[go: up one dir, main page]

JP2023553672A - Coated steel plate, high-strength press-hardened steel parts, and manufacturing method thereof - Google Patents

Coated steel plate, high-strength press-hardened steel parts, and manufacturing method thereof Download PDF

Info

Publication number
JP2023553672A
JP2023553672A JP2023536409A JP2023536409A JP2023553672A JP 2023553672 A JP2023553672 A JP 2023553672A JP 2023536409 A JP2023536409 A JP 2023536409A JP 2023536409 A JP2023536409 A JP 2023536409A JP 2023553672 A JP2023553672 A JP 2023553672A
Authority
JP
Japan
Prior art keywords
steel
steel plate
layer
bulk
press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023536409A
Other languages
Japanese (ja)
Other versions
JP7665755B2 (en
Inventor
フィリポ,クレマン
ル・ギヤール,サンドラ
デュソーソワ,ダビド
サリブ,マチュー
Original Assignee
アルセロールミタル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルセロールミタル filed Critical アルセロールミタル
Publication of JP2023553672A publication Critical patent/JP2023553672A/en
Application granted granted Critical
Publication of JP7665755B2 publication Critical patent/JP7665755B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本発明は、重量パーセントで、以下、C0.26~0.40%、Mn0.5~1.8%、Si0.1~1.25%、Al0.01~0.1%、Cr0.1~1.0%、Ti0.01~0.1%、B0.001~0.004%、P≦0.020%、S≦0.010%、N≦0.010%、を含む、組成を有する被覆鋼板及びプレス硬化鋼部品であって、組成の残りが、鉄及び精錬から生じる不可避不純物である、被覆鋼板及びプレス硬化鋼部品に関する。プレス硬化鋼部品は、表面分率で、95%を超えるマルテンサイト及び5%未満のベイナイトを含む微細構造を有するバルクと、鋼部品の表面の被膜層と、被膜層とバルクとの間のフェライト相互拡散層と、以下の式、(GWint/PAGSbulk)-1≧30%を満たす、バルク中の旧オーステナイト粒径PAGSbulkに対する相互拡散層中のフェライト粒の幅GWintの比を含む。The present invention has the following weight percentages: C0.26-0.40%, Mn0.5-1.8%, Si0.1-1.25%, Al0.01-0.1%, Cr0.1-0. 1.0%, Ti0.01-0.1%, B0.001-0.004%, P≦0.020%, S≦0.010%, N≦0.010%. The present invention relates to coated steel sheets and press-hardened steel parts in which the remainder of the composition is iron and unavoidable impurities resulting from smelting. Press-hardened steel parts include a bulk having a microstructure containing, in surface fraction, more than 95% martensite and less than 5% bainite, a coating layer on the surface of the steel part, and ferrite between the coating layer and the bulk. The ratio of the width GWint of the ferrite grains in the interdiffusion layer to the prior austenite grain size PAGSbulk in the bulk satisfies the following formula: (GWint/PAGSbulk)-1≧30%.

Description

本発明は、被覆鋼板及び良好な曲げ特性を有する高強度プレス硬化鋼部品に関する。 The present invention relates to coated steel sheets and high strength press hardened steel parts with good bending properties.

高強度プレス硬化部品は、侵入防止又はエネルギー吸収機能のための自動車両の構造要素として使用され得る。 High strength press hardened parts can be used as structural elements in motor vehicles for anti-intrusion or energy absorption functions.

このような種類の用途では、高い機械的強度、高い耐衝撃性及び良好な耐食性を兼ね備えた鋼部品を製造することが望ましい。さらに、自動車産業における主要な課題の1つは、安全要件を無視することなく、地球環境保全の観点から車両の燃費を改善するために車両の重量を減少させることである。 For these types of applications, it is desirable to produce steel parts that combine high mechanical strength, high impact resistance and good corrosion resistance. Furthermore, one of the main challenges in the automotive industry is to reduce the weight of vehicles in order to improve their fuel efficiency from the perspective of protecting the global environment, without neglecting safety requirements.

この軽量化は、特に、マルテンサイト又はベイナイト/マルテンサイト微細構造を有する鋼部品の使用によって達成することができる。 This weight reduction can be achieved in particular by the use of steel parts with martensitic or bainitic/martensitic microstructures.

刊行物、国際公開第2016104881号は、車両等の構造部品として使用され、耐衝撃特性が要求される、より具体的には、1300MPa以上の引張強度を有する、熱間プレス成形部品、及び製造方法に関し、並びに鋼材をオーステナイト単相が形成され得る温度に加熱し、金型を使用して焼入れ及び熱間成形する方法に関する。このような特性を得るために、母鋼板は表面に50μm未満の薄いフェライト層を含み、炭化物のサイズ及び密度を制御する必要がある。基板中のこのフェライト層は、めっき層上に形成された微細な割れの母板への伝播の抑制を可能にするが、曲げ角度が70°未満の低い曲げ性をもたらす。 The publication, International Publication No. 2016104881, describes hot press-formed parts and manufacturing methods that are used as structural parts of vehicles and require impact resistance, more specifically, have a tensile strength of 1300 MPa or more. The present invention also relates to a method of heating a steel material to a temperature at which a single phase of austenite can be formed, and quenching and hot forming the steel material using a mold. In order to obtain such properties, the base steel sheet must contain a thin ferrite layer of less than 50 μm on the surface, and the size and density of carbides must be controlled. This ferrite layer in the substrate makes it possible to suppress the propagation of microscopic cracks formed on the plating layer to the base plate, but results in low bendability with a bending angle of less than 70°.

国際公開第2018179839号は、厚さ方向に変化する微細構造を有する鋼板を熱間プレスすることによって得られる熱間プレス部品であって、少なくとも90%のフェライトでできた軟質層と、フェライト及びマルテンサイトでできた遷移層と、マルテンサイトを主成分とする硬質層とを備え、高強度及び高曲げ性の両方を有する、熱間プレス部品に関する。このような特性を得るために、冷間圧延鋼板は、アルミニウム合金被覆に有害であり得る露点温度が50℃~90℃を含む雰囲気中で焼鈍される。 International Publication No. 2018179839 discloses a hot-pressed part obtained by hot-pressing a steel plate having a microstructure that changes in the thickness direction, comprising a soft layer made of at least 90% ferrite and a soft layer made of ferrite and marten. The present invention relates to a hot-pressed part having both high strength and high bendability, including a transition layer made of martensite and a hard layer mainly composed of martensite. To obtain such properties, cold rolled steel sheets are annealed in an atmosphere containing dew point temperatures of 50° C. to 90° C., which can be detrimental to the aluminum alloy coating.

国際公開第2016/104881号International Publication No. 2016/104881 国際公開第2018/179839号International Publication No. 2018/179839

したがって、本発明の目的は、上述の問題を解決し、1500MPa以上の引張強度TS及び70°より大きい曲げ角度を有する高い機械的特性の組み合わせを有するプレス硬化鋼部品を提供することである。好ましくは、本発明によるプレス硬化鋼部品は、1250MPa以上の降伏強度YSを有する。 The aim of the present invention is therefore to solve the above-mentioned problems and to provide a press-hardened steel part with a combination of high mechanical properties, with a tensile strength TS of more than 1500 MPa and a bending angle of more than 70°. Preferably, the press hardened steel component according to the invention has a yield strength YS of 1250 MPa or more.

本発明の別の目的は、熱間成形によってそのようなプレス硬化鋼部品に変形することができる被覆鋼板を得ることである。 Another object of the invention is to obtain a coated steel sheet that can be transformed into such a press-hardened steel part by hot forming.

本発明の目的は、請求項1に記載の鋼板を提供することによって達成される。別の目的は、請求項2に記載の方法を提供することによって達成される。本発明の別の目的は、請求項3に記載のプレス硬化鋼部品を提供することによって達成される。鋼部品はまた、請求項4~6のいずれか一項に記載の特性を含むことができる。別の目的は、請求項7に記載の方法を提供することによって達成される。 The object of the invention is achieved by providing a steel plate according to claim 1. Another object is achieved by providing a method according to claim 2. Another object of the invention is achieved by providing a press hardened steel part according to claim 3. The steel part may also include the characteristics according to any one of claims 4-6. Another object is achieved by providing a method according to claim 7.

ここで、添付の図面を参照して、本発明を限定を導入することなく実施例によって詳細に説明し、例示する。 The invention will now be described in detail and illustrated by examples without introducing limitations, with reference to the accompanying drawings, in which: FIG.

試験4の被覆鋼板の概略断面図を示す。これは、本発明によるものではない。A schematic cross-sectional view of the coated steel plate of Test 4 is shown. This is not according to the invention. 試験4からのプレス硬化鋼部品の概略断面図を表す。これは、本発明によるものではない。Figure 4 represents a schematic cross-sectional view of a press hardened steel part from Test 4. This is not according to the invention. 試験3の被覆鋼板の概略断面図を示す。これは、本発明によるものではない。A schematic cross-sectional view of the coated steel plate of Test 3 is shown. This is not according to the invention. 試験3からのプレス硬化鋼部品の概略断面図を表す。これは、本発明によるものではない。Figure 3 represents a schematic cross-sectional view of a press hardened steel part from Test 3. This is not according to the invention. 試験2の被覆鋼板の概略断面図を示す。これは、本発明による。A schematic cross-sectional view of the coated steel plate of Test 2 is shown. This is according to the invention. 試験2からのプレス硬化鋼部品の概略断面図を表す。これは、本発明による。Figure 2 represents a schematic cross-sectional view of a press hardened steel part from Test 2. This is according to the invention. 試験1の被覆鋼板の概略断面図を示す。これは、本発明による。A schematic cross-sectional view of the coated steel plate of Test 1 is shown. This is according to the invention. 試験1からのプレス硬化鋼部品の概略断面図を表す。これは、本発明による。Figure 2 represents a schematic cross-sectional view of the press-hardened steel part from Test 1. This is according to the invention. 試験5の被覆鋼板の概略断面図を示す。これは、本発明によるものではない。A schematic cross-sectional view of the coated steel plate of Test 5 is shown. This is not according to the invention. 試験5からのプレス硬化鋼部品の概略断面図を表す。これは、本発明によるものではない。Figure 5 represents a schematic cross-sectional view of a press hardened steel part from Test 5. This is not according to the invention.

次に、本発明による鋼の組成を説明するが、含有量は重量パーセントで表される。 Next, the composition of the steel according to the invention will be explained, the content being expressed in weight percent.

本発明によれば、炭素含有量は、満足のいく強度を確保するために0.26%~0.40%を含む。炭素が0.40%を超えると、鋼板の溶接性及び曲げ性が低下する可能性がある。炭素含有量が0.26%未満である場合、引張強度が目標値に達しない。 According to the invention, the carbon content comprises 0.26% to 0.40% to ensure satisfactory strength. If the carbon content exceeds 0.40%, the weldability and bendability of the steel plate may deteriorate. If the carbon content is less than 0.26%, the tensile strength will not reach the target value.

マンガン含有量は、0.5%~1.8%を含む。添加量が1.8%を超えると、中心偏析のリスクが増大し、曲げ性が損なわれる。0.5%未満では、鋼板の焼入れ性が低下する。好ましくは、マンガン含有量は0.5%~1.3%を含む。 Manganese content includes 0.5% to 1.8%. If the amount added exceeds 1.8%, the risk of center segregation increases and bendability is impaired. If it is less than 0.5%, the hardenability of the steel sheet will decrease. Preferably, the manganese content comprises 0.5% to 1.3%.

本発明によれば、ケイ素含有量は0.1%~1.25%を含む。ケイ素は、固溶体中の硬化に関与する元素である。ケイ素は、炭化物の形成を制限するために添加される。1.25%を超えると、酸化ケイ素が表面に形成され、鋼の被覆性を損なう。さらに、鋼板の溶接性が低下する可能性がある。好ましくは、ケイ素含有量は0.2%~1.25%である。より好ましくは、ケイ素含有量は0.3%~1.25%である。より好ましくは、ケイ素含有量は0.3%~1%である。 According to the invention, the silicon content comprises between 0.1% and 1.25%. Silicon is an element that participates in hardening in solid solution. Silicon is added to limit carbide formation. If it exceeds 1.25%, silicon oxide is formed on the surface, impairing the coating properties of the steel. Furthermore, the weldability of the steel plate may be reduced. Preferably the silicon content is between 0.2% and 1.25%. More preferably, the silicon content is between 0.3% and 1.25%. More preferably, the silicon content is between 0.3% and 1%.

アルミニウム含有量は、精緻化中に液相中の鋼を脱酸素するための非常に有効な元素であるため、0.01%~0.1%を含む。チタン含有量が十分でない場合、アルミニウムはホウ素を保護することができる。アルミニウム含有量は、プレス硬化中の酸化問題及びフェライト形成を回避するために0.1%未満である。好ましくは、アルミニウム含有量は0.01%~0.05%を含む。 The aluminum content comprises 0.01% to 0.1% since it is a very effective element for deoxidizing the steel in the liquid phase during elaboration. Aluminum can protect boron if titanium content is not sufficient. Aluminum content is less than 0.1% to avoid oxidation problems and ferrite formation during press hardening. Preferably the aluminum content comprises 0.01% to 0.05%.

本発明によれば、クロム含有量は0.1%~1.0%を含む。クロムは、固溶体中の硬化に関与する元素であり、0.1%より高くなければならない。クロム含有量は、加工性の問題及びコストを制限するために1.0%未満である。 According to the invention, the chromium content comprises between 0.1% and 1.0%. Chromium is an element involved in hardening in solid solution and must be higher than 0.1%. Chromium content is less than 1.0% to limit processability problems and costs.

チタン含有量は、ホウ素をBNの形成から保護するために0.01%~0.1%を含む。チタン含有量は、TiN形成を回避するために0.1%に制限される。 The titanium content includes 0.01% to 0.1% to protect the boron from BN formation. Titanium content is limited to 0.1% to avoid TiN formation.

本発明によれば、ホウ素含有量は0.001%~0.004%を含む。ホウ素は、鋼の焼入れ性を改善する。ホウ素含有量は、連続鋳造中にスラブが破損するリスクを回避するために、0.004%以下である。 According to the invention, the boron content comprises 0.001% to 0.004%. Boron improves the hardenability of steel. The boron content is below 0.004% to avoid the risk of slab breakage during continuous casting.

いくつかの元素を任意に添加することができる。 Some elements can be optionally added.

ニッケルは、遅れ破壊に対する感度を実質的に低下させることができるため、任意の元素として最大0.5%まで添加することができる。 Nickel can be added as an optional element up to 0.5% since it can substantially reduce the sensitivity to delayed fracture.

モリブデン含有量は、最大0.40%まで任意に添加することができる。ホウ素と同様に、モリブデンは、鋼の焼入れ性を改善する。モリブデンは、コストを制限するために0.40%以下である。 Molybdenum content can be optionally added up to a maximum of 0.40%. Like boron, molybdenum improves the hardenability of steel. Molybdenum is below 0.40% to limit cost.

本発明によれば、ニオブは、鋼の延性を改善するために、最大0.08%まで任意に添加することができる。添加量が0.08%を超えると、NbC又はNb(C、N)炭化物の形成のリスクが増大し、曲げ性が損なわれる。好ましくは、ニオブ含有量は0.05%以下である。 According to the invention, niobium can be optionally added up to 0.08% to improve the ductility of the steel. If the amount added exceeds 0.08%, the risk of forming NbC or Nb(C,N) carbides increases and bendability is impaired. Preferably the niobium content is 0.05% or less.

カルシウムもまた、任意の元素として最大0.1%まで添加することができる。液段階でのCaの添加は、連続鋳造の鋳造性を促進する微細な酸化物の生成を可能にする。 Calcium can also be added as an optional element up to 0.1%. Addition of Ca in the liquid stage allows the formation of fine oxides that promote castability in continuous casting.

鋼の組成の残りは、鉄及び精錬から生じる不純物である。この点において、P、S及びNは少なくとも、不可避不純物である残留元素とみなされる。それらの含有量は、Sについては0.010%未満、Pについては0.020%未満、Nについては0.010%未満である。 The remainder of the steel composition is iron and impurities resulting from smelting. In this respect, P, S and N are considered at least as residual elements that are unavoidable impurities. Their content is less than 0.010% for S, less than 0.020% for P, and less than 0.010% for N.

次に、本発明による被覆鋼板の微細構造を説明する。 Next, the microstructure of the coated steel sheet according to the present invention will be explained.

本発明の被覆鋼板の断面が、図3a及び図4aに概略的に表されている。被覆鋼板は上部に、1μm~100μmの厚さを有するフェライト層(4)を含む脱炭層(3)で覆われており、及び、被膜層(1)とバルク(2)を含む。好ましくは、フェライト層の厚さは、20μm~100μmを含む。より好ましくは、フェライト層の厚さは、25μm~100μmである。より好ましくは、フェライト層の厚さは、30μm~80μmである。 A cross-section of a coated steel sheet according to the invention is schematically represented in Figures 3a and 4a. The coated steel plate is covered on top with a decarburized layer (3) comprising a ferrite layer (4) with a thickness of 1 μm to 100 μm and comprises a coating layer (1) and a bulk (2). Preferably, the thickness of the ferrite layer comprises between 20 μm and 100 μm. More preferably, the thickness of the ferrite layer is between 25 μm and 100 μm. More preferably, the thickness of the ferrite layer is between 30 μm and 80 μm.

被覆鋼板のバルク(2)は、表面分率で60%~90%のフェライトを含み、残りは島状マルテンサイト-オーステナイト、パーライト又はベイナイトからなる微細構造を有する。 The bulk (2) of the coated steel sheet has a microstructure containing ferrite with a surface fraction of 60% to 90%, with the remainder consisting of island martensite-austenite, pearlite or bainite.

このフェライトは、冷間圧延鋼板の変態区間焼鈍中に形成される。微細構造の残りは、均熱終了時に、オーステナイトであり、これは鋼板の冷却中に島状マルテンサイト-オーステナイト、パーライト又はベイナイトに変態する。 This ferrite is formed during transformation zone annealing of cold rolled steel sheets. The remainder of the microstructure is austenite at the end of soaking, which transforms into island martensite-austenite, pearlite or bainite during cooling of the steel plate.

バルクの上部に存在する脱炭層は、露点温度を厳密に-10℃より高く20℃以下に設定するように炉内の雰囲気を制御することにより、冷間圧延鋼板の焼鈍中に得られる。 The decarburized layer present at the top of the bulk is obtained during annealing of cold rolled steel sheets by controlling the atmosphere in the furnace so that the dew point temperature is strictly set above -10°C and below 20°C.

本発明による被覆鋼板は、任意の適切な製造方法によって製造することができ、当業者はこれを規定することができる。しかしながら、以下のステップを含む本発明による方法を使用することが好ましい:
さらに熱間圧延することができる半製品に、上述の鋼組成を提供する。半製品を1150℃~1300℃を含む温度で再加熱する。
The coated steel sheet according to the invention can be manufactured by any suitable manufacturing method, which can be defined by a person skilled in the art. However, it is preferable to use the method according to the invention, which comprises the following steps:
A semi-finished product which can be further hot rolled is provided with the above-mentioned steel composition. The semi-finished product is reheated at a temperature comprised between 1150°C and 1300°C.

次いで、800℃~950℃を含む仕上げ熱間圧延温度で、鋼板を熱間圧延する。 The steel plate is then hot rolled at a finish hot rolling temperature comprising 800°C to 950°C.

次いで、熱間圧延鋼を冷却し、670℃未満の温度Tcoilで巻き取り、任意に酸洗いして酸化を除去する。 The hot rolled steel is then cooled and coiled at a temperature Tcoil below 670°C and optionally pickled to remove oxidation.

次いで、巻取り鋼板を任意に冷間圧延して、冷間圧延鋼板を得る。冷間圧延圧下率は、好ましくは20%~80%を含む。20%未満では、その後の熱処理中の再結晶は好ましくなく、鋼板の延性を損なう可能性がある。80%を超えると、冷間圧延中に端部割れが発生するリスクがある。 Then, the rolled steel plate is optionally cold rolled to obtain a cold rolled steel plate. The cold rolling reduction preferably comprises 20% to 80%. If it is less than 20%, recrystallization during subsequent heat treatment is undesirable and may impair the ductility of the steel sheet. If it exceeds 80%, there is a risk that end cracks will occur during cold rolling.

次いで、鋼板を、0%~15%のH2を含むHNx雰囲気中で、700℃~850℃を含む焼鈍温度Tまで焼鈍し、10秒~1200秒を含む保持時間tにわたって前記焼鈍温度Tに維持して、焼鈍鋼板を得る。700℃未満では、脱炭層の形成速度が遅すぎて、その上部にフェライト層を得ることができない。保持時間tは、フェライト層の形成を可能にするために10秒以上であり、このフェライト層の厚さを制限するために1200秒以下である。 The steel plate is then annealed in an HNx atmosphere containing 0% to 15% H2 to an annealing temperature T A comprising 700° C. to 850° C. and for a holding time t A comprising 10 seconds to 1200 seconds. A is maintained to obtain an annealed steel plate. If the temperature is less than 700°C, the formation rate of the decarburized layer is too slow to form a ferrite layer on top of the decarburized layer. The holding time tA is at least 10 seconds to allow the formation of a ferrite layer and at most 1200 seconds to limit the thickness of this ferrite layer.

この焼鈍中、炉内の雰囲気は、本発明による脱炭層を形成するために、厳密に-10℃より高く+20℃以下の露点温度TDP1を有するように制御される。TDP1が-10℃以下である場合、脱炭層の形成が遅くなり、その上部にフェライト層が形成されない。鋼部品の曲げ性は、低くなりすぎる。TDP1が20℃より高い場合、鋼板の表面が完全に酸化され、鋼板の被覆性及び機械的特性を損なう可能性がある。 During this annealing, the atmosphere in the furnace is controlled to have a dew point temperature T DP1 strictly above -10° C. and below +20° C. in order to form a decarburized layer according to the invention. When T DP1 is −10° C. or lower, the formation of a decarburized layer is delayed and a ferrite layer is not formed on top of the decarburized layer. The bendability of the steel parts becomes too low. If T DP1 is higher than 20° C., the surface of the steel sheet may be completely oxidized, which may impair the coverage and mechanical properties of the steel sheet.

本発明の一実施形態では、焼鈍鋼板は、700℃~850℃を含む焼鈍温度T2に加熱され、10秒~1200秒を含む保持時間t2にわたって前記温度T2に維持され、雰囲気は、厳密に-10℃より高く+20℃以下の露点TDP2を有する。 In one embodiment of the invention, the annealed steel plate is heated to an annealing temperature T2 comprising 700°C to 850°C and maintained at said temperature T2 for a holding time t2 comprising 10 seconds to 1200 seconds, and the atmosphere is strictly - It has a dew point T DP2 higher than 10°C and lower than +20°C.

次いで、鋼板は、アルミニウム合金被覆で被覆される。 The steel plate is then coated with an aluminum alloy coating.

次に、本発明によるプレス硬化鋼部品の微細構造を説明する。プレス硬化鋼部品の断面が、図3b及び図4bに概略的に表されている。 Next, the microstructure of the press hardened steel component according to the present invention will be explained. A cross-section of a press-hardened steel part is schematically represented in Figures 3b and 4b.

鋼部品は、鋼部品のバルクから表面までに連続的に以下、
-表面分率で、95%を超えるマルテンサイト及び5%未満のベイナイトを含む微細構造を有するバルク(7)、
-フェライト相互拡散層(6)、
-アルミニウムをベースとする被膜層(5)
を含む。
Steel parts are continuously processed from the bulk of the steel part to the surface as follows:
- a bulk (7) with a microstructure comprising, in surface fraction, more than 95% martensite and less than 5% bainite;
- ferrite interdiffusion layer (6),
- Aluminum-based coating layer (5)
including.

本発明による鋼板から切り出された鋼ブランクの加熱中に、バルクのすべての微細構造元素がオーステナイトに変態し、脱炭層のフェライトは、バルクのオーステナイトよりも広い粒径を有するオーステナイトに変態する。熱間成形後、鋼部品は次いで、ダイクエンチされる。相互拡散層は、前者の広粒径のオーステナイト層から成長するため、バルク中の旧オーステナイト粒径よりも大きい粒の幅を有する。機械的特性を低下させることなく、鋼板の曲げ性を改善するために、バルク中の旧オーステナイト粒径PAGSbulkに対する相互拡散層中のフェライト粒の幅GWintの比は、以下の式
(GWint/PAGSbulk)-1≧30%
を満たす。
During heating of the steel blank cut from the steel sheet according to the invention, all the microstructural elements of the bulk are transformed into austenite, and the ferrite of the decarburized layer is transformed into austenite with a wider grain size than the austenite of the bulk. After hot forming, the steel part is then die quenched. Since the interdiffused layer grows from the former wide grain size austenite layer, it has a grain width larger than the prior austenite grain size in the bulk. In order to improve the bendability of the steel sheet without reducing the mechanical properties, the ratio of the width GW int of the ferrite grains in the interdiffusion layer to the prior austenite grain size PAGS bulk in the bulk is determined by the following formula (GW int /PAGS bulk )-1≧30%
satisfy.

これは、機械的特性を劣化させることなく、鋼板の曲げ加工性を改善するためである。フェライト粒の幅は、相互拡散層の2つの平行な粒界間の平均距離であり、粒界は鋼板の厚さ方向に配向している。本発明による焼鈍温度T、焼鈍時間t及び露点温度TDP1の組み合わせは、相互拡散層における大きい粒の幅GWintの形成を促進する。さらに、プレス成形前の鋼ブランクの熱処理は、オーステナイト粒成長を制御し、したがってバルク中のPAGSを制御する。 This is to improve the bending workability of the steel sheet without deteriorating its mechanical properties. The width of the ferrite grains is the average distance between two parallel grain boundaries of the interdiffusion layer, and the grain boundaries are oriented in the thickness direction of the steel sheet. The combination of annealing temperature T A , annealing time t A and dew point temperature T DP1 according to the invention promotes the formation of a large grain width GW int in the interdiffusion layer. Additionally, heat treatment of the steel blank before stamping controls austenite grain growth and thus PAGS in the bulk.

一実施形態では、プレス硬化鋼部品は、図4bの(8)によって表されるように、バルクと相互拡散層との間に炭素勾配を有するマルテンサイト層をさらに含んでもよい。鋼ブランクの加熱中、炭素はバルクから表面に拡散する。次いで、脱炭層のフェライト上部は、炭素の勾配を有するオーステナイトの層に変態する。ダイクエンチ中、炭素の勾配を有するこのオーステナイト層は、炭素勾配を有するマルテンサイトの層に変態する。 In one embodiment, the press hardened steel part may further include a martensitic layer with a carbon gradient between the bulk and the interdiffusion layer, as represented by (8) in Figure 4b. During heating of the steel blank, carbon diffuses from the bulk to the surface. The ferrite top of the decarburized layer then transforms into a layer of austenite with a carbon gradient. During die quenching, this austenite layer with a carbon gradient transforms into a layer of martensite with a carbon gradient.

本発明によるプレス硬化鋼部品は、1500MPa以上の引張強度TS及び70°より大きい曲げ角度を有する。曲げ角度は、VDA238-100曲げ規格(厚さ1.5mmに正規化)に従って、プレス硬化部品において決定されている。 The press-hardened steel parts according to the invention have a tensile strength TS of more than 1500 MPa and a bending angle of more than 70°. Bending angles have been determined in press hardened parts according to the VDA238-100 bending standard (normalized to 1.5 mm thickness).

本発明の好ましい実施形態では、降伏強度YSは、1250MPa以上である。TS及びYSは、ISO規格ISO 6892-1に従って測定される。 In a preferred embodiment of the invention, the yield strength YS is 1250 MPa or more. TS and YS are measured according to the ISO standard ISO 6892-1.

本発明によるプレス硬化鋼部品は、任意の適切な製造方法によって製造することができ、当業者はそれを規定することができる。しかしながら、以下のステップを含む本発明による方法を使用することが好ましい:
本発明に係る被覆鋼板を所定の形状に切断して鋼ブランクを得る。次いで、鋼ブランクを880℃~950℃を含む温度に10秒~900秒間加熱して、加熱された鋼ブランクを得る。次いで、加熱されたブランクを、熱間成形及びダイクエンチする前に成形プレスに移す。
The press-hardened steel parts according to the invention can be manufactured by any suitable manufacturing method, which can be defined by a person skilled in the art. However, it is preferable to use the method according to the invention, which comprises the following steps:
A steel blank is obtained by cutting the coated steel plate according to the present invention into a predetermined shape. The steel blank is then heated to a temperature comprising 880° C. to 950° C. for 10 seconds to 900 seconds to obtain a heated steel blank. The heated blank is then transferred to a forming press before hot forming and die quenching.

ここで、本発明を以下の実施例によって説明するが、これらは決して限定的なものではない。 The present invention will now be illustrated by the following examples, which are in no way limiting.

表1に組成をまとめた6つのグレードを半製品に鋳造し、表2にまとめた加工パラメータに従って鋼板、次いで鋼部品に加工した。 The six grades whose compositions are summarized in Table 1 were cast into semifinished products and processed into steel sheets and then into steel parts according to the processing parameters summarized in Table 2.

表1-組成
試験した組成物を以下の表にまとめ、元素含有量を重量パーセントで表す。
Table 1 - Composition The compositions tested are summarized in the table below, with elemental content expressed in weight percent.

Figure 2023553672000002
Figure 2023553672000002

表2-加工パラメータ
鋳造された鋼半製品を1200℃で再加熱し、800~950℃を含む仕上げ熱間圧延温度で熱間圧延し、550℃で巻き取り、60%の圧下率で冷間圧延した。次いで、鋼板を温度Tに加熱し、制御された露点を有する5%のHを含むHNx雰囲気中で、保持時間tにわたって前記温度に維持する。次いで、鋼板を560~700℃の温度に冷却し、次いで、10%のケイ素を含むアルミニウム-ケイ素被膜で溶融めっき被覆した。
Table 2 - Processing parameters Cast steel semi-finished products are reheated at 1200°C, hot rolled at finishing hot rolling temperatures including 800-950°C, coiled at 550°C and cold rolled at a rolling reduction of 60%. Rolled. The steel plate is then heated to a temperature T A and maintained at said temperature for a holding time t A in an HNx atmosphere containing 5% H 2 with a controlled dew point. The steel plate was then cooled to a temperature of 560-700° C. and then hot-dipped coated with an aluminum-silicon coating containing 10% silicon.

試料1、2、5及び6を、被膜前に温度Tで第2の焼鈍に供し、鋼板は、5%のH及び制御された露点を有するHNx雰囲気中で、保持時間tにわたって前記T温度に維持した。以下の特定の条件を適用した: Samples 1, 2, 5 and 6 were subjected to a second annealing at a temperature T 2 before coating, and the steel plates were annealed for a holding time t 2 in an HNx atmosphere with 5% H 2 and a controlled dew point. Maintained at T2 temperature. Applying the following specific conditions:

Figure 2023553672000003
Figure 2023553672000003

被覆鋼板を分析し、脱炭層の対応する特性を表3にまとめる。 The coated steel plate is analyzed and the corresponding properties of the decarburized layer are summarized in Table 3.

表3-被覆鋼板の脱炭層の特性Table 3 - Characteristics of decarburized layer of coated steel sheet

Figure 2023553672000004
Figure 2023553672000004

次いで、被覆鋼板を切断して鋼ブランクを得て、900℃で6分間加熱し、熱間成形した。鋼部品を分析し、対応する微細構造、相互拡散層中のフェライト粒の幅GWint及びバルク中の旧オーステナイト粒径PAGSbulkを表4にまとめる。機械的特性を表5にまとめる。 Next, the coated steel plate was cut to obtain a steel blank, which was heated at 900° C. for 6 minutes and hot-formed. The steel parts are analyzed and the corresponding microstructures, the width of the ferrite grains in the interdiffused layer GW int and the prior austenite grain size in the bulk PAGS bulk are summarized in Table 4. The mechanical properties are summarized in Table 5.

表4-プレス硬化鋼部品の微細構造Table 4 - Microstructure of press hardened steel parts

Figure 2023553672000005
Figure 2023553672000005

表面分率、相互拡散層中のフェライト粒の幅及びPAGSは、以下の方法によって決定される:試験片をプレス硬化鋼部品から切断し、研磨し、それ自体公知の試薬でエッチングして、微細構造を明らかにする。その後、光学顕微鏡又は走査型電子顕微鏡、例えば、BSE(後方散乱電子)デバイスと組み合わせた5000倍を超える倍率の電界放出電子銃(「FEG-SEM」)を備えた走査型電子顕微鏡を用いて、断面を検査する。 The surface fraction, the width of the ferrite grains in the interdiffused layer and the PAGS are determined by the following method: specimens are cut from press-hardened steel parts, polished and etched with reagents known per se to form fine particles. Reveal the structure. Thereafter, using an optical microscope or a scanning electron microscope, for example a scanning electron microscope equipped with a field emission electron gun ("FEG-SEM") with a magnification of more than 5000 times in combination with a BSE (backscattered electron) device, Inspect the cross section.

表5-プレス硬化鋼部品の機械的特性
試験した試料の機械的特性を測定し、以下の表にまとめた:
Table 5 - Mechanical properties of press hardened steel parts The mechanical properties of the tested samples were measured and summarized in the table below:

Figure 2023553672000006
Figure 2023553672000006

実施例は、本発明による鋼部品、すなわち実施例1~2が、それらの特定の組成及び微細構造のおかげですべての目標特性を示す唯一の鋼部品であることを示している。 The examples show that the steel parts according to the invention, namely Examples 1-2, are the only steel parts that exhibit all the target properties thanks to their specific composition and microstructure.

図3aは、試験2の被覆鋼板の概略断面図を表す。本発明の加工パラメータ、焼鈍温度T、焼鈍時間t及び露点温度TDP1の組み合わせにより、上部にフェライトの層(4)が形成された脱炭層(3)を得ることが可能になる。 FIG. 3a represents a schematic cross-sectional view of the coated steel plate of Test 2. The combination of the processing parameters of the present invention, annealing temperature TA , annealing time tA , and dew point temperature TDP1 , makes it possible to obtain a decarburized layer (3) on which a ferrite layer (4) is formed.

次いで、被覆鋼板を熱間成形する。図3bは、試験2のプレス硬化鋼部品の概略断面図を表す。 Next, the coated steel plate is hot formed. Figure 3b represents a schematic cross-sectional view of the press-hardened steel part of Test 2.

相互拡散層(5)内に形成されるフェライトの粒の幅は、加熱中にオーステナイト形成が起こる純粋なフェライト層の遺産であり、より大きい粒径を有する。相互拡散層は、この大きいオーステナイト粒径で成長する。相互拡散層(6)のフェライトの粒の幅は、バルク(7)の旧オーステナイト粒径よりも大きく、70°より大きい曲げ角度を有して良好な曲げ性をもたらす。 The width of the ferrite grains formed in the interdiffused layer (5) is a legacy of the pure ferrite layer where austenite formation occurs during heating and has a larger grain size. An interdiffusion layer grows with this large austenite grain size. The width of the ferrite grains in the interdiffused layer (6) is larger than the prior austenite grain size in the bulk (7) and has a bending angle greater than 70°, resulting in good bendability.

図4aは、試験1の被覆鋼板の概略断面図を表す。本発明の加工パラメータ、焼鈍温度T、焼鈍時間t及び露点温度TDP1の組み合わせにより、より高いC含有量のために試験1よりも厚い、上部にフェライトの層(4)が形成された脱炭層(3)を得ることが可能になる。 FIG. 4a represents a schematic cross-sectional view of the coated steel plate of Test 1. The combination of the inventive processing parameters, annealing temperature TA , annealing time tA and dew point temperature TDP1 , resulted in the formation of a layer of ferrite on top (4), thicker than in test 1 due to the higher C content. It becomes possible to obtain a decarburized layer (3).

次いで、被覆鋼板を熱間成形する。図4bは、試験1のプレス硬化鋼部品の概略断面図を表す。 Next, the coated steel plate is hot formed. FIG. 4b represents a schematic cross-sectional view of the press-hardened steel part of Test 1.

相互拡散層(6)内に形成されるフェライトの粒の幅は、加熱中にオーステナイト形成が起こる純粋なフェライト層の遺産であり、より大きい粒径を有する。相互拡散層は、この大きいオーステナイト粒径で成長する。相互拡散層(6)のフェライトの粒の幅は、バルク(7)の旧オーステナイト粒径よりも大きく、70°より大きい曲げ角度を有して良好な曲げ性をもたらす。さらに、被覆鋼板中の厚いフェライト層(4)により、炭素勾配を有するマルテンサイトの層が、プレス硬化鋼部品中のバルクと相互拡散層との間に形成され、1500MPaより高い引張強度をもたらす。 The width of the ferrite grains formed in the interdiffused layer (6) is a legacy of the pure ferrite layer where austenite formation occurs during heating and has a larger grain size. An interdiffusion layer grows with this large austenite grain size. The width of the ferrite grains in the interdiffused layer (6) is larger than the prior austenite grain size in the bulk (7) and has a bending angle greater than 70°, resulting in good bendability. Furthermore, due to the thick ferrite layer (4) in the coated steel sheet, a layer of martensite with carbon gradient is formed between the bulk and the interdiffusion layer in the press-hardened steel part, resulting in a tensile strength higher than 1500 MPa.

試験3では、被覆鋼板は、図2aに概略的に表されるように、その上部にフェライト層のない脱炭層を有する。フェライト層が存在しないのは、-10℃の低い露点温度TDP1によるものであり、これは脱炭の速度を遅くする。 In test 3, the coated steel plate has a decarburized layer without a ferrite layer on top of it, as schematically represented in Fig. 2a. The absence of a ferrite layer is due to the low dew point temperature T DP1 of −10° C., which slows down the rate of decarburization.

次いで、被覆鋼板を熱間成形する。図2bは、試験3からのプレス硬化鋼部品の概略断面図を表す。フェライト層が存在しないため、相互拡散層(6)のフェライト粒の幅はバルク(7)の旧オーステナイト粒径と同等であり、70°未満の低い曲げ角度をもたらす。 Next, the coated steel plate is hot formed. Figure 2b represents a schematic cross-sectional view of the press-hardened steel part from Test 3. Due to the absence of a ferrite layer, the width of the ferrite grains in the interdiffused layer (6) is comparable to the prior austenite grain size in the bulk (7), resulting in a low bending angle of less than 70°.

試験4では、-40℃の低い露点温度TDP1は、被覆鋼板に脱炭層及びフェライト層が存在しないことを示唆する。 In test 4, the low dew point temperature T DP1 of −40° C. suggests that there is no decarburized layer and ferrite layer in the coated steel sheet.

図1aは、被膜層(1)及びバルク(2)を有する、この試験の被覆鋼板の概略断面図を表す。 FIG. 1a represents a schematic cross-sectional view of the coated steel plate of this test, with the coating layer (1) and the bulk (2).

次いで、被覆鋼板を熱間成形する。図1bは、試験4からのプレス硬化鋼部品の概略断面図を表す。フェライト層が存在しないため、相互拡散層(6)のフェライト粒の幅はバルク(7)の旧オーステナイト粒径と同等であり、70°未満の低い曲げ角度をもたらす。 Next, the coated steel plate is hot formed. FIG. 1b represents a schematic cross-sectional view of the press-hardened steel part from Test 4. Due to the absence of a ferrite layer, the width of the ferrite grains in the interdiffused layer (6) is comparable to the prior austenite grain size in the bulk (7), resulting in a low bending angle of less than 70°.

試験5では、鋼板を均熱温度で10800秒間維持し、これにより、被覆鋼板に、以前の試験よりも脱炭層により厚いフェライト層が形成される。図5aは、試験5の被覆鋼板の概略断面図を表し、被膜層(1)、脱炭層(3)、より粗い粒径を有するより厚いフェライト層(4)及びバルク(2)を有する。 In test 5, the steel plate is held at the soaking temperature for 10800 seconds, which results in the formation of a thicker ferrite layer on the coated steel plate with a decarburized layer than in the previous tests. Figure 5a represents a schematic cross-section of the coated steel plate of test 5, with a coating layer (1), a decarburized layer (3), a thicker ferrite layer with coarser grain size (4) and the bulk (2).

次いで、被覆鋼板を熱間成形し、図5bは試験5からのプレス硬化鋼部品の概略断面図を表す。鋼部品の加熱中、バルクの微細構造はオーステナイトであり、厚いフェライト層は、炭素の勾配を有するオーステナイトの層に変態する。しかし、100μmより厚いフェライト層の厚さのために、フェライトの層は、相互拡散層と炭素の勾配を有するオーステナイトの層との間に存在したままである。 The coated steel plate was then hot formed and Figure 5b represents a schematic cross-sectional view of the press hardened steel part from test 5. During heating of the steel part, the bulk microstructure is austenitic and the thick ferrite layer transforms into a layer of austenite with a carbon gradient. However, due to the thickness of the ferrite layer greater than 100 μm, a layer of ferrite remains between the interdiffusion layer and the layer of austenite with carbon gradient.

鋼部品のダイクエンチ中、フェライト層は依然として存在し、炭素勾配を有するオーステナイトの層は、炭素の勾配を有するマルテンサイト層に変態し、多相層をもたらす。これは降伏強度の低下を引き起こす。 During die quenching of steel parts, the ferrite layer is still present and the layer of austenite with carbon gradient transforms into the martensitic layer with carbon gradient, resulting in a multiphase layer. This causes a decrease in yield strength.

試験6では、鋼板は、0.21%の低い炭素レベルを有する。この低い炭素含有量は、加工パラメータと組み合わされて、フェライト層を有する被覆鋼板の脱炭層をもたらす。それにもかかわらず、プレス硬化鋼部品の降伏強度及び引張強度は、炭素レベルが低いために達成されない。 In test 6, the steel plate has a low carbon level of 0.21%. This low carbon content, combined with the processing parameters, results in a decarburized layer of the coated steel sheet with a ferrite layer. Nevertheless, yield strength and tensile strength of press hardened steel parts are not achieved due to low carbon levels.

Claims (7)

重量パーセントで、以下、
C:0.26~0.40%
Mn:0.5~1.8%
Si:0.1~1.25%
Al:0.01~0.1%
Cr:0.1~1.0%
Ti:0.01~0.1%
B:0.001~0.004%
P≦0.020%
S≦0.010%
N≦0.010%
を含み、
及び任意に、重量パーセントで、以下、
Ni≦0.5%
Mo≦0.40%
Nb≦0.08%
Ca≦0.1%
の元素のうちの1つ以上を含む、
組成を有する鋼でできた被覆鋼板であって、 当該組成の残りが、鉄及び精錬から生じる不可避不純物であり、 前記被覆鋼板が、当該被覆鋼板のバルクから表面までに以下、
-表面分率で60%~90%のフェライトを含み、残りが島状マルテンサイト-オーステナイト、パーライト又はベイナイトである微細構造を有するバルク、
-かかるバルクは、上部に1μm~100μmの厚さを有するフェライト層を含む脱炭層で覆われており、
-アルミニウム又はアルミニウム合金でできた被膜層
を含む、被覆鋼板。
In weight percent, the following:
C: 0.26-0.40%
Mn: 0.5-1.8%
Si: 0.1-1.25%
Al: 0.01~0.1%
Cr: 0.1-1.0%
Ti: 0.01~0.1%
B: 0.001-0.004%
P≦0.020%
S≦0.010%
N≦0.010%
including;
and optionally, in percent by weight,
Ni≦0.5%
Mo≦0.40%
Nb≦0.08%
Ca≦0.1%
containing one or more of the elements of
A coated steel plate made of steel having a composition, the remainder of the composition being iron and unavoidable impurities resulting from smelting, and wherein the coated steel plate has the following from the bulk to the surface of the coated steel plate:
- a bulk with a microstructure containing 60% to 90% ferrite in terms of surface fraction, the remainder being island martensite - austenite, pearlite or bainite;
- such bulk is covered with a decarburized layer comprising a ferrite layer on top with a thickness of 1 μm to 100 μm;
- Coated steel sheets containing a coating layer made of aluminum or aluminum alloys.
被覆鋼板を製造するための方法であって、
以下の連続するステップ、
-請求項1に記載の組成を有する鋼を鋳造してスラブを得るステップ、
-前記スラブを1100℃~1300℃を含む温度Treheatで再加熱するステップ、
-800℃~950℃を含む仕上げ熱間圧延温度で再加熱された前記スラブを熱間圧延するステップ
-670℃未満の巻取り温度Tcoilで前記熱間圧延鋼板を巻き取って、巻取り鋼板を得る工程、
-任意に、前記巻取り鋼板を酸洗いするステップ、
-任意に、前記巻取り鋼板を冷間圧延して、冷間圧延鋼板を得るステップ、
-熱間圧延鋼板又は冷間圧延鋼板を700℃~850℃を含む焼鈍温度Tに加熱し、10秒~1200秒を含む保持時間tにわたって鋼板を前記温度Tに維持して、焼鈍鋼板を得るステップであって、雰囲気が0%~15%のH2を含み、厳密に-10℃より高く+20℃以下の露点TDP1を有する、ステップ、
-前記焼鈍鋼板を560℃~700℃の温度範囲に冷却するステップ、
-前記焼鈍鋼板をアルミニウム又はアルミニウム合金被膜で被覆するステップ
-前記被覆鋼板を室温に冷却するステップ
を含む、方法。
A method for manufacturing a coated steel sheet, the method comprising:
The following consecutive steps,
- casting a steel having a composition according to claim 1 to obtain a slab;
- reheating said slab at a temperature T reheat comprising 1100°C to 1300°C;
hot rolling the reheated slab at a finish hot rolling temperature of -800°C to 950°C; coiling the hot rolled steel plate at a coiling temperature T coil of less than -670°C to obtain a rolled steel plate; The process of obtaining
- optionally pickling the rolled steel sheet;
- optionally cold rolling said rolled steel sheet to obtain a cold rolled steel sheet;
- annealing a hot-rolled steel plate or a cold-rolled steel plate by heating it to an annealing temperature TA comprising 700°C to 850°C and maintaining the steel plate at said temperature TA for a holding time tA comprising 10 seconds to 1200 seconds; obtaining a steel plate, the atmosphere containing 0% to 15% H2 and having a dew point T DP1 strictly higher than -10°C and lower than +20°C;
- cooling the annealed steel plate to a temperature range of 560°C to 700°C;
A method comprising: - coating the annealed steel plate with an aluminum or aluminum alloy coating; - cooling the coated steel plate to room temperature.
プレス硬化鋼部品であって、重量パーセントで、以下、
C:0.26~0.40%
Mn:0.5~1.8%
Si:0.1~1.25%
Al:0.01~0.1%
Cr:0.1~1.0%
Ti:0.01~0.1%
B:0.001~0.004%
P≦0.020%
S≦0.010%
N≦0.010%
を含み、
及び任意に、重量パーセントで、以下、
Ni≦0.5%
Mo≦0.40%
Nb≦0.08%
Ca≦0.1%
の元素のうちの1つ以上を含む
組成を有し、
当該組成の残りが、鉄及び精錬から生じる不可避不純物であり、
前記鋼部品が、当該鋼部品のバルクから表面までに連続的に以下、
-表面分率で、95%を超えるマルテンサイト及び5%未満のベイナイトを含む微細構造を有するバルク、
-フェライト相互拡散層、
-アルミニウムをベースとする被膜層、
を含み、
前記バルク中の旧オーステナイト粒径PAGSbulkに対する前記相互拡散層中のフェライト粒の幅GWintの比が、以下の式、
(GWint/PAGSbulk)-1≧30%
を満たす、プレス硬化鋼部品。
Press-hardened steel parts, in weight percent:
C: 0.26-0.40%
Mn: 0.5-1.8%
Si: 0.1-1.25%
Al: 0.01~0.1%
Cr: 0.1-1.0%
Ti: 0.01~0.1%
B: 0.001-0.004%
P≦0.020%
S≦0.010%
N≦0.010%
including;
and optionally, in percent by weight,
Ni≦0.5%
Mo≦0.40%
Nb≦0.08%
Ca≦0.1%
has a composition containing one or more of the elements,
The remainder of the composition is unavoidable impurities resulting from iron and smelting,
The steel part continuously comprises the following steps from the bulk to the surface of the steel part:
- a bulk with a microstructure comprising, in surface fraction, more than 95% martensite and less than 5% bainite,
- ferrite interdiffusion layer,
- a coating layer based on aluminum,
including;
The ratio of the width GW int of the ferrite grains in the interdiffused layer to the prior austenite grain size PAGS bulk in the bulk is expressed by the following formula,
(GW int /PAGS bulk )-1≧30%
meet, press hardened steel parts.
前記バルクと前記フェライト相互拡散層との間に炭素勾配を有するマルテンサイトの層を含む、請求項3に記載のプレス硬化鋼部品。 4. The press hardened steel component of claim 3, including a layer of martensite with a carbon gradient between the bulk and the ferrite interdiffusion layer. 1500MPa以上の引張強度TS及び70°より大きい曲げ角度を有する、請求項3又は4に記載のプレス硬化鋼部品。 Press-hardened steel component according to claim 3 or 4, having a tensile strength TS of 1500 MPa or more and a bending angle of more than 70°. 1250MPa以上の降伏強度YSを有する、請求項5に記載のプレス硬化鋼部品。 The press hardened steel component according to claim 5, having a yield strength YS of 1250 MPa or more. 請求項3~6のいずれか一項に記載のプレス硬化鋼部品を製造するための方法であって、以下の連続するステップ、
-請求項1に記載の組成を有する、又は請求項2に記載の方法によって製造された鋼板を提供するステップ、
-鋼ブランクを得るために、前記鋼板を所定の形状に切断するステップ、
-鋼ブランクを880℃~950℃を含む温度に10秒~900秒間加熱して、加熱された鋼ブランクを得るステップ、
-加熱されたブランクを成形プレスに移すステップ、
-前記成形プレス内で加熱されたブランクを熱間成形して成形部品を得るステップ、
-前記成形部品をダイクエンチするステップ
を含む、方法。
A method for manufacturing a press-hardened steel part according to any one of claims 3 to 6, comprising the following successive steps:
- providing a steel plate having the composition according to claim 1 or produced by the method according to claim 2;
- cutting said steel plate into a predetermined shape to obtain a steel blank;
- heating the steel blank to a temperature comprising 880°C to 950°C for 10 seconds to 900 seconds to obtain a heated steel blank;
- transferring the heated blank to a forming press;
- hot forming the heated blank in said forming press to obtain a formed part;
- A method comprising the step of die-quenching said molded part.
JP2023536409A 2020-12-16 2021-12-03 Coated steel sheet and high strength press hardened steel part and manufacturing method thereof Active JP7665755B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/IB2020/062045 WO2022129995A1 (en) 2020-12-16 2020-12-16 Coated steel sheet and high strength press hardened steel part and method of manufacturing the same
IBPCT/IB2020/062045 2020-12-16
PCT/IB2021/061291 WO2022130101A1 (en) 2020-12-16 2021-12-03 Coated steel sheet and high strength press hardened steel part and method of manufacturing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2025063527A Division JP2025108506A (en) 2020-12-16 2025-04-08 Coated steel sheet and high strength press hardened steel part and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2023553672A true JP2023553672A (en) 2023-12-25
JP7665755B2 JP7665755B2 (en) 2025-04-21

Family

ID=73856237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023536409A Active JP7665755B2 (en) 2020-12-16 2021-12-03 Coated steel sheet and high strength press hardened steel part and manufacturing method thereof

Country Status (10)

Country Link
US (1) US20240102138A1 (en)
EP (1) EP4263882A1 (en)
JP (1) JP7665755B2 (en)
KR (1) KR20230100737A (en)
CN (1) CN116568828A (en)
BR (1) BR112023008984A2 (en)
CA (1) CA3200721A1 (en)
MX (1) MX2023007039A (en)
WO (2) WO2022129995A1 (en)
ZA (1) ZA202305067B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116219271B (en) * 2022-07-22 2024-01-09 宝山钢铁股份有限公司 Aluminum-silicon plated steel sheet, thermoformed part and manufacturing method thereof
WO2024105428A1 (en) * 2022-11-14 2024-05-23 Arcelormittal High toughness press-hardened steel part and method of manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037130A (en) * 2004-07-23 2006-02-09 Nippon Steel Corp Manufacturing method of plated steel sheet for hot press
JP2012041597A (en) * 2010-08-18 2012-03-01 Nippon Steel Corp Plated steel sheet for hot press having excellent delayed fracture resistance, and method for producing the same
JP2016504488A (en) * 2012-09-06 2016-02-12 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ Method for producing press-hardened coated steel parts and pre-coated steel sheets enabling the production of the parts
WO2017145329A1 (en) * 2016-02-25 2017-08-31 新日鐵住金株式会社 High strength hot-dip galvanized steel sheet with excellent impact peel resistance and worked section corrosion resistance
JP2017525849A (en) * 2014-07-30 2017-09-07 アルセロールミタル Method for producing press-hardening steel sheet and parts obtained by the method
WO2020130666A1 (en) * 2018-12-19 2020-06-25 주식회사 포스코 Plated steel sheet for hot press forming having excellent impact properties after hot press forming, hot press formed member, and manufacturing methods thereof
JP2020522614A (en) * 2017-06-01 2020-07-30 アルセロールミタル Method for producing high strength steel parts with improved ductility, and parts obtained by said method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188830A1 (en) * 2013-05-22 2014-11-27 株式会社村田製作所 Fibrillated liquid-crystal polymer powder, method for manufacturing fibrillated liquid-crystal polymer powder, paste, resin multilayered substrate, and method for manufacturing resin multilayered substrate
KR101569508B1 (en) 2014-12-24 2015-11-17 주식회사 포스코 Hot press formed parts having excellent bendability, and method for the same
WO2017006144A1 (en) * 2015-07-09 2017-01-12 Arcelormittal Steel for press hardening and press hardened part manufactured from such steel
US20180237877A1 (en) * 2017-02-17 2018-08-23 GM Global Technology Operations LLC Mitigating liquid metal embrittlement in zinc-coated press hardened steels
WO2018179839A1 (en) 2017-03-30 2018-10-04 Jfeスチール株式会社 Hot pressed member and method for manufacturing same
WO2019171157A1 (en) * 2018-03-09 2019-09-12 Arcelormittal A manufacturing process of press hardened parts with high productivity

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037130A (en) * 2004-07-23 2006-02-09 Nippon Steel Corp Manufacturing method of plated steel sheet for hot press
JP2012041597A (en) * 2010-08-18 2012-03-01 Nippon Steel Corp Plated steel sheet for hot press having excellent delayed fracture resistance, and method for producing the same
JP2016504488A (en) * 2012-09-06 2016-02-12 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ Method for producing press-hardened coated steel parts and pre-coated steel sheets enabling the production of the parts
JP2017525849A (en) * 2014-07-30 2017-09-07 アルセロールミタル Method for producing press-hardening steel sheet and parts obtained by the method
WO2017145329A1 (en) * 2016-02-25 2017-08-31 新日鐵住金株式会社 High strength hot-dip galvanized steel sheet with excellent impact peel resistance and worked section corrosion resistance
JP2020522614A (en) * 2017-06-01 2020-07-30 アルセロールミタル Method for producing high strength steel parts with improved ductility, and parts obtained by said method
WO2020130666A1 (en) * 2018-12-19 2020-06-25 주식회사 포스코 Plated steel sheet for hot press forming having excellent impact properties after hot press forming, hot press formed member, and manufacturing methods thereof

Also Published As

Publication number Publication date
KR20230100737A (en) 2023-07-05
CA3200721A1 (en) 2022-06-23
EP4263882A1 (en) 2023-10-25
US20240102138A1 (en) 2024-03-28
JP7665755B2 (en) 2025-04-21
CN116568828A (en) 2023-08-08
MX2023007039A (en) 2023-06-23
WO2022129995A1 (en) 2022-06-23
BR112023008984A2 (en) 2024-02-06
WO2022130101A1 (en) 2022-06-23
ZA202305067B (en) 2024-06-26

Similar Documents

Publication Publication Date Title
US20240026479A1 (en) Hot press-formed member having excellent crack propagation resistance and ductility, and method for producing same
KR102197876B1 (en) Hot press forming member
US12173380B2 (en) Steel sheet and method for producing same
JP2023554400A (en) Coated steel plate, high-strength press-hardened steel parts, and manufacturing method thereof
JPWO2007129676A1 (en) Hot press-formed steel sheet member and manufacturing method thereof
CN115652218B (en) A low-carbon high-toughness hot stamping formed component and steel plate
JPWO2019151017A1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and methods for producing them
CN100590217C (en) Hot-rolled steel sheet, manufacturing method thereof, and hot-rolled steel sheet formed body
US20240287636A1 (en) High strength steel sheet and method for manufacturing the same
JP2024138480A (en) Heat-treated cold-rolled steel sheet and its manufacturing method
JP7665755B2 (en) Coated steel sheet and high strength press hardened steel part and manufacturing method thereof
WO2021172298A1 (en) Steel sheet, member, and methods respectively for producing said steel sheet and said member
WO2021172299A1 (en) Steel sheet, member, and methods respectively for producing said steel sheet and said member
WO2021172297A1 (en) Steel sheet, member, and methods respectively for producing said steel sheet and said member
CN115605621A (en) Cold-rolled annealed steel sheet or hot-pressed annealed steel parts
JP4317506B2 (en) Manufacturing method of high strength parts
JP5034296B2 (en) Hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
RU2821182C2 (en) Coated steel sheet and part from high-strength, hardened by pressing steel and method of their manufacturing
RU2825971C1 (en) Coated steel sheet and part from high-strength press-hardened steel and method of their manufacturing
JP2025108506A (en) Coated steel sheet and high strength press hardened steel part and manufacturing method thereof
WO2024166881A1 (en) Hot stamp molded body and steel sheet, and methods for producing same
WO2024166891A1 (en) Hot stamp molded body, steel sheet, and methods for manufacturing same
KR20230157997A (en) Method for manufacturing hot-formed parts or heat-treated preformed parts and steel strips, sheets or blanks
KR20220149776A (en) Steel article and method for manufacturing the same
CN119137303A (en) Cold rolled martensitic steel and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20250311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20250409

R150 Certificate of patent or registration of utility model

Ref document number: 7665755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150