[go: up one dir, main page]

JP2024134235A - Positive electrode and lithium ion secondary battery - Google Patents

Positive electrode and lithium ion secondary battery Download PDF

Info

Publication number
JP2024134235A
JP2024134235A JP2023044434A JP2023044434A JP2024134235A JP 2024134235 A JP2024134235 A JP 2024134235A JP 2023044434 A JP2023044434 A JP 2023044434A JP 2023044434 A JP2023044434 A JP 2023044434A JP 2024134235 A JP2024134235 A JP 2024134235A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
particles
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023044434A
Other languages
Japanese (ja)
Inventor
保英 山下
Yasuhide Yamashita
耕太郎 寺尾
Kotaro Terao
敬史 毛利
Takashi Mori
洋 苅宿
Hiroshi Kariyado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2023044434A priority Critical patent/JP2024134235A/en
Priority to PCT/JP2024/007612 priority patent/WO2024195471A1/en
Publication of JP2024134235A publication Critical patent/JP2024134235A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a positive electrode and a lithium ion secondary battery, each having capacity and quick discharge characteristic which can be made compatible with each other.SOLUTION: A positive electrode active material layer 14 comprises: a plurality of positive electrode active material particles 14P; and an inter-particle region 14Z which is formed between the plurality of positive electrode active material particles 14P. The inter-particle region 14Z includes: a solid portion 14S; and a plurality of fine holes 14V scattered in the solid portion 14S. In a cross-sectional image of the positive electrode active material layer 14, a D50 which denotes area-based distribution of an area circle equivalent diameter of each fine holes 14V is 0.82 μm or less, and a D90 which denotes area-based distribution of an area circle equivalent diameter of each of fine holes 14V is 1.37 μm or less. In the cross-sectional image of the positive electrode active material layer, the inter-particle region 14Z is divided into a two dimensional tetragonal lattice GR. When an area ratio of each fine hole in each secondary tetragonal lattice GR is acquired, a variation coefficient cv1 of each of the fine hole 14V is 0.610 or less.SELECTED DRAWING: Figure 2

Description

本発明は、正極、及び、リチウムイオン二次電池に関する。 The present invention relates to a positive electrode and a lithium-ion secondary battery.

リチウムイオン二次電池は、携帯電話、ノートパソコン等のモバイル機器の他、工具やハイブリットカー等の動力源としても広く用いられている。近年、エネルギー密度が高く、出力特性に優れるリチウムイオン二次電池が求められている。例えば、特許文献1には、高出力条件下での充放電時における電池の内部抵抗の増加を抑制できるリチウムイオン二次電池が記載されている。 Lithium ion secondary batteries are widely used in mobile devices such as mobile phones and laptops, as well as power sources for tools, hybrid cars, and the like. In recent years, there has been a demand for lithium ion secondary batteries with high energy density and excellent output characteristics. For example, Patent Document 1 describes a lithium ion secondary battery that can suppress an increase in the battery's internal resistance during charging and discharging under high output conditions.

特開2007-109636号公報JP 2007-109636 A

しかしながら、容量と急速放電特性により優れたリチウムイオン二次電池が求められている。 However, there is a demand for lithium-ion secondary batteries with superior capacity and rapid discharge characteristics.

本発明は上記課題に鑑みて成されたものであり、高容量及び急速放電特性を両立できる、正極およびリチウムイオン二次電池を提供することを目的とする。 The present invention was made in consideration of the above problems, and aims to provide a positive electrode and a lithium-ion secondary battery that can achieve both high capacity and rapid discharge characteristics.

[1]集電体と、前記集電体の少なくとも一方の主面に接する正極活物質層と、を有する正極であって、
前記正極活物質層は、複数の正極活物質粒子と、前記複数の正極活物質粒子間に形成される粒子間領域と、を備え、
前記粒子間領域は、固体部、及び、前記固体部内に分散した複数の細孔を有し、
前記正極活物質層の断面画像において、前記細孔の面積円相当径の面積基準の分布のD50が0.82μm以下であり、前記細孔の面積円相当径の面積基準の分布のD90が1.37μm以下であり、
前記正極活物質層の断面画像において、前記粒子間領域を2次元正方格子に分割し、各2次元正方格子内の細孔の面積割合を取得した場合に、前記細孔の面積割合の変動係数CV1が0.610以下である、正極。
[1] A positive electrode having a current collector and a positive electrode active material layer in contact with at least one main surface of the current collector,
the positive electrode active material layer includes a plurality of positive electrode active material particles and an interparticle region formed between the plurality of positive electrode active material particles,
the interparticle region has a solid portion and a plurality of pores dispersed within the solid portion;
In a cross-sectional image of the positive electrode active material layer, a D50 of an area-based distribution of the equivalent circle diameters of the pores is 0.82 μm or less, and a D90 of an area-based distribution of the equivalent circle diameters of the pores is 1.37 μm or less,
a positive electrode, in which, when the interparticle region is divided into a two-dimensional square lattice in a cross-sectional image of the positive electrode active material layer and the area ratio of the pores in each two-dimensional square lattice is obtained, a coefficient of variation CV1 of the area ratio of the pores is 0.610 or less.

[2]前記固体部は、バインダー及び導電助剤を含む、[1]に記載の正極。 [2] The positive electrode described in [1], wherein the solid portion includes a binder and a conductive additive.

[3]前記固体部は、Co粉、LiCoO粉、又は、これらの組み合わせからなる添加剤粒子を含む、[1]又は[2]に記載の正極。 [3] The positive electrode according to [1] or [2], wherein the solid portion contains additive particles made of Co 3 O 4 powder, LiCoO 2 powder, or a combination thereof.

[4]各2次元正方格子内の前記添加剤粒子の面積割合を取得した場合に、前記添加剤粒子の面積割合の変動係数CV2が0.601以下である、[3]に記載の正極。 [4] The positive electrode described in [3], in which, when the area ratio of the additive particles in each two-dimensional square lattice is obtained, the coefficient of variation CV2 of the area ratio of the additive particles is 0.601 or less.

[5][1]~[4]のいずれか一項に記載の正極と、負極と、を備える、リチウムイオン二次電池。 [5] A lithium ion secondary battery comprising a positive electrode according to any one of [1] to [4] and a negative electrode.

高容量及び急速放電特性を両立できる、正極およびリチウムイオン二次電池が提供される。 A positive electrode and lithium-ion secondary battery are provided that can achieve both high capacity and rapid discharge characteristics.

本実施形態の一例に係るリチウムイオン二次電池を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing a lithium-ion secondary battery according to an example of the present embodiment. 図1の正極活物質層の断面の拡大模式図である。2 is an enlarged schematic view of a cross section of the positive electrode active material layer of FIG. 1.

(リチウムイオン二次電池)
図1は、本実施形態の一例に係るリチウムイオン二次電池を示す模式断面図である。図1に示すように、リチウムイオン二次電池100は、主として、積層体30、積層体30を密閉した状態で収容するケース50、及び積層体30に接続された一対のリード60、62を備えている。
(Lithium-ion secondary battery)
1 is a schematic cross-sectional view showing a lithium-ion secondary battery according to an example of the present embodiment. As shown in Fig. 1, the lithium-ion secondary battery 100 mainly includes a laminate 30, a case 50 that houses the laminate 30 in a sealed state, and a pair of leads 60, 62 connected to the laminate 30.

積層体30は、1又は複数の正極10及び1又は複数の負極20を備え、正極10及び負極20が、間にセパレータ18を挟んで対向配置されたものである。正極10は、板状(膜状)の正極集電体12の一方主面又は両方主面上に正極活物質層14が設けられたものである。 The laminate 30 includes one or more positive electrodes 10 and one or more negative electrodes 20, which are arranged facing each other with a separator 18 sandwiched between them. The positive electrode 10 includes a positive electrode active material layer 14 provided on one or both main surfaces of a plate-shaped (film-shaped) positive electrode current collector 12.

負極20は、板状(膜状)の負極集電体22の一方主面又は両方主面上に負極活物質層24が設けられたものである。正極活物質層14の主面及び負極活物質層24の主面が、セパレータ18の主面にそれぞれ接触している。正極集電体12及び負極集電体22の端部には、それぞれリード60、62が接続されており、リード60、62の端部はケース50の外部にまで延びている。まず、正極10について具体的に説明する。 The negative electrode 20 has a negative electrode active material layer 24 provided on one or both main surfaces of a plate-shaped (film-shaped) negative electrode collector 22. The main surface of the positive electrode active material layer 14 and the main surface of the negative electrode active material layer 24 are in contact with the main surface of the separator 18. Leads 60, 62 are connected to the ends of the positive electrode collector 12 and the negative electrode collector 22, respectively, and the ends of the leads 60, 62 extend to the outside of the case 50. First, the positive electrode 10 will be described in detail.

(正極10)
(正極集電体12)
正極集電体12は、導電性の板材であればよく、例えば、アルミニウム、銅、ニッケル又はそれらの合金の金属薄板(金属箔)を用いることができる。
(Positive electrode 10)
(Positive electrode current collector 12)
The positive electrode current collector 12 may be any conductive plate material, and may be, for example, a thin metal plate (metal foil) of aluminum, copper, nickel, or an alloy thereof.

(正極活物質層14)
図2に正極活物質層14の拡大断面図を示す。正極活物質層14は、複数の正極活物質粒子14Pと、複数の正極活物質粒子14P間に形成される粒子間領域14Zと、を備える。粒子間領域14Zは、固体部14S、及び、固体部14S内に分散した複数の細孔14Vを有する。
(Positive electrode active material layer 14)
2 shows an enlarged cross-sectional view of the positive electrode active material layer 14. The positive electrode active material layer 14 includes a plurality of positive electrode active material particles 14P and interparticle regions 14Z formed between the plurality of positive electrode active material particles 14P. The interparticle regions 14Z include a solid portion 14S and a plurality of pores 14V dispersed within the solid portion 14S.

固体部14Sは、正極活物質粒子14P同士、及び、正極活物質粒子14Pと正極集電体12とを結着するバインダー部14Bを有し、固体部14Sはさらに添加剤粒子14Aを有してもよい。バインダー部14Bは、バインダーを含み、さらに、導電助剤を含んでいてもよい。 The solid portion 14S has a binder portion 14B that binds the positive electrode active material particles 14P together and between the positive electrode active material particles 14P and the positive electrode current collector 12, and the solid portion 14S may further have additive particles 14A. The binder portion 14B contains a binder and may further contain a conductive assistant.

(正極活物質粒子14P)
正極活物質としては、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、リチウムイオンと該リチウムイオンのカウンターアニオン(例えば、ClO )とのドープ及び脱ドープを可逆的に進行させることが可能であれば特に限定されず、公知の活物質を使用できる。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウムマンガンスピネル(LiMn)、及び、一般式:LiNiCoMn(x+y+z+a=1、0≦x≦1、0≦y≦1、0≦z≦1、0≦a≦1、MはAl、Mg、Nb、Ti、Cu、Zn、Crより選ばれる1種類以上の元素)で表される複合金属酸化物、リチウムバナジウム化合物(LiV)、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素又はVOを示す)、チタン酸リチウム(LiTi12)、LiNiCoAl(0.9<x+y+z<1.1)等の複合金属酸化物が挙げられる。
(Positive electrode active material particles 14P)
The positive electrode active material is a material that is capable of absorbing and releasing lithium ions, desorbing and inserting lithium ions (intercalation), or doping and dedoping lithium ions with a counter anion (e.g., ClO 4 ) of the lithium ions. There are no particular limitations on the active material as long as it is possible to cause the above-mentioned reaction to proceed reversibly, and any known active material can be used. For example, lithium cobalt oxide ( LiCoO2 ), lithium nickel oxide ( LiNiO2 ), lithium manganese spinel ( LiMn2O4 ), and the general formula: LiNi x Co y Mn z M a O2 (x + y + z + a = 1, 0 <= x≦1, 0≦y≦1, 0≦z≦1, 0≦a≦1, M is one or more elements selected from Al, Mg, Nb, Ti, Cu, Zn, and Cr. Composite metal oxides, lithium vanadium compounds (LiV 2 O 5 ), olivine-type LiMPO 4 (wherein M is one or more elements selected from Co, Ni, Mn, Fe, Mg, Nb, Ti, Al, and Zr) or VO), lithium titanate (Li 4 Ti 5 O 12 ), LiNi x Co Examples of the composite metal oxide include composite metal oxides such as yAlzO2 (0.9<x + y+z<1.1).

正極活物質粒子の粒径に特に限定はないが、正極活物質層の断面写真における正極活物質粒子の面積円相当径の面積基準の分布のD50において、0.1~30μmであることができる。 There is no particular limit to the particle size of the positive electrode active material particles, but the particle size can be 0.1 to 30 μm in terms of D50 of the area-based distribution of the diameter of the circle equivalent to the area of the positive electrode active material particles in a cross-sectional photograph of the positive electrode active material layer.

(バインダー部14B)
バインダー部14Bは、正極活物質粒子14P同士を結合すると共に、正極活物質粒子14Pと正極集電体12とを結合している。バインダー部に含まれるバインダーは、上述の結合が可能なものであればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂が挙げられる。更に、上記の他に、バインダーとして、例えば、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、アクリル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂等を用いてもよい。また、バインダーとして電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン等が挙げられる。この場合は、バインダーが導電助剤粒子の機能も発揮するので導電助剤を添加しなくてもよい。イオン伝導性の導電性高分子としては、例えば、リチウムイオン等のイオンの伝導性を有するものを使用することができ、例えば、高分子化合物(ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物、ポリフォスファゼン等)のモノマーと、LiClO、LiBF、LiPF等のリチウム塩又はリチウムを主体とするアルカリ金属塩と、を複合化させたもの等が挙げられる。複合化に使用する重合開始剤としては、例えば、上記のモノマーに適合する光重合開始剤または熱重合開始剤が挙げられる。
(Binder section 14B)
The binder portion 14B bonds the positive electrode active material particles 14P to each other and also bonds the positive electrode active material particles 14P to the positive electrode current collector 12. The binder contained in the binder portion may be any binder capable of the above-mentioned bonding, and may be, for example, a fluororesin such as polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE). In addition to the above, for example, cellulose, styrene-butadiene rubber, ethylene-propylene rubber, acrylic resin, polyimide resin, polyamide-imide resin, etc. may be used as the binder. In addition, an electronically conductive conductive polymer or an ionically conductive conductive polymer may be used as the binder. For example, polyacetylene may be used as the electronically conductive conductive polymer. In this case, the binder also functions as a conductive additive particle, so that a conductive additive does not need to be added. As the ionically conductive conductive polymer, for example, one having ion conductivity such as lithium ion can be used, and examples thereof include a composite of a monomer of a polymer compound (polyether polymer compounds such as polyethylene oxide and polypropylene oxide, polyphosphazene, etc.) and a lithium salt or an alkali metal salt mainly composed of lithium, such as LiClO 4 , LiBF 4 , and LiPF 6. Examples of the polymerization initiator used for the composite include a photopolymerization initiator or a thermal polymerization initiator that is compatible with the above-mentioned monomer.

正極活物質層14中のバインダーの含有量は特に限定されないが、活物質、導電助剤及びバインダーの質量の和を基準にして、1~10質量%であることが好ましい。活物質とバインダーの含有量を上記範囲とすることにより、得られた正極活物質層14において、バインダーの量が少なすぎて強固な活物質層を形成できなくなる傾向を抑制できる。また、電気容量に寄与しないバインダーの量が多くなり、十分な体積エネルギー密度を得ることが困難となる傾向も抑制できる。 The content of the binder in the positive electrode active material layer 14 is not particularly limited, but is preferably 1 to 10 mass % based on the sum of the masses of the active material, conductive additive, and binder. By setting the content of the active material and binder within the above range, it is possible to suppress the tendency in the obtained positive electrode active material layer 14 that the amount of binder is too small to form a strong active material layer. It is also possible to suppress the tendency that the amount of binder that does not contribute to the electric capacity increases, making it difficult to obtain a sufficient volumetric energy density.

(導電助剤)
バインダー部14Bに含まれる導電助剤は、正極活物質層14の導電性を良好にするものであれば特に限定されず、公知の導電助剤を使用できる。例えば、黒鉛、カーボンブラック等の炭素系材料や、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物が挙げられる。
(Conductive assistant)
The conductive assistant contained in the binder portion 14B is not particularly limited as long as it improves the conductivity of the positive electrode active material layer 14, and any known conductive assistant can be used. Examples of the conductive assistant include carbon-based materials such as graphite and carbon black, metal fine powders such as copper, nickel, stainless steel, and iron, mixtures of carbon materials and metal fine powders, and conductive oxides such as ITO.

正極活物質層14中の導電助剤の含有量も特に限定されないが、添加する場合には活物質の質量に対して0.5~5質量%であることが好ましい。 The amount of conductive additive contained in the positive electrode active material layer 14 is not particularly limited, but if added, it is preferably 0.5 to 5 mass % relative to the mass of the active material.

(添加剤粒子14A)
固体部14Sは、Co粉、LiCoO粉、又は、これらの組み合わせからなる添加剤粒子14Aを含んでもよい。添加剤粒子14Aの平均粒径に特に限定はないが、正極活物質層の断面写真における添加剤粒子14Aの面積円相当径の面積基準の分布のD50において、5~150nmであることができる。これらの添加剤粒子は、電池を製造する際に、初回充放電前の正極活物質層中に含まれる炭酸リチウムナノ粒子の分解触媒として機能する。また、初回充放電後には、正極活物質層の静電特性を改善してリチウムイオンの移動ポテンシャルがより高くなり、容量及び又は急速放電特性がさらに良くなる。
(Additive Particles 14A)
The solid portion 14S may contain additive particles 14A consisting of Co 3 O 4 powder, LiCoO 2 powder, or a combination thereof. The average particle size of the additive particles 14A is not particularly limited, but may be 5 to 150 nm in the D50 of the area-based distribution of the area-equivalent circle diameter of the additive particles 14A in a cross-sectional photograph of the positive electrode active material layer. These additive particles function as a decomposition catalyst for lithium carbonate nanoparticles contained in the positive electrode active material layer before the first charge and discharge when manufacturing a battery. In addition, after the first charge and discharge, the electrostatic characteristics of the positive electrode active material layer are improved, the migration potential of lithium ions is increased, and the capacity and/or rapid discharge characteristics are further improved.

(細孔14V)
上述のように、複数の正極活物質粒子14P間に形成される粒子間領域14Zは、固体部14S、及び、固体部14S内に分散した複数の細孔14Vを有し、スポンジ状を呈する。
(hole 14V)
As described above, the inter-particle region 14Z formed between the plurality of positive electrode active material particles 14P has the solid portion 14S and the plurality of pores 14V dispersed within the solid portion 14S, and has a sponge-like shape.

正極活物質層の断面画像において、細孔14Vの面積円相当径の面積基準の分布のD50が0.82μm以下である。当該D50は、0.70μm以下でもよく、0.60μm以下でもよい。D50とは、これ以下の粒子の個数比率が50%である粒径である。 In the cross-sectional image of the positive electrode active material layer, the area-based distribution D50 of the area-equivalent circle diameter of pores 14V is 0.82 μm or less. The D50 may be 0.70 μm or less, or 0.60 μm or less. D50 is the particle size at which the number ratio of particles smaller than this value is 50%.

正極活物質層の断面画像において、細孔14Vの面積円相当径の面積基準の分布のD90が1.37μm以下である。当該D90は、1.30μm以下でもよく、1.20μm以下でもよい。D90とは、これ以下の粒子の個数比率が90%である粒径である。 In the cross-sectional image of the positive electrode active material layer, the area-based distribution D90 of the area-equivalent circle diameter of pores 14V is 1.37 μm or less. The D90 may be 1.30 μm or less, or 1.20 μm or less. D90 is the particle size at which 90% of the particles are smaller than this size.

これらの粒度分布を取得するに当たり、細孔14Vの個数は例えば200~700個程度とすることが好適である。 When obtaining these particle size distributions, it is preferable to set the number of pores 14V to, for example, about 200 to 700.

さらに、本実施形態では、図2に示すように、正極活物質層の断面画像において、粒子間領域14Zを2次元正方格子GRに分割し、各2次元正方格子GR内の細孔14Vの面積割合を取得した場合に、細孔14Vの面積割合の変動係数CV1が0.610以下である。変動係数とは、標準偏差/平均値である。 Furthermore, in this embodiment, as shown in FIG. 2, when the interparticle region 14Z is divided into a two-dimensional square lattice GR in a cross-sectional image of the positive electrode active material layer, and the area ratio of the pores 14V in each two-dimensional square lattice GR is obtained, the coefficient of variation CV1 of the area ratio of the pores 14V is 0.610 or less. The coefficient of variation is the standard deviation/average value.

粒子間領域14Zが添加剤粒子14Aを含む場合、粒子間領域14Zを2次元正方格子GRに分割し、各2次元正方格子GR内の添加剤粒子14Aの面積割合を取得した場合に、添加剤粒子の面積割合の変動係数CV2が0.601以下であることが好適である。 When the interparticle region 14Z contains additive particles 14A, when the interparticle region 14Z is divided into a two-dimensional square lattice GR and the area ratio of the additive particles 14A in each two-dimensional square lattice GR is obtained, it is preferable that the coefficient of variation CV2 of the area ratio of the additive particles is 0.601 or less.

正極活物質層の断面画像の方向に特に限定はなく、集電体の主面に対して垂直な断面でもよく、集電体の主面に対して水平な断面でもよいが、集電体の主面に対して垂直な断面が好適である。断面画像中の各領域は、画像の明るさ、表面状態、元素マッピング等により特定できる。 There is no particular limitation on the direction of the cross-sectional image of the positive electrode active material layer, and the cross-section may be perpendicular to the main surface of the current collector or parallel to the main surface of the current collector, but a cross-section perpendicular to the main surface of the current collector is preferred. Each region in the cross-sectional image can be identified by the brightness of the image, the surface condition, element mapping, etc.

2次元正方格子GRのサイズは、一辺が0.5~4.0μmとすることが好適である。また、細孔及び添加剤粒子の面積割合を測定する対象となる格子は、正極活物質粒子14Pの面積割合が50%以下である格子に限定する。さらに、正極活物質粒子14P内の閉鎖気孔は、粒子間領域14Zには含まない。面積割合を取得する2次元正方格子の数は90~360とすることが好適である。 The size of the two-dimensional square lattice GR is preferably 0.5 to 4.0 μm on a side. Furthermore, the lattices for which the area ratio of the pores and additive particles is measured are limited to lattices in which the area ratio of the positive electrode active material particles 14P is 50% or less. Furthermore, closed pores in the positive electrode active material particles 14P are not included in the interparticle regions 14Z. The number of two-dimensional square lattices for which the area ratio is obtained is preferably 90 to 360.

(作用)
このような正極においては、従来よりも、細孔14Vの径が小さく、かつ、径の小さい細孔14Vが空間的に均一に分散している。従って、電解液が正極活物質層14にしみ込みやすくなり、電解液及び塩と、正極活物質との接触を迅速に行うことができ、Liイオンの挿入及び脱離が効率よく行われると考えられる。具体的には、正極と負極との間で移動するLiイオンの量が増えることにより容量が増加しうる。また、正極と負極との間でLiイオンの移動速度が速くなることにより、急速放電特性が向上しうる。したがって、特に、工具や電気自動車などに有効なリチウムイオン二次電池を実現できる。
(Action)
In such a positive electrode, the diameter of the pores 14V is smaller than that of the conventional one, and the small diameter pores 14V are spatially uniformly dispersed. Therefore, it is considered that the electrolyte is easily permeated into the positive electrode active material layer 14, the electrolyte and salt can be quickly contacted with the positive electrode active material, and the insertion and desorption of Li ions is efficiently performed. Specifically, the capacity can be increased by increasing the amount of Li ions moving between the positive electrode and the negative electrode. In addition, the rapid discharge characteristic can be improved by increasing the movement speed of Li ions between the positive electrode and the negative electrode. Therefore, a lithium ion secondary battery that is particularly effective for tools, electric vehicles, etc. can be realized.

また、正極活物質層の固体部が添加剤粒子を有すると、静電特性が改善されてイオンの移動ポテンシャルがより高くなり、容量及び又は急速放電特性がさらに良くなる。 In addition, when the solid portion of the positive electrode active material layer contains additive particles, the electrostatic properties are improved and the ion migration potential is increased, further improving the capacity and/or rapid discharge characteristics.

さらに、添加剤粒子が空間的に均一に分散していることで、静電特性がより改善されるため、誘電材料バランスが最適化されて、イオンの移動ポテンシャルが特に高くなり、上記の特性がさらに良くなる。 Furthermore, the uniform spatial distribution of the additive particles further improves the electrostatic properties, optimizing the dielectric material balance and resulting in a particularly high ion migration potential, further enhancing the above properties.

(正極の製造方法)
このような正極の製造方法の一例を以下に示す。
(Method of manufacturing positive electrode)
An example of a method for producing such a positive electrode is shown below.

(炭酸リチウムナノ粒子又は、これを含む複合粒子の準備)
まず、大粒径(例えば数μm)の炭酸リチウム粉を水に溶解させる。炭酸リチウム水溶液の炭酸リチウム濃度が低いほど、後に析出する炭酸リチウムナノ粒子の粒子径が小さくなる。次に炭酸リチウム水溶液に貧溶媒1を加えると炭酸リチウムナノ粒子、例えば、レーザ回折による体積基準の粒度分布の粒径D50が1~1000nmの粒子が析出してスラリーが得られる(析出工程)。貧溶媒1の添加量は水に対して70wt%以上であることが望ましい。貧溶媒1の添加量が多い程、析出する炭酸リチウムナノ粒子の粒子径が小さくなる。貧溶媒1は水に可溶かつ炭酸リチウムを不溶であるものから適宜選択できる。また、貧溶媒1は、水よりも沸点が高いことが望ましい。スラリーから炭酸リチウムナノ粒子を取り出す次工程において、熱乾燥をする場合に水よりも貧溶媒1が先に蒸発してしまうと析出した炭酸リチウムが水に再溶解してしまうからである。貧溶媒1の例は、N-メチル-2-ピロリドン(NMP)である。
(Preparation of lithium carbonate nanoparticles or composite particles containing the same)
First, lithium carbonate powder with a large particle size (for example, several μm) is dissolved in water. The lower the lithium carbonate concentration of the lithium carbonate aqueous solution, the smaller the particle size of the lithium carbonate nanoparticles that are precipitated later. Next, when poor solvent 1 is added to the lithium carbonate aqueous solution, lithium carbonate nanoparticles, for example, particles with a particle size D50 of 1 to 1000 nm in the volume-based particle size distribution by laser diffraction, are precipitated to obtain a slurry (precipitation process). The amount of poor solvent 1 added is preferably 70 wt % or more relative to water. The larger the amount of poor solvent 1 added, the smaller the particle size of the precipitated lithium carbonate nanoparticles. The poor solvent 1 can be appropriately selected from those that are soluble in water and insoluble in lithium carbonate. In addition, it is preferable that the poor solvent 1 has a boiling point higher than that of water. This is because in the next process of extracting lithium carbonate nanoparticles from the slurry, if the poor solvent 1 evaporates before water when performing thermal drying, the precipitated lithium carbonate will be re-dissolved in water. An example of poor solvent 1 is N-methyl-2-pyrrolidone (NMP).

析出した炭酸リチウムナノ粒子をスラリーから分離して乾燥粉体として得るためにスラリーを加熱乾燥することができるが、乾燥時に炭酸リチウムナノ粒子同士が液架橋し凝集してしまう可能性がある。そこで、ナノ粒子が析出した炭酸リチウム及び貧溶媒1を含むスラリーにさらに貧溶媒2を加えることで、液中でナノ粒子を軽く凝集させ、凝集したナノ粒子を沈降させた後に上澄み液を除去し、さらに貧溶媒2を添加し、同様の手順を繰り返すことで、貧溶媒2に分散した炭酸リチウムナノ粒子、例えば、粒径D50が1~1000nmを容易に得ることができる。貧溶媒2は水及びNMPに溶解し、炭酸リチウムを溶解しないものであれば限定はないが、アセトンやエタノール等が望ましい。 The slurry can be heated and dried to separate the precipitated lithium carbonate nanoparticles from the slurry and obtain them as a dry powder, but there is a possibility that the lithium carbonate nanoparticles may form liquid bridges and aggregate during drying. Therefore, by further adding poor solvent 2 to the slurry containing lithium carbonate from which the nanoparticles have precipitated and poor solvent 1, the nanoparticles are lightly aggregated in the liquid, the aggregated nanoparticles are allowed to settle, the supernatant liquid is removed, and poor solvent 2 is further added. By repeating the same procedure, lithium carbonate nanoparticles dispersed in poor solvent 2, for example, with a particle size D50 of 1 to 1000 nm, can be easily obtained. There are no limitations on the poor solvent 2 as long as it dissolves in water and NMP and does not dissolve lithium carbonate, but acetone, ethanol, etc. are preferable.

得られる炭酸リチウムナノ粒子は、SEM観察による面積円相当径の面積基準の分布のD50が500nm以下が好適であり、200nm以下であることがより好適である。 The resulting lithium carbonate nanoparticles preferably have a D50 of 500 nm or less, more preferably 200 nm or less, in the area-based distribution of the area-equivalent circle diameter as observed by SEM.

さらに、正極活物質層に添加剤粒子を添加する場合には、貧溶媒1を添加する前に炭酸リチウム水溶液に対して、添加剤ナノ粒子、例えば、粒径D50が1~1000nmの粒子を添加して分散させ、その後、貧溶媒1を添加することにより、炭酸リチウムナノ粒子と添加剤ナノ粒子との複合粒子が得られる。 Furthermore, when additive particles are added to the positive electrode active material layer, additive nanoparticles, for example, particles with a particle size D50 of 1 to 1000 nm, are added and dispersed in the lithium carbonate aqueous solution before adding poor solvent 1, and then poor solvent 1 is added to obtain composite particles of lithium carbonate nanoparticles and additive nanoparticles.

続いて、正極活物質、バインダー、溶媒、導電助剤、及び、炭酸リチウムナノ粒子及び/又は上記複合粒子を含む塗料を正極集電体上に塗布し、正極集電体上に塗布された塗料中の溶媒を除去する。 Next, a paint containing a positive electrode active material, a binder, a solvent, a conductive assistant, and lithium carbonate nanoparticles and/or the above composite particles is applied onto the positive electrode current collector, and the solvent in the paint applied onto the positive electrode current collector is removed.

溶媒としては、例えば、水、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等を用いることができる。 Examples of solvents that can be used include water, N-methyl-2-pyrrolidone, and N,N-dimethylformamide.

塗布方法としては、特に制限はなく、通常正極を作製する場合に採用される方法を用いることができる。例えば、スリットダイコート法、ドクターブレード法が挙げられる。 There are no particular limitations on the coating method, and any method that is normally used to fabricate a positive electrode can be used. Examples include the slit die coating method and the doctor blade method.

正極集電体12上に塗布された塗料中の溶媒を除去する方法は特に限定されず、塗料が塗布された正極集電体12を、例えば80℃~150℃の雰囲気下で乾燥させればよい。 The method for removing the solvent in the paint applied to the positive electrode collector 12 is not particularly limited, and the positive electrode collector 12 to which the paint has been applied may be dried, for example, in an atmosphere of 80°C to 150°C.

そして、このようにして正極活物質層14が形成された正極を、その後、必要に応じて例えば、ロールプレス装置等によりプレス処理すればよい。ロールプレスの線圧は例えば、10~50kgf/cmとすることができる。 The positive electrode on which the positive electrode active material layer 14 has been formed in this manner may then be pressed, for example, by a roll press device, if necessary. The linear pressure of the roll press may be, for example, 10 to 50 kgf/cm.

その後、炭酸リチウムナノ粒子を含む正極活物質層14を、初回の充電工程に曝すと、炭酸リチウムが分解して、リチウムイオンが生じて負極に移動する。すなわち、炭酸リチウムはリチウムのプレドープ材として機能する。炭酸リチウムを十分に分解させる観点から、初期充電電圧は4.3V以上であることが好適である。初期充電を経ると、炭酸リチウムの分解及びリチウムイオンの移動により、炭酸リチウムナノ粒子が存在した場所は細孔14Vとなる。上記の方法では、炭酸リチウムナノ粒子をプレドープ剤として用いているので、初回充放電を経た正極に対して微細な細孔14Vを空間的に均一に配置することが出来る。添加剤粒子を併用する場合には、添加剤粒子存在下で炭酸リチウムナノ粒子を析出させると、細孔14Vの径を小さくし、かつ、空間的に均一に分布させやすく、さらに、添加剤粒子14Aも空間的に均一に分布させやすい。 After that, when the positive electrode active material layer 14 containing the lithium carbonate nanoparticles is exposed to the initial charging process, the lithium carbonate decomposes, lithium ions are generated, and the lithium carbonate migrates to the negative electrode. That is, the lithium carbonate functions as a pre-dope material for lithium. From the viewpoint of sufficiently decomposing the lithium carbonate, it is preferable that the initial charging voltage is 4.3 V or more. After the initial charging, the locations where the lithium carbonate nanoparticles were present become pores 14V due to the decomposition of lithium carbonate and the migration of lithium ions. In the above method, since the lithium carbonate nanoparticles are used as a pre-dope agent, it is possible to arrange the fine pores 14V spatially uniformly in the positive electrode that has undergone the initial charging and discharging. When additive particles are used in combination, if the lithium carbonate nanoparticles are precipitated in the presence of the additive particles, the diameter of the pores 14V is reduced and it is easy to distribute them spatially uniformly, and further, it is easy to distribute the additive particles 14A spatially uniformly.

(負極)
(負極集電体)
負極集電体22は、導電性の板材であればよく、例えば、銅、ニッケル、ステンレス又はそれらの合金の金属薄板(金属箔)を用いることができる。導電率の観点から銅箔であることが好ましい。銅箔は、圧延銅箔であってもよいし、他の銅箔であってもよい。負極集電体の厚みに限定はないが、例えば、5~20μmとすることができる。
(Negative electrode)
(Negative electrode current collector)
The negative electrode current collector 22 may be any conductive plate material, and may be, for example, a metal thin plate (metal foil) of copper, nickel, stainless steel, or an alloy thereof. Copper foil is preferable from the viewpoint of electrical conductivity. The copper foil may be a rolled copper foil or other copper foil. There is no limitation on the thickness of the negative electrode current collector, but it may be, for example, 5 to 20 μm.

(負極活物質層)
負極活物質層24は、負極活物質、バインダー、及び、必要に応じた量の導電助剤から主に構成されるものである。
(Negative Electrode Active Material Layer)
The negative electrode active material layer 24 is mainly composed of a negative electrode active material, a binder, and a necessary amount of a conductive assistant.

(負極活物質)
負極活物質としては、例えば、リチウムイオンを吸蔵・放出(インターカレート・デインターカレート、或いはドーピング・脱ドーピング)可能な黒鉛、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、Al、Si、Sn等のリチウムと化合することのできる金属や合金、SiO(0<x<2)、TiO、SnO等の酸化物を主体とする結晶質・非晶質の化合物、チタン酸リチウム(LiTi12)等を含む粒子が挙げられる。
(Negative Electrode Active Material)
Examples of the negative electrode active material include carbon materials such as graphite, difficult-to-graphitize carbon, easy-to-graphitize carbon, and low-temperature fired carbon that can absorb and release lithium ions (intercalate/deintercalate, or dope/dedop), metals and alloys that can combine with lithium such as Al, Si, and Sn, crystalline and amorphous compounds mainly composed of oxides such as SiO x (0<x<2), TiO 2 , and SnO 2, and particles containing lithium titanate (Li 4 Ti 5 O 12 ).

(負極バインダー及び負極導電助剤)
バインダー及び導電助剤には、上述した正極10に用いる材料と同様の材料を用いることができる。また、バインダー及び導電助剤の含有量も、負極活物質の体積変化の大きさや箔との密着性を加味しなければならない場合は適宜調整し、上述した正極10における含有量と同様の含有量を採用すればよい。添加する場合にはバインダーの添加量は、活物質の質量に対して2~20質量%であることが好ましい。導電助剤の添加量は、活物質の質量に対して0.5~5質量%であることが好ましい。また、熱硬化型のバインダー等、種類によっては200℃以上の任意の温度での熱処理が必要となる。
(Negative Electrode Binder and Negative Electrode Conductive Assistant)
The binder and conductive assistant may be the same as the materials used in the positive electrode 10 described above. In addition, the content of the binder and conductive assistant may be appropriately adjusted when the magnitude of the volume change of the negative electrode active material and the adhesion to the foil must be taken into consideration, and the same content as the content in the positive electrode 10 described above may be adopted. When added, the amount of the binder added is preferably 2 to 20 mass% with respect to the mass of the active material. The amount of the conductive assistant added is preferably 0.5 to 5 mass% with respect to the mass of the active material. In addition, depending on the type, such as a thermosetting binder, heat treatment at any temperature of 200°C or higher is required.

(負極の製造方法)
負極の製造方法は公知で有り、例えば、負極活物質、バインダー、溶媒、及び、導電助剤を含む塗料を負極集電体上に塗布し、集電体上に塗布された塗料中の溶媒を除去すればよい。
(Method of Manufacturing Negative Electrode)
Methods for producing a negative electrode are known, and include, for example, applying a coating material containing a negative electrode active material, a binder, a solvent, and a conductive assistant onto a negative electrode current collector, and then removing the solvent from the coating material applied to the current collector.

(セパレータ)
セパレータは、電解液に対して安定であり、保液性に優れていれば特に制限はないが、一般的にはポリエチレン、ポリプロピレン等のポリオレフィンの多孔質シート、又は不織布が挙げられる。
(Separator)
There are no particular limitations on the separator as long as it is stable to the electrolyte and has excellent electrolyte retention, but typical examples include porous sheets of polyolefins such as polyethylene and polypropylene, or nonwoven fabrics.

(電解質)
電解質は、正極活物質層14、負極活物質層24、及び、セパレータ18の内部に含有させるものである。電解質としては、特に限定されず、例えば、本実施形態では、リチウム塩を含む電解液(電解質水溶液、有機溶媒を使用する電解質溶液)を使用することができる。ただし、電解質水溶液は電気化学的に分解電圧が低いことにより、充電時の耐用電圧が低く制限されるので、有機溶媒を使用する電解液(非水電解質溶液)であることが好ましい。電解液としては、リチウム塩を非水溶媒(有機溶媒)に溶解したものが好適に使用される。リチウム塩としては特に限定されず、リチウムイオン二次電池の電解質として用いられるリチウム塩を用いることができる。例えば、リチウム塩としては、LiPF、LiBF、等の無機酸陰イオン塩、LiCFSO、(CFSONLi等の有機酸陰イオン塩等を用いることができる。
(Electrolytes)
The electrolyte is contained in the positive electrode active material layer 14, the negative electrode active material layer 24, and the separator 18. The electrolyte is not particularly limited, and for example, in this embodiment, an electrolyte solution containing a lithium salt (aqueous electrolyte solution, an electrolyte solution using an organic solvent) can be used. However, since the electrolyte aqueous solution has a low electrochemical decomposition voltage, the withstand voltage during charging is limited to a low level, so an electrolyte solution using an organic solvent (non-aqueous electrolyte solution) is preferable. As the electrolyte solution, a solution in which a lithium salt is dissolved in a non-aqueous solvent (organic solvent) is preferably used. The lithium salt is not particularly limited, and lithium salts used as electrolytes for lithium ion secondary batteries can be used. For example, as the lithium salt, inorganic acid anion salts such as LiPF 6 and LiBF 4 , organic acid anion salts such as LiCF 3 SO 3 and (CF 3 SO 2 ) 2 NLi, etc. can be used.

また、有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、等の非プロトン性高誘電率溶媒や、ジメチルカーボネート、エチルメチルカーボネート、等の酢酸エステル類あるいはプロピオン酸エステル類等の非プロトン性低粘度溶媒が挙げられる。これらの非プロトン性高誘電率溶媒と非プロトン性低粘度溶媒を適当な混合比で併用することが望ましい。更には、イミダゾリウム、アンモニウム、及びピリジニウム型のカチオンを用いたイオン性液体を使用することができる。対アニオンは特に限定されるものではないが、BF 、PF 、(CFSO等が挙げられる。イオン性液体は前述の有機溶媒と混合して使用することが可能である。 Examples of the organic solvent include aprotic high-dielectric constant solvents such as ethylene carbonate and propylene carbonate, and aprotic low-viscosity solvents such as acetates and propionates such as dimethyl carbonate and ethyl methyl carbonate. It is desirable to use these aprotic high-dielectric constant solvents and aprotic low-viscosity solvents in a suitable mixing ratio. Furthermore, ionic liquids using imidazolium, ammonium, and pyridinium cations can be used. The counter anion is not particularly limited, but examples include BF 4 - , PF 6 - , (CF 3 SO 2 ) 2 N -, and the like. The ionic liquid can be used by mixing with the organic solvent described above.

電解液のリチウム塩の濃度は、電気伝導性の点から、0.5~2.0Mが好ましい。なお、この電解質の温度25℃における導電率は0.01S/m以上であることが好ましく、電解質塩の種類あるいはその濃度により調整される。 From the viewpoint of electrical conductivity, the concentration of the lithium salt in the electrolyte is preferably 0.5 to 2.0 M. The conductivity of this electrolyte at a temperature of 25°C is preferably 0.01 S/m or more, and is adjusted according to the type or concentration of the electrolyte salt.

電解質を固体電解質やゲル電解質とする場合には、シリコーンゲル、ポリ(ビニリデンフルオライド)等を高分子材料として含有することが可能である。 When the electrolyte is a solid electrolyte or a gel electrolyte, it is possible to include silicone gel, poly(vinylidene fluoride), etc. as a polymer material.

更に、本実施形態の電解液中には、必要に応じて各種添加剤を添加してもよい。添加剤としては、例えば、サイクル寿命向上を目的としたビニレンカーボネート、メチルビニレンカーボネート等や、過充電防止を目的としたビフェニル、アルキルビフェニル等や、脱酸や脱水を目的とした各種カーボネート化合物、各種カルボン酸無水物、各種含窒素及び含硫黄化合物が挙げられる。 Furthermore, various additives may be added to the electrolyte of this embodiment as necessary. Examples of additives include vinylene carbonate, methylvinylene carbonate, etc., for improving cycle life, biphenyl, alkylbiphenyl, etc., for preventing overcharging, and various carbonate compounds, various carboxylic acid anhydrides, and various nitrogen- and sulfur-containing compounds for deoxidization and dehydration.

(ケース)
ケース50は、その内部に積層体30及び電解液を密封するものである。ケース50は、電解液の外部への漏出や、外部からのリチウムイオン二次電池100内部への水分等の侵入等を抑止できる物であれば特に限定されない。例えば、ケース50として、図1に示すように、金属箔52を高分子膜54で両側からコーティングした金属ラミネートフィルムを利用できる。金属箔52としては例えばアルミ箔を、高分子膜54としてはポリプロピレン等の膜を利用できる。例えば、外側の高分子膜54の材料としては融点の高い高分子、例えば、ポリエチレンテレフタレート(PET)、ポリアミド等が好ましく、内側の高分子膜54の材料としてはポリエチレン(PE)、ポリプロピレン(PP)等が好ましい。
(case)
The case 50 seals the laminate 30 and the electrolyte therein. The case 50 is not particularly limited as long as it can prevent leakage of the electrolyte to the outside and intrusion of moisture from the outside into the lithium ion secondary battery 100. For example, as shown in FIG. 1, a metal laminate film in which a metal foil 52 is coated on both sides with a polymer film 54 can be used as the case 50. For example, aluminum foil can be used as the metal foil 52, and a film such as polypropylene can be used as the polymer film 54. For example, a polymer with a high melting point, such as polyethylene terephthalate (PET) or polyamide, is preferable as the material of the outer polymer film 54, and a polyethylene (PE) or polypropylene (PP) is preferable as the material of the inner polymer film 54.

(リード)
リード60、62は、アルミ等の導電材料から形成されている。
(Lead)
The leads 60 and 62 are made of a conductive material such as aluminum.

そして、公知の方法により、リード60、62を正極集電体12、負極集電体22にそれぞれ溶接し、正極10の正極活物質層14と負極20の負極活物質層24との間にセパレータ18を挟んだ状態で、電解液と共にケース50内に挿入し、ケース50の入り口をシールすればよい。 Then, by using a known method, the leads 60, 62 are welded to the positive electrode collector 12 and the negative electrode collector 22, respectively, and the separator 18 is sandwiched between the positive electrode active material layer 14 of the positive electrode 10 and the negative electrode active material layer 24 of the negative electrode 20. The separator 18 is then inserted into the case 50 together with the electrolyte, and the entrance of the case 50 is sealed.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。例えば、リチウムイオン二次電池は図1に示した形状のものに限定されず、コイン形状に打ち抜いた電極とセパレータとを積層したコインタイプや、電極シートとセパレータとをスパイラル状に巻回したシリンダータイプ等であってもよい。 Although the preferred embodiment of the present invention has been described above, the present invention is not limited to the above embodiment. For example, the lithium ion secondary battery is not limited to the shape shown in FIG. 1, but may be a coin type in which electrodes punched into a coin shape and a separator are laminated, or a cylinder type in which an electrode sheet and a separator are wound in a spiral shape.

[実施例1]
(炭酸リチウム粒子の作製)
濃度0.4wt%の炭酸リチウム水溶液200mL中に、NMPを600mL加え、炭酸リチウムナノ粒子を析出させた。SEM観察による炭酸リチウムナノ粒子の面積円相当径の面積基準の分布のD50は200nmであった。
[Example 1]
(Preparation of lithium carbonate particles)
600 mL of NMP was added to 200 mL of a 0.4 wt % aqueous lithium carbonate solution to precipitate lithium carbonate nanoparticles. The D50 of the area-based distribution of the area-equivalent circle diameter of the lithium carbonate nanoparticles observed with a SEM was 200 nm.

(正極の作製)
加熱乾燥した炭酸リチウムナノ粒子と、正極活物質であるリチウム含有ニッケルコバルトマンガン複合酸化物粒子と、導電助剤であるアセチレンブラックと、バインダーであるポリフッ化ビニリデンとを、溶媒であるN-メチル-2-ピロリドン(NMP)中に分散させてスラリーを調製した。スラリーにおいてニッケルコバルトマンガン複合酸化物粒子と、アセチレンブラックと、ポリフッ化ビニリデンとの重量比が97:1.5:1.5となるように、スラリーを調製した。このスラリーを集電体であるアルミ箔上に塗布し、乾燥させた後、圧延を行い、実施例1の正極活物質層が形成された正極を作製した。
(Preparation of Positive Electrode)
A slurry was prepared by dispersing heated and dried lithium carbonate nanoparticles, lithium-containing nickel-cobalt-manganese composite oxide particles as a positive electrode active material, acetylene black as a conductive assistant, and polyvinylidene fluoride as a binder in a solvent, N-methyl-2-pyrrolidone (NMP). The slurry was prepared so that the weight ratio of the nickel-cobalt-manganese composite oxide particles, acetylene black, and polyvinylidene fluoride in the slurry was 97:1.5:1.5. This slurry was applied onto an aluminum foil as a current collector, dried, and then rolled to produce a positive electrode on which the positive electrode active material layer of Example 1 was formed.

(負極の作製)
[評価用負極セルの作製]
ケイ素を含んだ粒子と、バインダーであるポリイミド(PI)と、アセチレンブラックを混合したものを、溶媒であるN-メチル-2-ピロリドン(NMP)中に分散させてスラリーを調製した。スラリーにおいてケイ素粒子とアセチレンブラックとポリイミドとの重量比が80:10:10となるように、スラリーを調製した。このスラリーを負極集電体である銅箔上に塗布し、乾燥させた後、圧延を行い、負極を作製した。
(Preparation of negative electrode)
[Preparation of negative electrode cell for evaluation]
A mixture of silicon-containing particles, polyimide (PI) as a binder, and acetylene black was dispersed in N-methyl-2-pyrrolidone (NMP) as a solvent to prepare a slurry. The slurry was prepared so that the weight ratio of silicon particles, acetylene black, and polyimide in the slurry was 80:10:10. This slurry was applied onto a copper foil as a negative electrode current collector, dried, and then rolled to prepare a negative electrode.

(電池の作製)
次に、電池の容量が1000mAhになるように、作製した負極と負極を打ち抜いたのち、ポリエチレン微多孔膜からなるセパレータを、作製した負極及び正極で挟み、積層体(発電素子)を得た。この積層体を、アルミラミネーターパックに入れ、このアルミラミネートパックに、電解液として体積比でフルオロエチレンカーボネート(FEC):ビニレンカーボネート(VC):エチルメチルカーボネート(EMC)=1:1:8となるように混合し、これに1.3mol/Lの濃度となるようにLiPFを溶解させたものを注入した後、真空シールし、実施例1のリチウムイオン二次電池を作製した。
(Battery Construction)
Next, the negative electrode and the negative electrode were punched out so that the capacity of the battery was 1000mAh, and then a separator made of a polyethylene microporous film was sandwiched between the negative electrode and the positive electrode to obtain a laminate (power generation element). This laminate was placed in an aluminum laminator pack, and an electrolyte solution was mixed in the aluminum laminate pack so that fluoroethylene carbonate (FEC): vinylene carbonate (VC): ethyl methyl carbonate (EMC) = 1: 1: 8 in volume ratio, and LiPF6 was dissolved in the electrolyte solution to a concentration of 1.3 mol / L, and then vacuum sealed to prepare the lithium ion secondary battery of Example 1.

(初期充放電)
25℃の恒温槽の中で、上限電圧4.48V、充電レート0.1C(定電流充電を行ったときに10時間で充電終了となる電流値)の条件でリチウムイオン二次電池の初期充電を行った。その後、25℃の恒温槽の中で、下限電圧2.5V、放電レート0.1Cの条件でリチウムイオン二次電池の初期放電を行った。
(Initial charge/discharge)
The lithium ion secondary battery was initially charged in a thermostatic chamber at 25° C. under the conditions of an upper limit voltage of 4.48 V and a charge rate of 0.1 C (a current value at which charging is completed in 10 hours when constant current charging is performed). Thereafter, the lithium ion secondary battery was initially discharged in a thermostatic chamber at 25° C. under the conditions of a lower limit voltage of 2.5 V and a discharge rate of 0.1 C.

(電池特性の評価)
次いで、リチウムイオン二次電池の放電容量及び放電レート特性(急速放電特性)を求めた。充電レートを0.1C(定電流充電を行ったときに10時間で充電終了となる電流値)とした場合の充電容量を25℃の恒温槽の中で測定し、続いて放電レートを0.2Cとした場合の初回放電容量を25℃の恒温槽の中で測定し放電容量を求めた。
(Evaluation of Battery Characteristics)
Next, the discharge capacity and discharge rate characteristics (rapid discharge characteristics) of the lithium ion secondary battery were determined. The charge capacity was measured in a thermostatic chamber at 25° C. when the charge rate was 0.1 C (the current value at which charging is completed in 10 hours when constant current charging is performed), and then the initial discharge capacity was measured in a thermostatic chamber at 25° C. when the discharge rate was 0.2 C, to determine the discharge capacity.

4C放電レート特性は、0.1C充電レート(25℃で定電流放電を行ったときに10時間で放電終了となる電流値)で充電した後、0.2C放電レートとした場合の放電容量を25℃の恒温槽の中で測定し求め、再び0.1C充電レート(25℃で定電流放電を行ったときに10時間で放電終了となる電流値)で充電した後、4C放電レートとした場合の放電容量を25℃の恒温槽の中で測定し求め、0.2Cの放電容量に対する4C放電容量の比率で求めた。 The 4C discharge rate characteristics were calculated by charging at a 0.1C charge rate (current value at which discharge ends in 10 hours when constant current discharge is performed at 25°C), then measuring the discharge capacity at a 0.2C discharge rate in a thermostatic chamber at 25°C, then charging again at a 0.1C charge rate (current value at which discharge ends in 10 hours when constant current discharge is performed at 25°C), then measuring the discharge capacity at a 4C discharge rate in a thermostatic chamber at 25°C, and calculating the ratio of the 4C discharge capacity to the 0.2C discharge capacity.

初期充放電後の正極活物質層の集電体の主面に垂直な断面のSEM画像を得た。画像のサイズは1357×967ピクセルで、画像の大きさは12.7×9.0μmとした。複数の正極活物質粒子14P間に形成される粒子間領域14Zに、固体部14S、及び、固体部14S内に分散した複数の細孔14Vが観察された。各細孔の面積円相当径を計算し、細孔径の面積基準の分布を得て、D50及びD90を得た。計算に用いた細孔の数は261とした。 An SEM image of a cross section perpendicular to the main surface of the current collector of the positive electrode active material layer after initial charging and discharging was obtained. The image size was 1357 x 967 pixels, and the image dimension was 12.7 x 9.0 μm. A solid portion 14S and a plurality of pores 14V dispersed within the solid portion 14S were observed in the interparticle region 14Z formed between a plurality of positive electrode active material particles 14P. The area circle equivalent diameter of each pore was calculated to obtain the area-based distribution of pore diameters, and D50 and D90 were obtained. The number of pores used in the calculation was 261.

また、得られたSEM画像を一辺1μmの2次元正方格子に分割した。正極活物質粒子14Pの面積割合が50%以下である格子を対象に、それぞれの細孔面積割合を得て、変動係数CV1を得た。格子の数は95とした。 The obtained SEM image was divided into a two-dimensional square lattice with sides of 1 μm. For lattices in which the area ratio of the positive electrode active material particles 14P was 50% or less, the pore area ratio for each was obtained, and the coefficient of variation CV1 was obtained. The number of lattices was 95.

[実施例2]
(複合粒子の作製)
濃度0.4wt%の炭酸リチウム水溶液200ml中に、添加剤として粒径D50が30nmの酸化コバルト(Co)粒子を0.4g投入して分散させた。この分散液に対してNMPを200ml加え、表面に酸化コバルト粒子が担持された炭酸リチウムナノ粒子である複合粒子を析出させた。複合粒子を構成する炭酸リチウム粒子の大きさはD50として1000nmであった。他の手順は実施例1と同様に、リチウムイオン二次電池を得て、評価した。
[Example 2]
(Preparation of Composite Particles)
0.4 g of cobalt oxide (Co 3 O 4 ) particles having a particle size D50 of 30 nm were added as an additive and dispersed in 200 ml of a lithium carbonate aqueous solution having a concentration of 0.4 wt %. 200 ml of NMP was added to this dispersion to precipitate composite particles that are lithium carbonate nanoparticles carrying cobalt oxide particles on their surfaces. The size of the lithium carbonate particles constituting the composite particles was 1000 nm as D50. The other procedures were the same as in Example 1, and a lithium ion secondary battery was obtained and evaluated.

また、各2次元正方格子内の添加剤粒子の面積割合を取得した。格子の数は空隙の場合と同様の数とした。 The area ratio of additive particles within each two-dimensional square lattice was also obtained. The number of lattices was the same as in the case of voids.

[実施例3]
NMPの添加量を600mlとし、複合粒子を構成する炭酸リチウム粒子の大きさをD50として200nmとした以外は、実施例2と同様の手順でリチウムイオン二次電池を得て、評価した。
[Example 3]
A lithium ion secondary battery was obtained and evaluated in the same manner as in Example 2, except that the amount of NMP added was 600 ml and the size of the lithium carbonate particles constituting the composite particles was 200 nm as D50.

[実施例4]
NMPの添加量を800mlとし、複合粒子を構成する炭酸リチウム粒子の大きさをD50として100nmとした以外は、実施例2と同様の手順でリチウムイオン二次電池を得て評価した。
[Example 4]
A lithium ion secondary battery was obtained and evaluated in the same manner as in Example 2, except that the amount of NMP added was 800 ml and the size of the lithium carbonate particles constituting the composite particles was 100 nm as D50.

[実施例5]
NMPの添加量を1000mlとし、複合粒子を構成する炭酸リチウム粒子の大きさをD50として80nmとした以外は、実施例2と同様の手順でリチウムイオン二次電池を得た。
[Example 5]
A lithium ion secondary battery was obtained in the same manner as in Example 2, except that the amount of NMP added was 1000 ml and the size of the lithium carbonate particles constituting the composite particles was 80 nm as D50.

[実施例6]
NMPの添加量を600mlとして複合粒子を構成する炭酸リチウム粒子の大きさをD50として200nmとし、酸化コバルト粒子に代えて粒径30nmのコバルト酸リチウム粒子とした以外は、実施例2と同様の手順でリチウムイオン二次電池を得た。
[Example 6]
A lithium ion secondary battery was obtained in the same manner as in Example 2, except that the amount of NMP added was 600 ml, the size of the lithium carbonate particles constituting the composite particles was 200 nm as D50, and lithium cobalt oxide particles having a particle size of 30 nm were used instead of the cobalt oxide particles.

[実施例7]
NMPの添加量を800mlとして複合粒子を構成する炭酸リチウム粒子の大きさをD50として100nmとした以外は、実施例6と同様の手順でリチウムイオン二次電池を得た。
[Example 7]
A lithium ion secondary battery was obtained in the same manner as in Example 6, except that the amount of NMP added was 800 ml and the size of the lithium carbonate particles constituting the composite particles was set to 100 nm as D50.

[実施例8]
NMPの添加量を1000mlとして複合粒子を構成する炭酸リチウム粒子の大きさをD50として80nmとした以外は、実施例6と同様の手順でリチウムイオン二次電池を得た。
[Example 8]
A lithium ion secondary battery was obtained in the same manner as in Example 6, except that the amount of NMP added was 1000 ml and the size of the lithium carbonate particles constituting the composite particles was set to 80 nm as D50.

[比較例1]
複合粒子の作製において実施例のような添加剤粒子存在下での炭酸リチウムの析出工程を用いず、粒径がD50として2000nmの炭酸リチウム粒子の表面に、粒径30nmの酸化コバルト粒子を泳動法によって担持させた複合粒子を用いた以外は、実施例2と同様の手順でリチウムイオン二次電池を得た。
[Comparative Example 1]
A lithium ion secondary battery was obtained in the same manner as in Example 2, except that in the preparation of the composite particles, a precipitation step of lithium carbonate in the presence of additive particles as in the Examples was not used, and composite particles were used in which cobalt oxide particles having a particle size of 30 nm were supported by a migration method on the surfaces of lithium carbonate particles having a particle size D50 of 2000 nm.

[比較例2]
複合粒子の作製において実施例のような析出工程を用いず、炭酸リチウム原料粉と粒径30nmの酸化コバルト粒子とを混合し、メカノケミカル法によって炭酸リチウム粒子の粒径がD50としての粒径が1000nmであり、かつ、表面に酸化コバルト粒子が担持された複合粒子を得た以外は、実施例2と同様の手順でリチウムイオン二次電池を得た。条件と結果を表1に示す。
[Comparative Example 2]
A lithium ion secondary battery was obtained in the same manner as in Example 2, except that in the preparation of the composite particles, a precipitation step as in the Example was not used, but instead, lithium carbonate raw material powder was mixed with cobalt oxide particles having a particle size of 30 nm, and composite particles having a particle size of 1000 nm as D50 of the lithium carbonate particles and having cobalt oxide particles supported on the surface were obtained by a mechanochemical method. The conditions and results are shown in Table 1.

10…正極、12…正極集電体、14…正極活物質層、14P…正極活物質粒子、14S…固体部、14V…細孔、14Z…粒子間領域、20…負極、22…負極集電体、24…負極活物質層、100…リチウムイオン二次電池、GR…2次元正方格子。

10... positive electrode, 12... positive electrode current collector, 14... positive electrode active material layer, 14P... positive electrode active material particle, 14S... solid portion, 14V... pore, 14Z... interparticle region, 20... negative electrode, 22... negative electrode current collector, 24... negative electrode active material layer, 100... lithium ion secondary battery, GR... two-dimensional square lattice.

Claims (5)

集電体と、前記集電体の少なくとも一方の主面に接する正極活物質層と、を有する正極であって、
前記正極活物質層は、複数の正極活物質粒子と、前記複数の正極活物質粒子間に形成される粒子間領域と、を備え、
前記粒子間領域は、固体部、及び、前記固体部内に分散した複数の細孔を有し、
前記正極活物質層の断面画像において、前記細孔の面積円相当径の面積基準の分布のD50が0.82μm以下であり、前記細孔の面積円相当径の面積基準の分布のD90が1.37μm以下であり、
前記正極活物質層の断面画像において、前記粒子間領域を2次元正方格子に分割し、各2次元正方格子内の細孔の面積割合を取得した場合に、前記細孔の面積割合の変動係数CV1が0.610以下である、正極。
A positive electrode having a current collector and a positive electrode active material layer in contact with at least one main surface of the current collector,
the positive electrode active material layer includes a plurality of positive electrode active material particles and an interparticle region formed between the plurality of positive electrode active material particles,
the interparticle region has a solid portion and a plurality of pores dispersed within the solid portion;
In a cross-sectional image of the positive electrode active material layer, a D50 of an area-based distribution of the equivalent circle diameters of the pores is 0.82 μm or less, and a D90 of an area-based distribution of the equivalent circle diameters of the pores is 1.37 μm or less,
a positive electrode, in which, when the interparticle region is divided into a two-dimensional square lattice in a cross-sectional image of the positive electrode active material layer and the area ratio of the pores in each two-dimensional square lattice is obtained, a coefficient of variation CV1 of the area ratio of the pores is 0.610 or less.
前記固体部は、バインダー及び導電助剤を含む、請求項1に記載の正極。 The positive electrode according to claim 1, wherein the solid portion includes a binder and a conductive additive. 前記固体部は、Co粉、LiCoO粉、又は、これらの組み合わせからなる添加剤粒子を含む、請求項1に記載の正極。 The positive electrode of claim 1 , wherein the solid portion includes additive particles of Co 3 O 4 powder, LiCoO 2 powder, or a combination thereof. 各2次元正方格子内の前記添加剤粒子の面積割合を取得した場合に、前記添加剤粒子の面積割合の変動係数CV2が0.601以下である、請求項3に記載の正極。 The positive electrode according to claim 3, wherein when the area ratio of the additive particles in each two-dimensional square lattice is obtained, the coefficient of variation CV2 of the area ratio of the additive particles is 0.601 or less. 請求項1~4のいずれか一項に記載の正極と、負極と、を備える、リチウムイオン二次電池。

A lithium ion secondary battery comprising the positive electrode according to any one of claims 1 to 4 and a negative electrode.

JP2023044434A 2023-03-20 2023-03-20 Positive electrode and lithium ion secondary battery Pending JP2024134235A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023044434A JP2024134235A (en) 2023-03-20 2023-03-20 Positive electrode and lithium ion secondary battery
PCT/JP2024/007612 WO2024195471A1 (en) 2023-03-20 2024-02-29 Positive electrode and lithium-ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023044434A JP2024134235A (en) 2023-03-20 2023-03-20 Positive electrode and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2024134235A true JP2024134235A (en) 2024-10-03

Family

ID=92841930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023044434A Pending JP2024134235A (en) 2023-03-20 2023-03-20 Positive electrode and lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP2024134235A (en)
WO (1) WO2024195471A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019029110A (en) * 2017-07-26 2019-02-21 旭化成株式会社 Lithium compound for nonaqueous lithium-type storage element
CN112250091A (en) * 2020-10-30 2021-01-22 浙江帕瓦新能源股份有限公司 High-nickel ternary precursor, positive electrode material and preparation method
JP2022150407A (en) * 2021-03-26 2022-10-07 Tdk株式会社 Composite particles, positive electrodes and lithium-ion secondary batteries

Also Published As

Publication number Publication date
WO2024195471A1 (en) 2024-09-26

Similar Documents

Publication Publication Date Title
JP5882516B2 (en) Lithium secondary battery
JP7183198B2 (en) lithium secondary battery
KR101749508B1 (en) Electrode active material for lithium secondary battery, electrode for lithium secondary battery including the same, and lithium secondary battery comprising the same
CN101981728A (en) Positive electrode plate for secondary battery, method for producing same, and secondary battery having same
WO2018155207A1 (en) Secondary battery and production method therefor
JP7297378B2 (en) Negative electrode for secondary battery and secondary battery including the same
JP6451889B1 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
CN115769398A (en) Negative electrode for lithium ion secondary battery
JP2019175657A (en) Lithium ion secondary battery
KR102209653B1 (en) Anode with improved swelling phenomenon and Lithium secondary battery comprising the anode
JP6237777B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP5114857B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6812827B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using it
JP2015056311A (en) Method for producing non-aqueous electrolyte secondary battery
JP2017152122A (en) Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6992362B2 (en) Lithium ion secondary battery
JP2018133335A (en) Nonaqueous electrolyte battery
JP6631363B2 (en) Negative electrode active material, negative electrode including negative electrode active material, and lithium ion secondary battery including negative electrode
JP2024134235A (en) Positive electrode and lithium ion secondary battery
JP2016081707A (en) Negative electrode and lithium ion secondary battery using the same
JP6128228B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP2019175652A (en) Lithium ion secondary battery
JP6992580B2 (en) Active material and lithium-ion secondary battery using it
JP2016081709A (en) Negative electrode active material for lithium ion secondary battery, negative electrode including the same, and lithium ion secondary battery
JP2016081708A (en) Negative electrode active material for lithium ion secondary battery, negative electrode including the same, and lithium ion secondary battery