[go: up one dir, main page]

JP2024100967A - Resin composition and molding including the same, and film or sheet having layer composed of the resin composition - Google Patents

Resin composition and molding including the same, and film or sheet having layer composed of the resin composition Download PDF

Info

Publication number
JP2024100967A
JP2024100967A JP2024084602A JP2024084602A JP2024100967A JP 2024100967 A JP2024100967 A JP 2024100967A JP 2024084602 A JP2024084602 A JP 2024084602A JP 2024084602 A JP2024084602 A JP 2024084602A JP 2024100967 A JP2024100967 A JP 2024100967A
Authority
JP
Japan
Prior art keywords
resin composition
acid
less
ppm
oxide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2024084602A
Other languages
Japanese (ja)
Inventor
里奈 星加
Rina Hoshika
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2024084602A priority Critical patent/JP2024100967A/en
Publication of JP2024100967A publication Critical patent/JP2024100967A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

To provide a resin composition containing an ethylene-vinyl alcohol copolymer and a polyamide resin which is excellent in transparency, and can suppress occurrence of poor appearance such as delamination even after heat treatment by hot water or steam of retort treatment.SOLUTION: A resin composition contains an ethylene-vinyl alcohol copolymer (A) having an ethylene unit content of 20 mol% or more and 60 mol% or less, a polyamide resin (B) and silicon oxide particles (C), in which a mass ratio (A/B) of the ethylene-vinyl alcohol copolymer (A) to the polyamide resin (B) is 55/45 to 99/1, and a content of the silicon oxide particles (C) to the total amount of the ethylene-vinyl alcohol copolymer (A) and the polyamide resin (B) is 5 ppm or more and 5,000 ppm or less.SELECTED DRAWING: None

Description

本発明は、エチレン-ビニルアルコール共重合体を含む樹脂組成物並びにそれを含む成形品、及び当該樹脂組成物からなる層を有するフィルム又はシートに関する。 The present invention relates to a resin composition containing an ethylene-vinyl alcohol copolymer, a molded article containing the same, and a film or sheet having a layer made of the resin composition.

エチレン-ビニルアルコール共重合体(以下「EVOH」と略記する場合がある)は、酸素、臭気、フレーバー等に対して優れたバリア性を有する樹脂である。そのため、EVOHは食品等の包装材料等に好適に用いられている。このような包装材料に食品等の内容物を充填した後、熱水又は水蒸気による加熱処理(レトルト処理又はボイル処理)がしばしば行われる。しかしながら、EVOHを含む包装材料を熱水又は水蒸気で長時間加熱処理すると、白化スジや部分的な白濁(白化等)、デラミネーション(以下「デラミ」と略記することがある)が生じ、外観が低下するという不都合があり、かかる不都合を解消するための検討が種々なされている。 Ethylene-vinyl alcohol copolymer (hereinafter sometimes abbreviated as "EVOH") is a resin that has excellent barrier properties against oxygen, odors, flavors, etc. Therefore, EVOH is suitable for use as a packaging material for food and the like. After filling such packaging materials with food or other contents, they are often subjected to a heat treatment with hot water or steam (retort treatment or boiling treatment). However, when packaging materials containing EVOH are heat-treated for a long period of time with hot water or steam, there are disadvantages in that whitening streaks, partial clouding (whitening, etc.), and delamination (hereinafter sometimes abbreviated as "delamination") occur, resulting in a deteriorated appearance, and various studies have been conducted to eliminate such disadvantages.

特許文献1には、EVOH、ポリアミド樹脂(以下「PA」と略記する場合がある)及び炭素数6以下の脂肪酸マグネシウム塩を特定量含み、EVOH中とPA中の双方に炭素数6以下の脂肪酸マグネシウム塩が分散している樹脂組成物ペレットが記載されている。そして、当該樹脂組成物ペレットを用いたフィルムは、製膜時の熱安定性に優れ、加熱処理後の外観に優れるとされている。 Patent Document 1 describes a resin composition pellet that contains a specific amount of EVOH, polyamide resin (hereinafter sometimes abbreviated as "PA"), and a fatty acid magnesium salt having 6 or less carbon atoms, with the fatty acid magnesium salt having 6 or less carbon atoms being dispersed in both the EVOH and the PA. It is said that a film using the resin composition pellet has excellent thermal stability during film formation and excellent appearance after heat treatment.

WO2015/174396号WO2015/174396

しかしながら、包装材の層構成やレトルト処理条件によっては、デラミネーション等の外観不良が発生することがあり、特許文献1に記載の技術では不十分である場合があった。そのため、レトルト処理後の耐デラミ性を改善し、外観に優れるEVOH及びPAを含む樹脂組成物が求められている。 However, depending on the layer structure of the packaging material and the retort treatment conditions, poor appearance such as delamination may occur, and the technology described in Patent Document 1 may not be sufficient. Therefore, there is a demand for a resin composition containing EVOH and PA that has improved delamination resistance after retort treatment and has an excellent appearance.

本発明は上記課題を解決するためになされたものであり、透明性に優れるとともに、レトルト処理等の熱水又は水蒸気による加熱処理後であっても、デラミネーション等の外観不良の発生を抑制できる、EVOH及びPAを含む樹脂組成物を提供することを目的とするものである。また、当該樹脂組成物を含む成形品、及び当該樹脂組成物からなる層を有するフィルム又はシートを提供することを目的とするものである。 The present invention has been made to solve the above problems, and aims to provide a resin composition containing EVOH and PA that has excellent transparency and can suppress the occurrence of appearance defects such as delamination even after heat treatment with hot water or steam such as retort treatment. It also aims to provide a molded article containing the resin composition, and a film or sheet having a layer made of the resin composition.

上記課題を解決するために、本発明は以下に示す樹脂組成物並びにそれを含む成形品、及び当該樹脂組成物からなる層を有するフィルム又はシートを提供する。 In order to solve the above problems, the present invention provides the following resin composition, a molded article containing the same, and a film or sheet having a layer made of the resin composition.

すなわち、本発明は、
[1]エチレン単位含有量が20モル%以上60モル%以下であるエチレン-ビニルアルコール共重合体(A)(以下「EVOH(A)」と略記する場合がある)、ポリアミド樹脂(B)(以下「PA(B)」と略記する場合がある)及び酸化ケイ素粒子(C)を含み、EVOH(A)とPA(B)の質量比(A/B)が55/45~99/1であり、EVOH(A)及びPA(B)の合計量に対する酸化ケイ素粒子(C)の含有量が5ppm以上5000ppm以下である、樹脂組成物;
[2]酸化ケイ素粒子(C)の平均粒子径が1μm以上30μm以下である、[1]の樹脂組成物;
[3]さらに、二価金属化合物(D)を含有し、EVOH(A)及びPA(B)の合計量に対する二価金属化合物(D)の二価金属原子換算の含有量が10ppm以上500ppm以下である、[1]または[2]の樹脂組成物;
[4][1]~[3]の樹脂組成物を含む成形品;
[5][1]~[3]の樹脂組成物からなる層を有するフィルム又はシート;
を提供することにより達成される。
That is, the present invention provides
[1] A resin composition comprising an ethylene-vinyl alcohol copolymer (A) having an ethylene unit content of 20 mol% or more and 60 mol% or less (hereinafter may be abbreviated as "EVOH (A)"), a polyamide resin (B) (hereinafter may be abbreviated as "PA (B)"), and silicon oxide particles (C), in which the mass ratio (A/B) of EVOH (A) to PA (B) is 55/45 to 99/1, and the content of the silicon oxide particles (C) relative to the total amount of EVOH (A) and PA (B) is 5 ppm or more and 5,000 ppm or less;
[2] The resin composition according to [1], wherein the average particle size of the silicon oxide particles (C) is 1 μm or more and 30 μm or less;
[3] The resin composition according to [1] or [2], further comprising a divalent metal compound (D), the content of the divalent metal compound (D) being 10 ppm or more and 500 ppm or less in terms of divalent metal atom relative to the total amount of the EVOH (A) and the PA (B);
[4] A molded article comprising the resin composition according to any one of [1] to [3];
[5] A film or sheet having a layer made of the resin composition according to any one of [1] to [3];
This is achieved by providing:

本発明により、透明性に優れるとともに、レトルト処理等の熱水又は水蒸気による加熱処理後であっても、デラミネーション等の外観不良の発生を抑制できる、EVOH及びPAを含む樹脂組成物を提供することができる。 The present invention provides a resin composition containing EVOH and PA that is excellent in transparency and can suppress the occurrence of appearance defects such as delamination even after heat treatment with hot water or steam such as retort treatment.

本発明の樹脂組成物は、エチレン単位含有量が20モル%以上60モル%以下であるEVOH(A)、PA(B)及び酸化ケイ素粒子(C)を含み、EVOH(A)とPA(B)の質量比(A/B)が55/45~99/1であり、EVOH(A)及びPA(B)の合計量に対する酸化ケイ素粒子(C)の含有量が5ppm以上5000ppm以下である。このような構成を満たすことにより、透明性に優れるとともに、レトルト処理等の熱水又は水蒸気による加熱処理後であっても、デラミネーション等の外観不良の発生を抑制できる樹脂組成物が提供される。 The resin composition of the present invention contains EVOH (A) having an ethylene unit content of 20 mol% or more and 60 mol% or less, PA (B) and silicon oxide particles (C), the mass ratio (A/B) of EVOH (A) to PA (B) is 55/45 to 99/1, and the content of silicon oxide particles (C) relative to the total amount of EVOH (A) and PA (B) is 5 ppm or more and 5000 ppm or less. By satisfying such a constitution, a resin composition is provided which is excellent in transparency and can suppress the occurrence of appearance defects such as delamination even after heat treatment with hot water or steam such as retort treatment.

[EVOH(A)]
本発明の樹脂組成物は、EVOH(A)を含むことでガスバリア性に優れる傾向となる。本発明の樹脂組成物に含まれるEVOH(A)は、主としてエチレン単位とビニルアルコール単位とからなる共重合体であり、エチレン-ビニルエステル共重合体中のビニルエステル単位をケン化して得られるものである。本発明において使用されるEVOH(A)は特に限定されず、溶融成形用途で使用される公知のものを用いることができる。EVOH(A)は、単独で用いることもできるし、2種以上を混合して用いることもできる。
[EVOH (A)]
The resin composition of the present invention tends to have excellent gas barrier properties by containing EVOH (A). EVOH (A) contained in the resin composition of the present invention is a copolymer mainly composed of ethylene units and vinyl alcohol units, and is obtained by saponifying the vinyl ester units in an ethylene-vinyl ester copolymer. The EVOH (A) used in the present invention is not particularly limited, and any known EVOH used in melt molding applications can be used. EVOH (A) can be used alone or in a mixture of two or more types.

EVOH(A)のエチレン単位含有量は、20モル%以上60モル%以下である。エチレン単位含有量が20モル%未満の場合、樹脂組成物の溶融成形性が低下するおそれがあり、24モル%以上が好ましく、26モル%以上がより好ましい。一方、エチレン単位含有量が60モル%を超える場合、ガスバリア性が低下するおそれがあり、48モル%以下が好ましく、46モル%以下がより好ましい。 The ethylene unit content of EVOH (A) is 20 mol% or more and 60 mol% or less. If the ethylene unit content is less than 20 mol%, the melt moldability of the resin composition may be reduced, so 24 mol% or more is preferable, and 26 mol% or more is more preferable. On the other hand, if the ethylene unit content exceeds 60 mol%, the gas barrier properties may be reduced, so 48 mol% or less is preferable, and 46 mol% or less is more preferable.

EVOH(A)のケン化度は、特に限定されないが、ガスバリア性を維持するとともに、ロングラン性を発揮させる観点から、95モル%以上が好ましく、98モル%以上がより好ましく、99モル%以上がさらに好ましい。一方、EVOH(A)のケン化度の上限は、100モル%が好ましく、99.99モル%がより好ましい。ケン化度はJIS K6726に準じて測定される値である。 The degree of saponification of EVOH (A) is not particularly limited, but from the viewpoint of maintaining gas barrier properties and exhibiting long-run properties, it is preferably 95 mol% or more, more preferably 98 mol% or more, and even more preferably 99 mol% or more. On the other hand, the upper limit of the degree of saponification of EVOH (A) is preferably 100 mol%, more preferably 99.99 mol%. The degree of saponification is a value measured in accordance with JIS K6726.

EVOH(A)のメルトフローレート(温度210℃、荷重2160gの条件下で、ASTM D1238に記載の方法で測定、以下、「メルトフローレート」を「MFR」と称することがある)は、下限としては0.5g/10分が好ましく、1.0g/10分がより好ましく、2.0g/10分がさらに好ましい。一方、MFRの上限としては、100g/10分が好ましく、50g/10分がより好ましく、25g/10分がさらに好ましい。MFRが上記の範囲の場合には、樹脂組成物の成形性や加工性が向上する。 The melt flow rate of EVOH (A) (measured under conditions of a temperature of 210°C and a load of 2160 g according to the method described in ASTM D1238; hereinafter, "melt flow rate" may be referred to as "MFR") is preferably 0.5 g/10 min as a lower limit, more preferably 1.0 g/10 min, and even more preferably 2.0 g/10 min. On the other hand, the upper limit of MFR is preferably 100 g/10 min, more preferably 50 g/10 min, and even more preferably 25 g/10 min. When the MFR is in the above range, the moldability and processability of the resin composition are improved.

EVOH(A)は、エチレンとビニルエステル及びそのケン化物以外の他の単量体由来の単位を有していてもよい。EVOH(A)が前記他の単量体単位を有する場合、EVOH(A)の全構造単位に対する前記他の単量体単位の含有量は30モル%以下が好ましく、20モル%以下がより好ましく、10モル%以下がさらに好ましく、5モル%以下が特に好ましい。また、EVOH(A)が上記他の単量体由来の単位を有する場合、その下限値は0.05モル%であってもよいし0.10モル%であってもよい。前記他の単量体としては、例えば、プロピレン、ブチレン、ペンテン、ヘキセン等のアルケン;3-アシロキシ-1-プロペン、3-アシロキシ-1-ブテン、4-アシロキシ-1-ブテン、3,4-ジアシロキシ-1-ブテン、3-アシロキシ-4-メチル-1-ブテン、4-アシロキシ-2-メチル-1-ブテン、4-アシロキシ-3-メチル-1-ブテン、3,4-ジアシロキシ-2-メチル-1-ブテン、4-アシロキシ-1-ペンテン、5-アシロキシ-1-ペンテン、4,5-ジアシロキシ-1-ペンテン、4-アシロキシ-1-ヘキセン、5-アシロキシ-1-ヘキセン、6-アシロキシ-1-ヘキセン、5,6-ジアシロキシ-1-ヘキセン、1,3-ジアセトキシ-2-メチレンプロパン等のエステル基を有するアルケン又はそのケン化物;アクリル酸、メタクリル酸、クロトン酸、イタコン酸等の不飽和酸又はその無水物、塩、又はモノ若しくはジアルキルエステル等;アクリロニトリル、メタクリロニトリル等のニトリル;アクリルアミド、メタクリルアミド等のアミド;ビニルスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸又はその塩;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(β-メトキシ-エトキシ)シラン、γ-メタクリルオキシプロピルメトキシシラン等ビニルシラン化合物;アルキルビニルエーテル類、ビニルケトン、N-ビニルピロリドン、塩化ビニル、塩化ビニリデン等が挙げられる。EVOH(A)は、ウレタン化、アセタール化、シアノエチル化、オキシアルキレン化等の手法で後変性されていてもよい。 EVOH (A) may have units derived from other monomers other than ethylene, vinyl esters, and saponified products thereof. When EVOH (A) has the other monomer units, the content of the other monomer units relative to the total structural units of EVOH (A) is preferably 30 mol% or less, more preferably 20 mol% or less, even more preferably 10 mol% or less, and particularly preferably 5 mol% or less. When EVOH (A) has units derived from the other monomers, the lower limit may be 0.05 mol% or 0.10 mol%. Examples of the other monomers include alkenes such as propylene, butylene, pentene, and hexene; 3-acyloxy-1-propene, 3-acyloxy-1-butene, 4-acyloxy-1-butene, 3,4-diacyloxy-1-butene, 3-acyloxy-4-methyl-1-butene, 4-acyloxy-2-methyl-1-butene, 4-acyloxy-3-methyl 1-butene, 3,4-diacyloxy-2-methyl-1-butene, 4-acyloxy-1-pentene, 5-acyloxy-1-pentene, 4,5-diacyloxy-1-pentene, 4-acyloxy-1-hexene, 5-acyloxy-1-hexene, 6-acyloxy-1-hexene, 5,6-diacyloxy-1-hexene, 1,3-diacetoxy-2-methyl Examples of the EVOH include alkenes having an ester group such as dimethylpropane or saponified products thereof; unsaturated acids such as acrylic acid, methacrylic acid, crotonic acid, itaconic acid, or the like, or the anhydrides, salts, or mono- or dialkyl esters thereof; nitriles such as acrylonitrile and methacrylonitrile; amides such as acrylamide and methacrylamide; olefin sulfonic acids such as vinyl sulfonic acid, allyl sulfonic acid, and methallylsulfonic acid, or salts thereof; vinyl silane compounds such as vinyl trimethoxy silane, vinyl triethoxy silane, vinyl tri(β-methoxy-ethoxy) silane, and γ-methacryloxypropyl methoxy silane; alkyl vinyl ethers, vinyl ketones, N-vinyl pyrrolidone, vinyl chloride, and vinylidene chloride. The EVOH (A) may be post-modified by a method such as urethanization, acetalization, cyanoethylation, or oxyalkylenation.

EVOH(A)の製造方法としては、例えば、公知の方法に従って、エチレン-ビニルエステル共重合体を製造し、次いで、これをケン化することによってEVOH(A)を製造することができる。エチレン-ビニルエステル共重合体は、例えば、エチレンとビニルエステルとを、メタノール、t-ブチルアルコール、ジメチルスルホキシド等の有機溶媒中、加圧下に、過酸化ベンゾイル、アゾビスイソブチロニトリル等のラジカル重合開始剤を用いて重合させることによって得られる。原料のビニルエステルとしては、酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニルなどを使用することができるが、これらの中でも酢酸ビニルが好ましい。エチレン-ビニルエステル共重合体のケン化には、酸触媒またはアルカリ触媒を使用することができる。ケン化方法は連続式、回分式いずれも可能である。アルカリ触媒としては水酸化ナトリウム、水酸化カリウム、アルカリ金属アルコラートなどが用いられる。 EVOH (A) can be produced, for example, by producing an ethylene-vinyl ester copolymer according to a known method, and then saponifying the copolymer to produce EVOH (A). The ethylene-vinyl ester copolymer can be obtained, for example, by polymerizing ethylene and a vinyl ester under pressure in an organic solvent such as methanol, t-butyl alcohol, or dimethyl sulfoxide, using a radical polymerization initiator such as benzoyl peroxide or azobisisobutyronitrile. As the vinyl ester raw material, vinyl acetate, vinyl propionate, vinyl pivalate, etc. can be used, and among these, vinyl acetate is preferred. An acid catalyst or an alkali catalyst can be used to saponify the ethylene-vinyl ester copolymer. The saponification method can be either continuous or batchwise. As the alkali catalyst, sodium hydroxide, potassium hydroxide, alkali metal alcoholate, etc. can be used.

このようにしてEVOH(A)を含む溶液を得て、その後、溶媒が除去される。溶媒を除去する方法は、溶媒の含有率を下げることができる方法であればよく、特に限定されない。EVOH溶液を水などの貧溶媒中に押し出して凝固させることによって、溶媒の含有量を低下させて固化させることができる。また、押出機やニーダ中において、機械的に水を絞り出したり、ベントから水蒸気を蒸発させたりしてもよい。このようにして溶媒を除去した後で、切断されてEVOH(A)ペレットが得られる。切断してEVOH(A)ペレットを得る方法は特に限定されない。凝固させた含水状態のストランドをカッターで切断することもできるし、押出機やニーダ中で含水率を減少させたものを、流動状態のままでホットカッターやアンダーウォーターカッターで切断することもできる。 In this way, a solution containing EVOH (A) is obtained, and then the solvent is removed. The method for removing the solvent is not particularly limited as long as it can reduce the solvent content. The EVOH solution can be solidified by extruding it into a poor solvent such as water and solidifying it to reduce the solvent content. In an extruder or kneader, water may be mechanically squeezed out or water vapor may be evaporated from a vent. After the solvent is removed in this way, the EVOH (A) pellets are obtained by cutting. The method for obtaining EVOH (A) pellets by cutting is not particularly limited. The solidified strands in a water-containing state can be cut with a cutter, or the strands in a fluid state in which the water content has been reduced in an extruder or kneader can be cut with a hot cutter or underwater cutter.

また、乾燥を行うことで、樹脂組成物の含水率を減少させることもできる。この際、乾燥時間の下限としては、例えば3時間である。一方、この上限としては、例えば100時間である。なお、本明細書中においてペレットの乾燥時間とはペレットの含水率が0.5質量%未満となるのに要する時間をいう。 Drying can also reduce the moisture content of the resin composition. In this case, the lower limit of the drying time is, for example, 3 hours. On the other hand, the upper limit is, for example, 100 hours. In this specification, the drying time of the pellets refers to the time required for the moisture content of the pellets to become less than 0.5% by mass.

乾燥の際の乾燥温度(雰囲気温度)の下限としては、100℃が好ましく、110℃がより好ましく、120℃がさらに好ましく、125℃が特に好ましい。一方、この上限としては、150℃が好ましく、140℃がより好ましい。乾燥温度を上記下限以上とすることで、効率的に十分な乾燥を行うことができ、乾燥時間を短くすることができる。一方、乾燥温度を上記上限以下とすることで、EVOHの熱劣化を抑制することができる。 The lower limit of the drying temperature (ambient temperature) during drying is preferably 100°C, more preferably 110°C, even more preferably 120°C, and particularly preferably 125°C. Meanwhile, the upper limit is preferably 150°C, and more preferably 140°C. By setting the drying temperature at or above the above lower limit, efficient and sufficient drying can be performed, and the drying time can be shortened. Meanwhile, by setting the drying temperature at or below the above upper limit, thermal degradation of the EVOH can be suppressed.

上記乾燥は、空気雰囲気下で行ってもよいが、窒素ガス等の不活性ガス雰囲気下で行うことが好ましい。また、上記乾燥は、減圧下で行ってもよいし、除湿しながら行ってもよい。上記乾燥工程における乾燥方法としては特に限定されず、熱風乾燥の他、紫外線照射や赤外線照射により乾燥を行うこともできる。 The drying may be performed in an air atmosphere, but is preferably performed in an inert gas atmosphere such as nitrogen gas. The drying may be performed under reduced pressure or while dehumidifying. There are no particular limitations on the drying method used in the drying step, and drying may be performed by hot air drying, ultraviolet light irradiation, or infrared light irradiation.

[PA(B)]
本発明の樹脂組成物は、PA(B)を含み、EVOH(A)とPA(B)の質量比(A/B)が55/45~99/1である。PA(B)を当該質量比で含むことにより、ガスバリア性とロングラン性が優れるとともに、レトルト処理等の熱水又は水蒸気による加熱処理後の外観が優れる傾向にある。前記質量比(A/B)が55/45未満の場合、ガスバリア性が悪化するおそれがあり、60/40以上が好ましく、70/30以上がより好ましく、80/20以上がさらに好ましい。一方、前記質量比(A/B)が99/1を超える場合、レトルト処理等の熱水又は水蒸気による加熱処理後の外観が不十分なものとなるおそれがあり、95/5以下が好ましい。
[PA(B)]
The resin composition of the present invention contains PA (B), and the mass ratio (A/B) of EVOH (A) to PA (B) is 55/45 to 99/1. By containing PA (B) at this mass ratio, the gas barrier property and long-run property are excellent, and the appearance after heat treatment with hot water or steam such as retort treatment tends to be excellent. If the mass ratio (A/B) is less than 55/45, the gas barrier property may deteriorate, and it is preferably 60/40 or more, more preferably 70/30 or more, and even more preferably 80/20 or more. On the other hand, if the mass ratio (A/B) exceeds 99/1, the appearance after heat treatment with hot water or steam such as retort treatment may become insufficient, and it is preferably 95/5 or less.

PA(B)としては、ポリカプロアミド(ナイロン6)、ポリ-ω-アミノヘプタン酸(ナイロン7)、ポリ-ω-アミノノナン酸(ナイロン9)、ポリウンデカンアミド(ナイロン11)、ポリラウリルラクタム(ナイロン12)、ポリエチレンジアミンアジパミド(ナイロン26)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリオクタメチレンアジパミド(ナイロン86)、ポリデカメチレンアジパミド(ナイロン106)、カプロラクタム/ラウリルラクタム共重合体(ナイロン6/12)、カプロラクタム/ω-アミノノナン酸共重合体(ナイロン6/9)、カプロラクタム/ヘキサメチレンジアンモニウムアジペート共重合体(ナイロン6/66)、ラウリルラクタム/ヘキサメチレンジアンモニウムアジペート共重合体(ナイロン12/66)、エチレンジアンモニウムアジペート/ヘキサメチレンジアンモニウムアジペート共重合体(ナイロン26/66)、カプロラクタム/ヘキサメチレンジアンモニウムアジペート/ヘキサメチレンジアンモニウムセバケート共重合体(ナイロン6/66/610)、エチレンジアンモニウムアジペート/ヘキサメチレンジアンモニウムアジペート/ヘキサメチレンジアンモニウムセバケート共重合体(ナイロン26/66/610)、ポリヘキサメチレンイソフタルアミド(ナイロン6I)、ポリヘキサメチレンテレフタルアミド(ナイロン6T)、ヘキサメチレンイソフタルアミド/ヘキサメチレンテレフタルアミド共重合体(ナイロン6I/6T)、11-アミノウンデカンアミド/ヘキサメチレンテレフタルアミド共重合体、ポリノナメチレンテレフタルアミド(ナイロン9T)、ポリデカメチレンテレフタルアミド(ナイロン10T)、ポリヘキサメチレンシクロヘキシルアミド、ポリノナメチレンシクロヘキシルアミドあるいはこれらのポリアミドをメチレンベンジルアミン、メタキシレンジアミンなどの芳香族アミンで変性したものが挙げられる。また、メタキシリレンジアンモニウムアジペートなども挙げられる。 PA (B) includes polycaproamide (nylon 6), poly-ω-aminoheptanoic acid (nylon 7), poly-ω-aminononanoic acid (nylon 9), polyundecaneamide (nylon 11), polylauryl lactam (nylon 12), polyethylenediamineadipamide (nylon 26), polytetramethyleneadipamide (nylon 46), polyhexamethyleneadipamide (nylon 66), polyhexamethylenesebacamide (nylon 610), polyhexamethylenedodecamide (nylon 612), Polyoctamethylene adipamide (nylon 86), polydecamethylene adipamide (nylon 106), caprolactam/lauryl lactam copolymer (nylon 6/12), caprolactam/ω-aminononanoic acid copolymer (nylon 6/9), caprolactam/hexamethylenediammonium adipate copolymer (nylon 6/66), lauryl lactam/hexamethylenediammonium adipate copolymer (nylon 12/66), ethylenediammonium adipate/hexamethylenediammonium ammonium adipate copolymer (nylon 26/66), caprolactam/hexamethylene diammonium adipate/hexamethylene diammonium sebacate copolymer (nylon 6/66/610), ethylene diammonium adipate/hexamethylene diammonium adipate/hexamethylene diammonium sebacate copolymer (nylon 26/66/610), polyhexamethylene isophthalamide (nylon 6I), polyhexamethylene terephthalamide (nylon 6T), hexamethylene Examples of such polyamides include isophthalamide/hexamethylene terephthalamide copolymer (nylon 6I/6T), 11-aminoundecaneamide/hexamethylene terephthalamide copolymer, polynonamethylene terephthalamide (nylon 9T), polydecamethylene terephthalamide (nylon 10T), polyhexamethylene cyclohexylamide, polynonamethylene cyclohexylamide, or polyamides modified with aromatic amines such as methylenebenzylamine and metaxylylenediamine. Metaxylylenediammonium adipate is also included.

これらの中でも、レトルト処理等の熱水又は水蒸気による加熱処理後の外観性向上の観点から、カプロアミドを主体とするポリアミド樹脂であることが好ましく、具体的には、PA(B)の構成単位の75モル%以上がカプロアミド単位であることが好ましい。中でも、EVOH(A)との相溶性の観点から、PA(B)がナイロン6であることが好ましい。 Among these, from the viewpoint of improving the appearance after heat treatment with hot water or steam such as retort treatment, a polyamide resin mainly composed of caproamide is preferred, and specifically, it is preferred that 75 mol % or more of the constituent units of PA (B) are caproamide units. Among these, from the viewpoint of compatibility with EVOH (A), it is preferred that PA (B) is nylon 6.

PA(B)の重合方法としては、特に限定されず、例えば、溶融重合、界面重合、溶液重合、塊状重合、固相重合、またはこれらを組み合わせた方法等、公知の方法を採用することができる。 The polymerization method for PA(B) is not particularly limited, and any known method can be used, such as melt polymerization, interfacial polymerization, solution polymerization, bulk polymerization, solid-phase polymerization, or a combination of these.

本発明の樹脂組成物を構成する熱可塑性樹脂としては、本発明の効果を阻害しない範囲でEVOH(A)とPA(B)以外のその他の熱可塑性樹脂が含まれていてもよい。当該その他の熱可塑性樹脂としては、ポリオレフィン;ポリエステル;ポリスチレン;ポリ塩化ビニル;アクリル系樹脂;ポリウレタン;ポリカーボネート;ポリ酢酸ビニル等の熱可塑性樹脂が挙げられる。当該その他の熱可塑性樹脂の含有量は、5質量%未満が好ましい。本発明の樹脂組成物を構成する熱可塑性樹脂としては、レトルト処理後の外観特性をより向上させる観点から、95質量%以上がEVOH(A)及びPA(B)であることが好ましく、97質量%以上がEVOH(A)及びPA(B)であることがより好ましく、99質量%以上がEVOH(A)及びPA(B)であることがさらに好ましく、実質的にEVOH(A)及びPA(B)のみからなることが特に好ましい。 The thermoplastic resin constituting the resin composition of the present invention may contain other thermoplastic resins other than EVOH (A) and PA (B) to the extent that the effect of the present invention is not impaired. Examples of such other thermoplastic resins include thermoplastic resins such as polyolefins, polyesters, polystyrenes, polyvinyl chlorides, acrylic resins, polyurethanes, polycarbonates, and polyvinyl acetates. The content of such other thermoplastic resins is preferably less than 5% by mass. From the viewpoint of further improving the appearance characteristics after retort treatment, the thermoplastic resin constituting the resin composition of the present invention is preferably 95% by mass or more of EVOH (A) and PA (B), more preferably 97% by mass or more of EVOH (A) and PA (B), even more preferably 99% by mass or more of EVOH (A) and PA (B), and particularly preferably substantially composed of only EVOH (A) and PA (B).

[酸化ケイ素粒子(C)]
本発明の樹脂組成物は、酸化ケイ素粒子(C)を含み、EVOH(A)及びPA(B)の合計量に対する酸化ケイ素粒子(C)の含有量が5ppm以上5000ppm以下である。酸化ケイ素粒子(C)を当該含有量で含むことにより、透明性に優れるとともに、レトルト処理等の熱水又は水蒸気による加熱処理後であっても、デラミネーション等の外観不良の発生を抑制できることが明らかとなった。酸化ケイ素粒子(C)の含有量は20ppm以上が好ましく、60ppm以上がより好ましく、100ppm以上がさらに好ましく、300ppm以上が特に好ましい。酸化ケイ素粒子(C)の含有量が5ppm未満であると、レトルト処理等の熱水又は水蒸気による加熱処理後の外観が不十分なものになる傾向となる。また、酸化ケイ素粒子(C)の含有量は4500ppm以下が好ましく、3500ppm以下がより好ましく、2300ppm以下がさらに好ましく、1800ppm以下が特に好ましい。酸化ケイ素粒子(C)の含有量が5000ppm超であると、透明性が悪化する傾向となる。
[Silicon oxide particles (C)]
The resin composition of the present invention contains silicon oxide particles (C), and the content of silicon oxide particles (C) relative to the total amount of EVOH (A) and PA (B) is 5 ppm or more and 5000 ppm or less. It has been revealed that by containing silicon oxide particles (C) at this content, the transparency is excellent and the occurrence of appearance defects such as delamination can be suppressed even after heat treatment with hot water or steam such as retort treatment. The content of silicon oxide particles (C) is preferably 20 ppm or more, more preferably 60 ppm or more, even more preferably 100 ppm or more, and particularly preferably 300 ppm or more. If the content of silicon oxide particles (C) is less than 5 ppm, the appearance after heat treatment with hot water or steam such as retort treatment tends to be insufficient. The content of the silicon oxide particles (C) is preferably 4500 ppm or less, more preferably 3500 ppm or less, further preferably 2300 ppm or less, and particularly preferably 1800 ppm or less. If the content of the silicon oxide particles (C) exceeds 5000 ppm, the transparency tends to deteriorate.

本発明で使用される酸化ケイ素粒子(C)は、ケイ素と酸素原子とから構成される酸化ケイ素であり、一酸化ケイ素(SiO)、二酸化ケイ素(SiO)、亜酸化ケイ素(SiOx、1<x<2)が挙げられる。これらは、それぞれ単独で使用してもよいし、複数併用してもよい。酸化ケイ素粒子(C)が、一酸化ケイ素(SiO)、二酸化ケイ素(SiO)及び亜酸化ケイ素(SiOx、1<x<2)からなる群から選択される少なくとも1種であることが好ましく、中でも、二酸化ケイ素(SiO)であることがより好ましい。酸化ケイ素粒子(C)には、ケイ素以外の他の金属が含まれていても構わない。他の金属としては、リチウム、ナトリウム、カリウム、カルシウム、バリウム、アルミニウム、マグネシウム、ジルコニウム、セリウム、タングステン、モリブデン、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛等が挙げられる。他の金属の含有量としては、酸化ケイ素粒子(C)を構成する構成金属及び構成ケイ素の合計量に対して、通常、20モル%以下である。すなわち、酸化ケイ素粒子(C)を構成する構成金属及び構成ケイ素の合計量に対して、ケイ素の含有量は80モル%以上である。ケイ素を当該含有量で含む酸化ケイ素粒子(C)を用いることにより、レトルト処理等の熱水又は水蒸気による加熱処理後であっても、デラミネーション等の外観不良の発生を抑制できる利点を有する。ケイ素の含有量は、酸化ケイ素粒子(C)を構成する構成金属及び構成ケイ素の合計量に対して、85モル%以上が好ましく、90モル%以上がより好ましく、95モル%以上がさらに好ましい。 The silicon oxide particles (C) used in the present invention are silicon oxides composed of silicon and oxygen atoms, and examples thereof include silicon monoxide (SiO), silicon dioxide (SiO 2 ), and silicon suboxide (SiOx, 1<x<2). These may be used alone or in combination. The silicon oxide particles (C) are preferably at least one selected from the group consisting of silicon monoxide (SiO), silicon dioxide (SiO 2 ), and silicon suboxide (SiOx, 1<x<2), and among these, silicon dioxide (SiO 2 ) is more preferable. The silicon oxide particles (C) may contain metals other than silicon. Examples of other metals include lithium, sodium, potassium, calcium, barium, aluminum, magnesium, zirconium, cerium, tungsten, molybdenum, titanium, chromium, manganese, iron, cobalt, nickel, copper, and zinc. The content of other metals is usually 20 mol% or less based on the total amount of the constituent metals and silicon constituting the silicon oxide particles (C). That is, the content of silicon is 80 mol% or more based on the total amount of the constituent metals and silicon constituting the silicon oxide particles (C). By using silicon oxide particles (C) containing silicon at this content, it has the advantage that the occurrence of appearance defects such as delamination can be suppressed even after heat treatment with hot water or steam such as retort treatment. The content of silicon is preferably 85 mol% or more based on the total amount of the constituent metals and silicon constituting the silicon oxide particles (C), more preferably 90 mol% or more, and even more preferably 95 mol% or more.

酸化ケイ素粒子(C)の平均粒子径は特に限定されないが、1μm以上30μm以下が好ましい。酸化ケイ素粒子(C)の平均粒子径は、1.5μm以上がより好ましく、1.8μm以上がさらに好ましく、2.2μm以上が特に好ましい。酸化ケイ素粒子(C)の平均粒子径は、20μm以下がより好ましく、15μm以下がさらに好ましく、8μm以下が特に好ましい。酸化ケイ素粒子(C)の平均粒子径を上記範囲内にすることで、より透明性に優れたフィルムを得ることができる。酸化ケイ素粒子(C)の平均粒子径が上記範囲にあれば、酸化ケイ素粒子が凝集した二次粒子であってもよい。なお、酸化ケイ素粒子(C)の平均粒子径は、レーザー回折式粒度分布測定装置を用いて測定することにより求められ、具体的には後述する実施例に記載された方法により測定される。 The average particle diameter of the silicon oxide particles (C) is not particularly limited, but is preferably 1 μm or more and 30 μm or less. The average particle diameter of the silicon oxide particles (C) is more preferably 1.5 μm or more, even more preferably 1.8 μm or more, and particularly preferably 2.2 μm or more. The average particle diameter of the silicon oxide particles (C) is more preferably 20 μm or less, even more preferably 15 μm or less, and particularly preferably 8 μm or less. By setting the average particle diameter of the silicon oxide particles (C) within the above range, a film with better transparency can be obtained. If the average particle diameter of the silicon oxide particles (C) is within the above range, the silicon oxide particles may be secondary particles formed by agglomeration of the silicon oxide particles. The average particle diameter of the silicon oxide particles (C) is determined by measurement using a laser diffraction type particle size distribution measuring device, and is specifically measured by the method described in the examples described later.

酸化ケイ素粒子(C)の比表面積は特に限定されないが、100m/g以上1000m/g以下が好ましい。酸化ケイ素粒子(C)の比表面積は、150m/g以上がより好ましく、200m/g以上がさらに好ましく、250m/g以上が特に好ましい。酸化ケイ素粒子(C)の比表面積は、900m/g以下がより好ましく、800m/g以下がさらに好ましく、750m/g以下が特に好ましい。なお、酸化ケイ素粒子(C)の比表面積は、BET法により求めることができる。 The specific surface area of the silicon oxide particles (C) is not particularly limited, but is preferably 100 m 2 /g or more and 1000 m 2 /g or less. The specific surface area of the silicon oxide particles (C) is more preferably 150 m 2 /g or more, even more preferably 200 m 2 /g or more, and particularly preferably 250 m 2 /g or more. The specific surface area of the silicon oxide particles (C) is more preferably 900 m 2 /g or less, even more preferably 800 m 2 /g or less, and particularly preferably 750 m 2 /g or less. The specific surface area of the silicon oxide particles (C) can be determined by the BET method.

酸化ケイ素粒子(C)のアスペクト比は特に限定されないが、1以上10以下が好ましい。また、酸化ケイ素粒子(C)のアスペクト比は8以下がより好ましく、5以下がさらに好ましく、3以下が特に好ましい。なお、アスペクト比は、SEM法によりSEM写真中の任意の100個の結晶の一次粒子幅(長径)と一次粒子厚み(短径)の測定値の算術平均から求めることができる。 The aspect ratio of the silicon oxide particles (C) is not particularly limited, but is preferably 1 or more and 10 or less. The aspect ratio of the silicon oxide particles (C) is more preferably 8 or less, even more preferably 5 or less, and particularly preferably 3 or less. The aspect ratio can be determined by the SEM method from the arithmetic average of the measured values of the primary particle width (long axis) and primary particle thickness (short axis) of any 100 crystals in an SEM photograph.

[二価金属化合物(D)]
本発明の樹脂組成物は、二価金属化合物(D)を含み、EVOH(A)及びPA(B)の合計量に対する二価金属化合物(D)の二価金属原子換算の含有量が10ppm以上500ppm以下であることが好ましい。前記二価金属化合物(D)の二価金属原子換算の含有量が上記範囲にあることで、溶融成形時のロングラン性に優れる傾向となる。前記二価金属化合物(D)の二価金属原子換算の含有量は10ppm以上がより好ましく、20ppm以上がさらに好ましく、30ppm以上が特に好ましい。また、前記二価金属化合物(D)の二価金属原子換算の含有量は、400ppm以下がより好ましく、300ppm以下がさらに好ましく、200ppm以下が特に好ましい。
[Divalent metal compound (D)]
The resin composition of the present invention contains a divalent metal compound (D), and the content of the divalent metal compound (D) in terms of divalent metal atoms relative to the total amount of EVOH (A) and PA (B) is preferably 10 ppm or more and 500 ppm or less. The content of the divalent metal compound (D) in terms of divalent metal atoms in the above range tends to be excellent in long-run properties during melt molding. The content of the divalent metal compound (D) in terms of divalent metal atoms is more preferably 10 ppm or more, even more preferably 20 ppm or more, and particularly preferably 30 ppm or more. In addition, the content of the divalent metal compound (D) in terms of divalent metal atoms is more preferably 400 ppm or less, even more preferably 300 ppm or less, and particularly preferably 200 ppm or less.

二価金属化合物(D)を構成する金属原子としては特に限定されないが、マグネシウム、カルシウム、鉄および亜鉛からなる群より選ばれる少なくとも1種を含むことが好ましい。中でも、溶融成形におけるロングラン性の観点から、二価金属化合物(D)を構成する金属原子が、マグネシウム、カルシウムおよび亜鉛からなる群より選ばれる少なくとも1種であることがより好ましく、マグネシウムおよびカルシウムからなる群より選ばれる少なくとも1種であることがさらに好ましく、マグネシウムであることが特に好ましい。 The metal atom constituting the divalent metal compound (D) is not particularly limited, but preferably contains at least one selected from the group consisting of magnesium, calcium, iron, and zinc. In particular, from the viewpoint of long-run properties in melt molding, it is more preferable that the metal atom constituting the divalent metal compound (D) is at least one selected from the group consisting of magnesium, calcium, and zinc, even more preferable that it is at least one selected from the group consisting of magnesium and calcium, and particularly preferable that it is magnesium.

二価金属化合物(D)としては、上記金属原子を含む脂肪酸塩や二価金属水酸化物が挙げられる。前記脂肪酸塩としては、脂肪酸マグネシウム、脂肪酸カルシウム、脂肪酸鉄および脂肪酸亜鉛からなる群より選ばれる少なくとも1種であることが好ましい。中でも、溶融成形におけるロングラン性の観点から、脂肪酸マグネシウム、脂肪酸カルシウムおよび脂肪酸亜鉛からなる群より選ばれる少なくとも1種であることがより好ましく、脂肪酸マグネシウムおよび脂肪酸カルシウムからなる群より選ばれる少なくとも1種であることがさらに好ましく、脂肪酸マグネシウムであることが特に好ましい。前記脂肪酸としては、炭素数1~30の脂肪酸が挙げられ、中でも炭素数1~7の脂肪酸が好ましく、炭素数1~3の脂肪酸がより好ましく、酢酸であることがさらに好ましい。前記二価金属水酸化物としては、水酸化マグネシウム、水酸化カルシウム、水酸化鉄および水酸化亜鉛からなる群より選ばれる少なくとも1種であることが好ましい。中でも、溶融成形におけるロングラン性の観点から、水酸化マグネシウム、水酸化カルシウムおよび水酸化亜鉛からなる群より選ばれる少なくとも1種であることがより好ましく、水酸化マグネシウムおよび水酸化カルシウムからなる群より選ばれる少なくとも1種であることがさらに好ましく、水酸化マグネシウムであることが特に好ましい。 The divalent metal compound (D) may be a fatty acid salt or a divalent metal hydroxide containing the above metal atom. The fatty acid salt is preferably at least one selected from the group consisting of fatty acid magnesium, fatty acid calcium, fatty acid iron, and fatty acid zinc. Among them, from the viewpoint of long-running properties in melt molding, it is more preferable to use at least one selected from the group consisting of fatty acid magnesium, fatty acid calcium, and fatty acid zinc, and it is even more preferable to use at least one selected from the group consisting of fatty acid magnesium and fatty acid calcium, and it is particularly preferable to use fatty acid magnesium. The fatty acid may be a fatty acid having 1 to 30 carbon atoms, and among them, a fatty acid having 1 to 7 carbon atoms is preferable, a fatty acid having 1 to 3 carbon atoms is more preferable, and it is even more preferable to use acetic acid. The divalent metal hydroxide is preferably at least one selected from the group consisting of magnesium hydroxide, calcium hydroxide, iron hydroxide, and zinc hydroxide. Among them, from the viewpoint of long-running properties in melt molding, it is more preferable to use at least one selected from the group consisting of magnesium hydroxide, calcium hydroxide, and zinc hydroxide, and it is even more preferable to use at least one selected from the group consisting of magnesium hydroxide and calcium hydroxide, and it is particularly preferable to use magnesium hydroxide.

二価金属化合物(D)を構成する全金属原子におけるマグネシウム原子の割合が80モル%以上であることが好適な実施態様である。このことにより、長時間の溶融成形におけるロングラン性に優れる利点を有する。前記割合は90モル%以上がより好ましく、95モル%以上がさらに好ましく、二価金属化合物(D)の二価金属原子は、実質的にマグネシウム原子であることが特に好ましい。 In a preferred embodiment, the ratio of magnesium atoms to all metal atoms constituting the divalent metal compound (D) is 80 mol% or more. This has the advantage of excellent long-run performance in long-term melt molding. The ratio is more preferably 90 mol% or more, and even more preferably 95 mol% or more, and it is particularly preferred that the divalent metal atoms of the divalent metal compound (D) are substantially magnesium atoms.

本発明の樹脂組成物には、本発明の効果を阻害しない範囲で、上記以外の各種添加剤が配合されていてもよい。このような添加剤の例としては、カルボン酸化合物、リン酸化合物、ホウ素化合物、アルカリ金属塩、酸化防止剤、可塑剤、熱安定剤、紫外線吸収剤、帯電防止剤、滑剤、着色剤、フィラー、他の樹脂等が挙げられ、具体的には下記のものが挙げられる。添加剤の含有量は、通常、10質量%以下であり、5質量%以下が好適であり、1質量%以下がより好適である。 The resin composition of the present invention may contain various additives other than those described above, provided that the effects of the present invention are not impaired. Examples of such additives include carboxylic acid compounds, phosphoric acid compounds, boron compounds, alkali metal salts, antioxidants, plasticizers, heat stabilizers, UV absorbers, antistatic agents, lubricants, colorants, fillers, other resins, and the like, and specific examples include the following. The content of the additives is usually 10% by mass or less, preferably 5% by mass or less, and more preferably 1% by mass or less.

本発明の樹脂組成物がカルボン酸化合物を含むと、溶融成形時に着色しにくくなる傾向となる。前記カルボン酸は、モノカルボン酸でも多価カルボン酸でもよく、これらの組み合わせであってもよい。また、前記カルボン酸はイオンであってもよく、かかるカルボン酸イオンは金属イオンと塩を形成していてもよい。モノカルボン酸としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、カプロン酸、カプリン酸、アクリル酸、メタクリル酸、安息香酸、2-ナフトエ酸等が挙げられ、中でも、酢酸が好ましい。また、多価カルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、マレイン酸、フマル酸等の脂肪族ジカルボン酸;フタル酸、イソフタル酸、テレフタル酸等の芳香族ジカルボン酸;アコニット酸等のトリカルボン酸;1,2,3,4-ブタンテトラカルボン酸、エチレンジアミン四酢酸等の4以上のカルボキシ基を有するカルボン酸;酒石酸、クエン酸、イソクエン酸、リンゴ酸等のヒドロキシカルボン酸;オキサロ酢酸、メソシュウ酸、2-ケトグルタル酸等のケトカルボン酸;グルタミン酸、アスパラギン酸等のアミノ酸等が挙げられ、中でもコハク酸、リンゴ酸、酒石酸、クエン酸が入手容易である点から好ましい。本発明の樹脂組成物がカルボン酸化合物を含む場合、その含有量は、カルボン酸根換算で0.01μmol/g以上20μmol/g以下が好ましい。 When the resin composition of the present invention contains a carboxylic acid compound, it tends to be less likely to discolor during melt molding. The carboxylic acid may be a monocarboxylic acid or a polycarboxylic acid, or a combination of these. The carboxylic acid may also be an ion, and such a carboxylic acid ion may form a salt with a metal ion. Examples of monocarboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, caproic acid, capric acid, acrylic acid, methacrylic acid, benzoic acid, and 2-naphthoic acid, and among these, acetic acid is preferred. Examples of polyvalent carboxylic acids include aliphatic dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, maleic acid, and fumaric acid; aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, and terephthalic acid; tricarboxylic acids such as aconitic acid; carboxylic acids having four or more carboxy groups such as 1,2,3,4-butanetetracarboxylic acid and ethylenediaminetetraacetic acid; hydroxycarboxylic acids such as tartaric acid, citric acid, isocitric acid, and malic acid; ketocarboxylic acids such as oxaloacetic acid, mesoxalic acid, and 2-ketoglutaric acid; and amino acids such as glutamic acid and aspartic acid. Among these, succinic acid, malic acid, tartaric acid, and citric acid are preferred because they are easily available. When the resin composition of the present invention contains a carboxylic acid compound, the content thereof is preferably 0.01 μmol/g or more and 20 μmol/g or less in terms of carboxylic acid radical.

本発明の樹脂組成物がリン酸化合物を含むと、溶融成形時に着色しにくくなる傾向となる。前記リン酸化合物は特に限定されず、リン酸、亜リン酸等の各種の酸やその塩等を用いることができる。リン酸塩としては第1リン酸塩、第2リン酸塩、第3リン酸塩のいずれの形で含まれていてもよいが、第1リン酸塩が好ましい。そのカチオン種も特に限定されるものではないが、アルカリ金属塩が好ましい。これらの中でもリン酸2水素ナトリウム及びリン酸2水素カリウムが好ましい。本発明の樹脂組成物がリン酸化合物を含む場合、リン酸化合物の含有量はリン酸根換算で5~200ppmが好ましい。リン酸化合物の含有量が5ppm以上であると、溶融成形時の耐着色性が良好となる傾向にある。一方、リン酸化合物の含有量が200ppm以下であると溶融成形性が良好となる傾向にあり、より好適には160ppm以下である。 When the resin composition of the present invention contains a phosphoric acid compound, it tends to be less likely to discolor during melt molding. The phosphoric acid compound is not particularly limited, and various acids such as phosphoric acid and phosphorous acid and their salts can be used. The phosphate may be contained in the form of any of primary phosphate, secondary phosphate, and tertiary phosphate, but primary phosphate is preferred. The cation species is also not particularly limited, but alkali metal salts are preferred. Among these, sodium dihydrogen phosphate and potassium dihydrogen phosphate are preferred. When the resin composition of the present invention contains a phosphoric acid compound, the content of the phosphoric acid compound is preferably 5 to 200 ppm in terms of phosphate radical. When the content of the phosphoric acid compound is 5 ppm or more, the discoloration resistance during melt molding tends to be good. On the other hand, when the content of the phosphoric acid compound is 200 ppm or less, the melt moldability tends to be good, and more preferably 160 ppm or less.

本発明の樹脂組成物がホウ素化合物を含むと、加熱溶融時のトルク変動を抑制できる傾向となる。前記ホウ素化合物としては特に限定されず、ホウ酸類、ホウ酸エステル、ホウ酸塩、水素化ホウ素類等が挙げられる。具体的には、ホウ酸類としては、オルトホウ酸、メタホウ酸、四ホウ酸などが挙げられ、ホウ酸エステルとしてはホウ酸トリエチル、ホウ酸トリメチルなどが挙げられ、ホウ酸塩としては前記の各種ホウ酸類のアルカリ金属塩、アルカリ土類金属塩、ホウ砂などが挙げられる。これらの化合物のうちでもオルトホウ酸(以下、単にホウ酸と表示する場合がある)が好ましい。本発明の樹脂組成物がホウ素化合物を含む場合、ホウ素化合物の含有量はホウ素元素換算で20~2000ppmが好ましい。ホウ素化合物の含有量が20ppm以上であると、加熱溶融時のトルク変動を抑制できる傾向となり、より好適には50ppm以上である。一方、ホウ素化合物の含有量が2000ppm以下であると、成形性が良好となる傾向にあり、より好適には1000ppm以下である。 When the resin composition of the present invention contains a boron compound, the torque fluctuation during heat melting tends to be suppressed. The boron compound is not particularly limited, and examples thereof include boric acids, boric acid esters, borate salts, boron hydrides, etc. Specifically, examples of boric acids include orthoboric acid, metaboric acid, tetraboric acid, etc., examples of borate esters include triethyl borate, trimethyl borate, etc., and examples of borates include alkali metal salts, alkaline earth metal salts, borax, etc. of the various borates mentioned above. Among these compounds, orthoboric acid (hereinafter, sometimes simply referred to as boric acid) is preferred. When the resin composition of the present invention contains a boron compound, the content of the boron compound is preferably 20 to 2000 ppm in terms of boron element. When the content of the boron compound is 20 ppm or more, the torque fluctuation during heat melting tends to be suppressed, and more preferably 50 ppm or more. On the other hand, if the content of boron compounds is 2000 ppm or less, moldability tends to be good, and more preferably 1000 ppm or less.

本発明の樹脂組成物がアルカリ金属塩を含むと、本発明の樹脂組成物を含む層と他の樹脂層との層間接着性が良好になる傾向となる。アルカリ金属塩のカチオン種は特に限定されないが、ナトリウム塩またはカリウム塩が好適である。アルカリ金属塩のアニオン種も特に限定されない。カルボン酸塩、炭酸塩、炭酸水素塩、リン酸塩、リン酸水素塩、ホウ酸塩、水酸化物等として添加できる。本発明の樹脂組成物がアルカリ金属塩を含む場合、アルカリ金属塩の含有量は金属元素換算で10~500ppmであることが好ましい。アルカリ金属塩の含有量は、より好適には50ppm以上である。一方、アルカリ金属塩の含有量が500ppm以下であると溶融安定性が良好になる傾向となり、より好適には300ppm以下である。 When the resin composition of the present invention contains an alkali metal salt, the interlayer adhesion between the layer containing the resin composition of the present invention and other resin layers tends to be improved. The cation species of the alkali metal salt is not particularly limited, but sodium salt or potassium salt is preferable. The anion species of the alkali metal salt is also not particularly limited. It can be added as a carboxylate, carbonate, hydrogen carbonate, phosphate, hydrogen phosphate, borate, hydroxide, etc. When the resin composition of the present invention contains an alkali metal salt, the content of the alkali metal salt is preferably 10 to 500 ppm in terms of metal element. The content of the alkali metal salt is more preferably 50 ppm or more. On the other hand, when the content of the alkali metal salt is 500 ppm or less, the melt stability tends to be improved, and is more preferably 300 ppm or less.

酸化防止剤:2,5-ジ-t-ブチルハイドロキノン、2,6-ジ-t-ブチル-p-クレゾール、4,4’-チオビス-(6-t-ブチルフェノール)、2,2’-メチレン-ビス-(4-メチル-6-t-ブチルフェノール)、オクタデシル-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート、4,4’-チオビス-(6-t-ブチルフェノール)等
可塑剤:フタル酸ジエチル、フタル酸ジブチル、フタル酸ジオクチル、ワックス、流動パラフィン、リン酸エステル等
紫外線吸収剤:エチレン-2-シアノ-3,3’-ジフェニルアクリレート、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)5-クロロベンゾトリアゾール、2-ヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン等
帯電防止剤:ペンタエリスリトールモノステアレート、ソルビタンモノパルミテート、硫酸化ポリオレフィン類、ポリエチレンオキシド等
滑剤:エチレンビスステアロアミド、ブチルステアレート等
Antioxidants: 2,5-di-t-butylhydroquinone, 2,6-di-t-butyl-p-cresol, 4,4'-thiobis-(6-t-butylphenol), 2,2'-methylene-bis-(4-methyl-6-t-butylphenol), octadecyl-3-(3',5'-di-t-butyl-4'-hydroxyphenyl)propionate, 4,4'-thiobis-(6-t-butylphenol), etc. Plasticizers: diethyl phthalate, dibutyl phthalate, dioctyl phthalate, wax, liquid paraffin, phosphate ester, etc. UV absorbers: ethylene-2-cyano-3,3'-diphenylacrylate, 2-(2'-hydroxy-5'-methylphenyl)benzotriazole, 2-(2'-hydroxy-5'-methylphenyl)benzotriazole, 2-(2'-hydroxy-5'-methylphenyl)benzotriazole, 2-(2'-hydroxy-3'-t-butyl-5'-methylphenyl)5-chlorobenzotriazole, 2-hydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, etc. Antistatic agents: pentaerythritol monostearate, sorbitan monopalmitate, sulfated polyolefins, polyethylene oxide, etc. Lubricants: ethylene bisstearamide, butyl stearate, etc.

本発明の樹脂組成物の製造方法は特に限定されず、EVOH(A)、PA(B)及び酸化ケイ素粒子(C)をドライブレンドした後に、必要に応じて二価金属化合物(D)及び各種添加剤を添加して溶融混練することによって調製することが好ましい。具体的には、ニーダールーダー、押出機、ミキシングロール、バンバリーミキサーなどの既知の混合装置または混練装置を使用して行うことができる。溶融混練時の温度は、通常、110~300℃である。酸化ケイ素粒子(C)、二価金属化合物(D)及び各種添加剤は、予めEVOH(A)又はPA(B)に含有されていても構わない。また、二価金属化合物(D)が二価金属水酸化物である場合、EVOH(A)、PA(B)及び酸化ケイ素粒子(C)に対して、二価金属化合物(D)を加えてドライブレンドする方法が好適に採用される。本発明の樹脂組成物は、ペレット、粉末などの任意の形態であってよく、安定に溶融成形できる観点からペレットが好ましい。 The method for producing the resin composition of the present invention is not particularly limited, and it is preferable to prepare the resin composition by dry blending EVOH (A), PA (B) and silicon oxide particles (C), and then adding divalent metal compound (D) and various additives as necessary and melt-kneading the mixture. Specifically, the mixture can be prepared using a known mixing or kneading device such as a kneader-ruder, an extruder, a mixing roll, or a Banbury mixer. The temperature during melt-kneading is usually 110 to 300°C. The silicon oxide particles (C), divalent metal compound (D) and various additives may be contained in EVOH (A) or PA (B) in advance. In addition, when the divalent metal compound (D) is a divalent metal hydroxide, a method of adding the divalent metal compound (D) to EVOH (A), PA (B) and silicon oxide particles (C) and dry-blending the mixture is preferably adopted. The resin composition of the present invention may be in any form such as pellets or powder, and pellets are preferred from the viewpoint of stable melt molding.

本発明の樹脂組成物は、成形品として好適に用いられる。具体的には、押出成形品、フィルムまたはシート(特に延伸フィルムまたは熱収縮フィルム)、熱成形品、壁紙または化粧板、パイプまたはホース、異形成形品、押出ブロー成形品、射出成形品、フレキシブル包装材、容器(特にレトルト容器)などの成形品が挙げられる。成形品が多層構造体である場合は、共押出フィルムまたは共押出シート、熱収縮フィルム、容器(特に共押出ブロー成形容器、共射出成形容器、レトルト容器)、パイプ(特に燃料パイプまたは温水循環用パイプ)、ホース(特に燃料ホース)などが好ましい。 The resin composition of the present invention is preferably used as a molded product. Specific examples of the molded product include extrusion molded products, films or sheets (particularly oriented films or heat-shrinkable films), thermoformed products, wallpaper or decorative panels, pipes or hoses, profile molded products, extrusion blow molded products, injection molded products, flexible packaging materials, and containers (particularly retort containers). When the molded product is a multilayer structure, preferred examples include coextruded films or coextruded sheets, heat-shrinkable films, containers (particularly coextrusion blow molded containers, coinjection molded containers, and retort containers), pipes (particularly fuel pipes or hot water circulation pipes), and hoses (particularly fuel hoses).

本発明の成形品が、本発明の樹脂組成物からなる層を含む多層構造体である場合、かかる多層構造体は、本発明の樹脂組成物からなる層とは異なる他の層とを積層して形成される。本発明の多層構造体の層構成としては、本発明の樹脂組成物以外の重合体からなる層をx層、本発明の樹脂組成物からなる層をy層、接着性重合体層をz層とすると、x/y、x/y/x、x/z/y、x/z/y/z/x、x/y/x/y/x、x/z/y/z/x/z/y/z/x等が例示される。複数のx層を設ける場合は、その種類は同じであっても異なっていてもよい。また、成形時に発生するトリム等のスクラップからなる回収重合体を用いた層を別途設けてもよいし、回収重合体を他の重合体からなる層にブレンドしてもよい。当該多層構造体の各層の厚さ構成は、特に限定されるものではないが、成形性及びコスト等の観点から、全層厚さに対するy層の厚さ比は2~20%が好ましい。 When the molded article of the present invention is a multilayer structure including a layer made of the resin composition of the present invention, the multilayer structure is formed by laminating layers other than the layer made of the resin composition of the present invention. Examples of the layer configuration of the multilayer structure of the present invention include x/y, x/y/x, x/z/y, x/z/y/z/x, x/y/x/y/y/x, x/z/y/z/x/z/y/z/x, etc., where x is a layer made of a polymer other than the resin composition of the present invention, y is a layer made of the resin composition of the present invention, and z is an adhesive polymer layer. When multiple x layers are provided, the types of layers may be the same or different. In addition, a layer using a recovered polymer made of scrap such as trim generated during molding may be provided separately, or the recovered polymer may be blended with a layer made of another polymer. The thickness configuration of each layer of the multilayer structure is not particularly limited, but from the viewpoint of moldability and cost, the thickness ratio of the y layer to the total layer thickness is preferably 2 to 20%.

上記のx層に使用される重合体としては、加工性等の観点から熱可塑性重合体が好ましい。かかる熱可塑性重合体としては、例えば次の重合体が挙げられる。
・ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン又はプロピレン共重合体(エチレン又はプロピレンと次の単量体の少なくとも1種との共重合体:1-ブテン、イソブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン等のα-オレフィン;イタコン酸、メタクリル酸、アクリル酸、無水マレイン酸等の不飽和カルボン酸、その塩、その部分又は完全エステル、そのニトリル、そのアミド、その無水物;ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、ビニルブチレート、ビニルオクタノエート、ビニルドデカノエート、ビニルステアレート、ビニルアラキドネート等のカルボン酸ビニルエステル類;ビニルトリメトキシシラン等のビニルシラン系化合物;不飽和スルホン酸又はその塩;アルキルチオール類;ビニルピロリドン類等);
・ポリ4-メチル-1-ペンテン、ポリ1-ブテン等のポリオレフィン;
・ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;
・ポリε-カプロラクタム、ポリヘキサメチレンアジパミド、ポリメタキシリレンアジパミド等のポリアミド;
・ポリ塩化ビニリデン、ポリ塩化ビニル、ポリスチレン、ポリアクリロニトリル、ポリカーボネート、ポリアクリレート等。
かかる熱可塑性重合体層は無延伸のものであってもよいし、一軸もしくは二軸に延伸又は圧延されているものであっても構わない。
The polymer used for the x layer is preferably a thermoplastic polymer from the viewpoint of processability, etc. Examples of such a thermoplastic polymer include the following polymers.
polyethylene, polypropylene, ethylene-propylene copolymers, ethylene or propylene copolymers (copolymers of ethylene or propylene with at least one of the following monomers: α-olefins such as 1-butene, isobutene, 4-methyl-1-pentene, 1-hexene, 1-octene, etc.; unsaturated carboxylic acids such as itaconic acid, methacrylic acid, acrylic acid, maleic anhydride, etc., salts thereof, partial or complete esters thereof, nitriles thereof, amides thereof, anhydrides thereof; vinyl esters of carboxylic acids such as vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl octanoate, vinyl dodecanoate, vinyl stearate, vinyl arachidonate, etc.; vinyl silane compounds such as vinyl trimethoxysilane, etc.; unsaturated sulfonic acids or salts thereof; alkylthiols; vinylpyrrolidones, etc.);
Polyolefins such as poly(4-methyl-1-pentene) and poly(1-butene);
Polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate;
Polyamides such as poly-ε-caprolactam, polyhexamethylene adipamide, and polymetaxylylene adipamide;
-Polyvinylidene chloride, polyvinyl chloride, polystyrene, polyacrylonitrile, polycarbonate, polyacrylate, etc.
Such a thermoplastic polymer layer may be unoriented, or may be uniaxially or biaxially oriented or rolled.

これらの熱可塑性重合体のうち、ポリオレフィンは耐湿性、機械的特性、経済性、ヒートシール性等の点で、また、ポリアミドやポリエステルは機械的特性、耐熱性等の点で好ましい。 Of these thermoplastic polymers, polyolefins are preferred in terms of moisture resistance, mechanical properties, cost-effectiveness, heat sealability, etc., while polyamides and polyesters are preferred in terms of mechanical properties, heat resistance, etc.

一方、z層に使用される接着性重合体としては、各層間を接着できるものであればよく、ポリウレタン系又はポリエステル系の一液型又は二液型硬化性接着剤、カルボン酸変性ポリオレフィン重合体等が好ましい。カルボン酸変性ポリオレフィン重合体は、不飽和カルボン酸又はその無水物(無水マレイン酸等)を共重合成分として含むオレフィン系重合体又は共重合体;又は不飽和カルボン酸又はその無水物をオレフィン系重合体又は共重合体にグラフトさせて得られるグラフト共重合体である。 On the other hand, the adhesive polymer used in the z-layer may be any polymer capable of bonding the layers together, and is preferably a polyurethane- or polyester-based one- or two-component curable adhesive, a carboxylic acid-modified polyolefin polymer, or the like. The carboxylic acid-modified polyolefin polymer is an olefin-based polymer or copolymer containing an unsaturated carboxylic acid or its anhydride (maleic anhydride, etc.) as a copolymerization component; or a graft copolymer obtained by grafting an unsaturated carboxylic acid or its anhydride to an olefin-based polymer or copolymer.

共射出成形法や共押出成形法等で多層構造体を製造する場合は、接着性重合体はカルボン酸変性ポリオレフィン重合体がより好ましい。特に、x層がポリオレフィン重合体である場合、y層との接着性が良好となる。かかるカルボン酸変性ポリオレフィン重合体を構成するポリオレフィン重合体としては、例えば、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、超低密度ポリエチレン(VLDPE)等のポリエチレン;ポリプロピレン;共重合ポリプロピレン;エチレン-酢酸ビニル共重合体;エチレン-(メタ)アクリル酸エステル(メチルエステル又はエチルエステル)共重合体等が挙げられる。一方、ドライラミネート法で多層構造体を製造する場合には、ポリウレタン系の二液型硬化性接着剤がより好ましい。この場合、x層に多様な重合体を用いることができるため、多層構造体の機能をより高度なものにすることができる。 When the multilayer structure is manufactured by a co-injection molding method or a co-extrusion molding method, the adhesive polymer is preferably a carboxylic acid-modified polyolefin polymer. In particular, when the x layer is a polyolefin polymer, the adhesive polymer has good adhesion to the y layer. Examples of polyolefin polymers constituting such carboxylic acid-modified polyolefin polymers include polyethylenes such as low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and very low-density polyethylene (VLDPE); polypropylene; copolymerized polypropylene; ethylene-vinyl acetate copolymer; ethylene-(meth)acrylic acid ester (methyl ester or ethyl ester) copolymer; and the like. On the other hand, when the multilayer structure is manufactured by a dry lamination method, a polyurethane-based two-liquid curable adhesive is more preferable. In this case, a variety of polymers can be used for the x layer, so that the functionality of the multilayer structure can be made more advanced.

前記多層構造体を得る方法としては、例えば押出ラミネート法、ドライラミネート法、共射出成形法、共押出成形法等が挙げられる。共押出成形法としては、共押出ラミネート法、共押出シート成形法、共押出パイプ成形法、共押出チューブ成形法、共押出インフレーション成形法、共押出ブロー成形法等が挙げられる。 Methods for obtaining the multilayer structure include, for example, extrusion lamination, dry lamination, co-injection molding, and co-extrusion molding. Examples of co-extrusion molding methods include co-extrusion lamination, co-extrusion sheet molding, co-extrusion pipe molding, co-extrusion tube molding, co-extrusion inflation molding, and co-extrusion blow molding.

このようにして得られた前記多層構造体のシート、フィルム、パリソン等を、含有される重合体の融点以下の温度で再加熱し、絞り成形等の熱成形法、ロール延伸法、パンタグラフ式延伸法、インフレーション延伸法、ブロー成形法等により一軸又は二軸延伸して、延伸された成形物を得ることもできる。 The sheet, film, parison, etc. of the multilayer structure thus obtained can be reheated at a temperature below the melting point of the polymer contained therein, and uniaxially or biaxially stretched by a thermoforming method such as squeeze molding, a roll stretching method, a pantograph stretching method, an inflation stretching method, a blow molding method, etc. to obtain a stretched molded product.

このようにして得られる本発明の樹脂組成物を含む成形品は、透明性に優れるとともに、レトルト処理等の熱水又は水蒸気による加熱処理後であっても、デラミネーション等の外観不良の発生を抑制できるため、包装材や容器として好適に採用され、特にレトルト包装材、レトルト容器に適している。 The molded article containing the resin composition of the present invention obtained in this manner has excellent transparency and is able to suppress the occurrence of appearance defects such as delamination even after heat treatment with hot water or steam such as retort treatment, so it is suitable for use as packaging materials and containers, and is particularly suitable for retort packaging materials and retort containers.

以下、本発明を実施例と比較例とを挙げて具体的に説明するが、本発明は以下に示す実施例に限定されない。なお、測定、算出及び評価の方法はそれぞれ以下の方法に従った。 The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to the examples shown below. The measurement, calculation, and evaluation methods were as follows.

<使用した原料>
[EVOH(A)]
・A-1:「エバール(登録商標)L171B」(株式会社クラレ製、EVOHペレット、エチレン単位含有量27モル%、MFR 4.0g/10分(210℃、2160g荷重)、融点190℃)
[PA(B)]
・B-1:「SF1018A」(宇部興産株式会社製、ポリアミド6ペレット、融点220℃)
[酸化ケイ素粒子(C)]
・C-1:「サイリシア(登録商標)310P」(富士シリシア化学株式会社製、平均粒子径2.7μm、比表面積300m/g、構成金属及び構成ケイ素の合計量に対するケイ素の割合96モル%)
・C-2:「サイリシア(登録商標)380」(富士シリシア化学株式会社製、平均粒子径9.0μm、比表面積300m/g、構成金属及び構成ケイ素の合計量に対するケイ素の割合96モル%)
・C-3:「サイリシア(登録商標)530」(富士シリシア化学株式会社製、平均粒子径2.7μm、比表面積500m/g、構成金属及び構成ケイ素の合計量に対するケイ素の割合96モル%)
・C-4:「サイリシア(登録商標)710」(富士シリシア化学株式会社製、平均粒子径2.8μm、比表面積700m/g、構成金属及び構成ケイ素の合計量に対するケイ素の割合96モル%)
[無機層状ケイ酸塩(C’)]
・C’-5:「クニピア-F」(クニミネ工業株式会社製、モンモリロナイト、平均粒子径2.0μm、比表面積25m/g、構成金属及び構成ケイ素の合計量に対するケイ素の割合63モル%)
<Ingredients used>
[EVOH (A)]
A-1: "EVAL (registered trademark) L171B" (manufactured by Kuraray Co., Ltd., EVOH pellets, ethylene unit content 27 mol%, MFR 4.0 g/10 min (210°C, 2160 g load), melting point 190°C)
[PA(B)]
B-1: "SF1018A" (manufactured by Ube Industries, Ltd., polyamide 6 pellets, melting point 220°C)
[Silicon oxide particles (C)]
C-1: "Sylysia (registered trademark) 310P" (manufactured by Fuji Silysia Chemical Ltd., average particle size 2.7 μm, specific surface area 300 m 2 /g, proportion of silicon to the total amount of constituent metals and constituent silicon 96 mol %)
C-2: "Sylysia (registered trademark) 380" (manufactured by Fuji Silysia Chemical Ltd., average particle size 9.0 μm, specific surface area 300 m 2 /g, ratio of silicon to the total amount of constituent metals and constituent silicon 96 mol %)
C-3: "Sylysia (registered trademark) 530" (manufactured by Fuji Silysia Chemical Ltd., average particle size 2.7 μm, specific surface area 500 m 2 /g, ratio of silicon to the total amount of constituent metals and constituent silicon 96 mol %)
C-4: "Sylysia (registered trademark) 710" (manufactured by Fuji Silysia Chemical Ltd., average particle size 2.8 μm, specific surface area 700 m 2 /g, ratio of silicon to the total amount of constituent metals and constituent silicon 96 mol %)
[Inorganic layered silicate (C')]
C'-5: "Kunipia-F" (manufactured by Kunimine Industries Co., Ltd., montmorillonite, average particle size 2.0 μm, specific surface area 25 m 2 /g, proportion of silicon to the total amount of constituent metals and constituent silicon 63 mol%).

<評価方法>
(1)レトルト処理後の耐デラミ性
実施例及び比較例で得られた、厚み20μmの単層フィルム、二軸延伸ナイロン6フィルム(ユニチカ社製の「エンブレム(登録商標)ONBC」、厚み15μm)及び無延伸ポリプロピレンフィルム(三井化学東セロ社製の「RXC-22」、厚み50μm)をそれぞれA4サイズにカットし、該単層フィルムの両面にドライラミネート用接着剤を塗布し、外層がナイロン6フィルム、内層が無延伸ポリプロピレンフィルムとなるようドライラミネートを実施し、80℃で3分間乾燥させて、3層からなる透明なラミネートフィルムを得た。上記ドライラミネート用接着剤としては三井化学株式会社の「タケラック(登録商標)A-520」を主剤、三井化学株式会社の「タケネート(登録商標)A-50」を硬化剤、希釈液として酢酸エチルを用いたものを使用した。該接着剤の塗布量は4.0g/mとし、ラミネ-ト後、40℃で3日間養生を実施した。
<Evaluation method>
(1) Delamination resistance after retort treatment The 20 μm thick monolayer film, biaxially oriented nylon 6 film (Unitika Ltd.'s "EMBLEM (registered trademark) ONBC", thickness 15 μm) and non-oriented polypropylene film (Mitsui Chemicals Tohcello's "RXC-22", thickness 50 μm) obtained in the examples and comparative examples were each cut to A4 size, and a dry lamination adhesive was applied to both sides of the monolayer film, and dry lamination was performed so that the outer layer was a nylon 6 film and the inner layer was a non-oriented polypropylene film, and the film was dried at 80 ° C. for 3 minutes to obtain a transparent laminate film consisting of three layers. The dry lamination adhesive used was Mitsui Chemicals Inc.'s "Takelac (registered trademark) A-520" as the main agent, Mitsui Chemicals Inc.'s "Takenate (registered trademark) A-50" as the hardener, and ethyl acetate as the diluent. The amount of the adhesive applied was 4.0 g/m 2 , and after lamination, the laminate was left to cure at 40° C. for 3 days.

得られたラミネートフィルムを2枚用いて、無延伸ポリプロピレンフィルム同士を重ね合わせ12cm×12cm外寸の四方をシールしたパウチを作製した。内容物は水とした。これをレトルト装置(株式会社日阪製作所の高温高圧調理殺菌試験機「RCS-40RTGN」)を使用して、125℃で30分のレトルト処理を実施した。レトルト処理後、表面水を拭き20℃、65%RHの恒温恒湿の部屋で1日放置してから耐デラミ性の評価として、以下の基準で外観特性を判定した。以下の判定基準のうち、A、B及びCが使用可能なレベルである。
判定:基準
A :デラミなし
B :パウチ表面の10%程度がデラミ
C :パウチ表面の20%程度がデラミ
D :パウチ表面の50%程度がデラミ
E :パウチ表面の70%以上がデラミ
Two sheets of the obtained laminate film were used to overlap the non-oriented polypropylene film and produce a pouch with four sealed sides of outer dimensions of 12 cm x 12 cm. The content was water. This was subjected to retort treatment at 125°C for 30 minutes using a retort device (Hisaka Manufacturing Co., Ltd.'s high-temperature, high-pressure cooking sterilization tester "RCS-40RTGN"). After the retort treatment, the surface water was wiped off and the pouch was left for one day in a constant temperature and humidity room at 20°C and 65% RH, and then the appearance characteristics were evaluated as delamination resistance according to the following criteria. Of the following criteria, A, B, and C are usable levels.
Judgment: Criteria A: No delamination B: About 10% of the pouch surface is delaminated C: About 20% of the pouch surface is delaminated D: About 50% of the pouch surface is delaminated E: More than 70% of the pouch surface is delaminated

(2)ヘイズ値
実施例及び比較例で得られた、厚み20μmの単層フィルムについて、ASTM D1003-61に準じて、反射・透過率計「HR-100」(村上色彩技術研究所製)を用いて、ヘイズ値を測定した。
(2) Haze Value For the single-layer films having a thickness of 20 μm obtained in the Examples and Comparative Examples, the haze value was measured using a reflectance/transmittance meter "HR-100" (manufactured by Murakami Color Research Laboratory) in accordance with ASTM D1003-61.

(3)酸素透過度(OTR)
実施例及び比較例で得られた、厚み20μmの単層フィルムについて、MOCON INC.製の酸素透過率測定装置「OX-TRAN2/20型」(検出限界値0.01cc・20μm/(m・day・atm))を用いて、温度20℃、湿度65%RHの条件下でJIS K 7126(等圧法)に記載の方法に準じて、酸素透過度(cc・20μm/(m・day・atm))を測定した。
(3) Oxygen transmission rate (OTR)
For the monolayer films having a thickness of 20 μm obtained in the examples and comparative examples, the oxygen transmission rate (cc·20 μm/(m 2 ·day·atm)) was measured using an oxygen transmission rate measuring device "OX-TRAN2/20 type" (detection limit value 0.01 cc·20 μm/(m 2 ·day·atm)) manufactured by MOCON INC. under conditions of a temperature of 20° C. and a humidity of 65% RH in accordance with the method described in JIS K 7126 (isobaric method).

(4)二価金属化合物(D)の金属原子換算量の定量
実施例で得られた樹脂組成物ペレット0.5gをアクタック社製のテフロン(登録商標)製耐圧容器に添加し、富士フィルム和光純薬株式会社製の精密分析用硝酸5mLを添加した。30分放置後、ラプチャーディスク付きキャップリップにて容器に蓋をし、アクタック社製のマイクロウェーブ高速分解システム「スピードウェーブ MWS-2」にて150℃10分、次いで180℃10分の条件で分解処理を行った。樹脂組成物ペレットの分解が不十分な場合は、処理条件を適宜調節した。分解処理後の内容物を、10mLのイオン交換水で希釈し、すべての液を50mLのメスフラスコに移しとり、イオン交換水で定容し分解溶液を得た。上記の分解溶液を、パーキンエルマージャパン社製のICP発光分光分析装置「Optima 4300 DV」を用いて測定し、二価金属化合物(D)の金属原子換算量を定量した。
(4) Quantitative Determination of the Metal Atom Equivalent of the Divalent Metal Compound (D) 0.5 g of the resin composition pellet obtained in the example was added to a Teflon (registered trademark) pressure-resistant container manufactured by Actac Co., Ltd., and 5 mL of nitric acid for precision analysis manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. was added. After leaving it for 30 minutes, the container was covered with a cap lip with a rupture disk, and decomposition treatment was performed under conditions of 150 ° C. for 10 minutes and then 180 ° C. for 10 minutes using a microwave high-speed decomposition system "Speed Wave MWS-2" manufactured by Actac Co., Ltd. If the decomposition of the resin composition pellet was insufficient, the treatment conditions were appropriately adjusted. The contents after the decomposition treatment were diluted with 10 mL of ion-exchanged water, and all the liquid was transferred to a 50 mL measuring flask and the volume was adjusted with ion-exchanged water to obtain a decomposition solution. The above decomposition solution was measured using an ICP emission spectrometer "Optima 4300 DV" manufactured by PerkinElmer Japan Co., Ltd., and the metal atom equivalent amount of the divalent metal compound (D) was quantified.

(5)ロングラン性評価
実施例で得られた樹脂組成物ペレットを用い、単軸押出装置(株式会社東洋精機製作所、D2020、D(mm)=20、L/D=20、圧縮比=3.5、スクリュー:フルフライト)にて20μmの単層フィルムを連続的に作製した。押出条件は以下のとおりである。
押出温度:230℃
ダイス幅:30cm
引取りロール温度:80℃
スクリュー回転数:40rpm
引取りロール速度:3.0m/分
(5) Evaluation of long-run properties Using the resin composition pellets obtained in the examples, a 20 μm monolayer film was continuously produced using a single-screw extruder (Toyo Seiki Seisakusho Co., Ltd., D2020, D (mm) = 20, L / D = 20, compression ratio = 3.5, screw: full flight). The extrusion conditions are as follows.
Extrusion temperature: 230°C
Dice width: 30cm
Take-up roll temperature: 80°C
Screw rotation speed: 40 rpm
Take-up roll speed: 3.0 m/min

製膜開始から6時間後に得られた単層フィルムを10cm×10cmにサンプリングして目視で確認可能(約50μm以上)なブツ個数を目視でカウントし、実施例2で得られた樹脂組成物ペレットを用いて同様の試験を行った場合のブツ個数との比較を行った。 Six hours after the start of film formation, the monolayer film obtained was sampled to a size of 10 cm x 10 cm, and the number of visually visible bumps (approximately 50 μm or larger) was visually counted and compared with the number of bumps found when a similar test was conducted using the resin composition pellets obtained in Example 2.

(6)酸化ケイ素粒子(C)の平均粒子径の測定
酸化ケイ素粒子(C)の平均粒子径は、株式会社島津製作所の「レーザー回折式粒度分布測定装置SALD-2200」を用いて測定を行った。評価サンプルは、ガラスビーカーに50ccの純水と測定する酸化ケイ素粒子(C)を5g添加して、スパチュラを用いて撹拌し、その後超音波洗浄機で10分間、分散処理を行った。次に、分散処理を行った酸化ケイ素粒子(C)を含む液を、装置のサンプラ部に添加し吸光度が安定になった時点で測定を行い、粒子の回折/散乱光の光強度分布データから粒子径分布(粒子径と相対粒子量)を計算した。平均粒子径は、測定された粒子径と相対粒子量とを掛けて、相対粒子量の合計で割って求めた。酸化ケイ素粒子(C)の平均粒子径は、樹脂組成物中においても実質的に変化していない。なお、平均粒子径は粒子の平均直径である。
(6) Measurement of the average particle size of silicon oxide particles (C) The average particle size of silicon oxide particles (C) was measured using a laser diffraction particle size distribution analyzer SALD-2200 manufactured by Shimadzu Corporation. The evaluation sample was prepared by adding 50 cc of pure water and 5 g of silicon oxide particles (C) to be measured to a glass beaker, stirring with a spatula, and then dispersing for 10 minutes with an ultrasonic cleaner. Next, a liquid containing silicon oxide particles (C) that had been dispersed was added to the sampler section of the device, and measurements were performed when the absorbance became stable, and the particle size distribution (particle size and relative particle amount) was calculated from the light intensity distribution data of the diffracted/scattered light of the particles. The average particle size was obtained by multiplying the measured particle size and the relative particle amount and dividing by the sum of the relative particle amounts. The average particle size of silicon oxide particles (C) did not change substantially even in the resin composition. The average particle size is the average diameter of the particles.

<実施例1>
EVOH(A-1)を90質量部、PA(B-1)を10質量部、酸化ケイ素粒子(C-1)を、EVOH(A-1)とPA(B-1)との合計100質量部に対して600ppmとなるようドライブレンドした後に、株式会社日本製鋼所製二軸押出機「TEX30α」(スクリュー径30mm)を用いて、溶融温度230℃、押出速度20kg/hrの条件で溶融押出を行い、押出したストランドを冷却槽で冷却固化した後に切断し、樹脂組成物ペレットを得た。なお、二軸押出機のスクリューとしてはL(スクリュー長)/D(スクリュー径)=3を有する順ズラシニーディングディスク(Forward kneading disk)を用いた。
Example 1
90 parts by mass of EVOH (A-1), 10 parts by mass of PA (B-1), and silicon oxide particles (C-1) were dry-blended to 600 ppm relative to the total of 100 parts by mass of EVOH (A-1) and PA (B-1), and then melt-extruded at a melt temperature of 230° C. and an extrusion rate of 20 kg/hr using a twin-screw extruder "TEX30α" (screw diameter 30 mm) manufactured by The Japan Steel Works, Ltd., and the extruded strand was cooled and solidified in a cooling tank and then cut to obtain resin composition pellets. Note that a forward kneading disk having L (screw length)/D (screw diameter)=3 was used as the screw of the twin-screw extruder.

得られた樹脂組成物ペレットを用い、単軸押出装置(株式会社東洋精機製作所、D2020、D(mm)=20、L/D=20、圧縮比=3.0、スクリュー:フルフライト)にて、厚み20μmの単層フィルムを作製した。押出条件は以下に示すとおりである。
押出温度:230℃
ダイス幅:30cm
引取りロール温度:80℃
スクリュー回転数:40rpm
引取りロール速度:3.0m/分
Using the obtained resin composition pellets, a single-layer film having a thickness of 20 μm was produced using a single-screw extruder (Toyo Seiki Seisakusho Co., Ltd., D2020, D (mm) = 20, L / D = 20, compression ratio = 3.0, screw: full flight). The extrusion conditions are as follows.
Extrusion temperature: 230°C
Dice width: 30cm
Take-up roll temperature: 80°C
Screw rotation speed: 40 rpm
Take-up roll speed: 3.0 m/min

得られた単層フィルムについて、上記評価方法(1)~(3)に記載の方法に従って、レトルト処理後の耐デラミ性、ヘイズ値、及び酸素透過度を測定した。結果を表1に示す。 The delamination resistance, haze value, and oxygen permeability of the obtained monolayer film after retort treatment were measured according to the methods described in the above evaluation methods (1) to (3). The results are shown in Table 1.

<実施例2~6、9~11、比較例1~5>
表1に示す通り、PA(B)の含有量、酸化ケイ素粒子(C)の種類及び含有量を変更した以外は、実施例1と同様の方法で、評価を行った。
<Examples 2 to 6, 9 to 11, Comparative Examples 1 to 5>
As shown in Table 1, the evaluation was performed in the same manner as in Example 1, except that the content of PA (B) and the type and content of silicon oxide particles (C) were changed.

<実施例7>
実施例2において、樹脂組成物ペレットを作製する際の二軸押出機内で二価金属化合物(D)として酢酸マグネシウムを水溶液としたものを、マグネシウム濃度が表1に記載の濃度となるよう、液添ポンプで添加した以外は、実施例2と同様の方法で樹脂組成物ペレット及び単層フィルムを作製し、評価した。結果を表1に示す。
Example 7
Resin composition pellets and a monolayer film were produced and evaluated in the same manner as in Example 2, except that an aqueous solution of magnesium acetate was added as the divalent metal compound (D) in the twin-screw extruder when producing the resin composition pellets, using a liquid addition pump, so that the magnesium concentration became the concentration shown in Table 1. The results are shown in Table 1.

実施例7で得られた樹脂組成物ペレットについて、上記評価方法(4)に記載の方法に従い、二価金属化合物(D)の金属原子換算量の定量を行った。結果を表1に示す。また、実施例7で得られた樹脂組成物ペレットについて、上記評価方法(5)に記載の方法に従い、ロングラン性評価を行った結果、実施例2の樹脂組成物ペレットを用いた場合と比べ、製膜開始後6時間でのブツ個数を4分の1以下に抑制できることを確認した。 The resin composition pellets obtained in Example 7 were subjected to quantification of the metal atom equivalent amount of the divalent metal compound (D) according to the method described in the evaluation method (4) above. The results are shown in Table 1. In addition, the resin composition pellets obtained in Example 7 were subjected to a long-run evaluation according to the method described in the evaluation method (5) above. As a result, it was confirmed that the number of bumps 6 hours after the start of film formation could be suppressed to one-quarter or less compared to the case where the resin composition pellets of Example 2 were used.

<実施例8>
EVOH(A-1)を90質量部、PA(B-1)を10質量部、酸化ケイ素粒子(C-1)を、EVOH(A-1)とPA(B-1)との合計100質量部に対して1200ppm、二価金属化合物(D)として「KISUMA(登録商標)10A」(協和化学工業株式会社製、水酸化マグネシウム)を、EVOH(A-1)とPA(B-1)との合計100質量部に対して45ppm(マグネシウム原子換算)となるようドライブレンドして溶融押出した以外は、実施例2と同様の方法で樹脂組成物ペレット及び単層フィルムを作製し、評価した。結果を表1に示す。
Example 8
90 parts by mass of EVOH (A-1), 10 parts by mass of PA (B-1), silicon oxide particles (C-1) were 1200 ppm relative to the total of 100 parts by mass of EVOH (A-1) and PA (B-1), and "KISUMA (registered trademark) 10A" (manufactured by Kyowa Chemical Industry Co., Ltd., magnesium hydroxide) as a divalent metal compound (D) was dry-blended and melt-extruded to 45 ppm (magnesium atom equivalent) relative to the total of 100 parts by mass of EVOH (A-1) and PA (B-1). Resin composition pellets and a single layer film were produced and evaluated in the same manner as in Example 2. The results are shown in Table 1.

実施例8で得られた樹脂組成物ペレットについて、上記評価方法(4)に記載の方法に従い、二価金属化合物(D)の金属原子換算量の定量を行った。結果を表1に示す。また、実施例8で得られた樹脂組成物ペレットについて、上記評価方法(5)に記載の方法に従い、ロングラン性評価を行った結果、実施例2の樹脂組成物ペレットを用いた場合と比べ、製膜開始後6時間でのブツ個数を4分の1以下に抑制できることを確認した。さらに上記評価方法(1)に記載の方法において、125℃で45分の厳しいレトルト条件でレトルト処理を施したところ、デラミや白化などの外観不良のない結果となった。 The resin composition pellets obtained in Example 8 were subjected to quantitative analysis of the metal atom equivalent amount of the divalent metal compound (D) according to the method described in the above evaluation method (4). The results are shown in Table 1. Furthermore, the resin composition pellets obtained in Example 8 were subjected to a long-run evaluation according to the method described in the above evaluation method (5). As a result, it was confirmed that the number of bumps 6 hours after the start of film formation could be suppressed to less than one-quarter compared to the case where the resin composition pellets of Example 2 were used. Furthermore, when retort treatment was performed under severe retort conditions of 125°C for 45 minutes according to the method described in the above evaluation method (1), the results showed no appearance defects such as delamination or whitening.

<比較例6>
比較例1において、樹脂組成物ペレットを作製する際の二軸押出機内で酢酸マグネシウムを水溶液としたものを、マグネシウム濃度が表1に記載の濃度となるよう、液添ポンプで添加した以外は、比較例1と同様の方法で樹脂組成物ペレット及び単層フィルムを作製し、評価した。なお、比較例6で得られた樹脂組成物ペレットについて、上記評価方法(4)に記載の方法に従い、二価金属化合物(D)の二価金属原子換算量の定量を行った。結果を表1に示す。
<Comparative Example 6>
In Comparative Example 1, resin composition pellets and a single layer film were produced and evaluated in the same manner as in Comparative Example 1, except that an aqueous solution of magnesium acetate was prepared in the twin-screw extruder when preparing the resin composition pellets, and the aqueous solution was added by a liquid addition pump so that the magnesium concentration was the concentration shown in Table 1. For the resin composition pellets obtained in Comparative Example 6, the amount of divalent metal compound (D) converted into divalent metal atoms was quantified according to the method described in the above evaluation method (4). The results are shown in Table 1.

Figure 2024100967000001
Figure 2024100967000001

Claims (5)

エチレン単位含有量が20モル%以上60モル%以下であるエチレン-ビニルアルコール共重合体(A)、ポリアミド樹脂(B)及び酸化ケイ素粒子(C)を含み、エチレン-ビニルアルコール共重合体(A)とポリアミド樹脂(B)の質量比(A/B)が55/45~99/1であり、エチレン-ビニルアルコール共重合体(A)及びポリアミド樹脂(B)の合計量に対する酸化ケイ素粒子(C)の含有量が5ppm以上5000ppm以下である、樹脂組成物。 A resin composition comprising an ethylene-vinyl alcohol copolymer (A) having an ethylene unit content of 20 mol% or more and 60 mol% or less, a polyamide resin (B) and silicon oxide particles (C), the mass ratio (A/B) of the ethylene-vinyl alcohol copolymer (A) to the polyamide resin (B) being 55/45 to 99/1, and the content of the silicon oxide particles (C) relative to the total amount of the ethylene-vinyl alcohol copolymer (A) and the polyamide resin (B) being 5 ppm or more and 5,000 ppm or less. 酸化ケイ素粒子(C)の平均粒子径が1μm以上30μm以下である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the average particle size of the silicon oxide particles (C) is 1 μm or more and 30 μm or less. さらに、二価金属化合物(D)を含有し、エチレン-ビニルアルコール共重合体(A)及びポリアミド樹脂(B)の合計量に対する二価金属化合物(D)の二価金属原子換算の含有量が10ppm以上500ppm以下である、請求項1または2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, further comprising a divalent metal compound (D), the content of the divalent metal compound (D) relative to the total amount of the ethylene-vinyl alcohol copolymer (A) and the polyamide resin (B) being 10 ppm or more and 500 ppm or less in terms of divalent metal atoms. 請求項1~3のいずれかに記載の樹脂組成物を含む成形品。 A molded article comprising the resin composition according to any one of claims 1 to 3. 請求項1~3のいずれかに記載の樹脂組成物からなる層を有するフィルム又はシート。 A film or sheet having a layer made of the resin composition according to any one of claims 1 to 3.
JP2024084602A 2020-04-16 2024-05-24 Resin composition and molding including the same, and film or sheet having layer composed of the resin composition Pending JP2024100967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024084602A JP2024100967A (en) 2020-04-16 2024-05-24 Resin composition and molding including the same, and film or sheet having layer composed of the resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020073625A JP7546375B2 (en) 2020-04-16 2020-04-16 Resin composition, molded article containing same, and film or sheet having a layer made of said resin composition
JP2024084602A JP2024100967A (en) 2020-04-16 2024-05-24 Resin composition and molding including the same, and film or sheet having layer composed of the resin composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020073625A Division JP7546375B2 (en) 2020-04-16 2020-04-16 Resin composition, molded article containing same, and film or sheet having a layer made of said resin composition

Publications (1)

Publication Number Publication Date
JP2024100967A true JP2024100967A (en) 2024-07-26

Family

ID=78149464

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020073625A Active JP7546375B2 (en) 2020-04-16 2020-04-16 Resin composition, molded article containing same, and film or sheet having a layer made of said resin composition
JP2024084602A Pending JP2024100967A (en) 2020-04-16 2024-05-24 Resin composition and molding including the same, and film or sheet having layer composed of the resin composition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020073625A Active JP7546375B2 (en) 2020-04-16 2020-04-16 Resin composition, molded article containing same, and film or sheet having a layer made of said resin composition

Country Status (1)

Country Link
JP (2) JP7546375B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5036974B2 (en) * 2005-03-31 2012-09-26 株式会社クラレ Powder containing ethylene-vinyl alcohol copolymer and powder coating comprising the same
JP5405358B2 (en) * 2010-03-04 2014-02-05 株式会社クラレ Multi-layer container
JP6450069B2 (en) * 2013-09-20 2019-01-09 株式会社クラレ Resin composition for melt molding, film, laminate, packaging material and method for producing film
WO2015174396A1 (en) * 2014-05-12 2015-11-19 株式会社クラレ Ethylene-vinyl alcohol resin composition pellets

Also Published As

Publication number Publication date
JP7546375B2 (en) 2024-09-06
JP2021169576A (en) 2021-10-28

Similar Documents

Publication Publication Date Title
WO2010016595A1 (en) Resin composition, melt-molded article, multi-layered structure, and process for production of resin composition
JP2020090646A (en) Resin composition, manufacturing method therefor, molded body, and multilayer structure
JP6474947B2 (en) RESIN COMPOSITION, MOLDED BODY, SECOND PROCESSED PRODUCT, RESIN COMPOSITION MANUFACTURING METHOD AND MOLDED BODY MANUFACTURING METHOD
JP7070414B2 (en) Ethylene-vinyl alcohol-based copolymer composition, ethylene-vinyl alcohol-based copolymer composition for melt molding, pellets and multilayer structures
JP2001164070A (en) Resin composition comprising ethylene-vinyl alcohol copolymer excellent in low odor
JP7407652B2 (en) Resin composition and mouth part of tubular container
JP7161541B2 (en) Resin composition, molded article, secondary processed product, and method for producing resin composition
WO2022080458A1 (en) Multilayer structure, and packaging material using same
JP7546375B2 (en) Resin composition, molded article containing same, and film or sheet having a layer made of said resin composition
US20230150236A1 (en) Multilayer Structure, and Packaging Material for Retort Using Same
CN109415133B (en) Fuel container
JP2020084016A (en) Film, production method thereof, packaging material, and vacuum packaging bag
JP6956298B1 (en) Resin composition, molded article containing it, and multilayer structure
JP2023084665A (en) Metallized films, packaging materials and vacuum insulators
JP7324021B2 (en) Single-layer injection molded products and perfume containers
WO2018110639A1 (en) Multilayer structure
WO2017078089A1 (en) Resin composition containing ethylene/vinyl alcohol copolymer, laminate, and molded article
JP7149882B2 (en) Resin composition, molded article, secondary processed product, method for producing resin composition, and method for producing molded article
JP3235920B2 (en) Multi-layer package
JP6870293B2 (en) Fuel container
JP7340125B1 (en) Multilayer film, multilayer structure, packaging material, recovery composition, and method for recovering multilayer film or multilayer structure
JP2020082495A (en) Vapor-deposited film, packaging material, and vacuum insulation body
JP2002129041A (en) Resin composition
JP2024089915A (en) An ethylene-vinyl alcohol copolymer resin composition, its production method, and a molded article, a multilayer structure, and a masterbatch each containing the resin composition.
JP3329940B2 (en) Multi-layer package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240530