[go: up one dir, main page]

JP2024101969A - Amino-acid quantification method using ninhydrin reaction rate - Google Patents

Amino-acid quantification method using ninhydrin reaction rate Download PDF

Info

Publication number
JP2024101969A
JP2024101969A JP2023015678A JP2023015678A JP2024101969A JP 2024101969 A JP2024101969 A JP 2024101969A JP 2023015678 A JP2023015678 A JP 2023015678A JP 2023015678 A JP2023015678 A JP 2023015678A JP 2024101969 A JP2024101969 A JP 2024101969A
Authority
JP
Japan
Prior art keywords
time
ninhydrin
solution
amino acid
amino
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023015678A
Other languages
Japanese (ja)
Other versions
JP7278513B1 (en
Inventor
愛心 福永
Manami Fukunaga
敬之 古城
Takayuki Kojo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2023015678A priority Critical patent/JP7278513B1/en
Application granted granted Critical
Publication of JP7278513B1 publication Critical patent/JP7278513B1/en
Publication of JP2024101969A publication Critical patent/JP2024101969A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

To provide address such a problem that a degree of purple coloration observed in a ninhydrin reaction that is determined by an amount of Ruhemann's purple formed, depends on an amino-acid concentration, in other words, the amino acids can be quantified from the degree of coloration represented by the generated Ruhemann's purple formed by reacting all of the amino acids used in the ninhydrin reaction, however, at this time, it is necessary to use an expensive instrument such as a visible spectrophotometer and use the absorbance as an index for the degree of coloration; and to provide a quantification method using a simple measurement capable of quantifying an amino acid from a degree of coloration.SOLUTION: An amino-acid quantification method includes: mixing a ninhydrin solution of known concentration kept at a temperature condition T0 and a solution of one type of amino acids (Gly, Trp or Ala) at the temperature condition; simultaneously therewith, in a process of heating the mixed solution to a temperature condition Tm, measuring a time x from immediately after warming the mixed solution until a moment coloration originating from Ruhemann's purple generated by the ninhydrin reaction can be visible; and calculating an amino-acid concentration based on a correspondence table consisting of amino-acid concentrations corresponding to heating times t.SELECTED DRAWING: Figure 17

Description

本発明は、アミノ酸とニンヒドリンからなる混合溶液を加温してニンヒドリン反応を起こし、その呈色を視認できる瞬間までの呈色時間に着目し、アミノ酸の種類と濃度に起因するニンヒドリン反応速度に基づいて、前記呈色時間からアミノ酸濃度を算出することを特徴とする、アミノ酸の定量方法に関する。The present invention relates to a method for quantifying amino acids, which comprises heating a mixed solution of an amino acid and ninhydrin to cause a ninhydrin reaction, focusing on the color development time until the moment when the color development can be visually recognized, and calculating the amino acid concentration from the color development time based on the ninhydrin reaction rate resulting from the type and concentration of the amino acid.

アミノ酸にニンヒドリン溶液を加えて加温すると、色素ルーエマン紫が生じ青紫色を呈する。この反応はニンヒドリン反応と呼ばれ、アミノ酸及び、タンパク質や各種ペプチドの検出に利用される。また、アミノ酸濃度が高いほど、ニンヒドリン反応で生じるルーエマン紫の生成量が増えて濃い発色を示すため、この発色の度合いからアミノ酸を定量できる。現在この原理を用いたアミノ酸定量装置も広く活用されている。When a ninhydrin solution is added to an amino acid and heated, the dye Ruhemann's purple is produced, giving it a bluish purple color. This reaction is called the ninhydrin reaction, and is used to detect amino acids, proteins, and various peptides. In addition, the higher the amino acid concentration, the greater the amount of Ruhemann's purple produced by the ninhydrin reaction, resulting in a darker color, and the amount of amino acid can be quantified from the degree of this color. Currently, amino acid quantification devices that use this principle are widely used.

マクマリー有機化学概説 第4版 JOHN MCMURRY 著 p.471~478McMurry Introduction to Organic Chemistry 4th Edition Written by JOHN MCMURRY p. 471-478

ニンヒドリン反応で見られる紫色の呈色の度合いは、ルーエマン紫の生成量で決まるためアミノ酸濃度に依存する。つまり、ニンヒドリン反応に用いたアミノ酸を全て反応させ、生じるルーエマン紫が示す呈色の度合いからアミノ酸を定量できる。この時、前記呈色の度合いは可視分光光度計など高価な機器を用いて吸光度を指標とする必要があり、この呈色の度合いをアミノ酸の定量法に用いることが簡易な測定を考えた時の課題である。The degree of purple coloration observed in the ninhydrin reaction is determined by the amount of Ruhemann's purple produced, and therefore depends on the amino acid concentration. In other words, all of the amino acids used in the ninhydrin reaction are reacted, and the amino acids can be quantified from the degree of coloration of the resulting Ruhemann's purple. In this case, the degree of coloration must be measured using an expensive instrument such as a visible spectrophotometer, with absorbance as an index, and using this degree of coloration in a quantitative method for amino acids is a challenge when considering a simple measurement.

ニンヒドリン反応に用いたアミノ酸を全て反応させるためには、一定時間の反応時間が必要となる。この間、ニンヒドリン反応における中間生成物である還元型ニンヒドリンは空気中で酸化されやすい状態にあり、生じるルーエマン紫の呈色の度合いをアミノ酸濃度に置き換えることに正確性を欠くことが課題である。A certain reaction time is required to react all the amino acids used in the ninhydrin reaction. During this time, reduced ninhydrin, an intermediate product in the ninhydrin reaction, is easily oxidized in the air, and it is difficult to accurately convert the degree of Ruhemann's purple coloration into the amino acid concentration.

アミノ酸とニンヒドリンからなる混合溶液の加温直後から、ニンヒドリン反応の呈色を視認できる瞬間までの時間が、同一濃度のアミノ酸溶液でもその種類(Gly、Trp、Ala、Val、Leu、Ile、Asp、Met、His、Phe)によって、また、アミノ酸濃度に対しても異なることを見出した。It was found that the time from immediately after heating a mixed solution of an amino acid and ninhydrin to the moment when the color change due to the ninhydrin reaction can be visually observed varies depending on the type of amino acid (Gly, Trp, Ala, Val, Leu, Ile, Asp, Met, His, Phe) and also on the amino acid concentration, even for amino acid solutions of the same concentration.

本発明は、温度条件Tに保った濃度既知のニンヒドリン溶液及び、前記温度条件における1種類のアミノ酸(Glyまたは、Trpまたは、Ala)溶液を混合すると同時に、温度条件Tまで加温する過程において、前記混合溶液の加温直後から、ニンヒドリン反応で生じるルーエマン紫に起因する呈色を視認できる瞬間までの時間xを測定し、予め、前記混合溶液と同体積の蒸留水を上記記載の加温方法と同様に、温度条件TからTに変化させ、1秒間を上限とする単位時間を定め、前記単位時間で区切られる時間帯における最大時刻で前記蒸留水の液温を加温直後から連続して測定しておき、ニンヒドリン反応速度に比例する吸光度(570nm)の上昇速度から算出した前記単位時間でのルーエマン紫生成量が示す前記吸光度の加温直後から前記時間xまでの累積量が、ニンヒドリン反応の呈色を視認できる吸光度の最小値である0.010に達した時に成り立つ関係式から、加温時間tに対応するアミノ酸濃度からなる対応表に基づいてアミノ酸濃度を算出するアミノ酸の定量方法である。 In the present invention, a ninhydrin solution of known concentration maintained at temperature condition T0 and a solution of one kind of amino acid (Gly, Trp, or Ala) at the same temperature condition are mixed and heated to temperature condition Tm at the same time, the time x is measured from immediately after the mixed solution is heated to the moment when coloration due to Ruhemann's purple generated by the ninhydrin reaction can be visually recognized, and distilled water of the same volume as the mixed solution is previously heated from temperature condition T0 to Tm in the same manner as the heating method described above. m , a unit time having an upper limit of 1 second is defined, the temperature of the distilled water is continuously measured from immediately after heating at the maximum time in a time period separated by the unit time, and an amino acid concentration is calculated based on a correspondence table containing amino acid concentrations corresponding to a heating time t from a relational equation which holds when an accumulated amount of absorbance from immediately after heating to the time x, which is indicated by the amount of Ruhemann's purple produced per unit time and calculated from a rate of increase in absorbance (570 nm) proportional to a ninhydrin reaction rate, reaches 0.010, which is the minimum absorbance value at which the color of the ninhydrin reaction can be visually recognized.

本発明は、ニンヒドリン反応における、アミノ酸とニンヒドリンからなる混合溶液の加温直後から呈色を視認できる瞬間までの時間を測定してアミノ酸を定量するもので、呈色の度合いを指標とする必要がない。つまり、高価な機器が不要で、中和滴定法、酸化還元滴定法、ヨウ素滴定法などと同様に目視による測定だけで簡易にアミノ酸を定量できる効果がある。The present invention measures the amount of amino acids by measuring the time from immediately after heating a mixed solution of amino acids and ninhydrin in the ninhydrin reaction to the moment when coloration becomes visible, and does not require the degree of coloration as an indicator. In other words, it has the effect of eliminating the need for expensive equipment and simply quantifying amino acids by visual measurement, similar to neutralization titration, oxidation-reduction titration, iodometry, etc.

さらに、本発明は反応初期における反応速度と呈色の視認を組合わせた定量法で、反応生成物が呈色するような反応において、同様に反応物の濃度測定ができるようになる効果がある。Furthermore, the present invention is a quantitative determination method that combines the reaction rate in the early stage of the reaction with visual confirmation of coloration, and has the effect of making it possible to similarly measure the concentration of reactants in reactions in which the reaction product turns colored.

ニンヒドリン反応を示す図である。FIG. 1 illustrates the ninhydrin reaction. ニンヒドリン反応の反応機構を示す図である。FIG. 1 shows the reaction mechanism of the ninhydrin reaction. ニンヒドリン反応の経時変化及び、呈色を視認できる瞬間までの呈色時間の定義を示す図である。FIG. 1 is a diagram showing the change over time in a ninhydrin reaction and the definition of the color development time until the moment when color development can be visually recognized. ニンヒドリン溶液濃度に対する呈色時間の関係を示す図である。FIG. 1 is a graph showing the relationship between the concentration of ninhydrin solution and the color development time. アミノ酸(Gly)溶液濃度に対する呈色時間の関係を示す図である。FIG. 13 is a graph showing the relationship between the concentration of an amino acid (Gly) solution and the color development time. 各種アミノ酸の呈色時間を示す図である。FIG. 1 shows the color development time of various amino acids. 各アミノ酸溶液を用いたニンヒドリン反応溶液の420~720nmの吸光度を示す図である。FIG. 1 is a graph showing the absorbance at 420 to 720 nm of ninhydrin reaction solutions using various amino acid solutions. Gly溶液各濃度でのニンヒドリン反応溶液の420~720nmの吸光度を示す図である。FIG. 13 is a graph showing the absorbance at 420 to 720 nm of ninhydrin reaction solutions at various concentrations of Gly solutions. ニンヒドリン反応の呈色を視認した瞬間のニンヒドリン反応溶液の吸光度(570nm)を示す図である。FIG. 1 is a graph showing the absorbance (570 nm) of a ninhydrin reaction solution at the moment when the color change due to the ninhydrin reaction was visually observed. ルーエマン紫の生成速度を吸光度(570nm)の上昇速度に置き換え、呈色時間までの積分値が、呈色を視認できる吸光度(570nm)の基準値と等しくなることを示す図である。This figure shows that when the rate of production of Ruhemann's purple is replaced with the rate of increase in absorbance (570 nm), the integral value up to the coloring time becomes equal to the reference value of absorbance (570 nm) at which coloring can be visually recognized. ニンヒドリン反応時間(加温時間)に対する吸光度(570nm)の変化を示す図である。FIG. 1 is a graph showing the change in absorbance (570 nm) versus ninhydrin reaction time (warming time). アレニウス・プロット(Gly、Trp、Ala)示す図である。FIG. 1 shows an Arrhenius plot (Gly, Trp, Ala). 各アミノ酸(Gly、Trp、Ala)のニンヒドリン反応における反応速度定数を決める活性化エネルギーと頻度因子(頻度係数)を示す図である。FIG. 1 is a diagram showing the activation energy and frequency factor (frequency coefficient) that determine the reaction rate constant in the ninhydrin reaction of each amino acid (Gly, Trp, Ala). ニンヒドリン反応における加温直後から、単位時間のルーエマン紫生成量が示す吸光度(570nm)の呈色時間までの累積量が、呈色視認の吸光度の基準値と等しくなる関係式を示す図である。FIG. 1 is a graph showing a relational expression by which the cumulative amount of absorbance (570 nm) indicated by the amount of Ruhemann's purple produced per unit time from immediately after heating in the ninhydrin reaction until the color development time is equal to the reference value of absorbance for visual color recognition. ニンヒドリン反応速度を用いたアミノ酸の定量方法を示す図である。FIG. 1 shows a method for quantifying amino acids using ninhydrin reaction rate. 図14の関係式を反映させた計算式を示す図である。FIG. 15 is a diagram showing a calculation formula reflecting the relational expression of FIG. 14 . 呈色時間とアミノ酸溶液濃度の対応表の一例を示す図である。FIG. 13 is a diagram showing an example of a correspondence table between color development time and amino acid solution concentration. 濃度既知のGly標準溶液を用い、その呈色時間の測定値から対応表を基に算出したGly溶液濃度を比較した検証結果を示す図である。FIG. 13 is a diagram showing the results of verification in which a Gly standard solution of known concentration was used and the Gly solution concentration calculated based on a correspondence table from the measured color development time. 濃度既知のGly標準溶液を用い、呈色視認の吸光度(570nm)の基準値を変化させて算出したGly溶液濃度を示す図である。FIG. 13 is a diagram showing the concentration of a Gly solution calculated by changing the reference value of absorbance (570 nm) for visual color recognition using a Gly standard solution of known concentration.

ニンヒドリン反応とは、ニンヒドリンとアミノ酸からなる混合溶液を加温すると、紫色を呈色する反応で(図1)、アミノ酸の検出法として知られる。この反応機構は、まず、ニンヒドリンの酸化作用でアミノ酸がNHなどに分解され、ニンヒドリン自身は還元型ニンヒドリンへ変化する。次に、未反応のニンヒドリンと還元型ニンヒドリンがNHを介して縮合反応を起こし、ルーエマン紫が生成して呈色する(図2)。 The ninhydrin reaction is a reaction in which a mixed solution of ninhydrin and amino acids turns purple when heated (Figure 1), and is known as a method for detecting amino acids. The reaction mechanism is as follows: First, amino acids are decomposed into NH3 and other substances by the oxidizing action of ninhydrin, and ninhydrin itself is converted into reduced ninhydrin. Next, unreacted ninhydrin and reduced ninhydrin undergo a condensation reaction via NH3 , producing Ruhemann's purple, which turns the color (Figure 2).

25℃でそれぞれ調製した0.02mol/Lニンヒドリン溶液10mLと0.02mol/LGly溶液10mLを混合すると同時に70℃で湯煎したニンヒドリン反応の経時変化の一例を図3に示す。51sで呈色の瞬間を視認できる。この加温直後から呈色を視認できるまでの時間を呈色時間xと定義する。An example of the change over time in the ninhydrin reaction in which 10 mL of a 0.02 mol/L ninhydrin solution and 10 mL of a 0.02 mol/LGly solution, each prepared at 25° C., were mixed and simultaneously heated in a water bath at 70° C., is shown in FIG. 3. The moment of coloring was visible at 51 s. The time from immediately after heating until the coloring became visible was defined as the coloring time x.

アミノ酸に0.02mol/LGly溶液10mLを用い、濃度を変化させたニンヒドリン溶液10mLをそれぞれ混合し25℃から75℃に加温し、呈色時間との関係を調べると、ニンヒドリン溶液濃度が高いほど呈色時間は短く(図4)、同条件でグリシン溶液濃度を変化させると、アミノ酸溶液濃度が高いほど呈色時間は短くなった(図5)。つまり、呈色時間はニンヒドリン反応速度によって決まると考えられる。When 10 mL of 0.02 mol/LGly solution was used as the amino acid, 10 mL of ninhydrin solutions of various concentrations were mixed and heated from 25°C to 75°C, and the relationship with the color development time was examined. The higher the concentration of the ninhydrin solution, the shorter the color development time (Figure 4). When the concentration of the glycine solution was changed under the same conditions, the higher the concentration of the amino acid solution, the shorter the color development time (Figure 5). In other words, it is considered that the color development time is determined by the ninhydrin reaction rate.

また、25℃でそれぞれ調製した各濃度のニンヒドリン溶液10mLと0.02mol/L各種アミノ酸溶液10mLを混合すると同時に75℃で湯煎したニンヒドリン反応の呈色時間は、アミノ酸の種類によって異なる値を示した(図6)。この呈色時間の違いはニンヒドリン反応速度の違いによるためと考えられる。In addition, 10 mL of ninhydrin solutions of each concentration prepared at 25°C was mixed with 10 mL of 0.02 mol/L amino acid solutions, and the color development time of the ninhydrin reaction, which was simultaneously heated at 75°C in a water bath, varied depending on the type of amino acid (Figure 6). This difference in color development time is thought to be due to differences in the ninhydrin reaction rate.

この呈色時間に基づいて、アミノ酸の定量法を考える。はじめに、ニンヒドリン反応の呈色を視認した瞬間の吸光度を定義する。25℃でそれぞれ調製した0.01mol/Lニンヒドリン溶液10mLと0.02mol/L各アミノ酸溶液10mLを混合すると同時に70℃で5~10分間湯煎したニンヒドリン反応溶液の可視領域420~720nmの吸収スペクトルを調べると、どのアミノ酸も570nmにルーエマン紫に由来するピークが見られた(図7)。Based on this coloration time, we consider a method for quantifying amino acids. First, we define the absorbance at the moment when the coloration of the ninhydrin reaction is visually observed. When 10 mL of 0.01 mol/L ninhydrin solution and 10 mL of 0.02 mol/L amino acid solution, each prepared at 25°C, were mixed and simultaneously heated in a water bath at 70°C for 5 to 10 minutes, the absorption spectrum of the ninhydrin reaction solution in the visible region of 420 to 720 nm was examined. A peak due to Ruhemann's purple was observed at 570 nm for all amino acids (Figure 7).

また、25℃でそれぞれ調製した0.01mol/Lニンヒドリン溶液10mLと各濃度のグリシン溶液10mLを混合すると同時に70℃で10分間湯煎したニンヒドリン反応溶液の可視領域420~720nmの吸収スペクトルを調べると、570nmの強度はアミノ酸濃度に応じて変化した(図8)。この570nmの吸光度をルーエマン紫の生成量を示す指標とした。In addition, 10 mL of 0.01 mol/L ninhydrin solution prepared at 25°C was mixed with 10 mL of glycine solution of each concentration, and simultaneously heated at 70°C for 10 minutes. The absorption spectrum of the ninhydrin reaction solution in the visible region of 420 to 720 nm was examined, and the intensity at 570 nm changed depending on the amino acid concentration (Figure 8). The absorbance at 570 nm was used as an index of the amount of Ruhemann's purple produced.

さらに、ニンヒドリン反応の呈色を視認できる570nmの吸光度の基準値を以下で定めた。常温でもニンヒドリン反応を起こすヒスチジンをアミノ酸に用い、常温において、0.01mol/Lニンヒドリン溶液10mLと0.02mol/Lヒスチジン溶液10mLを混合すると同時に、その一部を570nmの吸光度測定に用い、同時に目視による呈色の観察を行い、呈色を視認した瞬間の570nmの吸光度を50回測定して調べた(図9)。吸光度0.010が最も多く得られた。平均値が0.0102であることと、度数分布を考慮すると、ニンヒドリン反応における呈色は、570nmの吸光度が0.010を基準値として視認できる。後述するが、吸光度0.009、吸光度0.011でも算出したアミノ酸濃度に大きな違いはみられないことがわかった(図19)。Furthermore, the standard value of absorbance at 570 nm at which the color of the ninhydrin reaction can be visually recognized was determined as follows. Histidine, which undergoes a ninhydrin reaction even at room temperature, was used as an amino acid, and 10 mL of a 0.01 mol/L ninhydrin solution and 10 mL of a 0.02 mol/L histidine solution were mixed at room temperature, and a part of the solution was used to measure the absorbance at 570 nm. At the same time, visual observation of the color was performed, and the absorbance at 570 nm at the moment when the color was visually recognized was measured 50 times (FIG. 9). The most common absorbance was 0.010. Considering the average value of 0.0102 and the frequency distribution, the color of the ninhydrin reaction can be visually recognized with an absorbance of 0.010 at 570 nm as the standard value. As will be described later, it was found that there was no significant difference in the calculated amino acid concentration even with an absorbance of 0.009 and an absorbance of 0.011 (FIG. 19).

ルーエマン紫の生成速度vは図10の式1で表せる。図2の反応式から2分子のニンヒドリンと1分子のアミノ酸からルーエマン紫が生成すること及び、実験から経験的にも図10の式1の次数で示すことが出来る。ここで、vを吸光度の上昇速度Vに置き換える。Vはvに比例するため図10の式2に、また、呈色の瞬間までの短い反応時間において、ニンヒドリン及び、アミノ酸溶液濃度は反応前の初期濃度に近似し、図10の式3が成り立つ。加温時間tに対し、液温も変化する。この液温の変化でVも変化するため、Vは液温Tの関数V(T)となる。ただし、液温Tは加温時間tの関数である。ここで、Vを加温時間tで積分すると、図10の式4の関係が得られ、左辺は呈色の基準値0.010となる。つまり、ckを求め反応速度式を完成させればアミノ酸を定量できる。The production rate v of Ruhemann's purple can be expressed by formula 1 in FIG. 10. From the reaction formula in FIG. 2, Ruhemann's purple is produced from two molecules of ninhydrin and one molecule of amino acid, and from experiments, it can be empirically shown by the order of formula 1 in FIG. 10. Here, v is replaced with the rate of increase V of absorbance. V is proportional to v, so formula 2 in FIG. 10 holds, and in the short reaction time until the moment of coloration, the ninhydrin and amino acid solution concentrations approximate the initial concentrations before the reaction, so formula 3 in FIG. 10 holds. The liquid temperature also changes with respect to the heating time t. Since V also changes with this change in liquid temperature, V becomes a function V(T) of the liquid temperature T. However, the liquid temperature T is a function of the heating time t. Here, by integrating V with the heating time t, the relationship of formula 4 in FIG. 10 is obtained, and the left side becomes the reference value of coloration, 0.010. In other words, if ck is obtained and the reaction rate formula is completed, the amino acid can be quantified.

アミノ酸にGlyを用いたニンヒドリン反応において、反応時間(加温時間)に対する吸光度(570nm)の変化を示す(図11)。この関数の傾きが吸光度の上昇速度Vを表し、図10の式3を用い各反応温度に対するckが求まりアレニウス・プロットが得られる(図12)。Trp、Alaも同様に実験から得られたアレニウス・プロットを示す。このアレニウス・プロットの傾きと切片から算出したEa,cAを表にまとめる(図13)。これによって、反応速度式が決定できる。The change in absorbance (570 nm) versus reaction time (heating time) in the ninhydrin reaction using Gly as the amino acid is shown (Figure 11). The slope of this function represents the rate of increase V in absorbance, and ck for each reaction temperature is calculated using equation 3 in Figure 10 to obtain an Arrhenius plot (Figure 12). Arrhenius plots obtained from experiments are also shown for Trp and Ala. Ea and cA calculated from the slope and intercept of this Arrhenius plot are summarized in a table (Figure 13). This allows the reaction rate equation to be determined.

ここで、加温時間を0.1秒単位に、呈色時間までをn項に区切り、液温もTからTに変化すると仮定する(図14)。ただし、単位時間は1秒を上限に液温の変化はあまり見られないことから、前記範囲内では単位時間を任意に定めることが出来る。単位時間に生成するルーエマン紫が示す吸光度(570nm)は、例えば、加温直後から0.1sまでは図14の式6で、同様に、各区間に生成したルーエマン紫が示す吸光度(570nm)が定まる。この各単位時間におけるルーエマン紫生成量が示す吸光度(570nm)の呈色時間までの累積量は、呈色を視認できる吸光度(570nm)の基準値0.010に等しく、図14の式7を変形して、図14の式8を用いてアミノ酸濃度を算出できる。図14の式8は、請求項1に記載の関係式を示す。 Here, it is assumed that the heating time is divided into n terms in 0.1 second increments up to the coloring time, and the liquid temperature also changes from T0 to Tn (FIG. 14). However, since the liquid temperature does not change much with an upper limit of 1 second, the unit time can be arbitrarily determined within the range. The absorbance (570 nm) of the Ruhmann purple generated in a unit time is determined, for example, from immediately after heating to 0.1 s by formula 6 in FIG. 14, and the absorbance (570 nm) of the Ruhmann purple generated in each section is determined in the same manner. The cumulative amount of absorbance (570 nm) indicated by the amount of Ruhmann purple generated in each unit time up to the coloring time is equal to the reference value (570 nm) at which coloring can be visually recognized, 0.010, and the amino acid concentration can be calculated using formula 8 in FIG. 14 by modifying formula 7 in FIG. 14. Formula 8 in FIG. 14 shows the relational expression described in claim 1.

30℃で調製したニンヒドリン溶液10mL及び、アミノ酸溶液10mLを混合すると同時に60℃で加温し、ニンヒドリン反応の呈色時間の測定値と、予め同様の測定方法及び、加温条件における前記混合溶液と同体積の蒸留水の単位時間0.1秒の最大時刻における前記蒸留水の液温の変化を示すデータを用い、濃度既知のGly標準溶液の濃度と、本発明で見出した方法で算出した濃度と比較して検証した(図15)。0.1mol/LGly標準溶液を検証に用いた実施例について、その計算方法を図16に示す。予め求めておいた各アミノ酸に固有のニンヒドリン反応速度式の定数及び、測定に用いたニンヒドリン溶液濃度を用い、加温時間tにおける液温から、図14の式8の関係式によって、加温時間tに対するアミノ酸濃度がそれぞれ算出できる。前記実施例における加温時間tに対するアミノ酸濃度からなる対応表を図17に示す。この対応表は、請求項1に記載の対応表の一例を示している。検証実験から26.5sの呈色時間が測定され、対応表からアミノ酸濃度は0.104mol/Lと算出できる。10 mL of ninhydrin solution prepared at 30°C and 10 mL of amino acid solution were mixed and heated at 60°C at the same time, and the measured value of the color development time of the ninhydrin reaction and the data showing the change in the liquid temperature of the distilled water at the maximum time of 0.1 seconds per unit time of the same volume of distilled water as the mixed solution under the same measurement method and heating conditions were used to compare the concentration of a Gly standard solution of known concentration with the concentration calculated by the method found in the present invention (Figure 15). Figure 16 shows the calculation method for an example in which a 0.1 mol/LGly standard solution was used for the verification. Using the constants of the ninhydrin reaction rate equation specific to each amino acid obtained in advance and the concentration of the ninhydrin solution used in the measurement, the amino acid concentration for the heating time t can be calculated from the liquid temperature at the heating time t according to the relational equation of Equation 8 in Figure 14. Figure 17 shows a correspondence table of amino acid concentrations for the heating time t in the above example. This correspondence table shows an example of the correspondence table described in claim 1. From the verification experiment, the color development time was measured to be 26.5 s, and from the correspondence table, the amino acid concentration can be calculated to be 0.104 mol/L.

同様に様々な濃度のGly標準溶液を用いて検証した。検証に用いたGly標準溶液の濃度と、算出した濃度は近い値を示した(図18)。0.05mol/LのTrp、Ala標準溶液も同様に算出した濃度は近い値を示した。本発明で見出したアミノ酸の定量方法によって、呈色時間の測定だけでアミノ酸を定量できる。最後に、呈色の基準値を0.010に定めたが、図9の度数分布から目視による吸光度の基準値にばらつきはあるが、図19から妥当な測定が得られ、目視による呈色の視認は十分信頼性がある。Similarly, verification was performed using Gly standard solutions of various concentrations. The concentrations of the Gly standard solutions used in the verification and the calculated concentrations were close to each other (FIG. 18). The concentrations of 0.05 mol/L Trp and Ala standard solutions were also close to each other. The amino acid quantification method discovered in the present invention allows amino acids to be quantified simply by measuring the coloration time. Finally, the reference value for coloration was set to 0.010, and although there is variation in the reference value for visual absorbance from the frequency distribution in FIG. 9, a reasonable measurement was obtained from FIG. 19, and visual confirmation of coloration is sufficiently reliable.

アミノ酸の定量分析は、食品分野など様々な分野で活用されている。特に、タンパク質のアミノ酸組成分析においても重要な位置を占める。既存の方法に対し、本発明で見出したアミノ酸の定量法は、溶液を加温して呈色時間を測定するだけで、短時間でアミノ酸を定量でき、様々な分野で活用できる期待が持てる。Quantitative analysis of amino acids is used in various fields, including the food industry. In particular, it plays an important role in the analysis of amino acid composition of proteins. In contrast to existing methods, the method for quantifying amino acids discovered in this invention can quantify amino acids in a short time by simply heating the solution and measuring the color development time, and is expected to be useful in various fields.

Claims (1)

温度条件Tに保った濃度既知のニンヒドリン溶液及び、前記温度条件における1種類のアミノ酸(Glyまたは、Trpまたは、Ala)溶液を混合すると同時に、温度条件Tまで加温する過程において、前記混合溶液の加温直後から、ニンヒドリン反応で生じるルーエマン紫に起因する呈色を視認できる瞬間までの時間xを測定し、予め、前記混合溶液と同体積の蒸留水を上記記載の加温方法と同様に、温度条件TからTに変化させ、1秒間を上限とする単位時間を定め、前記単位時間で区切られる時間帯における最大時刻で前記蒸留水の液温を加温直後から連続して測定しておき、ニンヒドリン反応速度に比例する吸光度(570nm)の上昇速度から算出した前記単位時間でのルーエマン紫生成量が示す前記吸光度の加温直後から前記時間xまでの累積量が、ニンヒドリン反応の呈色を視認できる吸光度の最小値である0.010に達した時に成り立つ関係式から、加温時間tに対応するアミノ酸濃度からなる対応表に基づいてアミノ酸濃度を算出するアミノ酸の定量方法。 A ninhydrin solution of known concentration kept at temperature condition T0 and a solution of one kind of amino acid (Gly, Trp, or Ala) kept at the same temperature condition are mixed and heated to temperature condition Tm at the same time. In the process, the time x from immediately after the mixed solution is heated to the moment when the color caused by Ruhemann's purple generated by the ninhydrin reaction can be visually recognized is measured. In advance, a volume of distilled water equal to that of the mixed solution is heated from temperature condition T0 to Tm in the same manner as in the heating method described above. m , a unit time having an upper limit of 1 second is determined, the temperature of the distilled water is continuously measured from immediately after heating at the maximum time in a time period separated by the unit time, and an amino acid concentration is calculated based on a correspondence table containing amino acid concentrations corresponding to a heating time t from a relational equation which holds when an accumulated amount of absorbance from immediately after heating to the time x, which is indicated by the amount of Ruhemann's purple produced per unit time and calculated from a rate of increase in absorbance (570 nm) proportional to a ninhydrin reaction rate, reaches 0.010, which is the minimum absorbance value at which the color of the ninhydrin reaction can be visually recognized.
JP2023015678A 2023-01-18 2023-01-18 Method for quantifying amino acids using ninhydrin kinetics Active JP7278513B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023015678A JP7278513B1 (en) 2023-01-18 2023-01-18 Method for quantifying amino acids using ninhydrin kinetics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023015678A JP7278513B1 (en) 2023-01-18 2023-01-18 Method for quantifying amino acids using ninhydrin kinetics

Publications (2)

Publication Number Publication Date
JP7278513B1 JP7278513B1 (en) 2023-05-19
JP2024101969A true JP2024101969A (en) 2024-07-30

Family

ID=86382615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023015678A Active JP7278513B1 (en) 2023-01-18 2023-01-18 Method for quantifying amino acids using ninhydrin kinetics

Country Status (1)

Country Link
JP (1) JP7278513B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7691802B1 (en) 2025-01-09 2025-06-12 優奈 後藤 Quantitative determination of amino acids using ionization equilibrium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7566413B1 (en) 2024-01-15 2024-10-15 敬之 古城 Quantitative determination of amino acids using iodometric titration

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587030A (en) * 1978-12-25 1980-07-01 Hitachi Ltd Reaction rate measuring instrument
JPS57187654A (en) * 1981-05-13 1982-11-18 Wako Pure Chem Ind Ltd Analysis of amino acid
JPH02167446A (en) * 1988-09-01 1990-06-27 Konica Corp Analysis of liquid sample

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7691802B1 (en) 2025-01-09 2025-06-12 優奈 後藤 Quantitative determination of amino acids using ionization equilibrium

Also Published As

Publication number Publication date
JP7278513B1 (en) 2023-05-19

Similar Documents

Publication Publication Date Title
JP2024101969A (en) Amino-acid quantification method using ninhydrin reaction rate
Eisenberg Colorimetric determination of hydrogen peroxide
Szabó et al. Equilibria and kinetics of chromium (VI) speciation in aqueous solution–A comprehensive study from pH 2 to 11
Safavi et al. Optical sensor for high pH values
Wang et al. A colorimetric and fluorescent chemodosimeter for discriminative and simultaneous quantification of cysteine and homocysteine
US11454619B2 (en) Methods for colorimetric endpoint detection and multiple analyte titration systems
JPH01131436A (en) Spectroscopic measurement of sugar concentration
Brode The Determination of Hydrogen-Ion Concentration by a Spectrophotometric Method and the Absorption Spectra of Certain INDICATORS1
US5922609A (en) Method for infrared-optical determination of the concentration of at least one chemical analyte in a liquid sample
Dickson et al. Extension of accessible first-order rate constants and accurate dead-time determinations for stopped-flow spectroscopy
Pastore et al. Enhancement of the pH measurement of a PVDF-supported colorimetric sensor by tailoring hue changes with the addition of a second dye
Bijlsma et al. Estimating reaction rate constants: comparison between traditional curve fitting and curve resolution
Raffay et al. Spectrophotometry and colorimetry profiling of pure phenol red and cell culture medium on pH variation
KR101706702B1 (en) Method for glucose concentration detection
Bodo et al. Multiwavelength fluidic sensing of water-based solutions in a channel microslide with SWIR LEDs
Jones et al. Complexometric titration of calcium and magnesium by a semiautomated procedure
KR101490333B1 (en) PH test device using light transmittancy
Mehrdel et al. Portable 3D-printed sensor to measure ionic strength and pH in buffered and non-buffered solutions
US9513227B2 (en) Method for quantitative determination of oxidant and apparatus for quantitative determination of oxidant
Mills et al. Development of novel thermochromic plastic films for optical temperature sensing
Davidson 34—the determination of methylene blue
Stippl et al. Optical method for the in-situ measurement of the pH-value during high pressure treatment of foods
CN103674861B (en) Method for measuring absorbance
Mailer et al. Evaluation of selenium determination in biological material by atomic-absorption spectroscopy
JP7691802B1 (en) Quantitative determination of amino acids using ionization equilibrium

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

R150 Certificate of patent or registration of utility model

Ref document number: 7278513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150