casting it into a round bar shape (billet), and then homogenizing it at 450-500°C for 10-30 hours.
本発明に係る耐SCC性に優れた高強度アルミニウム合金材の製造方法は、請求項1記載のアルミニウム合金鋳造材を用いて押出加工した押出材を450~550℃にて溶体化処理及び焼き入れ処理を行い、その後に3段時効処理を行うことを特徴とする。
The manufacturing method of the high-strength aluminum alloy material with excellent SCC resistance according to the present invention is characterized in that the extruded material is extruded using the aluminum alloy casting material described in
ここで、溶体化処理は、押出加工時に析出した晶出物を充分に再固溶させつつ、平均結晶粒径を50μm以下に維持するのが目的であり、その後に水冷等による焼き入れ処理を行い、次に100~180℃の温度域にて3段時効処理(人工時効処理)を施す。
例えば、1段目は100~130℃レベルの相対的に低温にて微細な核を形成し、次に140~180℃の高温で2段目の熱処理を行い、さらに100~130℃にて3段目の熱処理を行うのが好ましい。
The purpose of the solution treatment is to maintain the average crystal grain size at 50 μm or less while sufficiently resolving the crystallized substances that precipitated during the extrusion process. Then, a quenching treatment is performed by water cooling or the like, and then a three-stage aging treatment (artificial aging treatment) is performed in a temperature range of 100 to 180° C.
For example, it is preferable to form fine nuclei at a relatively low temperature of 100 to 130°C in the first stage, then conduct a second heat treatment at a high temperature of 140 to 180°C, and further conduct a third heat treatment at 100 to 130°C.
本発明において、押出加工されたアルミニウム合金材は、金属組織の高倍率観察にて、結晶粒内におけるnmレベルの分散粒子の数密度が13000個/μm2以上であり、かつ粒界における分散粒子の数密度は0.01個/nm以下である点に特徴があり、これにより引張強さ650MPa以上、0.2%耐力600MPa以上が得られる。 In the present invention, the extruded aluminum alloy material is characterized in that, in high-magnification observation of the metal structure, the number density of dispersed particles at the nm level within crystal grains is 13,000 particles/μm2 or more , and the number density of dispersed particles at grain boundaries is 0.01 particles/nm or less, and as a result, a tensile strength of 650 MPa or more and a 0.2% yield strength of 600 MPa or more can be obtained.
アルミニウム合金の組成について説明する。
<Zn及びMg成分>
Znは比較的高濃度でも押出性が低下することがなく、強度の向上に寄与し、Mgの添加により、組織中にMgZn2が折出し、強度アップする。
しかし、Mgは添加量が多くなると押出性が低下するとともに、MgZn2の析出量が多くなりすぎ靭性が低下する恐れがある。
そこで、Zn:8.0~10.0%,Mg:1.5~3.5%の範囲の組み合せがよい。
<Cu成分>
Cu成分の添加は固溶効果により強度向上を図るのに有効であるが、添加量が多くなると一般的な耐食性が低下するので、Cu:0.20~2.50%の範囲がよい。
<Zr成分>
Zr成分は、遷移元素であり、押出加工時に押出材の表面に形成される再結晶深さを抑制するとともに結晶粒の微細化に効果がある。
これにより、耐応力腐食割れ性が向上する。
本発明は、Zr:0.15~0.25%添加する。
<その他>
Ti成分は、押出加工に用いるためのビレットを鋳造する際に結晶粒の微細化に効果があり、一般的にはBもごく微量添加される。
Ti:0.005~0.05%のわずかな添加量でよい。
7000系のアルミニウム合金の鋳造過程等にて、Fe成分及びSi成分が不純物として含まれることが多いが、その量が多くなると、押出性,耐応力腐食割れ性等に影響を与えるので、Fe:0.2%以下,Si:0.1%以下に抑えるのが好ましい。
本発明において、不可避的不純物とは、耐SCC性及び強度に影響を与えない程度に混入してもよい他の成分をいい、0.1%以下で含有してもよい。
The composition of the aluminum alloy will be described.
<Zn and Mg Components>
Zn does not reduce extrudability even at relatively high concentrations and contributes to improving strength, and the addition of Mg causes MgZn2 to precipitate in the structure, increasing strength.
However, if the amount of Mg added is large, the extrudability decreases, and the amount of MgZn2 precipitated becomes too large, which may decrease the toughness.
Therefore, a combination of Zn: 8.0 to 10.0% and Mg: 1.5 to 3.5% is preferable.
<Cu Component>
The addition of Cu is effective in improving strength due to the solid solution effect, but if the amount added is too large, general corrosion resistance decreases, so the Cu content is preferably in the range of 0.20 to 2.50%.
<Zr Component>
The Zr component is a transition element, which is effective in suppressing the depth of recrystallization formed on the surface of the extruded material during extrusion processing and in making the crystal grains finer.
This improves stress corrosion cracking resistance.
In the present invention, Zr is added in an amount of 0.15 to 0.25%.
<Other>
The Ti component is effective in refining crystal grains when a billet for use in extrusion is cast, and a very small amount of B is also generally added.
Ti: A small amount of 0.005 to 0.05% is sufficient.
In the casting process of 7000 series aluminum alloys, Fe and Si are often contained as impurities. If the amounts are large, they affect the extrudability, stress corrosion cracking resistance, etc., so it is preferable to restrict Fe to 0.2% or less and Si to 0.1% or less.
In the present invention, the unavoidable impurities refer to other components that may be mixed in to the extent that they do not affect the SCC resistance and strength, and may be contained in an amount of 0.1% or less.
本発明は、所定の化学組成のアルミウム合金からなる鋳造材を用いて、溶体化処理,焼き入れ処理後に3段のステップからなる時効処理を行うことで、優れた耐SCC性を確保しつつ、高強度のアルミニウム合金材が得られる。 The present invention uses a cast material made of an aluminum alloy with a specified chemical composition, and performs a three-step aging treatment after solution treatment and quenching, thereby obtaining a high-strength aluminum alloy material while maintaining excellent SCC resistance.
図1の表に示した組成のアルミニウム合金の溶湯を調成し、図2の表に示した丸棒素形材を金型鋳造し、比較評価した。
図1の表に示した各成分は、アルミニウム合金中の含有量を質量%で示したものであり、残部がAlと不可避的不純物である。
Molten aluminum alloys having the compositions shown in the table of FIG. 1 were prepared, and round bar blanks shown in the table of FIG. 2 were cast using metal molds and comparatively evaluated.
The components shown in the table of FIG. 1 are expressed as the content in the aluminum alloy in mass %, with the remainder being Al and unavoidable impurities.
図2の表に示すように、溶湯温度を720℃に調整し、金型に流し込み、重力鋳造を行った。
押出加工用の素材が得られれば、この重力鋳造に限定されない。
今回評価に用いた丸棒は、直径が30mmで長さ40mmのものを用い、HOMO(均質化)保持温度470℃,HOMO保持時間24時間の均質化処理を行った。
本発明に係る合金組成を用いると、丸棒素形材の結晶粒径は平均で50μm以下であった。
As shown in the table of FIG. 2, the molten metal temperature was adjusted to 720° C., poured into a metal mold, and gravity casting was performed.
As long as a material suitable for extrusion processing can be obtained, the method is not limited to gravity casting.
The round bar used in the evaluation this time had a diameter of 30 mm and a length of 40 mm, and was subjected to homogenization treatment at a HOMO (homogenization) holding temperature of 470° C. and a HOMO holding time of 24 hours.
When the alloy composition according to the present invention was used, the average grain size of the round bar material was 50 μm or less.
次に、図3の表に示した条件にて、肉厚2mm,幅20mmの押出材に押出加工し、その後に溶体化処理及び焼き入れ処理、人工時効処理をした。
押出条件は、丸棒素形材温度を370℃に予熱し、押し出した。
その際の押し出しされた形材(押出材)温度は、図2の表のとおりであった。
溶体化処理条件は、押出材を475℃×60minの保持後に、水冷(WQ)による焼き入れを行った。
Next, under the conditions shown in the table of FIG. 3, the extruded material was extruded to a thickness of 2 mm and a width of 20 mm, and then subjected to solution treatment, quenching treatment, and artificial aging treatment.
The extrusion conditions were as follows: the temperature of the round bar material was preheated to 370° C., and the material was extruded.
The temperatures of the extruded shapes (extruded materials) were as shown in the table of FIG.
The solution treatment conditions were as follows: the extruded material was held at 475° C. for 60 minutes, and then quenched by water cooling (WQ).
実施例1,2は、1段目(1stp)として120℃×100minの熱処理、2段目(2stp)として170℃×30minの熱処理、3段目(3stp)として120℃×100minの熱処理を行う、3段人工時効処理を実施した。
比較例1~12は、図3の表に示した条件にて、1段又は2段人工時効処理を行った。
In Examples 1 and 2, a three-stage artificial aging treatment was performed, which included a first stage (1st stp) of heat treatment at 120°C for 100 min, a second stage (2nd stp) of heat treatment at 170°C for 30 min, and a third stage (3rd stp) of heat treatment at 120°C for 100 min.
In Comparative Examples 1 to 12, one-step or two-step artificial aging treatment was performed under the conditions shown in the table of FIG.
図4の表に、評価結果を示す。
評価方法は、次のとおりである。
<機械的性質>
JIS-Z2241に基づいて、JIS-5号試験片を作製し、JIS規格に準拠した引張試験機を用いて、引張強さ,σ0.2耐力,伸びを計測した。
<ミクロ組織>
サンプル表面を鏡面研磨仕上げし、ケラー試薬にてエッチングを行った。
これを光学顕微鏡観察により金属組織を観察し、100倍の画像を画像処理し、平均結晶粒径を求めた。
<耐応力腐食割れ性(SCC性)>
試験片に耐力の80%の応力を負荷した状態で、次の条件を1サイクルとして720サイクルにて割れが発生しなかったものを目標達成とした。
なお、途中で割れが発生したものは、そのサイクル数を表示した。
[1サイクル]
3.5%NaCl水溶液中に25℃,10min浸漬し、その後に25℃,湿度40%中に50min放置し、その後に自然乾燥する。
<ナノ組織>
TEM等を用いて、1万倍以上の高倍率で組織観察を行い、結晶粒内に分散しているナノメートルレベルの粒子の数密度(個数/μm2)と、結晶粒界に存在するナノメートルレベルの粒子の数密度(個数/nm)を測定した。
The evaluation results are shown in the table of FIG.
The evaluation method is as follows.
<Mechanical properties>
Based on JIS-Z2241, JIS-5 test pieces were prepared, and the tensile strength, σ 0.2 yield strength, and elongation were measured using a tensile tester conforming to the JIS standard.
<Microstructure>
The sample surface was mirror-polished and etched with Keller's reagent.
The metal structure was observed by optical microscopy, and the image at 100 times magnification was processed to determine the average crystal grain size.
<Stress corrosion cracking resistance (SCC resistance)>
The test piece was subjected to a stress of 80% of its yield strength, and the following conditions were counted as one cycle. If no cracks occurred after 720 cycles, the target was achieved.
If cracks occurred during testing, the number of cycles at which they occurred was recorded.
[1 cycle]
The sample is immersed in a 3.5% NaCl aqueous solution at 25° C. for 10 minutes, then left to stand at 25° C. and a humidity of 40% for 50 minutes, and then naturally dried.
<Nanostructure>
Using a TEM or the like, the structure was observed at a magnification of 10,000 times or more, and the number density (number/ μm2 ) of nanometer-level particles dispersed within the crystal grains and the number density (number/nm) of nanometer-level particles present at the crystal grain boundaries were measured.
図4の表は、各評価項目における本発明の目標値を示す。
実施例1,2は、引張強さ650MPa以上、0.2%耐力600MPa以上の高強度を有しながら、耐SCC性は720サイクル以上を有していた。
このナノ組織は、粒内数密度130000個/μm2以上で、粒界数密度0.01個/nm以下であった。
これに対して、比較例1はZn成分が少なく、Zrが添加されていなく、比較例2はZnが少ないため、強度も耐SCC性も目標未達であった。
比較例3はZn成分が少なく、2段人工時効にて強度も耐SCC性も目標未達であった。
比較例4はZnが添加されていなく、強度が目標未達であった。
比較例5はCu,Zrが添加されていなく、耐力,耐SCC性が目標未達であった。
比較例6~10は合金組成は本発明の範囲になっているものの、人工時効処理が1段又は2段なので耐SCC性が目標未達であった。
比較例11,12はZn成分の含有量が多く、強度はあるものの、耐SCC性が目標未達であった。
The table in FIG. 4 shows the target values of the present invention for each evaluation item.
Examples 1 and 2 had high strength, such as a tensile strength of 650 MPa or more and a 0.2% yield strength of 600 MPa or more, while also having SCC resistance of 720 cycles or more.
This nanostructure had an intragranular number density of 130,000 particles/μm2 or more and a grain boundary number density of 0.01 particles/nm or less.
In contrast, Comparative Example 1 contained a small amount of Zn and did not contain Zr, and Comparative Example 2 contained a small amount of Zn, so that the targets for both strength and SCC resistance were not achieved.
Comparative Example 3 had a low Zn content, and after two-stage artificial aging, the strength and SCC resistance did not reach the targets.
In Comparative Example 4, Zn was not added, and the strength did not reach the target.
In Comparative Example 5, neither Cu nor Zr was added, and the targets for yield strength and SCC resistance were not achieved.
Although the alloy compositions of Comparative Examples 6 to 10 were within the range of the present invention, the artificial aging treatment was one or two steps, and therefore the target SCC resistance was not achieved.
Comparative Examples 11 and 12 had a high Zn content and had sufficient strength, but did not achieve the target SCC resistance.
Claims (4)
均質化処理により平均結晶粒径が50μm以下に制御されていることを特徴とするアルミニウム合金鋳造材。 A casting material using an aluminum alloy containing, in mass%, Zn: 8.0% to 10.0%, Mg: 1.5 to 3.5%, Cu: 0.20 to 2.50%, Zr: 0.15 to 0.25%, and the balance being Al and unavoidable impurities,
An aluminum alloy casting material, characterized in that the average crystal grain size is controlled to 50 μm or less by homogenization treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023049515A JP2024138817A (en) | 2023-03-27 | 2023-03-27 | High-strength aluminum alloy material with excellent SCC resistance and manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023049515A JP2024138817A (en) | 2023-03-27 | 2023-03-27 | High-strength aluminum alloy material with excellent SCC resistance and manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024138817A true JP2024138817A (en) | 2024-10-09 |
Family
ID=92974435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023049515A Pending JP2024138817A (en) | 2023-03-27 | 2023-03-27 | High-strength aluminum alloy material with excellent SCC resistance and manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2024138817A (en) |
-
2023
- 2023-03-27 JP JP2023049515A patent/JP2024138817A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6955483B2 (en) | High-strength aluminum alloy extruded material with excellent corrosion resistance and good hardenability and its manufacturing method | |
JP5723192B2 (en) | Aluminum alloy forging and method for producing the same | |
KR20140148489A (en) | Aluminium alloy | |
CN103710580B (en) | High-strength aluminum-alloy extruded material and manufacture method thereof | |
JP2012207302A (en) | METHOD FOR MANUFACTURING EXTRUDED MATERIAL OF HEAT TREATMENT TYPE Al-Zn-Mg-BASED ALUMINUM ALLOY | |
JP7639270B2 (en) | Aluminum alloy forgings and manufacturing method thereof | |
TW201833342A (en) | Ecae materials for high strength aluminum alloys | |
US10900108B2 (en) | Method for manufacturing bent article using aluminum alloy | |
JP7093611B2 (en) | Aluminum alloy for extruded material and method for manufacturing extruded material and extruded material using it | |
TWI434939B (en) | Aluminium alloy and process of preparation thereof | |
JP5215710B2 (en) | Magnesium alloy with excellent creep characteristics at high temperature and method for producing the same | |
Lu et al. | A new fast heat treatment process for cast A356 alloy motorcycle wheel hubs | |
WO2018088351A1 (en) | Aluminum alloy extruded material | |
JP5059505B2 (en) | Aluminum alloy cold-rolled sheet that can be formed with high strength | |
WO2019172047A1 (en) | Aging treated magnesium alloy material and method for producing same | |
JP4498180B2 (en) | Al-Zn-Mg-Cu-based aluminum alloy containing Zr and method for producing the same | |
JP7565728B2 (en) | Aluminum alloy forged member and manufacturing method thereof | |
JP6096488B2 (en) | Billet for extrusion molding of 7000 series aluminum alloy and method for producing extruded profile | |
KR102407828B1 (en) | Wrought magnesium alloys with high mechanical properties and method for preparing the same | |
US8016957B2 (en) | Magnesium grain-refining using titanium | |
JP2024138817A (en) | High-strength aluminum alloy material with excellent SCC resistance and manufacturing method | |
JP3195392B2 (en) | Method for producing high strength and high toughness aluminum alloy casting | |
CN112941379A (en) | Aluminum alloy plate for producing die and preparation process thereof | |
CN118703848A (en) | Method for producing high-strength aluminum alloy extruded material having excellent SCC resistance and aluminum alloy used therein | |
US20250066895A1 (en) | Method For Producing High Strength Aluminum Alloy Extruded Material With High SCC Resistance |