[go: up one dir, main page]

JP2024124884A - Negative electrode active material particles and solid-state battery - Google Patents

Negative electrode active material particles and solid-state battery Download PDF

Info

Publication number
JP2024124884A
JP2024124884A JP2023032847A JP2023032847A JP2024124884A JP 2024124884 A JP2024124884 A JP 2024124884A JP 2023032847 A JP2023032847 A JP 2023032847A JP 2023032847 A JP2023032847 A JP 2023032847A JP 2024124884 A JP2024124884 A JP 2024124884A
Authority
JP
Japan
Prior art keywords
active material
negative electrode
electrode active
particles
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023032847A
Other languages
Japanese (ja)
Inventor
遼介 古屋
Ryosuke Furuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2023032847A priority Critical patent/JP2024124884A/en
Publication of JP2024124884A publication Critical patent/JP2024124884A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

To provide a negative electrode active material particle which is suitable for manufacturing a battery of which an inner resistance is low, a discharge capacity is high, and an electrode strength is high.SOLUTION: A negative electrode active material particle of the present invention, includes: a silicon containing particle; and an alkyl group coupled to a silicon of the silicon containing particle, and the number of carbon of the alkyl group is 5 to 16.SELECTED DRAWING: Figure 1

Description

本開示は、負極活物質粒子及び固体電池に関する。 This disclosure relates to negative electrode active material particles and solid-state batteries.

近年、固体電解質を用いる固体電池が注目されている。電解液を用いる電池と比較して、固体電解質を用いる固体電池は、電池の過充電に起因する電解液の分解等を生じにくく、かつ高いサイクル耐久性及びエネルギー密度を有している。 In recent years, solid-state batteries that use solid electrolytes have been attracting attention. Compared to batteries that use electrolytes, solid-state batteries that use solid electrolytes are less susceptible to electrolyte decomposition caused by overcharging the battery, and have high cycle durability and energy density.

一方、二次電池の一種であるリチウムイオン電池は、電圧やエネルギー密度が高くメモリー効果が少ないなどの特徴を有していることから、自動車や携帯機器など様々な分野で利用されている。リチウムイオン電池は、その利用が進むに連れて、リチウムイオン電池の性能を更に向上することが求められている。 On the other hand, lithium-ion batteries, a type of secondary battery, have features such as high voltage and energy density and little memory effect, and are therefore used in a variety of fields, including automobiles and portable devices. As the use of lithium-ion batteries increases, there is a demand for further improvements in the performance of lithium-ion batteries.

リチウムイオン電池の性能を更に向上する方法として、負極活物質を改良する方法が考えられる。現在、負極活物質として主に用いられている炭素材料では、その充放電容量が理論的な限界に達しているため、これ以上の性能の向上は困難になっている。そこで、近年、シリコンのようなリチウムと合金化する材料が、充放電容量をより高くすることが可能であるとして注目されている。 One way to further improve the performance of lithium-ion batteries is to improve the negative electrode active material. The charge/discharge capacity of carbon materials, which are currently the main negative electrode active material, has reached its theoretical limit, making it difficult to further improve performance. In recent years, therefore, materials that alloy with lithium, such as silicon, have been attracting attention as they are capable of increasing charge/discharge capacity.

また、リチウムイオン電池の負極活物質として、シリコン粒子については、様々な検討がなされている。 In addition, various studies are being conducted on silicon particles as a negative electrode active material for lithium-ion batteries.

例えば、特許文献1には、平均粒径、比表面積、及び酸素含有量と比表面積との比率を特定の範囲内としたシリコン系粒子をリチウムイオン電池の負極活物質として使用することで、初回クーロン効率が向上することが開示されている。 For example, Patent Document 1 discloses that the initial coulombic efficiency can be improved by using silicon-based particles having an average particle size, specific surface area, and a ratio of oxygen content to specific surface area within specific ranges as the negative electrode active material of a lithium-ion battery.

特許文献2には、表面の少なくとも一部を覆う非誘電層により改質されているシリコン粒子をリチウムイオン電池の負極活物質として使用することで、抵抗率、放電容量などの電池特性が向上することが開示されている。 Patent Document 2 discloses that the use of silicon particles modified with a non-dielectric layer that covers at least a portion of the surface as the negative electrode active material of a lithium ion battery improves battery characteristics such as resistivity and discharge capacity.

特許文献3には、少なくともSiを含有し、赤外分光スペクトルにおいて、900cm-1以上950cm-1以下における最大ピーク強度をI1とし、1000cm-1以上1100cm-1以下における最大ピーク強度をI2とした場合に、0.55≦I2/I1≦1.0、および、0.01≦I1を満たす活物質を負極活物質として使用することで、充放電時の電極層の体積変化を抑制できることが開示されている。 Patent Document 3 discloses that by using an active material that contains at least Si and satisfies 0.55≦I2/I1≦1.0 and 0.01≦I1, where I1 is the maximum peak intensity from 900 cm −1 to 950 cm −1 in an infrared spectrum and I2 is the maximum peak intensity from 1000 cm −1 to 1100 cm −1 in an infrared spectrum, as a negative electrode active material, it is possible to suppress a volume change of an electrode layer during charging and discharging.

特開2017-112057号公報JP 2017-112057 A 特開2018-138511号公報JP 2018-138511 A 特開2022-077326号公報JP 2022-077326 A

本開示は、内部抵抗が小さく、放電容量が大きく、かつ電極強度が大きい電池の製造のために好適な負極活物質粒子を提供することを目的とする。 The present disclosure aims to provide negative electrode active material particles suitable for manufacturing batteries with low internal resistance, high discharge capacity, and high electrode strength.

本開示者らは、以下の手段により、上記課題を解決できることを見出した。 The present inventors have discovered that the above problems can be solved by the following means:

〈態様1〉
シリコン含有粒子、及び前記シリコン含有粒子のシリコンと結合しているアルキル基を有し、かつ
前記アルキル基の炭素数が5~16である、
負極活物質粒子。
〈態様2〉
前記アルキル基の炭素数が8~14である、態様1に記載の負極活物質粒子。
〈態様3〉
前記アルキル基が直鎖アルキル基である、態様1又は2に記載の負極活物質粒子。
〈態様4〉
負極活物質層を有し、かつ
前記負極活物質層が態様1~3のいずれか一項に記載の負極活物質粒子を含む、
固体電池。
<Aspect 1>
A silicon-containing particle having an alkyl group bonded to silicon of the silicon-containing particle, and the alkyl group has 5 to 16 carbon atoms.
Negative electrode active material particles.
<Aspect 2>
The negative electrode active material particles according to aspect 1, wherein the alkyl group has 8 to 14 carbon atoms.
Aspect 3
The negative electrode active material particles according to aspect 1 or 2, wherein the alkyl group is a linear alkyl group.
<Aspect 4>
A negative electrode active material layer is provided, and the negative electrode active material layer includes the negative electrode active material particle according to any one of aspects 1 to 3.
Solid-state battery.

本開示によれば、内部抵抗が小さく、放電容量が大きく、かつ電極強度が大きい電池の製造のために好適な負極活物質粒子を提供できる。 The present disclosure provides negative electrode active material particles suitable for manufacturing batteries with low internal resistance, high discharge capacity, and high electrode strength.

シリコン含有粒子のシリコンと結合しているアルキル基の炭素数とスラリー粘度との関係を示すグラフである。1 is a graph showing the relationship between the number of carbon atoms in an alkyl group bonded to silicon in a silicon-containing particle and the slurry viscosity. シリコン含有粒子のシリコンと結合しているアルキル基の炭素数と電極強度との関係を示すグラフである。1 is a graph showing the relationship between the number of carbon atoms in an alkyl group bonded to silicon in a silicon-containing particle and electrode strength. シリコン含有粒子のシリコンと結合しているアルキル基の炭素数と内部抵抗との関係を示すグラフである。1 is a graph showing the relationship between the number of carbon atoms in an alkyl group bonded to silicon in a silicon-containing particle and internal resistance. シリコン含有粒子のシリコンと結合しているアルキル基の炭素数と放電容量との関係を示すグラフである。1 is a graph showing the relationship between the number of carbon atoms in an alkyl group bonded to silicon in a silicon-containing particle and discharge capacity.

以下、本開示の実施形態について詳細に説明する。なお、本開示は、以下の実施形態に限定されるものではなく、本開示の要旨の範囲内で種々変形して実施できる。 The following describes in detail the embodiments of the present disclosure. Note that the present disclosure is not limited to the following embodiments, and can be modified in various ways within the scope of the gist of the present disclosure.

《負極活物質粒子》
本開示の活物質粒子は、シリコン含有粒子、及びシリコン含有粒子のシリコンと結合しているアルキル基を有し、かつアルキル基の炭素数が5~16である。ここで、シリコン含有粒子のシリコンとアルキル基との結合は、共有結合、特にシリコン含有粒子の表面のヒドロシラン基(-SiH)とアルケンとのヒドロシリル化反応によって得られる共有結合であってよい。
<Negative electrode active material particles>
The active material particles of the present disclosure include silicon-containing particles and an alkyl group bonded to silicon of the silicon-containing particles, the alkyl group having a carbon number of 5 to 16. Here, the bond between silicon of the silicon-containing particle and the alkyl group may be a covalent bond, particularly a covalent bond obtained by a hydrosilylation reaction between a hydrosilane group (-SiH) on the surface of the silicon-containing particle and an alkene.

本開示の負極活物質粒子によれば、内部抵抗が小さく、放電容量が大きく、かつ電極強度が大きい固体電池を得ることができる。 The negative electrode active material particles disclosed herein can provide a solid-state battery with low internal resistance, high discharge capacity, and high electrode strength.

この理由としては、何らの論理に束縛されることを意図しないが、以下のように推定される。すなわち、シリコン含有粒子の表面が酸化されると絶縁層である酸化シリコン層が生じ、これにより内部抵抗が上昇する。そこで、シリコン含有粒子をフッ化水素処理してこの絶縁層を除去することで、内部抵抗を低下させることができる。一方で、シリコン含有粒子表面の酸素量が少なくなると、シリコン含有粒子の表面の極性が小さくなるので、活物質層を形成する際に用いられる分散媒及びバインダーとの親和性が低下し、それによって得られる活物質層の強度が低下することがある。このように活物質層の強度が小さい場合、活物質層内でのクラックが生じやすく、電池の内部抵抗が高まる要因となる。これに対して、シリコン含有粒子表面のシリコンに特定の炭素数のアルキル基を結合させることにより、この負極活物質粒子と分散媒及びバインダーとの親和性を改善し、それによって内部抵抗が小さく、放電容量が大きく、かつ電極強度が大きい電池の製造に好適な負極活物質粒子を提供できると考えられる。 The reason for this is presumed to be as follows, without intending to be bound by any theory. That is, when the surface of the silicon-containing particle is oxidized, an insulating layer of silicon oxide is formed, which increases the internal resistance. Therefore, the internal resistance can be reduced by treating the silicon-containing particle with hydrogen fluoride to remove this insulating layer. On the other hand, when the amount of oxygen on the surface of the silicon-containing particle is reduced, the polarity of the surface of the silicon-containing particle is reduced, so that the affinity with the dispersion medium and binder used in forming the active material layer is reduced, and the strength of the obtained active material layer may be reduced. When the strength of the active material layer is low in this way, cracks are likely to occur in the active material layer, which is a factor in increasing the internal resistance of the battery. In response to this, it is believed that by bonding an alkyl group with a specific number of carbon atoms to the silicon on the surface of the silicon-containing particle, the affinity between the negative electrode active material particle and the dispersion medium and binder can be improved, and thus a negative electrode active material particle suitable for manufacturing a battery with low internal resistance, high discharge capacity, and high electrode strength can be provided.

以下、本開示について詳細に説明する。 This disclosure is explained in detail below.

〈負極活物質粒子〉
(シリコン含有粒子)
本開示において、シリコン含有粒子は、負極活物質として機能するシリコンを含有している粒子であり、好ましくはシリコンを主成分として含有している粒子であり、例えば実質的にシリコンから構成されているシリコン粒子である。ここで、粒子の主成分とは、粒子の中で最も割合(質量分率)の多い成分である。シリコン含有粒子は、シリコンに加えて、酸素、リチウム、酸化シリコン(SiO(0<x<2))、LiSiO(0<x<2、0<y)等を含んでいてもよい。シリコン含有粒子の平均粒径としては、1μm~10μmが例示される。
<Negative Electrode Active Material Particles>
(Silicon-containing particles)
In the present disclosure, the silicon-containing particles are particles containing silicon that functions as a negative electrode active material, and are preferably particles containing silicon as a main component, for example, silicon particles that are substantially composed of silicon. Here, the main component of a particle is the component that has the largest proportion (mass fraction) in the particle. The silicon-containing particles may contain oxygen, lithium, silicon oxide (SiO x (0<x<2)), Li y SiO x (0<x<2, 0<y), etc., in addition to silicon. The average particle size of the silicon-containing particles is, for example, 1 μm to 10 μm.

(アルキル基)
炭素数が5~16のアルキル基は、特に断りがない限り、直鎖状、分岐鎖状及び環状の1価の飽和炭化水素基を包含するものとする。
(Alkyl group)
Unless otherwise specified, the alkyl group having 5 to 16 carbon atoms includes linear, branched and cyclic monovalent saturated hydrocarbon groups.

アルキル基の炭素数は、炭素数が8~14であることが好ましい。アルキル基は直鎖アルキル基であることが好ましい。 The alkyl group preferably has 8 to 14 carbon atoms. The alkyl group is preferably a linear alkyl group.

(用途)
本開示の負極活物質粒子は、固体電池においても、液系電池においても用いることができ、好ましくは固体電池において用いることができる。
(Application)
The negative electrode active material particles of the present disclosure can be used in both solid-state batteries and liquid batteries, and are preferably used in solid-state batteries.

本開示の活物質粒子を分散媒中に分散させて負極活物質層用スラリーを得、このスラリーを剥離基材又は他の層に適用することにより、負極活物質層を得ることができる。この負極活物質層スラリーは、分散媒中に、本開示の負極活物質粒子、並びに任意選択的に、固体電解質粒子、導電助剤及びバインダーを含有している。本開示の活物質粒子を分散媒中に分散させた負極活物質層用スラリーは、分散媒と負極活物質粒子と親和性が良好であることによって、比較的小さいスラリー粘度を有することができる。 The active material particles of the present disclosure are dispersed in a dispersion medium to obtain a slurry for the negative electrode active material layer, and the slurry is applied to a peeling substrate or other layer to obtain a negative electrode active material layer. This negative electrode active material layer slurry contains the negative electrode active material particles of the present disclosure, and optionally solid electrolyte particles, a conductive assistant, and a binder in a dispersion medium. The negative electrode active material layer slurry in which the active material particles of the present disclosure are dispersed in a dispersion medium can have a relatively small slurry viscosity due to the good affinity between the dispersion medium and the negative electrode active material particles.

負極活物質層用スラリーのための分散媒の例としては、無極性溶媒、例えば、ヘプタン、キシレン、及びトルエン等、並びに極性溶媒、例えば、三級アミン系溶媒、エーテル系溶媒、チオール系溶媒、ケトン系溶媒(例えば、ジイソブチルケトン等)及びエステル系溶媒(例えば、酪酸ブチル等)を挙げることができる。 Examples of dispersion media for the negative electrode active material layer slurry include non-polar solvents such as heptane, xylene, and toluene, and polar solvents such as tertiary amine solvents, ether solvents, thiol solvents, ketone solvents (e.g., diisobutyl ketone, etc.), and ester solvents (e.g., butyl butyrate, etc.).

〈負極活物質粒子の製造方法〉
本開示の負極活物質粒子の製造においては、始めに、シリコン含有粒子をフッ化水素処理して、シリコン含有粒子の表面の酸化シリコンを除去し、同時に、シリコン含有粒子の表面にヒドロシラン基(-SiH)を生成させることができる。このフッ化水素処理の方法としては、分散媒に分散させたシリコン含有粒子に、フッ化水素水溶液を加えて撹拌し、得られた懸濁液を固液分離し、そして乾燥する方法が挙げられる。
<Method for producing negative electrode active material particles>
In the production of the negative electrode active material particles of the present disclosure, the silicon-containing particles are first treated with hydrogen fluoride to remove silicon oxide on the surfaces of the silicon-containing particles and simultaneously generate hydrosilane groups (-SiH) on the surfaces of the silicon-containing particles. Examples of the hydrogen fluoride treatment method include a method in which an aqueous hydrogen fluoride solution is added to the silicon-containing particles dispersed in a dispersion medium, the mixture is stirred, and the resulting suspension is subjected to solid-liquid separation and then dried.

その後、上記のようにして得たシリコン含有粒子の表面のヒドロシラン基(-Si-H)に、ヒドロシリル化反応によってアルキル基を付加させて、本開示の負極活物質粒子を製造することができる。このヒドロシリル化反応を行わせる方法としては、フッ化水素処理したシリコン含有粒子及び炭素数5~16のアルケンを溶媒に加えて加熱還流し、得られた懸濁液を固液分離し、そして乾燥する方法が挙げられる。 Then, alkyl groups can be added to the hydrosilane groups (-Si-H) on the surfaces of the silicon-containing particles obtained as described above by a hydrosilylation reaction to produce the negative electrode active material particles of the present disclosure. One method for carrying out this hydrosilylation reaction is to add the hydrogen fluoride-treated silicon-containing particles and an alkene having 5 to 16 carbon atoms to a solvent, heat the mixture to reflux, separate the resulting suspension into solid and liquid, and then dry it.

〈固体電池〉
本開示の固体電池は、負極活物質層を有し、かつ負極活物質層が本開示の負極活物質粒子を含む。本開示において固体電池は、電解質として固体電解質を含む電池を意味しており、特に電解質として固体電解質のみを用いる全固体電池であってよい。
Solid-state batteries
The solid-state battery of the present disclosure has a negative electrode active material layer, and the negative electrode active material layer contains the negative electrode active material particles of the present disclosure. In the present disclosure, the solid-state battery means a battery that contains a solid electrolyte as an electrolyte, and in particular may be an all-solid-state battery that uses only a solid electrolyte as the electrolyte.

本開示の固体電池は、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順に有し、かつ負極活物質層に本開示の負極活物質粒子を含むことができる。 The solid-state battery of the present disclosure has a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order, and the negative electrode active material layer can contain the negative electrode active material particles of the present disclosure.

(正極活物質層)
正極活物質層は、正極活物質粒子、並びに任意選択的に、固体電解質粒子、導電助剤及びバインダーを含有している。
(Positive Electrode Active Material Layer)
The positive electrode active material layer contains positive electrode active material particles, and optionally solid electrolyte particles, a conductive assistant, and a binder.

正極活物質粒子の例としては、マンガン、コバルト、ニッケル、及びチタンから選ばれる少なくとも1 種の遷移金属及びリチウムを含むリチウム金属酸化物粒子、例えば、コバルト酸リチウム(LixCoO)粒子、ニッケル酸リチウム(LiNO)粒子、マンガン酸リチウム(LiMn)粒子、Li1+xMyMn2-x -yO(M=Al、Mg 、Fe、Cr、Co、Ni、Zn)で表される組成の異種元素置換スピネル型マンガン酸リチウム、チタン酸リチウム(LiTiO)、リン酸金属リチウム(LiMPO:M=Fe、Mn、Co、Ni)、及びニッケルコバルトマンガン酸リチウム(Li+xNi1/3Co1/3Mn1/3)粒子等、並びにこれらの組み合わせを挙げることができる。 Examples of the positive electrode active material particles include lithium metal oxide particles containing lithium and at least one transition metal selected from manganese, cobalt, nickel, and titanium, such as lithium cobalt oxide ( LixCoO2 ) particles, lithium nickel oxide ( LiNO2 ) particles, lithium manganate ( LiMn2O4 ) particles, heteroelement-substituted spinel-type lithium manganate having a composition represented by Li1+xMyMn2-x- yO4 (M=Al, Mg, Fe, Cr, Co, Ni, Zn ), lithium titanate ( LixTiOy ), lithium metal phosphate ( LiMPO4 : M=Fe, Mn, Co, Ni), and lithium nickel cobalt manganate ( Li1 + xNi1/ 3Co1 /3Mn1 /3O2 ) particles, and combinations thereof.

固体電解質粒子の例としては、硫化物系非晶質固体電解質粒子、例えば、LiS-SiS、LiI-LiS-SiS、LiI-LiS-P、LiI-LiS-P、LiI-LiPO-P、及びLiS-P等;硫化物系結晶質固体電解質粒子、例えば、Li11、LiPS、及びLi3.250.75等;並びにこれらの組み合わせを挙げることができる。 Examples of solid electrolyte particles include sulfide-based amorphous solid electrolyte particles, such as Li 2 S—SiS 2 , LiI-Li 2 S—SiS 2 , LiI-Li 2 S-P 2 S 5 , LiI-Li 2 S-P 2 O 5 , LiI-Li 3 PO 4 -P 2 S 5 , and Li 2 S-P 2 S 5 ; sulfide-based crystalline solid electrolyte particles, such as Li 7 P 3 S 11 , Li 3 PS 4 , and Li 3.25 P 0.75 S 4 ; and combinations thereof.

導電助剤としては、炭素材、例えば、VGCF(気相成長法炭素繊維、Vapor Grown Carbon Fiber)、カーボンブラック、アセチレンブラック(AB)、ケッチェンブラック(KB)、カーボンナノチューブ(CNT)、及びカーボンナノファイバー(CNF)等、及び金属材等、並びにこれらの組み合わせを挙げることができる。 Examples of conductive additives include carbon materials such as VGCF (Vapor Grown Carbon Fiber), carbon black, acetylene black (AB), Ketjen Black (KB), carbon nanotubes (CNT), and carbon nanofibers (CNF), as well as metal materials, and combinations of these.

バインダーとしては、特に限定されないが、ポリマー樹脂、例えば、ポリフッ化ビニリデン(PVDF)、アクリロニトリルブタジエンゴム(ABR)、及びスチレンブタジエンゴム(SBR)等、並びにこれらの組み合わせを挙げることができる。 Binders include, but are not limited to, polymer resins such as polyvinylidene fluoride (PVDF), acrylonitrile butadiene rubber (ABR), and styrene butadiene rubber (SBR), as well as combinations thereof.

(負極活物質層)
負極活物質層は、本開示の負極活物質粒子、並びに任意選択的に、固体電解質粒子、導電助剤及びバインダーを含有している。
(Negative Electrode Active Material Layer)
The negative electrode active material layer contains the negative electrode active material particles of the present disclosure, and optionally, solid electrolyte particles, a conductive assistant, and a binder.

負極活物質層の固体電解質粒子、導電助剤、及びバインダーについては、正極活物質層に関する記載を参照することができる。 For information about the solid electrolyte particles, conductive additive, and binder in the negative electrode active material layer, please refer to the description regarding the positive electrode active material layer.

(固体電解質層)
固体電解質層は、固体電解質粒子、及び任意選択的なバインダーを含有している。固体電解質層の固体電解質粒子及びバインダーについては、正極活物質層に関する記載を参照することができる。
(Solid electrolyte layer)
The solid electrolyte layer contains solid electrolyte particles and an optional binder. For the solid electrolyte particles and binder of the solid electrolyte layer, the description of the positive electrode active material layer can be referred to.

(正極集電体層又は負極集電体層)
正極集電体層又は負極集電体層の例としては、特に限定されることなく、各種金属、例えば、銀、銅、金、アルミニウム、ニッケル、鉄、ステンレス鋼、及びチタン等、並びにこれらの合金を挙げることができる。化学的安定性等の観点から、正極集電体層としては、アルミニウムの集電体層が好ましく、かつ負極集電体層としては、ニッケルの集電体層が好ましい。
(Positive electrode current collector layer or negative electrode current collector layer)
Examples of the positive electrode current collector layer or the negative electrode current collector layer are not particularly limited, and include various metals such as silver, copper, gold, aluminum, nickel, iron, stainless steel, titanium, etc., and alloys thereof. From the viewpoint of chemical stability, etc., the positive electrode current collector layer is preferably an aluminum current collector layer, and the negative electrode current collector layer is preferably a nickel current collector layer.

以下に示す実施例を参照して本開示をさらに詳しく説明するが、本開示の範囲はこれらの実施例によって限定されるものでない。 The present disclosure will be described in more detail with reference to the following examples, but the scope of the present disclosure is not limited to these examples.

《実施例1》
〈正極活物質層の作製〉
正極活物質層の原材料としての正極合剤を、ポリプロピレン(PP)製の容器に入れた。これを、超音波分散装置(エスエムテー社製、型式:UH-50)で10分間にわたって撹拌することによって、正極活物質層用スラリーを調製した。
Example 1
<Preparation of Positive Electrode Active Material Layer>
The positive electrode mixture as the raw material for the positive electrode active material layer was placed in a polypropylene (PP) container, and the mixture was stirred for 10 minutes with an ultrasonic dispersing device (manufactured by SMT Corporation, model: UH-50) to prepare a slurry for the positive electrode active material layer.

アプリケーターを採用したブレード法によって、この正極活物質層用スラリーを、正極集電体層としてのアルミニウム箔上に塗工し、正極活物質層用スラリー層を形成した。これを、ホットプレート上で30分間にわたって100℃で乾燥させ、正極集電体層上に正極活物質層を形成した。 The slurry for the positive electrode active material layer was applied to an aluminum foil as a positive electrode current collector layer using a blade method with an applicator to form a slurry layer for the positive electrode active material layer. This was dried at 100°C for 30 minutes on a hot plate to form a positive electrode active material layer on the positive electrode current collector layer.

なお、正極合剤の構成は下記のとおりであった:
・正極活物質粒子としてのLiNi1/3Co1/3Mn1/3(平均粒径4μm);
・分散媒としての酪酸ブチル;
・導電助剤としての気相法炭素繊維(VGCF);
・バインダーとしてのポリフッ化ビニリデン(PVdF)系バインダーを含有している酪酸ブチル溶液(5質量%);
・固体電解質粒子としてのLiIを含有しているLiS-P系ガラスセラミックス(平均粒径0.8μm、約380℃)。
The composition of the positive electrode mixture was as follows:
LiNi 1/3 Co 1/3 Mn 1/3 O 2 (average particle size: 4 μm) as positive electrode active material particles;
butyl butyrate as a dispersion medium;
Vapor grown carbon fiber (VGCF) as a conductive additive;
- butyl butyrate solution (5% by weight) containing a polyvinylidene fluoride (PVdF)-based binder as binder;
Li 2 S-P 2 S 5 -based glass ceramics containing LiI as solid electrolyte particles (average particle size 0.8 μm, approximately 380° C.).

〈固体電解質層の作製〉
固体電解質層の原材料としての電解質合剤を、ポリプロピレン(PP)製の容器に入れた。これを、超音波分散装置(エスエムテー社製、型式:UH-50)で10分間にわたって撹拌することによって、固体電解質層用スラリーを調製した。
(Preparation of solid electrolyte layer)
The electrolyte mixture as the raw material for the solid electrolyte layer was placed in a polypropylene (PP) container, and the mixture was stirred for 10 minutes with an ultrasonic dispersing device (manufactured by SMT Corporation, model: UH-50) to prepare a slurry for the solid electrolyte layer.

アプリケーターを採用したブレード法によって、この固体電解質スラリーを、剥離シートとしてのステンレス箔上に塗工した。これを、ホットプレート上で30分間にわたって100℃で乾燥させ、固体電解質層を得た。 This solid electrolyte slurry was applied onto a stainless steel foil as a release sheet using a blade method with an applicator. This was then dried on a hot plate at 100°C for 30 minutes to obtain a solid electrolyte layer.

なお、電解質合剤の構成は下記のとおりであった:
・固体電解質粒子としての、Li10GeS12系ガラスセラミックス(平均粒径2.0μm、約690℃);
・分散媒としてのヘプタン;
・バインダーとしてのアクリロニトリルブタジエンゴム(ABR)系バインダーを含有しているヘプタン溶液(5質量%)
The electrolyte mixture had the following composition:
Li 10 P 2 GeS 12 -based glass ceramics (average particle size 2.0 μm, approximately 690° C.) as solid electrolyte particles;
heptane as the dispersion medium;
Heptane solution (5% by mass) containing acrylonitrile butadiene rubber (ABR)-based binder as a binder

〈負極活物質層の作製〉
(フッ化水素処理)
イオン交換水(1900g)にシリコン粒子(100g)を加え、室温で攪拌しながら、46%HF水溶液を10分かけて滴下し、室温で30分間攪拌した。攪拌後、懸濁液を1L遠心ボトルへ注ぎ入れ、遠心分離装置(9000rpm)で固液を分離し、上澄みをデカンテーションで除去した。沈降した固体へメタノール(800mL)を加え攪拌後、再度遠心分離し上澄みをデカンテーションした。この操作を3回繰り返した。得られた固体を真空中100℃で12時間乾燥させ、フッ化水素処理シリコン粒子を得た。
<Preparation of negative electrode active material layer>
(Hydrogen fluoride treatment)
Silicon particles (100 g) were added to ion-exchanged water (1900 g), and while stirring at room temperature, a 46% HF aqueous solution was dropped over 10 minutes, and the mixture was stirred at room temperature for 30 minutes. After stirring, the suspension was poured into a 1 L centrifuge bottle, and the solid and liquid were separated using a centrifuge (9000 rpm), and the supernatant was removed by decantation. Methanol (800 mL) was added to the settled solid, and the mixture was stirred, and then centrifuged again to decant the supernatant. This operation was repeated three times. The obtained solid was dried in a vacuum at 100 ° C. for 12 hours to obtain hydrogen fluoride-treated silicon particles.

(ヒドロシリル化(アルキル化)処理)
トルエン(288g)に、上記フッ化水素処理シリコン粒子(17g)及び1-オクテン(炭素原子数:8)(35g)を加え、120℃で20時間にわたって加熱還流してヒドロシリル化反応を行わせた。加熱還流後、懸濁液を静置し粒子を沈降させ、上澄みをデカンテーションした。得られた固体にヘキサンを加え攪拌後、減圧濾過した。この操作を3回繰り返した。得られた固体を真空中100℃で12時間乾燥させ、表面にアルキル基が共有結合したシリコン粒子を備える負極活物質粒子を得た。
(Hydrosilylation (alkylation) treatment)
The hydrogen fluoride-treated silicon particles (17 g) and 1-octene (carbon atom number: 8) (35 g) were added to toluene (288 g), and the mixture was heated under reflux at 120° C. for 20 hours to carry out a hydrosilylation reaction. After heating under reflux, the suspension was left to stand to allow the particles to settle, and the supernatant was decanted. Hexane was added to the obtained solid, which was stirred and then filtered under reduced pressure. This operation was repeated three times. The obtained solid was dried in a vacuum at 100° C. for 12 hours to obtain negative electrode active material particles having silicon particles with alkyl groups covalently bonded to the surface.

(負極活物質層)
負極活物質層の原材料としての負極合剤を、ポリプロピレン(PP)製の容器に入れた。これを、超音波分散装置(エスエムテー社製、型式:UH-50)で10分間にわたって撹拌することによって、負極活物質層用スラリーを調製した。
(Negative Electrode Active Material Layer)
The negative electrode mixture as the raw material for the negative electrode active material layer was placed in a polypropylene (PP) container, and the mixture was stirred for 10 minutes with an ultrasonic dispersing device (manufactured by SMT Corporation, model: UH-50) to prepare a slurry for the negative electrode active material layer.

アプリケーターを採用したブレード法によって、この負極活物質層用スラリーを、負極集電体層としてのニッケル箔上に塗工し、負極活物質層用スラリー層を形成した。これを、ホットプレート上で30分間にわたって100℃で乾燥させ、負極集電体層上に負極活物質層を形成した。 The negative electrode active material layer slurry was applied to a nickel foil as a negative electrode current collector layer using a blade method with an applicator to form a negative electrode active material layer slurry layer. This was dried at 100°C for 30 minutes on a hot plate to form a negative electrode active material layer on the negative electrode current collector layer.

なお、負極合剤の構成は下記のとおりであった:
・上記負極活物質粒子;
・分散媒としてのジイソブチルケトン;
・導電助剤としてのVGCF;
・バインダーとしてのスチレンブタジエンゴム(SBR)系バインダーを含有しているジイソブチルケトン溶液(5質量%);
・固体電解質粒子としてのLiIを含有しているLiS-P系ガラスセラミックス(平均粒径0.8μm、約380℃)。
The composition of the negative electrode mixture was as follows:
- the negative electrode active material particles;
diisobutyl ketone as a dispersion medium;
- VGCF as a conductive additive;
- diisobutyl ketone solution (5% by mass) containing a styrene butadiene rubber (SBR)-based binder as a binder;
Li 2 S-P 2 S 5 -based glass ceramics containing LiI as solid electrolyte particles (average particle size 0.8 μm, approximately 380° C.).

〈全固体電池の作製〉
負極集電体層と負極活物質層との積層体の負極活物質層側に固体電解質層を重ね合わせて、負極積層体を得た。正極集電体層と正極活物質層の層との積層体の正極活物質層側に固体電解質層を重ね合わせて、正極積層体を得た。その後、負極積層体及び正極積層体のそれぞれを、線圧4t/cm、170℃でロールプレスし、1cmの円形状に打ち抜き、そして固体電解質層同士を重ね合わせて接合することによって、実施例1の全固体電池を作製した。
(Fabrication of all-solid-state batteries)
A solid electrolyte layer was superposed on the negative active material layer side of the laminate of the negative electrode current collector layer and the negative electrode active material layer to obtain a negative electrode laminate. A solid electrolyte layer was superposed on the positive active material layer side of the laminate of the positive electrode current collector layer and the positive electrode active material layer to obtain a positive electrode laminate. Then, each of the negative electrode laminate and the positive electrode laminate was roll-pressed at a linear pressure of 4 t/cm and 170°C, punched out into a circular shape of 1 cm2, and the solid electrolyte layers were superposed and joined together to produce the all-solid-state battery of Example 1.

《実施例2》
ヒドロシリル化における1-オクテンを1-デセン(炭素原子数:10)に変えたことを除いて実施例1と同様にして、実施例2の全固体電池を作製した。
Example 2
An all-solid-state battery of Example 2 was produced in the same manner as in Example 1, except that 1-octene in the hydrosilylation was changed to 1-decene (number of carbon atoms: 10).

《実施例3》
ヒドロシリル化における1-オクテンを1-テトラデセン(炭素原子数:14)に変えたことを除いて実施例1と同様にして、実施例3の全固体電池を作製した。
Example 3
An all-solid-state battery of Example 3 was produced in the same manner as in Example 1, except that 1-octene in the hydrosilylation was changed to 1-tetradecene (number of carbon atoms: 14).

《比較例1》
ヒドロシリル化における1-オクテンを1-オクタデセン(炭素原子数:18)に変えたことを除いて実施例1と同様にして、比較例1の全固体電池を作製した。
Comparative Example 1
An all-solid-state battery of Comparative Example 1 was produced in the same manner as in Example 1, except that 1-octene in the hydrosilylation was changed to 1-octadecene (number of carbon atoms: 18).

《比較例2》
ドロシリル化を実施しなかったことを除いて実施例1と同様にして、比較例2の全固体電池を作製した。
Comparative Example 2
An all-solid-state battery of Comparative Example 2 was produced in the same manner as in Example 1, except that dolosilylation was not carried out.

《比較例3》
フッ化水素処理及びヒドロシリル化を実施しなかったことを除いて実施例1と同様にして、比較例3の全固体電池を作製した。
Comparative Example 3
An all-solid-state battery of Comparative Example 3 was produced in the same manner as in Example 1, except that the hydrogen fluoride treatment and hydrosilylation were not carried out.

《比較例4》
ヒドロシリル化における1-オクテンを1-ブテン(炭素原子数:4)に変えたことを除いて実施例1と同様にして、全固体電池を作製することを試みた。しかしながら、1-ブテンが室温付近で気体であるため、加熱還流ができず、目的とする負極活物質粒子を得られなかった。
Comparative Example 4
An attempt was made to fabricate an all-solid-state battery in the same manner as in Example 1, except that 1-octene in the hydrosilylation was replaced with 1-butene (number of carbon atoms: 4). However, because 1-butene is a gas at around room temperature, heating under reflux was not possible, and the intended negative electrode active material particles could not be obtained.

《評価》
(酸素量の測定)
実施例及び比較例の負極活物質粒子について、HORIBA製EMGA-920を使用し不活性ガスにより融解後、非分散型赤外線吸収法により測定した。結果を表1に示す。
"evaluation"
(Oxygen content measurement)
The negative electrode active material particles of the examples and comparative examples were melted with an inert gas using an EMGA-920 manufactured by HORIBA, and then measured by a non-dispersive infrared absorption method. The results are shown in Table 1.

(水素量の測定)
実施例及び比較例の負極活物質粒子について、HORIBA製EMGA-921を使用し不活性ガスにより融解後、熱伝導度法により測定した。結果を表1に示す。
(Measurement of hydrogen amount)
The negative electrode active material particles of the examples and comparative examples were melted with an inert gas using EMGA-921 manufactured by HORIBA, and then measured by a thermal conductivity method. The results are shown in Table 1.

(炭素量の測定)
実施例及び比較例の負極活物質粒子について、HORIBA製EMIA-Expertを使用し酸素気流中で高周波加熱・燃焼後、発生したガスを赤外線吸収法で分析し測定した。結果を表1に示す。
(Measurement of carbon content)
The negative electrode active material particles of the examples and comparative examples were subjected to high-frequency heating and combustion in an oxygen stream using an EMIA-Expert manufactured by HORIBA, and the generated gas was analyzed and measured by an infrared absorption method. The results are shown in Table 1.

(スラリーレオロジーの測定)
実施例及び比較例の負極活物質層用スラリーについて、アントンパール製MCR302eでφ50-1°のコーンプレートを使用し、100/sのせん断速度で粘度を測定した。結果を表1に示す。また、実施例1~3、並びに比較例1及び2については、結果を図1に示す。
(Measurement of Slurry Rheology)
The slurries for the negative electrode active material layer of the examples and comparative examples were subjected to viscosity measurement at a shear rate of 100/s using an Anton Paar MCR302e with a φ50-1° cone plate. The results are shown in Table 1. The results of Examples 1 to 3 and Comparative Examples 1 and 2 are shown in FIG.

(電極強度の測定)
実施例及び比較例で得た負極集電体層と負極活物質層との積層体を、線圧0.25t/cmでロールプレスし、そして1cmの円形状に打ち抜いた。打ち抜いた積層体の集電体側と活物質層側の両方に両面テープを貼り付け、50Nで押し付けた。その後、両面テープを張り付けた試験片を垂直方向へ上下に引っ張り、剥がれるまでの荷重を測定した。積層体が負極活物質層内で剥離することを確認した。結果を表1に示す。また、実施例1~3、並びに比較例1及び2については、結果を図2に示す。
(Measurement of electrode strength)
The laminates of the negative electrode current collector layer and the negative electrode active material layer obtained in the examples and comparative examples were roll pressed with a linear pressure of 0.25 t/cm, and punched out into a circular shape of 1 cm2. Double-sided tape was attached to both the current collector side and the active material layer side of the punched-out laminate, and pressed with 50 N. Then, the test piece with the double-sided tape attached was pulled up and down in the vertical direction, and the load until peeling was measured. It was confirmed that the laminate peeled off within the negative electrode active material layer. The results are shown in Table 1. The results of Examples 1 to 3 and Comparative Examples 1 and 2 are shown in FIG. 2.

(電池の内部抵抗及び放電容量測定)
実施例及び比較例の全固体電池について、一般的な方法で、内部抵抗及び放電容量を測定した。結果を表1に示す。また、実施例1~3、並びに比較例1及び2については、結果を図3及び4に示す。
(Measurement of internal resistance and discharge capacity of battery)
The internal resistance and discharge capacity of the all-solid-state batteries of the Examples and Comparative Examples were measured by a general method. The results are shown in Table 1. The results of Examples 1 to 3 and Comparative Examples 1 and 2 are shown in Figures 3 and 4.

表1に示されるように、実施例の負極活物質粒子は、フッ化水素処理の結果として酸素量(O量)が少なく、またフッ化水素処理後のヒドロシリル化処理(アルキル化)の結果として水素量(H量)及び炭素量(C量)が比較的多かった。表1及び図1に示されるように、実施例の負極活物質粒子を含むスラリーは、シリコン粒子のアルキル化によってシリコン粒子と分散媒との親和性が改善されているので、粘度が小さかった。表1、並びに図2~4に示されるように、実施例の負極活物質粒子を含む全固体電池は、電極強度が大きく、内部抵抗が小さく、かつ放電容量が大きかった。 As shown in Table 1, the negative electrode active material particles of the examples had a low oxygen content (O content) as a result of the hydrogen fluoride treatment, and a relatively high hydrogen content (H content) and carbon content (C content) as a result of the hydrosilylation treatment (alkylation) after the hydrogen fluoride treatment. As shown in Table 1 and Figure 1, the slurry containing the negative electrode active material particles of the examples had a low viscosity because the affinity between the silicon particles and the dispersion medium was improved by the alkylation of the silicon particles. As shown in Table 1 and Figures 2 to 4, the all-solid-state battery containing the negative electrode active material particles of the examples had high electrode strength, low internal resistance, and high discharge capacity.

表1に示されるように、比較例1の負極活物質粒子は、フッ化水素処理の結果として酸素量(O量)が少なく、またフッ化水素処理後のヒドロシリル化処理(アルキル化)の結果として水素量(H量)及び炭素量(C量)が比較的多かった。表1及び図1に示されるように、比較例1の負極活物質粒子を含むスラリーは、シリコン粒子のアルキル化によってシリコン粒子と分散媒との親和性が改善されているので、粘度が小さかった。表1、並びに図2~4に示されるように、比較例1の負極活物質粒子を含む全固体電池は、シリコン粒子の表面のシリコンと共有結合しているアルキル基の炭素数が大きすぎたため、電極強度が小さく、内部抵抗が大きく、かつ放電容量が小さかった。 As shown in Table 1, the negative electrode active material particles of Comparative Example 1 had a low oxygen content (O content) as a result of the hydrogen fluoride treatment, and a relatively high hydrogen content (H content) and carbon content (C content) as a result of the hydrosilylation treatment (alkylation) after the hydrogen fluoride treatment. As shown in Table 1 and Figure 1, the slurry containing the negative electrode active material particles of Comparative Example 1 had a low viscosity because the affinity between the silicon particles and the dispersion medium was improved by the alkylation of the silicon particles. As shown in Table 1 and Figures 2 to 4, the all-solid-state battery containing the negative electrode active material particles of Comparative Example 1 had a low electrode strength, a high internal resistance, and a low discharge capacity because the number of carbon atoms in the alkyl groups covalently bonded to the silicon on the surface of the silicon particles was too large.

表1に示されるように、比較例2の負極活物質粒子は、フッ化水素処理の結果として酸素量(O量)が少なかったが、フッ化水素処理後にヒドロシリル化処理をしていないので、水素量(H量)及び炭素量(C量)が比較的少なかった。表1及び図1に示されるように、比較例2の負極活物質粒子を含むスラリーは、シリコン粒子と分散媒との親和性が低いので、粘度が大きかった。表1、並びに図2~4に示されるように、比較例2の負極活物質粒子を含む全固体電池は、シリコン粒子の表面にアルキル基がないため、抵抗が小さくかつ容量が大きかったものの、電極強度が小さかった。 As shown in Table 1, the negative electrode active material particles of Comparative Example 2 had a low oxygen content (O content) as a result of the hydrogen fluoride treatment, but because no hydrosilylation treatment was performed after the hydrogen fluoride treatment, the hydrogen content (H content) and carbon content (C content) were relatively low. As shown in Table 1 and Figure 1, the slurry containing the negative electrode active material particles of Comparative Example 2 had a high viscosity due to the low affinity between the silicon particles and the dispersion medium. As shown in Table 1 and Figures 2 to 4, the all-solid-state battery containing the negative electrode active material particles of Comparative Example 2 had low resistance and high capacity due to the absence of alkyl groups on the surface of the silicon particles, but had low electrode strength.

表1に示されるように、比較例3の負極活物質粒子は、フッ化水素処理及びヒドロシリル化処理をしていないので、酸素量(O量)が多く、炭素量(C量)及び水素量(H量)が比較的少なかった。表1に示されるように、比較例3の負極活物質粒子を含むスラリーは、表面酸素量が多いため、粒子表面の極性が高くなり、ジイソブチルケトンのような非極性溶媒中で凝集しやすいため、粘度が大きかった。表1に示されるように、比較例3の負極活物質粒子を含む全固体電池は、シリコン粒子の表面のシリコンが酸化されていたため分散媒との親和性が良好であり、電極強度が比較的大きかったものの、酸化膜の存在によって抵抗が大きくかつ容量が小さかった。 As shown in Table 1, the negative electrode active material particles of Comparative Example 3 were not subjected to hydrogen fluoride treatment or hydrosilylation treatment, so the oxygen content (O content) was high and the carbon content (C content) and hydrogen content (H content) were relatively low. As shown in Table 1, the slurry containing the negative electrode active material particles of Comparative Example 3 had a high surface oxygen content, which increased the polarity of the particle surface and made it prone to aggregation in a non-polar solvent such as diisobutyl ketone, so the viscosity was high. As shown in Table 1, the all-solid-state battery containing the negative electrode active material particles of Comparative Example 3 had good affinity with the dispersion medium because the silicon on the surface of the silicon particles was oxidized, and the electrode strength was relatively high, but the resistance was high and the capacity was low due to the presence of an oxide film.

Claims (4)

シリコン含有粒子、及び前記シリコン含有粒子のシリコンと結合しているアルキル基を有し、かつ
前記アルキル基の炭素数が5~16である、
負極活物質粒子。
A silicon-containing particle having an alkyl group bonded to silicon of the silicon-containing particle, and the alkyl group has 5 to 16 carbon atoms.
Negative electrode active material particles.
前記アルキル基の炭素数が8~14である、請求項1に記載の負極活物質粒子。 The negative electrode active material particles according to claim 1, wherein the alkyl group has 8 to 14 carbon atoms. 前記アルキル基が直鎖アルキル基である、請求項1又は2に記載の負極活物質粒子。 The negative electrode active material particles according to claim 1 or 2, wherein the alkyl group is a linear alkyl group. 負極活物質層を有し、かつ
前記負極活物質層が請求項1又は2に記載の負極活物質粒子を含む、
固体電池。
The negative electrode active material layer includes the negative electrode active material particle according to claim 1 or 2.
Solid-state battery.
JP2023032847A 2023-03-03 2023-03-03 Negative electrode active material particles and solid-state battery Pending JP2024124884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023032847A JP2024124884A (en) 2023-03-03 2023-03-03 Negative electrode active material particles and solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023032847A JP2024124884A (en) 2023-03-03 2023-03-03 Negative electrode active material particles and solid-state battery

Publications (1)

Publication Number Publication Date
JP2024124884A true JP2024124884A (en) 2024-09-13

Family

ID=92677557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023032847A Pending JP2024124884A (en) 2023-03-03 2023-03-03 Negative electrode active material particles and solid-state battery

Country Status (1)

Country Link
JP (1) JP2024124884A (en)

Similar Documents

Publication Publication Date Title
US11326010B2 (en) Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material
CN107611406B (en) Preparation method of silicon/graphene/carbon composite negative electrode material
CN105190965B (en) Particulate platelets graphite complex, anode material for lithium-ion secondary battery and its manufacture method and lithium rechargeable battery
JP6409794B2 (en) Method for producing positive electrode mixture, method for producing positive electrode, and method for producing all solid lithium ion secondary battery
CN105304858B (en) Lithium ion battery and its negative plate and preparation method
TWI443901B (en) Method for making anode of lithium ion battery
CN109742369B (en) High-molecular modified silicon-carbon composite material and application thereof
KR101134397B1 (en) Cathode Materials and Lithium Secondary Battery Containing the Same
CN107615552B (en) Binder for all-solid-state secondary battery and all-solid-state secondary battery
CN107359303A (en) Lithium-sulfur cell modification barrier film and preparation method thereof and the lithium-sulfur cell with the barrier film
CN110911621B (en) A kind of multifunctional lithium-sulfur battery separator, preparation method and application
KR101665755B1 (en) Negative electrode material for secondary battery and method for manufacturing the same
JP2014532263A (en) Positive electrode material, manufacturing method thereof and use in lithium secondary battery
CN101409338A (en) Lithium ion battery cathode, preparation method thereof and lithium ion battery applying the same
CN109155414B (en) Binder composition for solid electrolyte battery, and slurry composition for solid electrolyte battery
KR20100081947A (en) Cathode active material for lithium secondary battery
CN106233516B (en) Secondary cell, its electrode and manufacturing method, adhesive composition and paste compound
CN113690427A (en) Method for preparing lithium-silicon alloy pole piece, lithium-silicon alloy pole piece and lithium battery
CN114902448A (en) Active material for secondary battery negative electrode, and secondary battery
CN112740443A (en) A binder comprising a copolymer and an electrochemical device comprising the binder
WO2024207484A1 (en) Secondary battery and electric device
WO2023155705A1 (en) Lithium iron phosphate positive electrode active material, positive electrode sheet, and lithium-ion battery
CA3181237A1 (en) Positive electrode of hybrid capacitor and manufacturing method therefor and use thereof
JP7130541B2 (en) Negative electrode for lithium ion battery and lithium ion battery
JP2018181750A (en) All solid battery