JP2024047826A - Gas analysis system and gas analysis method - Google Patents
Gas analysis system and gas analysis method Download PDFInfo
- Publication number
- JP2024047826A JP2024047826A JP2022153534A JP2022153534A JP2024047826A JP 2024047826 A JP2024047826 A JP 2024047826A JP 2022153534 A JP2022153534 A JP 2022153534A JP 2022153534 A JP2022153534 A JP 2022153534A JP 2024047826 A JP2024047826 A JP 2024047826A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- analysis
- measurement
- measurement space
- conditions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/02—Analysing fluids
- G01N29/036—Analysing fluids by measuring frequency or resonance of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/24—Probes
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Acoustics & Sound (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
【課題】多数のガス種を検知可能なガスセンサに対して、分析目的に適合した測定条件、分析条件の設定を容易にする。【解決手段】ガス分析システムは、測定空間10内に配置されるガスセンサ2と、ガス分析システムにて実施したガス分析事例について、分析目的、測定条件及び分析条件を少なくとも蓄積するガスデータベース55とを備え、測定空間のガスの分析目的に基づきガスデータベースから類似事例を検索し、ガスセンサに類似事例における測定条件のパラメータをガスセンサに設定し、ガスセンサの測定結果を受けて、類似事例における分析条件のパラメータ及びアルゴリズムに基づき、測定空間のガスの分析を行う。【選択図】図4[Problem] To facilitate the setting of measurement and analysis conditions suited to the analysis purpose for a gas sensor capable of detecting multiple gas species. [Solution] A gas analysis system includes a gas sensor 2 arranged in a measurement space 10, and a gas database 55 that stores at least the analysis purpose, measurement conditions, and analysis conditions for gas analysis cases carried out by the gas analysis system, searches the gas database for similar cases based on the analysis purpose of the gas in the measurement space, sets the parameters of the measurement conditions in the similar cases in the gas sensor, and analyzes the gas in the measurement space based on the parameters and algorithm of the analysis conditions in the similar cases upon receiving the measurement results of the gas sensor. [Selected Figure] Figure 4
Description
本発明は、ガス分析システム及びガス分析方法に関する。 The present invention relates to a gas analysis system and a gas analysis method.
特許文献1には、雰囲気中の物質の検出が可能なニオイセンサを用いて物質検出を行う技術が開示されている。特許文献1では、ニオイセンサとして、膜型表面応力センサ(MSS:Membrane-type Surface Stress Sensor)を用いる。MSSは感応膜の材質が異なる複数のMSS素子を備え、MSS素子に物質が吸着して発生する出力データを合成して得られるMSS全体の出力データのパターンに基づき、多種類の物質の検出を可能にする。このため、解析対象とする物質ごと、さらに環境条件によってセンサデータの挙動が変化するため環境条件に応じた解析器が必要になり、MSSで多種類の物質を検出するには、多数の解析器の実装が課題であることを指摘している。
特許文献2には、セルと呼ばれる閉鎖された空間を形成する筐体に測定ガスを封入し、光をパルス状に照射して音響波を発生させ、この音響波のピーク周波数(強度が最大となる周波数)からガス成分を特定する光音響効果を利用するガスセンサ(光音響センサ)が開示されている。
従来のガスセンサのセンサ素子として広く使用されてきた金属酸化物、有機半導体薄膜では、それらに付着することによる特性の変化を検知することで特定の化学物質を検知する。このため汎用性に乏しかった。特許文献1に開示されるMSSでは複数の解析器を実装することにより複数種類の物質検知を行うことが可能であるものの、感応膜への吸着現象を利用しているため、MSSで検知可能な物質には制約があると言わざるをえない。
Metal oxides and organic semiconductor thin films, which have been widely used as sensor elements in conventional gas sensors, detect specific chemical substances by detecting changes in their characteristics caused by their adhesion to the material. This has resulted in poor versatility. The MSS disclosed in
これに対して、特許文献2に開示される光音響センサの場合、特定の波長の光を断続的(パルス状)に照射すると、光を吸収した分子が熱膨張、収縮を行うことで音響波が発生する光音響効果を利用するものであるため、気体に含まれる多種類の成分(物質)についての情報を取得することができる。
In contrast, the photoacoustic sensor disclosed in
このように、光音響センサでは従来のガスセンサよりも飛躍的に多種類の物質を検知することが可能になる。光音響センサでは、光音響効果が発生する限りにおいて、物質の存在が出力信号に反映されるためである。このため、従来のガスセンサが利用されていなかった幅広い用途への拡大が期待される。 In this way, photoacoustic sensors are able to detect a much wider variety of substances than conventional gas sensors. This is because, as long as the photoacoustic effect occurs, the presence of a substance is reflected in the output signal of the photoacoustic sensor. For this reason, it is expected that photoacoustic sensors will be used in a wide range of applications where conventional gas sensors have not been used.
検知したい物質が既知であれば、光音響センサに当該物質についての好適な測定条件や分析条件を設定することは可能である。しかしながら、光音響センサが多種類の物質を検知可能であるという特性を利用したニーズとして、例えば、人には匂いとして検知されるが気体中の物質が未知であるといった場合や、腐敗や劣化の予兆となる何らかのガス成分を検知したいといったように、ガスセンサに検知させたい物質が未知である場面が生じてくる。このような場合でも、利用場面に応じた測定条件や分析条件を設定可能とする必要がある。 If the substance to be detected is known, it is possible to set suitable measurement and analysis conditions for that substance in the photoacoustic sensor. However, there are needs that utilize the photoacoustic sensor's characteristic of being able to detect a wide variety of substances, such as when a substance in a gas is unknown but is detected by humans as an odor, or when it is desired to detect some gas component that is a sign of decay or deterioration, and the substance to be detected by the gas sensor is unknown. Even in such cases, it is necessary to be able to set measurement and analysis conditions according to the usage scenario.
本発明の一実施態様であるガス分析システムは、測定空間内に配置されるガスセンサと、ガス分析システムにて実施したガス分析事例について、分析目的、測定条件及び分析条件を少なくとも蓄積するガスデータベースと、測定空間のガスの分析目的に基づきガスデータベースから類似事例を検索する分析方法決定部と、ガスセンサに類似事例における測定条件のパラメータをガスセンサに設定し、ガスセンサの測定結果を受けて、類似事例における分析条件のパラメータ及びアルゴリズムに基づき、測定空間のガスの分析を行う分析演算部と、を有する。 The gas analysis system according to one embodiment of the present invention comprises a gas sensor disposed in a measurement space, a gas database that stores at least the analysis purpose, measurement conditions, and analysis conditions for gas analysis cases performed by the gas analysis system, an analysis method determination unit that searches for similar cases from the gas database based on the analysis purpose of the gas in the measurement space, and an analysis calculation unit that sets the parameters of the measurement conditions in the similar cases in the gas sensor, receives the measurement results of the gas sensor, and analyzes the gas in the measurement space based on the parameters and algorithms of the analysis conditions in the similar cases.
多数のガス種を検知可能なガスセンサに対して、分析目的に適合した測定条件、分析条件の設定を容易にする。その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 For gas sensors capable of detecting multiple gas species, it is easy to set measurement and analysis conditions suited to the analytical purpose. Other objects and novel features will become apparent from the description of this specification and the accompanying drawings.
以下、図面を参照しながら本発明の実施例について説明する。 The following describes an embodiment of the present invention with reference to the drawings.
図1Aにガス分析システムの第1の例を示す。測定対象とするガスが存在する空間を測定空間と呼ぶ。ガス分析システム1aは、ガス分析装置4、ユーザがアクセスするユーザ端末5、サービス提供者がアクセスする管理者端末6を含み、これらはネットワーク7aによって相互に通信可能に接続されている。ここで、ユーザとはガス分析による何らかの課題解決のニーズをもつ者であり、サービス提供者とはガス分析装置4によるガス分析をサービスとして提供する者である。
Figure 1A shows a first example of a gas analysis system. The space in which the gas to be measured exists is called the measurement space. The
ガスセンサ2の測定出力は測定空間10の温度や湿度によって影響を受ける。そこで、測定出力に影響を与える測定空間10の環境についても同時に測定を行うために、測定空間10には温度や湿度などを測定する環境センサ3が設けられている。これらはネットワーク7bによってガス分析装置4と通信可能に接続されている。
The measurement output of the
測定するガスの種類や測定形態については限定されない。例えば、環境保全あるいは異常検知などを目的として、工場や倉庫のような広い空間にガスセンサを配置してガス分析を行う場合もある。または、食品や化粧品の開発や品質保証を目的として、測定対象である食品や化粧品を密閉空間に配置してガス分析を行う場合もある。このように測定空間の環境は測定目的に応じて、厳密に管理された環境である場合もあるし、あるがままの環境である場合もある。 There are no limitations on the type of gas to be measured or the measurement format. For example, gas analysis may be performed by placing a gas sensor in a large space such as a factory or warehouse for the purpose of environmental conservation or anomaly detection. Or, gas analysis may be performed by placing the food or cosmetic to be measured in an enclosed space for the purpose of food or cosmetic development or quality assurance. In this way, the environment of the measurement space may be either a strictly controlled environment or the natural environment, depending on the purpose of the measurement.
ガスセンサ2の測定出力及び環境センサ3の測定出力はガス分析装置4に送信され、ガス分析装置4により測定空間10におけるガスの測定が実行される。ガス分析装置4による分析結果はユーザ端末5に表示される。
The measurement output of the
図1Bにガス分析システムの第2の例を示す。ガス分析システム1aは主に測定結果をモニタする用途などに好適な構成であるが、ガス分析システム1bは測定結果に基づき装置の制御を行うための構成である。制御装置8は、ガス分析装置4による測定結果を受けて、駆動装置9を制御する。例えば、空調制御、製造ライン制御、プラント制御、機械装置の警報の発報などを想定する。
Figure 1B shows a second example of a gas analysis system.
ガスセンサ2は特許文献2に開示されるような光音響センサである。図2を用いてガスセンサ2の基本構成について説明する。
ガスセンサ2は少なくとも、内部空間を形成し、測定対象とする気体を貯留するガスセル13と、ガスセル13内の気体に光を照射する光源A12a~光源N12nと、ガスセル13内の気体の音響波を検出するマイクロフォン15とを備えている。ガスセル13には、ガスセル13内に気体を循環させるために、ガスセル13内の内部空間と外部空間を接続する少なくとの2つの接続孔14が設けられている。
The
光源A12a~光源N12nの光は、ガスセル13に形成された光入射部から内部空間に向けて照射される。光源A12a~光源N12nには種々の光源を利用でき、例えば、半導体レーザ、ガスレーザ、LED等の光源を利用できる。光源A12a~光源N12nは断続的(パルス状)に発光して、ガスセル13内に貯留された気体に光エネルギを与える。これによって、ガスセル13内の特定ガス成分が熱膨張、収縮を繰り返して音響波を発生する。
The light from light sources A12a to N12n is irradiated from a light entrance portion formed in the
光源A12a~光源N12nから照射される光の波長によって、測定可能なガス成分が決まる。1つの光源12からの光による音響波特性に基づく特徴量によって1つのガス成分を検出してもよいし、複数の光源12からの光による複数の音響波特性に基づく特徴量によって1つのガス成分を検出してもよい。光源12としてLEDを用いる場合には、所定の波長を透過させる光フィルタを使用することにより、所望の波長を得ることができる。
The wavelength of the light emitted from
光源A12a~光源N12nは、それぞれ駆動回路A11a~駆動回路N11nによってパルス的に発光制御されている。駆動回路A11a~駆動回路N11nは、光源A12a~光源N12nのいずれかが発光するように発光タイミングをずらせて発光させるとともに、マイクロフォン15によって検出される音響波の強度が最大になるピーク周波数を探索するために、発光させる周波数をスイープさせる。このため、駆動回路A11a~駆動回路N11nは、制御回路部18によって決められたタイミング及び周波数で駆動される。制御回路部18は、マイクロコンピュータ、入出力回路等から構成されており、マイクロコンピュータに内蔵されたROMに記憶された制御ソフトウェアによって所定の機能を実行する。制御回路部18は、例えば、駆動回路A11a~駆動回路N11nの周波数を変更する機能(光源駆動機能)を備えている。さらに音響波からガス成分の種類や濃度を求める機能(ガス推定機能)などを備える場合もある。
The light sources A12a to N12n are controlled to emit light in a pulsed manner by the drive circuits A11a to N11n, respectively. The drive circuits A11a to N11n shift the emission timing so that one of the light sources A12a to N12n emits light, and sweep the emission frequency to search for the peak frequency at which the intensity of the acoustic wave detected by the
以下では駆動回路A11aと光源A12aの動作について説明するが、これ以外の駆動回路B11b~駆動回路N11nと光源B12b~光源N12nも同様の動作を行う。マイクロフォン15で検出される、光源A12aの断続的な発光によって発生した音響波は、検出回路部16で電気信号に変換され、更に信号処理部17でノイズを除去されるとともに、増幅されて制御回路部18に送信される。制御回路部18では、音響波の強度が最大になるピーク周波数から、このピーク周波数を生じさせる駆動回路A11aの駆動周波数を求める。
The operation of drive circuit A11a and light source A12a is described below, but the other drive circuits B11b to N11n and light sources B12b to N12n also operate in a similar manner. The acoustic waves generated by the intermittent emission of light from light source A12a and detected by
つまり、光源A12aの発光周波数と音響波の周波数とはほぼ一致するので、より正確な周波数を求めるために駆動回路A11aの駆動周波数を求めている。この駆動周波数は制御回路部18が自ら発生しているので、この駆動周波数を求めればよい。この音響波の強度が最大となるピーク周波数、及び強度は、メモリ19に一時的に記憶される。これらは一例であり、複数のピーク周波数がある場合にはそれぞれのピーク周波数を記憶してもよく、音響波の強度の発光周波数依存性(スペクトル)を記憶してもよい。記憶するデータは、ガス成分を検出するための特徴量を算出するためのアルゴリズムに依存する。メモリ19は、書き換え可能なメモリであり、電池バックアップされたRAM、フラッシュROM、マイクロコンピュータのRAM等のメモリを使用することができる。
In other words, since the light emission frequency of the light source A12a and the frequency of the acoustic wave are almost the same, the drive frequency of the drive circuit A11a is obtained in order to obtain a more accurate frequency. This drive frequency is generated by the
さらに、ガスセンサ2は通信部20を備えており、ネットワーク7bを介して、ガス分析装置4に接続される。ガス分析装置4において測定空間10のガス分析を行うため、メモリ19に記憶された測定結果はガス分析装置4に送信される。一方、制御回路部18にてガス推定機能を備える場合には、ガス分析装置4を介して環境センサ3の測定結果を取り込んで測定空間10のガス分析を行い、分析結果(ガス推定結果)をガス分析装置4に送信する。
The
ガス分析装置4、ユーザ端末5、管理者端末6はそれぞれ、図3に示すようなプロセッサ(CPU)31、メモリ32、ストレージ装置33、入力装置34、出力装置35、通信装置36、バス37を主要な構成として含む情報処理装置30により実現される。プロセッサ31は、メモリ32にロードされたプログラムに従って処理を実行することによって、所定の機能を提供する機能部として機能する。ストレージ装置33は、機能部で使用するデータやプログラムを格納する。ストレージ装置33には、例えばHDD(Hard Disk Drive)やSSD(Solid State Drive)のような不揮発性記憶媒体が用いられる。入力装置34は、キーボード、ポインティングデバイスなどであり、出力装置35はディスプレイなどである。通信装置36は、ネットワークを介して他の情報処理装置と通信を可能にする。これらはバス37により互いに通信可能に接続されている。
The gas analyzer 4, the
なお、ガス分析装置4の一部、あるいはすべての機能をクラウド上のアプリケーションとして実現してもよい。 In addition, some or all of the functions of the gas analyzer 4 may be realized as an application on the cloud.
図4は、ガス分析装置4の機能ブロック図である。ガス分析装置4は、分析部41、分析改善部45、記憶部50の機能部を有する。分析部41は、ガスデータベース(ガスDB)55に蓄積されている光音響センサを用いたガス分析事例を用いて分析方法を決定する分析方法決定部42と、決定した分析方法に基づきガス分析を行う分析演算部43とを含む。例えば、香りDB56には物質ごとに計測された特徴量が蓄積されており、分析演算部43では測定された特徴量と香りDB56に蓄積された特徴量を照合することにより、気体に含まれているガスを特定する。分析改善部45は、ガスDB55を更新するデータベース更新部46とガス分析を行う測定条件や分析条件のパラメータやアルゴリズムを調整する分析演算調整部47とを含む。
Figure 4 is a functional block diagram of the gas analyzer 4. The gas analyzer 4 has functional parts of an
記憶部50には、ガス分析を行う測定条件や分析条件のパラメータである設定データ51、ガス分析を行うためのアルゴリズムであるアルゴリズムデータ52、ガスセンサ2が行った測定結果及び測定結果に基づく分析結果を含む結果データ53、ガス分析に関連する外部データ54、ガス分析装置4のガス分析事例を蓄積するガスDB55、香り情報を蓄積する香りDB56が記憶されている。設定データ51にはガスDB55に登録されている事例において使用されたパラメータが記憶されている。アルゴリズムデータ52には分析内容に応じた分析アルゴリズムが格納されている。分析方法は分析目的に応じて多岐にわたる。例えば、特定臭を検知したい場合、さらに未知の夾雑臭がある環境において特定臭を検知したい場合、あるいは何らかの異常臭を検知したい場合では、適切な分析アルゴリズムは異なる。このため、分析目的に応じた分析アルゴリズムが選択できるよう、複数の分析アルゴリズムが格納されている。結果データ53の内容は随時、香りDB56に反映され、ガス分析装置4の分析のために利用される。
The
図5にガスDB55のデータ構造例を示す。ガスDB55には、ガス分析システムによるガス分析事例がレコードとして蓄積される。ガスDB55には、各事例(プロジェクト)につき、分野61、分析目的62、ガス種別63、特徴量64、測定条件65、分析条件66、分析結果67、外部評価結果68が登録される。分野61には、当該事例の分野が登録される。分野は、醸造、香料、食品といったように測定対象や分析課題などに応じて事例ごとにサービス提供者が分類する。事例を適切に分類することにより、ガス分析装置4がこれから測定を実施しようとするプロジェクトに類似する事例の探索が容易になる。ここでは1つの事例を1つの分類に割り当てる例を示しているが、サービス提供者があらかじめ事例の特徴を示すタグを定義しておき、当該事例に対して、該当する1以上のタグを割り当てるようにしてもよい。分析目的62には当該事例の分析目的が登録される。例えば、「醸造工程でガスAの発生を検知したい」、「醸造後のお酒に含まれ、品質に悪影響を与える特徴的なガスを特定したい」といったようなものである。ガス種別63には、当該事例において検出された1以上のガス種が登録される。ガス種別63に登録されたガス種ごとに、特徴量64、測定条件65、分析条件66、分析結果67が登録される。なお、図5の例では1つのガス種に対して1通りの測定条件、1通りの分析条件が設定されている例を示しているが、1つのガス種に対して2以上の測定条件または2以上の分析条件が設定される場合もあり、この場合はそれらに応じてレコードが追加される。特徴量64には、検出されたガス種の音響波の特徴量が登録され、例えば、ピーク周波数、そのときの音響波の強度、分子量などが含まれる。測定条件65には、ガス種を検出したときの測定条件が登録され、例えば、光源波長、照射時間などが含まれる。分析条件66には、ガス種を検出するための分析条件が登録され、例えば、例えばノイズ削減処理などの前処理方法、ガスセンサの出力からガス種を特定する分析アルゴリズム、当該ガス種であるか否かを判定するための閾値などが含まれる。分析結果67には、当該事例において当該ガス種について分析された結果が登録される。外部評価結果68は、各事例に関連する評価結果が登録される。例えば、事例が香料の測定であった場合に、当該香料の香りに対する人の受容性評価を登録する。外部評価結果68についての具体例は後述する。
Figure 5 shows an example of the data structure of the
なお、データベースの形式は任意であり、特徴量64、測定条件65、分析条件66、分析結果67、外部評価結果68はフィールドに直接データが書き込まれていてもよいし、これらの内容が記憶されている記憶部50のアドレスが書き込まれていてもよい。この場合は、特徴量64または分析結果67のリンクをたどって結果データ53の内容を、測定条件65または分析条件66のリンクをたどって設定データ51の内容を、外部評価結果68のリンクをたどって外部データ54を参照する。
The database may have any format, and data may be written directly into the fields for the
図6を用いて、ガス分析システム1aによるガス分析の処理フローを説明する。本実施例では、ユーザはガスを測定することにより何らかの課題を解決したいという具体的なニーズを有しているが、原因となっているガス種が何であるのか、といった知識はもっていない場合を想定する。このため、本実施例では類似事例の測定条件、分析条件を利用する。
The process flow of gas analysis by the
管理者端末6からガス分析装置4にユーザの分析目的を入力する(S01)。本実施例ではガス分析をサービス提供者にて実施することを想定して説明するが、ユーザ自身で実施することもあり得る。分析方法決定部42は、入力された分析目的とガスDB55の分析目的62(図5参照)とを比較し、類似する事例を検索する(S02)。なお、検索において、分類その他の情報を利用して絞り込みを行ってもよい。サービス提供者は検索した類似事例の測定条件、分析条件を本件の測定条件、分析条件として(S03)、ガス分析を実施する(S04)。
The user's analysis objective is input from the
図7にガスセンサ2の制御回路部18で得られる光音響信号スペクトルの例を示す。横軸は発光周波数、縦軸は音響波の強度である。波長の異なる光源からの光を照射することにより、異なる光音響信号スペクトルが得られる。光音響信号スペクトル71~73は同じガス種に対してそれぞれ波長の異なるLED1~3を発光させて得られる光音響信号スペクトルである。例えば、光音響信号スペクトルのピークの発光周波数、音響波強度を特徴量としてガス種を特定することができる。ある波長のLEDの光音響信号スペクトルを用いてガス種を特定するようにしてもよいし、複数の波長のLEDの光音響信号スペクトルを用いてガス種を特定するようにしてもよい。例えば、図7の例では光音響信号スペクトルの最大ピークは同じ発光周波数で得られており、これらの光音響信号強度の比率からガス種を特定するといったことも可能である。測定対象のガス種と他のガス種とを高感度に区別できる分析方法とすればよい。香りDB56にはこのような光音響信号スペクトルまたは光音響信号スペクトルから抽出された特徴量が、物質名や測定条件とともに登録されている。
Figure 7 shows an example of a photoacoustic signal spectrum obtained by the
ガス分析により分析目的が達成されない場合には、測定条件または分析条件を見直し(S03)、再度ガス分析を実施する(S04)。あるいは、再度ガスDBを検索し(S02)、別の類似事例をもとに再度ガス分析のための測定条件、分析条件を決定し(S03)、ガス分析を実施してもよい(S04)。 If the analysis objective is not achieved by the gas analysis, the measurement conditions or analysis conditions are reviewed (S03) and the gas analysis is performed again (S04). Alternatively, the gas DB may be searched again (S02), and the measurement and analysis conditions for the gas analysis may be determined again based on another similar case (S03), and the gas analysis may be performed again (S04).
分析目的が達成されれば、分析を完了し、ガス分析の結果をユーザ端末5に表示する(S06)。また、分析演算調整部47は、ガス分析の過程において設定した条件をもとに調整した測定条件や分析条件を、当該事例の設定データ51として記憶させ、再利用可能な状態とする(S07)。また、データベース更新部46では、実施したガス分析の情報をガスDB55に追加する、ガス分析の結果を香りDB56に追加するなどのデータベースの更新を行う(S08)。
When the analysis objective is achieved, the analysis is completed and the results of the gas analysis are displayed on the user terminal 5 (S06). The analysis
以下、ガスDB55を用いた分析例について説明する。 Below, we explain an example of analysis using Gas DB55.
(分析例1)
図8に第1の分析例を示す。分析目的は「醸造中の異常を早期に検知したい」というものであったとする。最初の測定条件、分析条件では、不特定のガス種を検知する測定条件、分析条件にてガス種X,Y,Zが特定され、なかでも強度の高いものはガス種Xであった。この結果よりガス種Xの存在が醸造中の異常を示すものとして特定される場合には、測定条件、分析条件を、ガス種Xを精度よく検知する測定条件、分析条件に変更して、計測を継続する。
(Analysis Example 1)
Figure 8 shows a first analysis example. Let us assume that the purpose of the analysis was to "detect abnormalities during brewing early." In the initial measurement and analysis conditions, gas types X, Y, and Z were identified under the measurement and analysis conditions that detect unspecified gas types, and the strongest one among them was gas type X. If the results indicate that the presence of gas type X indicates an abnormality during brewing, the measurement and analysis conditions are changed to measurement and analysis conditions that accurately detect gas type X, and measurement is continued.
このようにガスの分析が継続的に実施される場合には、ガス種Xを検知する事例としてガスDB55に追加するとともに、その測定条件、分析条件のパラメータを設定データ51に記憶する。これにより、類似事例において、最初からガス種Xに着目した醸造中の異常検知を行うことが可能になる。なお、レコードの追加は更新方法の一例であって、当該分析についてのレコードそのものを更新してもよい。
When gas analysis is performed continuously in this manner, gas type X is added to the
(分析例2)
図9に第2の分析例を示す。分析目的は、「香料(A+B)を評価したい」というものである。ただし、過去に「香料Aを評価したい」、「香料Bを評価したい」というそれぞれの分析目的について、分析を実施していたとする。これらの過去の分析結果から「香料(A+B)を評価したい」という分析目的に対して得られる特徴量が推定できる。この場合には、実際の測定を行うことなく、まずは既存の評価結果から特徴量を算出する。既存の評価結果から算出される特徴量だけでは分析目的に対して不十分である場合には、実測を行う。このように過去の分析結果を活用することにより、分析目的に対して早期に分析結果を得ることができる。
(Analysis Example 2)
FIG. 9 shows a second analysis example. The analysis objective is "to evaluate fragrances (A+B)". However, assume that analyses have been carried out in the past for each of the analysis objectives, "to evaluate fragrance A" and "to evaluate fragrance B". From these past analysis results, feature quantities obtained for the analysis objective "to evaluate fragrances (A+B)" can be estimated. In this case, feature quantities are first calculated from existing evaluation results without performing actual measurements. If the feature quantities calculated from existing evaluation results are insufficient for the analysis objective, actual measurements are performed. By utilizing past analysis results in this way, analysis results for the analysis objective can be obtained early.
また、図9には、外部評価結果68の例を示している。この場合は、外部評価結果として香料A,Bについて官能検査を実施した結果が登録されている。例えば、ユーザは香料A,Bについて実施した官能検査結果をユーザ端末5からガス分析装置4に転送し、ガス分析装置4の記憶部50では外部データ54として記憶しておく。分析演算部43は、ユーザに結果を表示する際(S06)、香料についてのガス分析結果とともに官能検査結果を併せて表示する。この例では、香料Aについては高い受容性が得られており、特にガス種Lについて高い強度が得られている。一方、香料Bについては低い受容性が得られており、特にガス種Nについて高い強度が得られている。これらから、ガス種Lは高い評価に関係性があり、ガス種Nは低い評価に関係性がある可能性があると推定され、香料の分析において着目するガス種として認識することができる。外部評価結果は対象の評価結果に限定されず、分析目的に関連する任意の情報であってよい。
Also, FIG. 9 shows an example of an
(分析例3)
図10に第3の分析例を示す。分析目的は、「倉庫に保管されている野菜の腐敗を事前に検知したい」というものである。この例では外部評価結果68として野菜が腐敗しているか、腐敗していないかという情報が登録されている。例えば、倉庫内の気体を測定するときのタイミングにあわせて、ユーザが倉庫に保管されている野菜の状況を確認し、ユーザ端末5からガス分析装置4に転送し、ガス分析装置4の記憶部50では外部データ54として記憶しておく。また、腐敗時にはガス種Oが発生していることが予めわかっていたとする。
(Analysis Example 3)
A third analysis example is shown in FIG. 10. The purpose of the analysis is to "pre-detect spoilage of vegetables stored in a warehouse." In this example, information on whether the vegetables are spoiled or not is registered as an
レコード81に示される第1の測定では、ガス種O、ガス種Pともに検出されたが、外部評価結果68では既に腐敗が始まっていることが示されていた。一方、レコード82に示される第2の測定ではガス種Oは検出されていないが、ガス種Pは検出されていた。ここからは、ガス種Oは腐敗によって発生するガスであって腐敗の事前検知には適切ではなく、ガス種Pの変化をさらに検証することで腐敗の事前検知につながる知見が得られる可能性がある。このように、分析演算部43が外部評価結果をあわせてガス分析結果を表示することにより、ユーザは着目するガス種を変えながら測定、分析を継続することができる。
In the first measurement shown in
分析例3でも分析例1と同様にレコードの更新または追加をしてもよく、例えば分析目的「野菜の腐敗を事前に検知したい」を「野菜の腐敗を事前に検知したい(ガス種Pを検知したい)」への更新やレコードの追加が考えられる。この更新等はユーザからの指示に基づくものでも、分析改善部45が自動で行ってもよい。例えば、分析演算調整部47は外部評価結果68を参照し、外部評価結果が「腐敗していない」状態で検出されたガス種についてのみ測定対象を絞り込んで測定するよう、測定条件及び/または分析条件を変更する。すなわち、絞り込まれたガス種を測定するための測定条件や分析条件に変更する。この変更を受けて、データベース更新部46は、ガスDB55のレコードの更新または追加を行う。
In the third analysis example, records may be updated or added in the same way as in the first analysis example. For example, the analysis purpose "detecting spoilage of vegetables in advance" may be updated to "detecting spoilage of vegetables in advance (detecting gas type P)" or a record may be added. This update may be based on a user's instruction or may be performed automatically by the
本発明は上述した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, but includes various modified examples. For example, the above-described embodiment has been described in detail to clearly explain the present invention, and is not necessarily limited to having all of the configurations described. It is also possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to add, delete, or replace part of the configuration of each embodiment with other configurations.
例えば、実施例ではガス分析をガス分析装置4で行う例を示したが、ガス分析装置4の分析演算部43を実行するプログラムをユーザ端末5または制御装置8に実装し、ユーザ側で分析演算を行うようにしてよい。この際、分析演算部43が必要とする設定データ51、アルゴリズムデータ52についてもガス分析装置4からユーザ側に転送する。また、図6のフローチャートにおいて、ステップS01では管理者端末6からガス分析装置4にユーザの分析目的を入力する例を説明したが、ユーザ自身がユーザ端末5からガス分析装置4に分析目的を入力するようにしてもよい。またステップS06ではガス分析の結果をユーザ端末5に表示する例を説明したが、管理者端末6に表示するようにしても、両端末に表示するようにしてもよい。
For example, in the embodiment, an example was shown in which gas analysis was performed by the gas analyzer 4, but a program that executes the
1:ガス分析システム、2:ガスセンサ、3:環境センサ、4:ガス分析装置、5:ユーザ端末、6:管理者端末、7:ネットワーク、8:制御装置、9:駆動装置、10:測定空間、11:駆動回路、12:光源、13:ガスセル、14:接続孔、15:マイクロフォン、16:検出回路部、17:信号処理部、18:制御回路部、19:メモリ、20:通信部、30:情報処理装置、31:プロセッサ(CPU)、32:メモリ、33:ストレージ装置、34:入力装置、35:出力装置、36:通信装置、37:バス、41:分析部、42:分析方法決定部、43:分析演算部、45:分析改善部、46:データベース更新部、47:分析演算調整部、50:記憶部、51:設定データ、52:アルゴリズムデータ、53:結果データ、54:外部データ、55:ガスデータベース、56:香りデータベース、61:分野、62:分析目的、63:ガス種別、64:特徴量、65:測定条件、66:分析条件、67:分析結果、68:外部評価結果、71,72,73:光音響信号スペクトル、81,82:レコード。 1: Gas analysis system, 2: Gas sensor, 3: Environmental sensor, 4: Gas analyzer, 5: User terminal, 6: Administrator terminal, 7: Network, 8: Control device, 9: Drive device, 10: Measurement space, 11: Drive circuit, 12: Light source, 13: Gas cell, 14: Connection hole, 15: Microphone, 16: Detection circuit section, 17: Signal processing section, 18: Control circuit section, 19: Memory, 20: Communication section, 30: Information processing device, 31: Processor (CPU), 32: Memory, 33: Storage device, 34: Input device, 35: Output device, 36: Communication device, 37: bus, 41: analysis unit, 42: analysis method determination unit, 43: analysis calculation unit, 45: analysis improvement unit, 46: database update unit, 47: analysis calculation adjustment unit, 50: memory unit, 51: setting data, 52: algorithm data, 53: result data, 54: external data, 55: gas database, 56: scent database, 61: field, 62: analysis purpose, 63: gas type, 64: feature amount, 65: measurement conditions, 66: analysis conditions, 67: analysis results, 68: external evaluation results, 71, 72, 73: photoacoustic signal spectrum, 81, 82: records.
Claims (15)
測定空間内に配置されるガスセンサと、
前記ガス分析システムにて実施したガス分析事例について、分析目的、測定条件及び分析条件を少なくとも蓄積するガスデータベースと、
前記測定空間のガスの分析目的に基づき前記ガスデータベースから類似事例を検索する分析方法決定部と、
前記ガスセンサに前記類似事例における測定条件のパラメータを前記ガスセンサに設定し、前記ガスセンサの測定結果を受けて、前記類似事例における分析条件のパラメータ及びアルゴリズムに基づき、前記測定空間のガスの分析を行う分析演算部と、を有するガス分析システム。 A gas analysis system for analyzing a gas, comprising:
a gas sensor disposed in the measurement space;
A gas database that stores at least the analysis purpose, measurement conditions, and analysis conditions for gas analysis cases performed by the gas analysis system;
an analysis method determination unit that searches the gas database for similar cases based on an analysis purpose of the gas in the measurement space;
and an analysis calculation unit that sets parameters of the measurement conditions in the similar case in the gas sensor, receives the measurement results of the gas sensor, and analyzes the gas in the measurement space based on the parameters and algorithms of the analysis conditions in the similar case.
前記ガスセンサは、前記測定空間のガスに光を照射したときに発生する光音響効果を利用してガス種を特定する光音響センサであって、
前記測定条件のパラメータには、前記光の波長及び前記光の照射時間の少なくとも一方を含むガス分析システム。 In claim 1,
The gas sensor is a photoacoustic sensor that identifies a gas type by utilizing a photoacoustic effect that occurs when light is irradiated onto a gas in the measurement space,
A gas analysis system, wherein the parameters of the measurement conditions include at least one of a wavelength of the light and an irradiation time of the light.
前記ガスデータベースは、さらに前記ガス分析システムにて実施したガス分析事例において測定されたガス種の特徴量を蓄積しており、
前記分析演算部は、前記ガスデータベースに蓄積された事例において測定されたガス種の特徴量から、前記測定空間のガスの分析事例におけるガス種の特徴量を算出するガス分析システム。 In claim 1,
The gas database further stores characteristic quantities of gas species measured in gas analysis cases performed by the gas analysis system,
The analysis calculation unit calculates characteristic quantities of gas species in analysis examples of the gas in the measurement space from characteristic quantities of gas species measured in the examples stored in the gas database.
前記測定空間のガスの分析事例を前記ガスデータベースに登録するデータベース更新部と、
前記測定空間のガスの分析事例における測定条件のパラメータ及び分析条件のパラメータを登録する分析演算調整部と、を有するガス分析システム。 In claim 1,
a database update unit that registers an analysis example of the gas in the measurement space in the gas database;
and an analysis calculation adjustment unit that registers parameters of measurement conditions and parameters of analysis conditions in an analysis example of the gas in the measurement space.
前記データベース更新部は、前記測定空間のガスの分析事例が継続的に実施される分析事例であって、分析方法が変更された場合には、当該測定空間のガスの分析事例について登録される測定条件及び分析条件を前記変更にあわせて更新するガス分析システム。 In claim 4,
The database update unit is a gas analysis system in which an analysis case of a gas in the measurement space is continuously performed and, when the analysis method is changed, updates the measurement conditions and analysis conditions registered for the analysis case of the gas in the measurement space to match the change.
前記分析演算調整部は、前記測定空間のガスの分析事例において測定条件のパラメータまたは分析条件のパラメータが変更された場合には、当該測定空間のガスの分析事例について登録される測定条件のパラメータまたは分析条件のパラメータを前記変更にあわせて更新するガス分析システム。 In claim 4,
The analysis calculation adjustment unit is a gas analysis system in which, when a parameter of a measurement condition or a parameter of an analysis condition is changed in an analysis case of a gas in the measurement space, the analysis calculation adjustment unit updates the parameter of a measurement condition or the parameter of an analysis condition registered for the analysis case of the gas in the measurement space to match the change.
前記ガスデータベースは、さらに前記ガス分析システムにて実施したガス分析事例についての外部評価結果を蓄積しており、
前記分析演算調整部は、前記外部評価結果に応じて測定条件及び/または分析条件を変更するガス分析システム。 In claim 4,
The gas database further accumulates external evaluation results of gas analysis cases performed using the gas analysis system,
The gas analysis system, wherein the analysis calculation adjustment unit changes measurement conditions and/or analysis conditions in response to the external evaluation result.
前記ガスデータベースは、さらに前記ガス分析システムにて実施したガス分析事例についての外部評価結果を蓄積しており、
前記測定空間のガスの分析事例について外部評価結果が登録された場合には、前記分析演算部は、前記ガスデータベースに蓄積された事例において測定されたガス種の特徴量から、前記測定空間のガスの分析結果とともに前記登録された外部評価結果を出力装置に表示するガス分析システム。 In claim 1,
The gas database further accumulates external evaluation results of gas analysis cases performed using the gas analysis system,
When an external evaluation result is registered for an analysis case of gas in the measurement space, the analysis calculation unit displays the registered external evaluation result on an output device together with the analysis result of gas in the measurement space based on the characteristic quantities of the gas species measured in the case stored in the gas database.
前記ガス分析システムは、測定空間内に配置されるガスセンサと、前記ガス分析システムにて実施したガス分析事例について、分析目的、測定条件及び分析条件を少なくとも蓄積するガスデータベースと、分析方法決定部と、分析演算部とを備え、
前記分析方法決定部は、前記測定空間のガスの分析目的に基づき前記ガスデータベースから類似事例を検索し、
前記分析演算部は、前記ガスセンサに前記類似事例における測定条件のパラメータを前記ガスセンサに設定し、前記ガスセンサの測定結果を受けて、前記類似事例における分析条件のパラメータ及びアルゴリズムに基づき、前記測定空間のガスの分析を行う、ガス分析方法。 A gas analysis method using a gas analysis system for analyzing a gas, comprising:
The gas analysis system includes a gas sensor disposed in a measurement space, a gas database that stores at least an analysis purpose, a measurement condition, and an analysis condition for a gas analysis example performed by the gas analysis system, an analysis method determination unit, and an analysis calculation unit;
the analysis method determination unit searches the gas database for similar cases based on an analysis purpose of the gas in the measurement space;
The gas analysis method includes setting parameters of measurement conditions in the similar case in the gas sensor, receiving a measurement result from the gas sensor, and analyzing the gas in the measurement space based on the parameters of the analysis conditions in the similar case and an algorithm.
前記ガスセンサは、前記測定空間のガスに光を照射したときに発生する光音響効果を利用してガス種を特定する光音響センサであって、
前記測定条件のパラメータには、前記光の波長及び前記光の照射時間を少なくとも含むガス分析方法。 In claim 9,
The gas sensor is a photoacoustic sensor that identifies a gas type by utilizing a photoacoustic effect that occurs when light is irradiated onto a gas in the measurement space,
The gas analysis method, wherein the parameters of the measurement conditions include at least a wavelength of the light and an irradiation time of the light.
前記ガスデータベースは、さらに前記ガス分析システムにて実施したガス分析事例において測定されたガス種の特徴量を蓄積しており、
前記分析演算部は、前記ガスデータベースに蓄積された事例において測定されたガス種の特徴量から、前記測定空間のガスの分析事例におけるガス種の特徴量を算出するガス分析方法。 In claim 9,
The gas database further stores characteristic quantities of gas species measured in gas analysis cases performed by the gas analysis system,
The gas analysis method includes the step of: calculating characteristic quantities of gas species in analysis examples of the gas in the measurement space from characteristic quantities of gas species measured in the examples stored in the gas database.
前記ガス分析システムは、データベース更新部と分析演算調整部とをさらに備え、
前記データベース更新部は、前記測定空間のガスの分析事例を前記ガスデータベースに登録し、
前記分析演算調整部は、前記測定空間のガスの分析事例における測定条件のパラメータ及び分析条件のパラメータを登録するガス分析方法。 In claim 9,
The gas analysis system further includes a database update unit and an analysis and calculation adjustment unit.
the database update unit registers an analysis example of the gas in the measurement space in the gas database;
The gas analysis method, wherein the analysis calculation adjustment unit registers parameters of measurement conditions and parameters of analysis conditions in an analysis example of the gas in the measurement space.
前記データベース更新部は、前記測定空間のガスの分析事例が継続的に実施される分析事例であって、分析方法が変更された場合には、当該測定空間のガスの分析事例について登録される測定条件及び分析条件を前記変更にあわせて更新するガス分析方法。 In claim 12,
The gas analysis method includes a database update unit for updating the measurement conditions and analysis conditions registered for an analysis case of the gas in the measurement space in accordance with a change in the analysis method, the analysis case being continuously performed for the gas in the measurement space, in accordance with the change in the analysis method.
前記分析演算調整部は、前記測定空間のガスの分析事例において測定条件のパラメータまたは分析条件のパラメータが変更された場合には、当該測定空間のガスの分析事例について登録される測定条件のパラメータまたは分析条件のパラメータを前記変更にあわせて更新するガス分析方法。 In claim 12,
The gas analysis method includes, when a parameter of a measurement condition or a parameter of an analysis condition is changed in an analysis case of the gas in the measurement space, updating the parameter of the measurement condition or the parameter of the analysis condition registered for the analysis case of the gas in the measurement space to match the change.
前記ガスデータベースは、さらに前記ガス分析システムにて実施したガス分析事例についての外部評価結果を蓄積しており、
前記測定空間のガスの分析事例について外部評価結果が登録された場合には、前記分析演算部は、前記ガスデータベースに蓄積された事例において測定されたガス種の特徴量から、前記測定空間のガスの分析結果とともに前記登録された外部評価結果を出力装置に表示するガス分析方法。 In claim 9,
The gas database further accumulates external evaluation results of gas analysis cases performed using the gas analysis system,
When an external evaluation result is registered for an analysis case of gas in the measurement space, the analysis calculation unit displays the registered external evaluation result on an output device together with the analysis result of gas in the measurement space based on characteristic quantities of the gas species measured in the case stored in the gas database.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022153534A JP2024047826A (en) | 2022-09-27 | 2022-09-27 | Gas analysis system and gas analysis method |
CN202380050863.7A CN119585611A (en) | 2022-09-27 | 2023-04-18 | Gas analysis system and gas analysis method |
PCT/JP2023/015398 WO2024070023A1 (en) | 2022-09-27 | 2023-04-18 | Gas analysis system and gas analysis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022153534A JP2024047826A (en) | 2022-09-27 | 2022-09-27 | Gas analysis system and gas analysis method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024047826A true JP2024047826A (en) | 2024-04-08 |
Family
ID=90476757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022153534A Pending JP2024047826A (en) | 2022-09-27 | 2022-09-27 | Gas analysis system and gas analysis method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2024047826A (en) |
CN (1) | CN119585611A (en) |
WO (1) | WO2024070023A1 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2790927B2 (en) * | 1991-10-03 | 1998-08-27 | 株式会社日立製作所 | Liquid chromatograph mass spectrometer |
JP4423276B2 (en) * | 2001-02-23 | 2010-03-03 | 株式会社日立製作所 | System and analysis condition database storage method |
JP6487681B2 (en) * | 2014-11-25 | 2019-03-20 | シャープ株式会社 | Measuring device, network system, measuring method and program |
JP7009071B2 (en) * | 2017-03-30 | 2022-01-25 | シスメックス株式会社 | Flow cytometer and particle detection method |
EP4043861A4 (en) * | 2019-10-11 | 2022-10-12 | Aipore Inc. | PARTICLE IDENTIFICATION SENSOR, MEASUREMENT DEVICE, COMPUTER DEVICE AND SYSTEM |
JP7438051B2 (en) * | 2020-07-31 | 2024-02-26 | 日立グローバルライフソリューションズ株式会社 | Photoacoustic sensor, photoacoustic sensor calibration method, and air conditioning system |
-
2022
- 2022-09-27 JP JP2022153534A patent/JP2024047826A/en active Pending
-
2023
- 2023-04-18 WO PCT/JP2023/015398 patent/WO2024070023A1/en unknown
- 2023-04-18 CN CN202380050863.7A patent/CN119585611A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN119585611A (en) | 2025-03-07 |
WO2024070023A1 (en) | 2024-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220091571A1 (en) | Multimodal dynamic characterization of materials under programmable environments and environment prediction | |
US5675070A (en) | Olfatory sensor identification system and method | |
US9625376B2 (en) | System for and method of combined LIBS and IR absorption spectroscopy investigations | |
Ghasemi-Varnamkhasti et al. | Electronic nose and electronic mucosa as innovative instruments for real-time monitoring of food dryers | |
US20190041371A1 (en) | Systems and methods for evaluating toxic gas sensors using electrochemical impedance spectroscopy | |
Kalinichenko et al. | Electronic nose combined with chemometric approaches to assess authenticity and adulteration of sausages by soy protein | |
CN104422668B (en) | Methods and systems for detecting components in fluids | |
KR970707473A (en) | METHOD FOR ANALYZING A MEASUREMENT AND METHOD FOR ANALYZING A MEASUREMENT ANALYZER FOR IMPLEMENTING IT | |
CN107036980B (en) | Method for detecting food freshness of refrigerator and refrigerator | |
Ahmadou et al. | Reduction of drift impact in gas sensor response to improve quantitative odor analysis | |
Ali et al. | Electronic nose as a tool for early detection of diseases and quality monitoring in fresh postharvest produce: A comprehensive review | |
JP2007248089A (en) | Self-diagnosis type automatic analyzer | |
CA2471897A1 (en) | Diagnostic apparatus and methods for a chemical detection system | |
Jaafreh et al. | Rapid poultry spoilage evaluation using portable fiber-optic Raman spectrometer | |
Di Natale et al. | Sensor-array calibration time reduction by dynamic modelling | |
Woess et al. | Raman spectroscopy for postmortem interval estimation of human skeletal remains: A scoping review | |
KR102333050B1 (en) | Calibration Device for Low Cost Dust Sensor | |
Attarha et al. | Sensing the unknowns: A study on data-driven sensor fault modeling and assessing its impact on fault detection for enhanced iot reliability | |
JP2024047826A (en) | Gas analysis system and gas analysis method | |
WO2023037999A1 (en) | Gas analyzing method, and gas analyzing system | |
Suthagar et al. | Determination of apple, lemon, and banana ripening stages using electronic nose and image processing | |
Srivastava et al. | Development of a low cost optimized handheld embedded odor sensing system (HE-Nose) to assess ripeness of oranges | |
CN118533816A (en) | Edible fungus quality detection method based on spectral characteristics | |
Albastaki et al. | Electronic nose technologies and advances in machine olfaction | |
US20100304421A1 (en) | Optical monitoring method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20250319 |