[go: up one dir, main page]

JP2024043167A - 生体運動計測装置及び生体運動計測システム - Google Patents

生体運動計測装置及び生体運動計測システム Download PDF

Info

Publication number
JP2024043167A
JP2024043167A JP2022148197A JP2022148197A JP2024043167A JP 2024043167 A JP2024043167 A JP 2024043167A JP 2022148197 A JP2022148197 A JP 2022148197A JP 2022148197 A JP2022148197 A JP 2022148197A JP 2024043167 A JP2024043167 A JP 2024043167A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
sensor
measuring device
living body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022148197A
Other languages
English (en)
Inventor
亮介 磯谷
Ryosuke Isoya
宜史 吉田
Yoshifumi Yoshida
宏太郎 槇
Kotaro Maki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa University
Seiko Group Corp
Original Assignee
Showa University
Seiko Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa University, Seiko Group Corp filed Critical Showa University
Priority to JP2022148197A priority Critical patent/JP2024043167A/ja
Priority to PCT/JP2023/025482 priority patent/WO2024057690A1/ja
Publication of JP2024043167A publication Critical patent/JP2024043167A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/04Measuring instruments specially adapted for dentistry
    • A61C19/045Measuring instruments specially adapted for dentistry for recording mandibular movement, e.g. face bows

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Dentistry (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

【課題】生体における部位の運動を簡易に計測することを図る。【解決手段】生体運動計測装置は、生体における第1の部位に配置される一又は複数の磁気発生器と、生体における第1の部位とは異なる他の部位に配置され、2以上の直交する計測軸により、各磁気発生器が発生する磁界を計測するための一又は複数の磁界センサと、各磁界センサにより計測された磁界に基づいて各磁気発生器と各磁界センサとの間の相対的な位置を算出する信号処理部と、を備える。【選択図】図1

Description

本発明は、生体運動計測装置及び生体運動計測システムに関する。
特許文献1には、生体内の上顎と下顎とのうち一方に磁気発生器を取り付けもう一方に磁界センサを取り付けて、一方の顎を基準とした他方の顎の相対的な3次元運動を計測する生体内3次元運動測定装置が記載されている。特許文献1に記載された生体内3次元運動測定装置は、複数の磁気発生器と複数の磁界センサと非接触の複数の校正用コイルとを備え、各磁気発生器及び各磁界センサと、各校正用コイルとの組み合わせは少なくとも5通りであり、各校正用コイルから発生する校正用磁界を、各磁気発生器及び各磁界センサで検出することにより、各磁気発生器及び各磁界センサの初期位置及び初期方向を計測している。
特許文献2には、患者の下顎の上顎に対する相対位置と相対運動の少なくとも一方を測定する装置が記載されている。特許文献2に記載された装置は、患者の頭に隣接するように配置される送信器コイルと、下顎に配置される下顎センサとを備え、下顎センサによって特定された位置に基づいて、下顎の上顎に対する相対位置と相対運動の少なくとも一方を特定している。
特許第4551395号公報 特表2019-510553号公報
しかし、上述した特許文献1に記載された装置では、各磁気発生器及び各磁界センサと、各校正用コイルとの組み合わせが少なくとも5通り必要であるために、装置が大型化し、且つ消費電力が大きくなるという課題があった。
また、特許文献2に記載された装置では、患者の頭に隣接するように配置される送信器コイルが必要であるために、日常生活において測定を行うことができなかった。
本発明は、このような事情を考慮してなされたものであり、その目的は、生体における部位の運動を簡易に計測することができる生体運動計測装置及び生体運動計測システムを提供することにある。
本発明の一態様は、生体における第1の部位に配置される一又は複数の磁気発生器と、前記生体における前記第1の部位とは異なる他の部位に配置され、2以上の直交する計測軸により、前記各磁気発生器が発生する磁界を計測するための一又は複数の磁界センサと、を備える生体運動計測装置である。
本発明の一態様は、上記の生体運動計測装置において、前記磁気発生器は、二極の磁石である。
本発明の一態様は、上記の生体運動計測装置において、前記磁気発生器の磁極は、前記第1の部位と前記他の部位との可動方向に向けて配置される。
本発明の一態様は、上記の生体運動計測装置において、前記磁気発生器の磁束密度は、300ミリテスラ以上である。
本発明の一態様は、上記の生体運動計測装置において、前記磁界センサは、ホールセンサ、磁気抵抗効果センサ及び磁気インピーダンスセンサのうち、いずれか一つ又は複数の組み合わせにより構成される。
本発明の一態様は、上記の生体運動計測装置において、前記複数の磁界センサは、一の前記磁気発生器との間の距離がそれぞれに異なるように配置される。
本発明の一態様は、上記の生体運動計測装置において、前記第1の部位と前記他の部位とのうち少なくとも一方に配置され、配置された部位が向く方位を計測する一又は複数の姿勢センサをさらに備える。
本発明の一態様は、上記の生体運動計測装置において、前記姿勢センサは、三次元方位を計測する。
本発明の一態様は、上記の生体運動計測装置において、前記姿勢センサは、ジャイロセンサ、加速度センサ及び地磁気センサのうち、いずれか一つ又は複数の組み合わせにより構成される。
本発明の一態様は、上記の生体運動計測装置において、前記第1の部位に配置される、前記磁気発生器とは逆極性の磁気発生器と、前記他の部位に配置され、2以上の直交する計測軸により、前記逆極性の磁気発生器が発生する磁界を計測するための追加磁界センサと、をさらに備える。
本発明の一態様は、上記の生体運動計測装置において、前記第1の部位は、前記生体の上顎及び下顎のうちいずれか一方の顎に連動する部位であり、前記他の部位は、前記生体の上顎及び下顎のうち前記第1の部位とは異なるもう一方の顎に連動する部位である。
本発明の一態様は、上記の生体運動計測装置において、前記第1の部位は、前記生体の口腔内の上顎及び下顎のうちいずれか一方の顎であり、前記他の部位は、前記生体の口腔内の上顎及び下顎のうち前記第1の部位とは異なるもう一方の顎である。
本発明の一態様は、上記の生体運動計測装置において、前記第1の部位及び前記他の部位は、臼歯部である。
本発明の一態様は、上記の生体運動計測装置において、前記磁気発生器は、前記第1の部位に装着されるマウスピースに備えられ、前記磁界センサは、前記他の部位に装着されるマウスピースに備えられる。
本発明の一態様は、上記の生体運動計測装置において、前記磁気発生器は、磁極が開口方向を向くように配置される。
本発明の一態様は、上記の生体運動計測装置において、前記磁界センサは、前記磁気発生器が発生する磁界の2成分以上のベクトルが変化する位置に配置される。
本発明の一態様は、上記の生体運動計測装置において、前記他の部位に装着されるマウスピースにさらに姿勢センサを備え、前記生体運動計測装置は、前記各磁界センサにより計測された磁界と前記姿勢センサにより計測された方位とに基づいて、前記生体における6自由度の顎の運動を計測する信号処理部をさらに備える。
本発明の一態様は、生体における第1の部位に配置される一又は複数の磁気発生器と、前記生体における前記第1の部位とは異なる他の部位に配置され、2以上の直交する計測軸により、前記各磁気発生器が発生する磁界を計測するための一又は複数の磁界センサと、前記各磁界センサにより計測された磁界に基づいて前記各磁気発生器と前記各磁界センサとの間の相対的な位置を算出する信号処理部と、を備える生体運動計測システムである。
本発明の一態様は、上記の生体運動計測装置と、各磁界センサにより計測された磁界に基づいて各磁気発生器と各磁界センサとの間の相対的な位置を算出する信号処理部と、を備え、前記信号処理部は、前記相対的な位置の算出において、各姿勢センサにより計測された方位に基づいて、生体の運動時に生じる各磁気発生器又は各磁界センサの傾きに関する補正を行う、生体運動計測システムである。
本発明の一態様は、上記の生体運動計測システムにおいて、前記磁界センサが受ける地磁気を計測する地磁気センサをさらに備え、前記信号処理部は、前記地磁気センサにより計測された地磁気に基づいて、前記磁界センサにより計測された磁界から地磁気の影響を低減する。
本発明の一態様は、上記の生体運動計測システムにおいて、前記複数の磁界センサが受ける磁気を計測し、前記複数の磁気センサの相対座標に基づいて、傾きを補正する。
本発明の一態様は、上記の生体運動計測システムにおいて、前記第1の部位及び前記他の部位は臼歯部であり、前記生体における臼歯部から前歯部までの位置関係を示すデータを記憶する記憶部をさらに備え、前記信号処理部は、前記位置関係に基づいて、前記相対的な位置の算出結果から前記生体における上顎の前歯部と下顎の前歯部との間の相対的な位置に変換する。
本発明の一態様は、上記の生体運動計測システムにおいて、前記磁界センサにより計測された磁界から前記相対的な位置に変換するための変換テーブルをさらに備え、前記信号処理部は、前記変換テーブルに基づいて前記各磁界センサにより計測された磁界から前記相対的な位置を取得する際に、前記変換テーブルにおいて不足する位置情報を補間処理によって補う。
本発明の一態様は、上記の生体運動計測システムにおいて、前記補間処理は、線形補間又は放射基底関数を用いた補間である。
本発明の一態様は、上記の生体運動計測システムにおいて、前記生体における前記第1の部位と前記他の部位との一連の動きを示す履歴を記憶する記憶部をさらに備え、前記信号処理部は、前記履歴を用いて前記相対的な位置の算出を行う。
本発明の一態様は、上記の生体運動計測システムにおいて、前記信号処理部は、直前の前記相対的な位置の算出結果に基づいて、前記変換テーブルにおいて参照する前記相対的な位置の範囲を限定する。
本発明の一態様は、上記の生体運動計測システムにおいて、前記磁界センサは、100ヘルツ以上のサンプリングレートで磁界を計測する。
本発明の一態様は、上記の生体運動計測システムにおいて、前記磁界センサは、100ヘルツ以上のサンプリングレートで磁界を計測し、前記姿勢センサは、20ヘルツ以上のサンプリングレートで姿勢を計測する。
本発明によれば、生体における部位の運動を簡易に計測することができるという効果が得られる。
第1実施形態に係る生体運動計測装置の一例を示す図である。 第1実施形態に係る生体運動計測装置の一例を示す図である。 第1実施形態に係る生体運動計測装置の本体装置の構成例を示すブロック図である。 第1実施形態に係る磁石の例を示す図である。 第1実施形態に係る磁界を説明するための説明図である。 第1実施形態に係る磁界を説明するための説明図である。 第1実施形態に係る変換テーブルの構成例を示す図である。 第1実施形態に係る相対位置の算出方法の一例を説明するための説明図である。 第2実施形態に係る生体運動計測装置の本体装置の構成例を示すブロック図である。 第2実施形態に係る姿勢センサの配置例を示す図である。 第3実施形態に係る生体運動計測装置の本体装置の構成例を示すブロック図である。 第3実施形態に係る地磁気センサの配置例を示す図である。 第3実施形態に係る地磁気低減方法の一例を説明するための図である。
以下、図面を参照し、本発明の実施形態について説明する。
<第1実施形態>
図1及び図2は、第1実施形態に係る生体運動計測装置の一例を示す図である。本実施形態に係る生体運動計測装置は、本体装置1と磁気発生器2とを備える。本体装置1及び磁気発生器2は、生体200に配置される。図1の例では生体200は人である。図1は、人の顔を側面から見た側面視の図である。図2も同様に側面視の図である。本実施形態では、生体運動計測装置は、生体200における上顎201に対する下顎202の相対位置を計測するための計測装置である。
図1において、磁気発生器2は、生体200の上顎201の臼歯部に配置されている。より具体的には、磁気発生器2は、図2に例示されるように、生体200の上顎201の臼歯部に装着されるマウスピース211に備えられる。当該マウスピース211が生体200の上顎201の臼歯部に装着されることによって、磁気発生器2が生体200の上顎201の臼歯部に配置される。
磁気発生器2の一例は、図2に例示されるように、二極の磁石である。磁気発生器2に使用される磁石は、例えばサマリウムコバルト磁石又はネオジム磁石である。磁気発生器2の磁束密度は、300ミリテスラ(mT)以上であることが好ましい。磁気発生器2の磁束密度は、例えば400mTである。また、複数の磁気発生器2が配置されてもよい。本実施形態では、磁気発生器2の一例として、図2に例示されるように、二極の磁石を使用する。以下、磁気発生器2を磁石2と称する場合がある。
図1において、本体装置1は、制御部10と磁界センサ11と電池12とを備える。本体装置1は、生体200の下顎202の臼歯部に配置されている。より具体的には、本体装置1は、図2に例示されるように、生体200の下顎202の臼歯部に装着されるマウスピース212に備えられる。当該マウスピース212が生体200の下顎202の臼歯部に装着されることによって、本体装置1が生体200の下顎202の臼歯部に配置される。これにより、本体装置1に備わる磁界センサ11は、生体200の下顎202の臼歯部に配置される。
磁石2及び本体装置1がそれぞれにマウスピース211,212に備えられることにより、生体200への着脱が容易になる。
磁界センサ11は、2以上の直交する計測軸により、磁気発生器2が発生する磁界を計測する。磁界センサ11が2つの直交する計測軸により、磁気発生器2が発生する磁界を計測することによって、直交する2軸の磁界ベクトルを計測することができる。磁界センサ11が3つの直交する計測軸により、磁気発生器2が発生する磁界を計測することによって、直交する3軸の磁界ベクトルを計測することができる。磁界センサ11は、例えばホールセンサ、磁気抵抗効果センサ(MRセンサ)及び磁気インピーダンスセンサ(MIセンサ)等の静磁界を計測するセンサのうち、いずれか一つ又は複数の組み合わせにより構成される。また、複数の磁界センサ11が配置されてもよい。複数の磁界センサ11は、一の磁気発生器2との間の距離がそれぞれに異なるように配置されることが好ましい。
本体装置1において、制御部10は、磁界センサ11が計測した磁界に基づいて、生体200における上顎201に対する下顎202の相対位置を算出するための演算を行う。より具体的には、制御部10は、各磁界センサ11により計測された磁界に基づいて各磁気発生器2と各磁界センサ11との間の相対的な位置を算出する信号処理部を備える。電池12は、本体装置1の各部に電力を供給するための電源である。
図3は、第1実施形態に係る生体運動計測装置の本体装置1の構成例を示すブロック図である。図3において、本体装置1は、磁界センサ11と、電池12と、信号処理部100と、記憶部101と、無線通信部102と、アンテナ103と、RTC(Real-Time Clock)104とを備える。図3に示す本体装置1の信号処理部100、記憶部101、無線通信部102、アンテナ103及びRTC104は、図1に示す制御部10に対応する。
信号処理部100は、CPU(Central Processing Unit)を備える。信号処理部100の機能は、CPUが記憶部101に格納されたコンピュータプログラムを実行することにより実現される。信号処理部100は、各磁界センサ11により計測された磁界に基づいて各磁気発生器2と各磁界センサ11との間の相対的な位置を算出する。
記憶部101は、ROM(Read Only Memory)及びRAM(Random Access Memory)等のメモリを備える。記憶部101は、信号処理部100のCPUで実行されるコンピュータプログラム及び各種のデータを記憶する。
無線通信部102は、アンテナ103を介して無線信号を送受することにより、外部機器30との間で無線通信を行う。外部機器30は、アンテナ33と無線通信部32と信号処理部31とを備えている。外部機器30の無線通信部32は、アンテナ33を介して無線信号を送受することにより、生体運動計測装置の本体装置1との間で無線通信を行う。生体運動計測装置の本体装置1と外部機器30との間の無線通信の無線通信方式には、例えば「Bluetooth(登録商標)」、「Bluetooth Low Energy」、「Wi-Fi(登録商標)」、「LPWA(Low Power Wide Area)」などの公知の無線通信方式を適用可能である。
RTC104は、信号処理部100が算出した各磁気発生器2と各磁界センサ11との間の相対的な位置を示す相対位置情報に対して時刻情報(タイムスタンプ)を付加するための時刻を発生する。
生体運動計測装置の本体装置1は、信号処理部100が算出した各磁気発生器2と各磁界センサ11との間の相対的な位置を示す相対位置情報に対してタイムスタンプが付加された相対位置情報の時系列データ(相対位置時系列データ)を、無線通信により外部機器30へ送信する。外部機器30は、生体運動計測装置の本体装置1から無線通信により受信した生体200の相対位置時系列データに基づいて、信号処理部31により、生体200の顎運動を分析するための演算を行う。外部機器30の信号処理部31は、例えば、生体200の相対位置時系列データから生体200の顎運動の軌跡を算出する。
以下、本実施形態に係る生体運動計測装置による計測の詳細を説明する。
生体200において一又は複数の磁気発生器2が配置される第1部位は、生体200の上顎201及び下顎202のうちいずれか一方の顎に連動する部位であればよい。また、生体200において一又は複数の磁界センサ11が配置される部位は、生体200の上顎201及び下顎202のうち第1部位とは異なるもう一方の顎に連動する部位であればよい。
生体200における上顎201に対する下顎202の相対位置を計測するために、磁気発生器2と磁界センサ11とはそれぞれ異なる顎(対顎)に配置される。したがって、図1及び図2に例示されるように、磁気発生器2が上顎201に配置される場合は磁界センサ11は下顎202に配置される。その逆に、磁気発生器2が下顎202に配置される場合は磁界センサ11は上顎201に配置される。このように、磁気発生器2と磁界センサ11とはそれぞれ対顎に配置されればよい。
磁気発生器2の磁極は、図2に示されるように、磁気発生器2が配置された第1部位(上顎201)と本体装置1が配置された部位(下顎202)との可動方向300に向けて配置される。図2において、可動方向300は開口方向である。したがって、磁気発生器2は、磁極が開口方向300を向くように配置される。なお、N極とS極の配置は逆であってもよい。
なお、磁石2が発生する磁界は距離の二乗に比例して減衰する。このため、磁石2と磁界センサ11との間の距離が最大開口時に可能な限り短くなるように配置することが、磁石2が発生する磁界を計測するための磁界計測感度の低下を防ぐ上で好ましい。具体的には、磁石2と磁界センサ11とは、図1に例示されるように、対合歯にそれぞれ配置することが好ましい。また、前歯部に比べて臼歯部の方が最大開口時の対合歯間の距離が短いので、磁石2と磁界センサ11とは、図1に例示されるように、上顎201及び下顎202の臼歯部にそれぞれ配置することが好ましい。
但し、軽く口を開け閉めする蝶番運動などのように比較的近距離の開口運動時の計測を行う場合は、磁石2と磁界センサ11とが対合歯や上顎201及び下顎202の臼歯部にそれぞれ配置されなくてもよい。これは、磁石2と磁界センサ11との間の距離が磁界計測感度の許容不可能な低下が生じるほどには長くならず、磁界計測感度の低下が許容範囲内に収まるからである。また、最大開口運動時の計測を行う場合であっても、比較的近距離の開口運動時の計測が重要であるときには、同様に、磁石2と磁界センサ11とが対合歯や上顎201及び下顎202の臼歯部にそれぞれ配置されなくてもよい。例えば、生体200がブラキシズム(歯ぎしり)を行っている時の計測が重要である場合には、磁石2と磁界センサ11とが対合歯や上顎201及び下顎202の臼歯部にそれぞれ配置されなくてもよい。
また、磁界センサ11は、生体200における上顎201に対する下顎202の相対位置として少なくとも2次元の相対位置(顎運動の軌跡)を算出するために、2以上の自由度すなわち直交する2軸の磁界ベクトルを計測できることが好ましい。さらには、顎運動の正面視および側面視の両方を計測するために、磁界センサ11は、3自由度すなわち直交する3軸の磁界ベクトルを計測できることが好ましい。
磁石2は磁界を発生するものであれば材質は問わない。生体200における装着感を損なわないためには、磁石2はできる限り小型であって装着時に違和感がない大きさであることが好ましい。この条件から、磁石2は、比較的磁力が強い、ネオジム磁石やサマリウムコバルト磁石であることが好ましい。また、磁石2が発生する磁界と装着感のトレードオフから、磁石2のサイズは、厚みが1.5ミリメートル(mm)から4mmまでくらいが好ましく、また5mmから10mm角くらいまでが好ましい。
磁石2の形状は、立方体、直方体又は円柱形であってもよい。但し、磁石2と磁界センサ11との間の距離が短いときの磁界計測感度を向上させるためには、円柱形が好ましい。これは、磁石2が立方体又は直方体である場合は、図4(1)に示されるように、磁石2の近傍に位置する磁界センサ11の周辺311でほぼ均一の磁界が発生するために、当該磁界センサ11と磁石2との相対的位置が変わっても、当該磁界センサ11が計測する磁界ベクトルが殆ど変化しないので、磁界計測感度が低下するからである。一方、磁石2が円柱形である場合は、図4(2)に示されるように、磁石2の近傍に位置する磁界センサ11の周辺312において発生する磁界は位置に応じて変化するので、当該磁界センサ11と磁石2との相対的位置が変われば、当該磁界センサ11が計測する磁界ベクトルも変化するために、良好な磁界計測感度が得られる。
なお、磁界センサ11と磁石2との間の距離が長いときの計測が重要である場合は、磁石2の形状が立方体または直方体であっても当該長い距離では良好な磁界計測感度が得られるので、磁石2の形状は立方体または直方体であっても問題ない。例えば、最大開口時の顎運動の軌跡を算出するための計測を行う場合は、磁石2の形状は立方体または直方体であっても問題ない。
また、磁石2の形状が立方体または直方体である場合、磁石2と磁界センサ11との開口方向の距離を長くするのみではなく、図4(3)に例示されるように、磁石2が発生する磁界の2成分以上のベクトルが変化する位置に磁界センサ11をずらしてもよい。図4(3)の例では、磁石2のN極の面に対して磁力線が垂直に出ている位置311から外れた位置に磁界センサ11が配置されており、この磁界センサ11の位置では磁石2が発生する磁界の2成分以上のベクトルが変化する。このようにして形状が立方体又は直方体の磁石2を配置することで、磁石2の面近傍の磁界を使わずに位置推定を行うことができる。例えば、形状が立方体又は直方体の磁石2を配置した歯の隣の歯に磁界センサ11を設置してもよい。このようにして形状が立方体又は直方体の磁石2を用いることにより、磁極の方向を認識しやすくなるので、磁石2をマウスピースに搭載する際の工程を単純化することができる。
磁石2が上顎201に配置され、且つ磁界センサ11が下顎202に配置された場合、磁界センサ11が計測する磁界ベクトルは、上顎201に対する下顎202の相対位置に応じて変化する。図5には、磁石2と、磁石2が発生する磁界と、磁界センサ11の位置の例(位置P1,P2,P3,P4)とが示される。磁界センサ11は、直交する3軸(x軸,y軸,z軸)の磁界ベクトル(x成分,y成分,z成分)を計測する。
図5において、磁界センサ11が位置P1,P2に在る場合、磁界センサ11が計測する磁界ベクトルはz成分のみである。位置P1において磁界センサ11により計測される磁界ベクトルは、説明の便宜上の値として「Bx=0,By=0,Bz=3000」である。「Bx,By,Bz」は磁束密度を表し、Bxはx成分であり、Byはy成分であり、Bzはz成分であり、単位はmTである。位置P1よりも磁石2との間の距離が長い位置P2では、磁界は距離の二乗に比例して減衰するので、より小さな磁界として計測される。位置P2において磁界センサ11により計測される磁界ベクトルは、説明の便宜上の値として「Bx=0,By=0,Bz=1000」である。
また、磁界センサ11が位置P1からy軸方向の位置P3,P4に移動した場合、磁石2が発生する磁界が斜めに磁界センサ11を貫くので、磁界ベクトルのy成分が生じる。位置P3において磁界センサ11により計測される磁界ベクトルは、説明の便宜上の値として「Bx=0,By=-500,Bz=2000」である。位置P4において磁界センサ11により計測される磁界ベクトルは、説明の便宜上の値として「Bx=0,By=500,Bz=2000」である。また、磁界センサ11が位置P1からx軸方向に移動した場合は、同様に、磁界ベクトルのx成分が生じる。
このように、上顎201に対する下顎202の相対位置に応じて磁界の大きさと向きが変化する。したがって、直交する2軸以上の磁界ベクトルを計測できる磁界センサ11を用いることによって、上顎201に対する下顎202の相対位置として少なくとも直交する2軸の相対位置を計測することができる。これにより、少なくとも2次元の顎運動の軌跡を算出することができる。さらには直交する3軸の磁界ベクトルを計測できる磁界センサ11を用いることによって、上顎201に対する下顎202の相対位置として直交する3軸の相対位置を計測することができる。これにより、3次元の顎運動の軌跡を算出することができる。
また、複数の磁界センサ11が一の磁石2との間の距離がそれぞれに異なるように配置されることによって、磁界センサ11のダイナミックレンジを見かけ上拡大することができるので、上顎201に対する下顎202の相対位置の計測可能な範囲を広くすることができる。例えば、2つの磁界センサ11(11A,11B)が共に0mTから4mTまでを計測することができる場合において、磁界センサ11Aを磁石2の近傍に配置し、磁界センサ11Aに比して磁界センサ11Bを当該磁石2から遠くに配置する。これにより、磁石2の近傍では磁界センサ11Aが計測値「4mT」を超えて飽和しても、磁界センサ11Bが有効な計測値を出力することができる。また、磁石2との間の距離が長くなると磁界センサ11Bの磁界計測感度が低下しても、磁界センサ11Aは良好な磁界計測感度で計測することができる。したがって、単一の磁界センサ11を使用する場合に比べて、2つの磁界センサ11A,11Bを使用する場合は、凡そ、磁界センサ11Aから磁界センサ11Bまでの距離の分だけ、上顎201に対する下顎202の相対位置の計測可能な範囲を広くすることができる。
また、磁石2と磁界センサ11との間の最小距離が一定の長さ以上になるように、磁石2及び磁界センサ11を配置することが好ましい。これは、磁界の強さが距離の二乗に比例して減衰するので、磁石2からある程度離れると位置の変化に対する磁界の変化率が小さいが、磁石2の近傍では位置の変化に対する磁界の変化率が大きいために、磁石2に近すぎる場所に磁界センサ11を配置すると、磁界センサ11に要求されるダイナミックレンジが大きくなり磁界センサ11のコストアップ等の負担が生じるためである。例えば、最大開口時を含む顎運動を計測する場合は、磁石2と磁界センサ11との間の最小距離が5mmから10mmまでくらいになるように、磁石2及び磁界センサ11を配置することが好ましい。
また、二極の磁石は磁束の短絡距離が長いので、磁石からの距離に応じた磁界の減衰が少ない。このことから、磁気発生器2として使用する磁石は二極が好ましい。
また、磁石2の磁極(磁化方向)は、開口方向300に向くことが好ましい。これは、磁化方向を開口方向300に向けることによって、磁石2と磁界センサ11との間の相対的な位置(相対位置)を推定する際の誤差が生じにくいからである。図6は、磁石2の磁化方向を開口方向300に向けた場合(図6(1))と、磁石2の磁化方向を開口方向300とは異なる方向に向けた場合(図6(2))とについての説明図である。磁石2は上顎201に配置され、磁界センサ11は下顎202に配置されている。
図6(1),(2)の上段には、磁石2が発生する磁界において、x軸の値「x=0」のときのy軸及びz軸のyz平面における磁界321,322が示される。また、磁界センサ11は、一点鎖線で示される移動範囲323,324内を移動する。yz平面における磁界321,322においては、いずれであっても、磁界センサ11が移動範囲323,324内を移動することによる磁石2と磁界センサ11との間の相対位置の変化を、磁界321,322の変化(磁界ベクトルの変化)として計測することができる。したがって、yz平面では、図6(1)の磁界321であっても、図6(2)の磁界322であっても、磁界センサ11が計測した磁界ベクトルから、磁石2と磁界センサ11との間の相対位置を推定することができる。
図6(1),(2)の下段には、磁石2が発生する磁界において、y軸の値「y=0」のときのx軸及びz軸のxz平面における磁界325,326が示される。
磁石2の磁化方向を開口方向300に向けた場合(図6(1))、xz平面における磁界325はyz平面における磁界321と同様であるので、xz平面においてもyz平面のときと同様に、磁界センサ11が計測した磁界ベクトルから、磁石2と磁界センサ11との間の相対位置を推定することができる。磁石2の磁化方向を開口方向300に向けた場合には(図6(1))、磁石2と磁界センサ11との間の相対位置を、3次元で推定することができる。
一方、磁石2の磁化方向を開口方向300とは異なる方向に向けた場合(図6(2))、xz平面における磁界326は、yz平面における磁界322とは異なり、y軸方向に向いている。このとき、磁石2の中心からの半径が同一の円周上に存在する点(磁界326を表す図中の点)では、磁界は等しくy軸方向に向き、且つ磁石2からの距離が同一であるので磁界の大きさも同じである。このため、この円周上の各点を磁界センサ11が移動しても、磁界センサ11が計測する磁界ベクトルは全て同じになるので、磁界センサ11が計測した磁界ベクトルから当該円周上の各点を区別することができない。したがって、磁石2の磁化方向を開口方向300とは異なる方向に向けた場合(図6(2))には、xz平面において、磁界センサ11が計測した磁界ベクトルから、磁石2と磁界センサ11との間の相対位置を推定することが難しくなり、相対位置の推定誤差が顕著に発生し得る。このような理由から、磁石2の磁極(磁化方向)は、開口方向300に向くことが好ましい。例えば、3次元での顎運動の軌跡を算出する場合には、磁石2の磁極(磁化方向)を開口方向300に向けることによって、当該算出の精度が向上する。
本体装置1の信号処理部100は、各磁界センサ11により計測された磁界に基づいて各磁気発生器2と各磁界センサ11との間の相対的な位置を算出する。ここで、1次元の動きを計測する場合は、磁石2が発生する磁界が距離の二乗に比例して減衰することを利用し、磁界センサ11が計測する1次元の磁界ベクトル「x成分Bx」から、磁石2と磁界センサ11との間の相対位置「x」を推定することができる。具体的には、1次元の磁界Mxから相対位置xを求める次式の関数f(Mx)を用いる。
x=f(Mx)
一方、3次元の動きを計測する場合は、磁石2と磁界センサ11との間の相対位置の3次元の動き(x軸,y軸,z軸)と、磁界の3次元の値(x軸,y軸,z軸)とが、軸毎に独立して影響するものではない。例えば、x軸方向に相対位置の動きが発生した際には、磁界において、x軸方向の成分(x成分)のみにその影響が及ぶわけではなく、y軸方向の成分(y成分)及びz軸方向の成分(z成分)にもその影響が及ぶことになる。このため、磁界センサ11が計測する3次元の磁界ベクトル「x成分Bx,y成分By,z成分Bz」から、各軸の成分Bx,By,Bzを独立に使用して、軸毎に、上記した1次元の場合の「x=f(Mx)」のように、磁石2と磁界センサ11との間の相対位置の成分を求めることはできない。
このことから、3次元の動きを計測する場合は、磁界の3次元の値(x軸,y軸,z軸)において各軸がクロストークを持つことを考慮に入れる。具体的には、3次元の磁界「Mx,My,Mz」から磁石2と磁界センサ11との間の相対位置「x,y,z」を求める関数fx(Mx,My,Mz),fy(Mx,My,Mz),fz(Mx,My,Mz)により次式のように想定する。
x=fx(Mx,My,Mz)
y=fy(Mx,My,Mz)
z=fz(Mx,My,Mz)
関数fx(Mx,My,Mz),fy(Mx,My,Mz),fz(Mx,My,Mz)は、予め、実験やシミュレーション等によって求めてもよい。
本実施形態では、予め、実験やシミュレーション等によって、図7に例示される変換テーブル100Tを作成する。変換テーブル100Tは、磁界センサ11が計測する磁界ベクトル「Bx,By,Bz」から相対位置「x,y,z」を求めるための変換テーブルである。なお、図7に示す変換テーブル100Tにおける数値は、説明の便宜上のものである。
図7において、変換テーブル100Tには、磁界ベクトル「Bx,By,Bz」の各成分Bx,By,Bzの数値の組(磁界成分組)と、相対位置「x,y,z」の各成分x,y,zの数値の組(相対位置成分組)とが関連付けて格納される。この変換テーブル100Tの作成方法の一例としては、実際の生体200のサンプルに磁石2と磁界センサ11を既知の相対位置「x,y,z」に配置して磁界センサ11により磁界ベクトル「Bx,By,Bz」を計測する。この計測を複数の既知の相対位置「x,y,z」において行う。そして、各計測の結果の磁界ベクトル「Bx,By,Bz」と既知の相対位置「x,y,z」とを関連付けて図7に例示されるようにテーブル形式で記録することにより、変換テーブル100Tを作成する。
生体運動計測装置の本体装置1において、記憶部101は変換テーブル100Tを格納し、信号処理部100は、磁界センサ11が計測した磁界ベクトル「Bx,By,Bz」から、変換テーブル100Tにより相対位置「x,y,z」を求める。例えば、磁界センサ11が計測した磁界ベクトルが「Bx=-1000,By=-1000,Bz=0、単位はmT」である場合は、信号処理部100は、変換テーブル100Tから、相対位置「x=-10.0,y=-10.0,z=50.0、単位はmm」を取得する。例えば、磁界センサ11が計測した磁界ベクトルが「Bx=0,By=0,Bz=2005、単位はmT」である場合は、信号処理部100は、変換テーブル100Tから、相対位置「x=0,y=0,z=30.5、単位はmm」を取得する。
ここで、変換テーブル100Tに格納することができる磁界成分組と相対位置成分組の組合せの個数は有限である。したがって、変換テーブル100Tに対して、磁界センサ11が計測可能な全ての磁界ベクトル「Bx,By,Bz」に対応する磁界成分組と相対位置成分組の組合せを格納することはまず不可能である。このため、信号処理部100は、磁界センサ11が計測した磁界ベクトル「Bx,By,Bz」に一致する磁界成分組が変換テーブル100Tに存在しない場合、変換テーブル100Tにおいて当該磁界ベクトル「Bx,By,Bz」の近傍の磁界成分組に関連付けられた相対位置成分組を用いて、所定の補間方法により相対位置「x,y,z」を求める。当該補間方法の一例は、最近傍(Nearest-neighbor)補間方法である。
最近傍補間方法では、信号処理部100は、変換テーブル100Tにおいて、磁界センサ11が計測した磁界ベクトル「Bx,By,Bz」に最も近い磁界成分組を選択し、選択した磁界成分組に関連付けられた相対位置成分組を変換テーブル100Tから取得する。
上記した最近傍補間方法では、相対位置「x,y,z」が変換テーブル100Tに存在する相対位置成分組のみに限定されるので、相対位置「x,y,z」の推定誤差が大きくなり得る。このため、他の補間方法の例として、線形(Linear)補間方法や、放射基底関数(Radial basis function:RBF)を用いて補間する方法などが挙げられる。これらの他の補間手法は比較的処理が複雑でなく、顎運動を計測する用途において良好な結果を得ることができる。
なお、上記した変換テーブル100Tのようなテーブル形式に限定されず、例えば多項式表現やネットワーク構造などの式又は関数を用いてもよい。
また、信号処理部100は、磁石2と磁界センサ11との間の相対位置の一連の動きを示す履歴を記憶部101に記憶させ、当該履歴を用いて、以後の当該相対位置の算出を行ってもよい。例えば、人の顎運動においては、顎が著しく速くは動かないことから、過去の相対位置の一連の動きに基づいて、もっともらしい相対位置を推定してもよい。これにより、相対位置の精度を向上させることができる。
また、信号処理部100は、直前の相対位置の算出結果に基づいて、変換テーブル100Tにおいて参照する相対位置の範囲を限定してもよい。図8に例示されるように、磁石2に対する磁界センサ11の相対位置の軌跡330(相対位置の履歴)が記憶部101に記憶されている。信号処理部100は、次の相対位置P_tを算出する際に、直前の相対位置の算出結果P_t-1に基づいて、変換テーブル100Tにおいて参照する相対位置の範囲を限定する。例えば、信号処理部100は、次の相対位置P_tを算出する際に、変換テーブル100T内の相対位置成分組のうち、直前の相対位置の算出結果P_t-1の周囲の一定サイズ(例えば2mm×2mm等)の範囲のみを探索範囲として参照する。これにより、変換テーブル100T内の全データを探索範囲として参照する場合に比して参照するデータを削減することができるので、処理時間を短縮する効果が得られる。また、全く別の相対位置であっても類似する磁界ベクトルが存在する場合において、変換テーブル100Tから誤った相対位置を求めることを防止することができる。これにより、相対位置の推定精度が向上する効果が得られる。
また、信号処理部100は、過去の相対位置の軌跡(相対位置の履歴)を利用して、LSTM(Long-short term model)等のネットワーク構造を持つ機械学習アルゴリズムにより機械学習モデルの学習を行い、学習済みの機械学習モデルを用いて以後の相対位置の算出を行ってもよい。
また、磁石2と磁界センサ11とが、図1に例示されるように、上顎201及び下顎202の臼歯部にそれぞれ配置される場合において、上顎201の前歯部と下顎202の前歯部との間の相対位置を求めるときの相対位置算出方法の一例を説明する。生体運動計測装置の本体装置1において、生体200における臼歯部から前歯部までの位置関係を示すデータ(臼歯前歯位置関係データ)を、記憶部101に予め格納しておく。臼歯前歯位置関係データは、生体200の臼歯部に対する前歯部の3次元の相対位置を事前に計測して得られたデータである。臼歯前歯位置関係データによれば、磁石2と磁界センサ11とが、図1に例示されるように、上顎201及び下顎202の臼歯部にそれぞれ配置される場合に求められた臼歯部配置の磁界センサ11の3次元の相対位置から、前歯部の3次元の相対位置に変換することができる。信号処理部100は、臼歯部配置の磁界センサ11が計測した3次元の磁界ベクトルから算出した臼歯部配置の磁石2と臼歯部配置の磁界センサ11との間の相対位置を、臼歯前歯位置関係データに基づいて、上顎201の前歯部と下顎202の前歯部との間の相対位置に変換する。これにより、生体200の顎運動として、上顎201の前歯部に対する下顎202の前歯部の軌跡を算出することができる。
なお、3次元の顎運動を計測する場合には、直交3軸の磁界センサ11を使用することが好ましい。直交3軸の磁界センサ11を使用することによって、一つの磁石2と一つの磁界センサ11とを備える最小構成により3次元の顎運動を計測することができる。これにより、生体運動計測装置の小型化や低コスト化に寄与する効果が得られる。
上述した実施形態では、生体200における顎の運動を計測するように構成したが、計測対象の運動は顎の運動に限定されない。例えば、体肢や指の運動の計測に適用してもよい。この場合、磁石(磁気発生器)2の磁極は、磁石2が配置される第1の部位と磁界センサ11が配置される他の部位との可動方向に向けて配置されることにより、関節運動などの動きをより顕著に検出することができる。
上述した第1実施形態によれば、生体における基準部と可動部の相対的な運動を簡易に計測することができるという効果が得られる。例えば、上顎201を基準部とした場合の上顎201と下顎202(可動部)の相対的な運動を簡易に計測することができる。
なお、磁界センサ11は、100ヘルツ(Hz)以上のサンプリングレートで磁界を計測することが好ましい。これは、磁界センサ11のサンプリングレートが100Hzより低い場合、顎の運動を正確に測定することが難しくなるからである。
<第2実施形態>
図9は、第2実施形態に係る生体運動計測装置の本体装置1aの構成例を示すブロック図である。図9において、図3の各部に対応する部分には同一の符号を付け、その説明を省略する。図9に示される本体装置1aは、第1実施形態に係る図3の本体装置1に対してさらに姿勢センサ13を備える。
図10に、第2実施形態に係る姿勢センサ13の配置例を示す。図10は、人(生体200)の顔を側面から見た側面視の図である。姿勢センサ13は、図10に例示されるように、生体200の下顎202に配置される。具体的には、本体装置1aは、図2に例示されるように、生体200の下顎202の臼歯部に装着されるマウスピース212に備えられる。当該マウスピース212が生体200の下顎202の臼歯部に装着されることによって、本体装置1aが生体200の下顎202の臼歯部に配置される。これにより、本体装置1aに備わる磁界センサ11及び姿勢センサ13は、生体200の下顎202の臼歯部に配置される。
また、磁石2は、図2に例示されるように、生体200の上顎201の臼歯部に装着されるマウスピース211に備えられる。当該マウスピース211が生体200の上顎201の臼歯部に装着されることによって、磁石2が生体200の上顎201の臼歯部に配置される。
本実施形態において姿勢センサ13を備える理由を説明する。
磁石2又は磁界センサ11(図10の例では磁界センサ11)が向く方位410と水平方向400とがなす角度θが変わらずに、磁石2又は磁界センサ11が水平方向400に対して平行に移動することにより、磁石2と磁界センサ11との間の相対位置が変化する場合は、上記した第1実施形態で説明したように、信号処理部100は変換テーブル100Tに基づいて当該相対位置を算出することができる。しかし、角度θが変わる場合には、磁界センサ11が計測する磁界ベクトルは、その大きさは変わらないがその向きが変わる。磁石2と磁界センサ11との間の相対位置の算出は、磁界センサ11が計測する磁界ベクトルの大きさ及び向きの両方に依存するので、角度θが変わると、磁界センサ11が計測する磁界ベクトルの向きも変わることになって当該相対位置の算出の精度が低下する。
このため、本実施形態では、角度θの変化を検出するために、姿勢センサ13を備える。本実施形態では、図10に例示されるように、磁界センサ11と共に姿勢センサ13を下顎202に配置し、磁界センサ11が向く方位410を姿勢センサ13により計測する。
姿勢センサ13は、磁界センサ11と同じ顎に配置することが好ましい。また、姿勢センサ13は、磁界センサ11の自由度と同じ自由度であることが好ましい。例えば、磁界センサ11が3次元の磁界ベクトルを計測する場合は、姿勢センサ13も3次元の方位を計測することが好ましい。姿勢センサ13は、ジャイロセンサ、加速度センサ及び地磁気センサのうち、いずれか一つ又は複数の組み合わせにより構成される。姿勢センサ13は、方位410(姿勢)を示す情報として、例えばオイラー角や四元数などを出力する。
信号処理部100は、磁石2と磁界センサ11との間の相対位置の算出において、姿勢センサ13により計測された方位410に基づいて、生体200の運動時に生じる各磁石2又は各磁界センサ11の傾きに関する補正を行う。図10に例示されるように、姿勢センサ13が磁界センサ11と同じ顎に配置されているので、姿勢センサ13の傾きは磁界センサ11の傾きと同じになる。したがって、姿勢センサ13が計測した方位410(つまり、磁界センサ11の方位410)に基づいて磁界センサ11の傾きを補正することができる。
具体的には、信号処理部100は、姿勢センサ13が計測した方位410に基づいて、計測開始時の方位410(初期方位)からの方位410の変化量と同量だけ磁界ベクトルを方位410の変化の方向とは逆方向に回転させる。これにより、計測開始時の当初角度θから角度θが変わっても、計測開始時の当初角度θにおいて得られるであろう磁界ベクトルを再現することができる。つまり、当該回転によって、計測開始時の当初角度θのまま角度θが変わらない状態における磁界ベクトルを得ることができる。信号処理部100は、当該回転後の磁界ベクトルを用いて、磁石2と磁界センサ11との間の相対位置を算出する。これにより、相対位置の算出の精度の低下を防ぐことができる。
なお、姿勢センサ13は、磁石2が配置される上顎201と磁界センサ11が配置される下顎202とのうち少なくとも一方に配置されればよい。
また、姿勢センサ13は、磁界センサ11が配置された顎(図10の例では下顎202)に加えてさらに、磁石2が配置されたもう一方の顎(図10の例では上顎201)にも配置されてもよい。生体200が姿勢(特に頭部の傾き)を変えると、角度θが大きく変わり得る。例えば、人が、顔を正面(水平方向400)に向けている場合と、顔を地面に向けている場合や天空に向けている場合とでは、角度θは大きく異なる。さらには、上顎201と下顎202の両方共に角度θが変わる。
これに対処するために、姿勢センサ13を上顎201と下顎202の両方にそれぞれ配置する。信号処理部100は、磁石2と磁界センサ11との間の相対位置の算出において、両顎にそれぞれ配置された各姿勢センサ13により計測された方位410に基づいて、磁界センサ11が計測した磁界ベクトルを回転させる方向及び回転量を制御する。
具体的には、まず、信号処理部100は、磁界センサ11が配置された下顎202の姿勢センサ13が計測した下顎の方位410に基づいて、計測開始時の下顎の方位410(下顎初期方位)からの下顎の方位410の変化量と同量だけ磁界ベクトルを下顎の方位410の変化の方向とは逆方向に回転させる。次いで、信号処理部100は、当該回転後の磁界ベクトルに対して、磁石2が配置された上顎201の姿勢センサ13が計測した上顎の方位410に基づいて、計測開始時の上顎の方位410(上顎初期方位)からの上顎の方位410の変化量と同量だけ磁界ベクトルを上顎の方位410の変化の方向とは逆方向に回転させる。信号処理部100は、当該回転後の磁界ベクトルを用いて、磁石2と磁界センサ11との間の相対位置を算出する。これにより、相対位置の算出の精度の低下を防ぐことができる。
なお、姿勢センサ13を上顎201と下顎202の両方にそれぞれ配置するのではなく、下顎202に配置する姿勢センサ13として、下顎の方位410と、上顎201に対する下顎202の相対角度とを同時に測定することができるセンサを配置してもよい。
第2実施形態によれば、例えば日常生活における人(生体200)の顎運動を計測する場合に、生体200が計測中に任意の姿勢をとったとしても、顎運動の計測の精度の低下を防ぐことができる。これにより、計測中の人の活動の制限を緩和することができる。これは、個人特有の生活様式や行動形態等による顎運動への影響を分析するための計測データを取得することにも寄与する。
なお、信号処理部100は、磁界センサ11により計測された3次元の磁界ベクトルと姿勢センサ13により計測された3次元の方位410とに基づいて、生体200における6自由度の顎の運動を計測してもよい。
上述した第2実施形態によれば、第1実施形態と同様の効果に加えて、さらに生体200の姿勢の変化による計測への影響を補正することにより計測精度の低下を防ぐことができるという効果が得られる。
なお、磁界センサ11は100Hz以上のサンプリングレートで磁界を計測し、姿勢センサ13は20Hz以上のサンプリングレートで姿勢を計測することが好ましい。これは、顎の傾きの変化は比較的遅いので、姿勢センサ13は磁界センサ11ほど高いサンプリングレートでなくてもよいが、姿勢センサ13のサンプリングレートが20Hzより低い場合、顎の傾きを正確に測定することが難しくなるからである。
<第3実施形態>
図11は、第3実施形態に係る生体運動計測装置の本体装置1bの構成例を示すブロック図である。図11において、図3の各部に対応する部分には同一の符号を付け、その説明を省略する。図11に示される本体装置1bは、第1実施形態に係る図3の本体装置1に対してさらに地磁気センサ14を備える。地磁気センサ14は、地磁気の大きさ及び向きを示す地磁気ベクトルを計測する。地磁気センサ14は、3次元の地磁気ベクトルを計測することが好ましい。本実施形態では、磁界センサ11が3次元の磁界ベクトルを計測すると共に、地磁気センサ14が3次元の地磁気ベクトルを計測する。
図12に、第3実施形態に係る地磁気センサ14の配置例を示す。図12は、人(生体200)の顔を正面から見た正面視の図である。地磁気センサ14が配置される場所は、磁界センサ11が受ける地磁気を計測することができる場所であればよい。
地磁気センサ14は、図12に例示されるように、磁石2とは一定以上の距離をとって配置される。地磁気センサ14が、磁石2とは一定以上の距離をとって配置される理由は、磁石2が発生する磁界の影響を地磁気センサ14が受けることを抑制するためである。
図12の例では、地磁気センサ14は、生体200の下顎202において磁界センサ11が配置された第1臼歯部とは反対側の第2臼歯部に配置される。具体的には、地磁気センサ14は、図2に例示されるマウスピース212(第1マウスピース)と同様に、生体200の下顎202の第2臼歯部に装着される第2マウスピース212に備えられる。当該第2マウスピース212が生体200の下顎202の第2臼歯部に装着されることによって、地磁気センサ14が生体200の下顎202の第2臼歯部に配置される。
図12の例では、磁界センサ11を備える本体装置1bが生体200の下顎202の第1臼歯部に配置される。このため、生体200の下顎202において、第2臼歯部に配置される地磁気センサ14から第1臼歯部に配置される本体装置1bまで、地磁気センサ14と本体装置1bとを接続する配線が設けられる。
また、磁石2は、図2に例示されるように、生体200の上顎201の臼歯部に装着されるマウスピース211に備えられる。当該マウスピース211が生体200の上顎201の臼歯部に装着されることによって、磁石2が生体200の上顎201の臼歯部に配置される。
なお、地磁気センサ14が配置される場所は、磁界センサ11が受ける地磁気を計測することができる場所であって磁石2が発生する磁界の影響が許容範囲に収まる場所であればよい。地磁気センサ14は、臼歯部に配置された磁石2とは一定以上の距離をとった場所の例として臼歯部又は前歯部に配置されてもよい。図12の例では、上顎201の臼歯部に配置された磁石2からできる限り距離をとるために、地磁気センサ14は、下顎202において当該磁石2とは反対側の臼歯部に配置されている。
本実施形態では、地磁気センサ14を備え、信号処理部100は、地磁気センサ14が計測した地磁気に基づいて、磁界センサ11が計測する磁界ベクトルから地磁気の影響を低減する演算を行う。具体的には、信号処理部100は、磁界センサ11が計測した磁界ベクトルから、地磁気センサ14が計測した地磁気ベクトルを引き算する。信号処理部100は、当該引き算後の磁界ベクトルを用いて、磁石2と磁界センサ11との間の相対位置を算出する。これにより、地磁気の影響による相対位置の算出の精度の低下を防ぐことができる。
なお、磁界センサ11が計測する磁界ベクトルから地磁気の影響を低減する他の地磁気低減方法として、地磁気センサ14を使用しないで、磁石の極性を利用する方法が挙げられる。当該他の地磁気低減方法では、図3に示される本体装置1を使用する。図13は、磁石の極性を利用する地磁気低減方法を説明するための図である。図13には、2つの磁石2-1,2-2と、2つの磁界センサ11-1,11-2との配置例が示される。図13は、人(生体200)の顔を正面から見た正面視の図である。
図13に例示されるように、生体200の上顎201において、磁石2-1は第1臼歯部に配置され、磁石2-2は第1臼歯部とは反対側の第2臼歯部に配置される。具体的には、各磁石2-1,2-1は、図2に例示されるマウスピース211と同様に、生体200の上顎201の各臼歯部に装着される各マウスピース211に備えられる。当該マウスピース211が生体200の上顎201の各臼歯部に装着されることによって、各磁石2-1,2-1が生体200の上顎201の各2臼歯部にそれぞれ配置される。
また、磁石2-1と磁石2-2とは、図13に例示されるように、逆極性になるように配置される。図13の例では、磁石2-1は開口方向300をN極にし、磁石2-2は開口方向300をS極にしている。これにより、磁界センサ11-1における磁界と、磁界センサ11-2における磁界とは、逆極性の磁界となる。
また、図13に例示されるように、生体200の下顎202において、磁界センサ11-1は第1臼歯部に配置され、磁界センサ11-2は第1臼歯部とは反対側の第2臼歯部に配置される。具体的には、磁界センサ11-1が備わる本体装置1が、図2に例示されるように、生体200の下顎202の第1臼歯部に装着されるマウスピース212(第1マウスピース)に備えられる。当該第1マウスピース212が生体200の下顎202の第1臼歯部に装着されることによって、本体装置1が生体200の下顎202の第1臼歯部に配置される。これにより、本体装置1に備わる磁界センサ11-1は、生体200の下顎202の第1臼歯部に配置される。磁界センサ11-2は、生体200の下顎202の第2臼歯部に装着されるマウスピース212(第2マウスピース)に備えられる。当該第2マウスピース212が生体200の下顎202の第2臼歯部に装着されることによって、磁界センサ11-2が生体200の下顎202の第2臼歯部に配置される。
図13の例では、磁界センサ11-1を備える本体装置1が生体200の下顎202の第1臼歯部に配置される。このため、生体200の下顎202において、第2臼歯部に配置される磁界センサ11-2から第1臼歯部に配置される本体装置1まで、磁界センサ11-2と本体装置1とを接続する配線が設けられる。
信号処理部100は、磁界センサ11-2により計測された磁界に基づいて、磁界センサ11-1により計測された磁界から地磁気の影響を低減する演算を行う。図13に例示されるように、磁石2-1と磁石2-2とが逆極性になるように配置されるので、磁界センサ11-1における磁界と磁界センサ11-2における磁界とは逆極性の磁界となる。このため、磁界センサ11-1における磁石2-1による磁界ベクトルをH_Mとすると、磁界センサ11-2における磁石2-2による磁界ベクトルは「-H_M」となる。そして、地磁気ベクトルをH_0とすると、磁界センサ11-1が計測する磁界ベクトル「H_M+H_0」から磁界センサ11-2が計測する磁界ベクトル「-H_M+H_0」を引き算する次式により、地磁気の影響をキャンセルすることができる。さらには、磁石2(2-1,2-2)による磁界の感度を2倍にすることができる。
(H_M+H_0)-(-H_M+H_0)=2H_M
これにより、地磁気の影響を低減しつつ磁界の感度を上げることができることから、より高精度の相対位置の算出を行うことができる。
上述した第3実施形態によれば、第1実施形態と同様の効果に加えて、さらに地磁気による計測への影響を低減することにより計測精度の低下を防ぐことができるという効果が得られる。
なお、第3実施形態に上述した第2実施形態を組み合わせてもよい。この場合、本体装置は磁界センサ11と姿勢センサ13と地磁気センサ14とを備え、信号処理部100は、磁石2と磁界センサ11との間の相対位置の算出において、姿勢センサ13により計測された方位410に基づいて磁石2又は磁界センサ11の傾きに関する補正を行うと共に、地磁気センサ14が計測した地磁気に基づいて磁界センサ11が計測する磁界ベクトルから地磁気の影響を低減する演算を行う。又は、本体装置は磁界センサ11-1,11-2と姿勢センサ13とを備え、信号処理部100は、磁石2(2-1,2-2)と磁界センサ11(11-1,11-2)との間の相対位置の算出において、姿勢センサ13により計測された方位410に基づいて磁石2又は磁界センサ11の傾きに関する補正を行うと共に、各磁界センサ11-1,11-2が計測した磁界ベクトルから地磁気の影響を低減する演算を行う。
以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。上述した各実施形態および各例に記載の構成を組み合わせてもよい。
1,1a,1b…生体運動計測装置の本体装置、2…生体運動計測装置の磁石、10…制御部、11…磁界センサ、12…電池、13…姿勢センサ、14…地磁気センサ、100…信号処理部、101…記憶部、102…無線通信部、103…アンテナ、104…RTC

Claims (28)

  1. 生体における第1の部位に配置される一又は複数の磁気発生器と、
    前記生体における前記第1の部位とは異なる他の部位に配置され、2以上の直交する計測軸により、前記各磁気発生器が発生する磁界を計測するための一又は複数の磁界センサと、
    を備える生体運動計測装置。
  2. 前記磁気発生器は、二極の磁石である、
    請求項1に記載の生体運動計測装置。
  3. 前記磁気発生器の磁極は、前記第1の部位と前記他の部位との可動方向に向けて配置される、
    請求項1に記載の生体運動計測装置。
  4. 前記磁気発生器の磁束密度は、300ミリテスラ以上である、
    請求項1に記載の生体運動計測装置。
  5. 前記磁界センサは、ホールセンサ、磁気抵抗効果センサ及び磁気インピーダンスセンサのうち、いずれか一つ又は複数の組み合わせにより構成される、
    請求項1に記載の生体運動計測装置。
  6. 前記複数の磁界センサは、一の前記磁気発生器との間の距離がそれぞれに異なるように配置される、
    請求項1に記載の生体運動計測装置。
  7. 前記第1の部位と前記他の部位とのうち少なくとも一方に配置され、配置された部位が向く方位を計測する一又は複数の姿勢センサをさらに備える、
    請求項1に記載の生体運動計測装置。
  8. 前記姿勢センサは、三次元方位を計測する、
    請求項7に記載の生体運動計測装置。
  9. 前記姿勢センサは、ジャイロセンサ、加速度センサ及び地磁気センサのうち、いずれか一つ又は複数の組み合わせにより構成される、
    請求項7に記載の生体運動計測装置。
  10. 前記第1の部位に配置される、前記磁気発生器とは逆極性の磁気発生器と、
    前記他の部位に配置され、2以上の直交する計測軸により、前記逆極性の磁気発生器が発生する磁界を計測するための追加磁界センサと、をさらに備える、
    請求項1項に記載の生体運動計測装置。
  11. 前記第1の部位は、前記生体の上顎及び下顎のうちいずれか一方の顎に連動する部位であり、
    前記他の部位は、前記生体の上顎及び下顎のうち前記第1の部位とは異なるもう一方の顎に連動する部位である、
    請求項1に記載の生体運動計測装置。
  12. 前記第1の部位は、前記生体の口腔内の上顎及び下顎のうちいずれか一方の顎であり、
    前記他の部位は、前記生体の口腔内の上顎及び下顎のうち前記第1の部位とは異なるもう一方の顎である、
    請求項1に記載の生体運動計測装置。
  13. 前記第1の部位及び前記他の部位は、臼歯部である、
    請求項1に記載の生体運動計測装置。
  14. 前記磁気発生器は、前記第1の部位に装着されるマウスピースに備えられ、
    前記磁界センサは、前記他の部位に装着されるマウスピースに備えられる、
    請求項1に記載の生体運動計測装置。
  15. 前記磁気発生器は、磁極が開口方向を向くように配置される、
    請求項11から14のいずれか1項に記載の生体運動計測装置。
  16. 前記磁界センサは、前記磁気発生器が発生する磁界の2成分以上のベクトルが変化する位置に配置される、
    請求項11から14のいずれか1項に記載の生体運動計測装置。
  17. 前記他の部位に装着されるマウスピースにさらに姿勢センサを備え、
    前記生体運動計測装置は、前記各磁界センサにより計測された磁界と前記姿勢センサにより計測された方位とに基づいて、前記生体における6自由度の顎の運動を計測する信号処理部をさらに備える、
    請求項14に記載の生体運動計測装置。
  18. 生体における第1の部位に配置される一又は複数の磁気発生器と、
    前記生体における前記第1の部位とは異なる他の部位に配置され、2以上の直交する計測軸により、前記各磁気発生器が発生する磁界を計測するための一又は複数の磁界センサと、
    前記各磁界センサにより計測された磁界に基づいて前記各磁気発生器と前記各磁界センサとの間の相対的な位置を算出する信号処理部と、
    を備える生体運動計測システム。
  19. 請求項7から9のいずれか1項に記載の生体運動計測装置と、
    各磁界センサにより計測された磁界に基づいて各磁気発生器と各磁界センサとの間の相対的な位置を算出する信号処理部と、を備え、
    前記信号処理部は、前記相対的な位置の算出において、各姿勢センサにより計測された方位に基づいて、生体の運動時に生じる各磁気発生器又は各磁界センサの傾きに関する補正を行う、
    生体運動計測システム。
  20. 前記磁界センサが受ける地磁気を計測する地磁気センサをさらに備え、
    前記信号処理部は、前記地磁気センサにより計測された地磁気に基づいて、前記磁界センサにより計測された磁界から地磁気の影響を低減する、
    請求項18に記載の生体運動計測システム。
  21. 前記複数の磁界センサが受ける磁気を計測し、前記複数の磁気センサの相対座標に基づいて、傾きを補正する、
    請求項18に記載の生体運動計測システム。
  22. 前記第1の部位及び前記他の部位は臼歯部であり、
    前記生体における臼歯部から前歯部までの位置関係を示すデータを記憶する記憶部をさらに備え、
    前記信号処理部は、前記位置関係に基づいて、前記相対的な位置の算出結果から前記生体における上顎の前歯部と下顎の前歯部との間の相対的な位置に変換する、
    請求項18に記載の生体運動計測システム。
  23. 前記磁界センサにより計測された磁界から前記相対的な位置に変換するための変換テーブルをさらに備え、
    前記信号処理部は、前記変換テーブルに基づいて前記各磁界センサにより計測された磁界から前記相対的な位置を取得する際に、前記変換テーブルにおいて不足する位置情報を補間処理によって補う、
    請求項18に記載の生体運動計測システム。
  24. 前記補間処理は、線形補間又は放射基底関数を用いた補間である、
    請求項23に記載の生体運動計測システム。
  25. 前記生体における前記第1の部位と前記他の部位との一連の動きを示す履歴を記憶する記憶部をさらに備え、
    前記信号処理部は、前記履歴を用いて前記相対的な位置の算出を行う、
    請求項23に記載の生体運動計測システム。
  26. 前記信号処理部は、直前の前記相対的な位置の算出結果に基づいて、前記変換テーブルにおいて参照する前記相対的な位置の範囲を限定する、
    請求項23に記載の生体運動計測システム。
  27. 前記磁界センサは、100ヘルツ以上のサンプリングレートで磁界を計測する、
    請求項18に記載の生体運動計測システム。
  28. 前記磁界センサは、100ヘルツ以上のサンプリングレートで磁界を計測し、
    前記姿勢センサは、20ヘルツ以上のサンプリングレートで姿勢を計測する、
    請求項19に記載の生体運動計測システム。
JP2022148197A 2022-09-16 2022-09-16 生体運動計測装置及び生体運動計測システム Pending JP2024043167A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022148197A JP2024043167A (ja) 2022-09-16 2022-09-16 生体運動計測装置及び生体運動計測システム
PCT/JP2023/025482 WO2024057690A1 (ja) 2022-09-16 2023-07-10 生体運動計測装置及び生体運動計測システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022148197A JP2024043167A (ja) 2022-09-16 2022-09-16 生体運動計測装置及び生体運動計測システム

Publications (1)

Publication Number Publication Date
JP2024043167A true JP2024043167A (ja) 2024-03-29

Family

ID=90274597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022148197A Pending JP2024043167A (ja) 2022-09-16 2022-09-16 生体運動計測装置及び生体運動計測システム

Country Status (2)

Country Link
JP (1) JP2024043167A (ja)
WO (1) WO2024057690A1 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142084A (ja) * 1991-08-21 1994-05-24 Yoshiaki Yamada 動物用下顎運動記録装置
JP4326721B2 (ja) * 2001-05-31 2009-09-09 独立行政法人科学技術振興機構 3次元運動測定装置
JP3727918B2 (ja) * 2002-11-21 2005-12-21 Necトーキン株式会社 顎運動測定装置およびその測定方法
JP4324386B2 (ja) * 2003-01-30 2009-09-02 永一 坂東 顎運動の測定装置
CN100571623C (zh) * 2004-03-31 2009-12-23 独立行政法人科学技术振兴机构 活体内三维运动测定装置及其方法

Also Published As

Publication number Publication date
WO2024057690A1 (ja) 2024-03-21

Similar Documents

Publication Publication Date Title
CN112351733B (zh) 用于确定远程物体的位置和方向的便携式系统和方法
CN107493531B (zh) 一种头部姿态检测方法、装置和耳机
Wang et al. Multipoint simultaneous tracking of wireless capsule endoscope using magnetic sensor array
WO2005094677A1 (ja) 生体内3次元運動測定装置及びその方法
US8544322B2 (en) Jaw motion measuring system
CN104237822B (zh) 用于电子磁力计传感器的补偿磁干扰
US11250318B2 (en) Method and/or system for magnetic localization
JP2012125579A5 (ja)
CN109620104A (zh) 胶囊内窥镜及其定位方法及系统
EP2482034A1 (en) Geomagnetism sensing device
WO2018235481A1 (ja) 磁気式の方位・位置測定装置
JPWO2009087782A1 (ja) 歯の噛み合わせ測定装置
CN111707296A (zh) 位置检测装置、信号处理电路和磁传感器系统
JP2017144148A (ja) 身体歪み検知システム
JPWO2010103966A1 (ja) 地磁気検知装置
WO2024057690A1 (ja) 生体運動計測装置及び生体運動計測システム
KR20170000092A (ko) 스마트 자세교정 시스템
JP3727918B2 (ja) 顎運動測定装置およびその測定方法
CN105157691B (zh) 一种指南针方位的确定方法及装置
JP2016002445A (ja) 手術器具位置姿勢計測装置
CN113301845A (zh) 用于超声呼吸监测中的运动补偿的系统和方法
JP4326721B2 (ja) 3次元運動測定装置
Lin et al. Mathematical models of 3D magnetic field and 3D positioning system by magnetic field
JP5425671B2 (ja) 磁界検知装置
JP7141668B1 (ja) ハンドピース先端部の位置・方位検出装置、ハンドピース誘導システムおよびハンドピース誘導アシストシステム