JP2023516457A - Composite wire for anode lead wire of tantalum capacitor and manufacturing method - Google Patents
Composite wire for anode lead wire of tantalum capacitor and manufacturing method Download PDFInfo
- Publication number
- JP2023516457A JP2023516457A JP2022553607A JP2022553607A JP2023516457A JP 2023516457 A JP2023516457 A JP 2023516457A JP 2022553607 A JP2022553607 A JP 2022553607A JP 2022553607 A JP2022553607 A JP 2022553607A JP 2023516457 A JP2023516457 A JP 2023516457A
- Authority
- JP
- Japan
- Prior art keywords
- tantalum
- anode lead
- wire
- composite wire
- tantalum capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 title claims abstract description 127
- 229910052715 tantalum Inorganic materials 0.000 title claims abstract description 88
- 239000002131 composite material Substances 0.000 title claims abstract description 72
- 239000003990 capacitor Substances 0.000 title claims abstract description 60
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 title claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 15
- 239000002184 metal Substances 0.000 claims abstract description 15
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 14
- 239000000956 alloy Substances 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 12
- 229910001362 Ta alloys Inorganic materials 0.000 claims abstract description 8
- 229910001092 metal group alloy Inorganic materials 0.000 claims abstract description 5
- 229910001257 Nb alloy Inorganic materials 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 239000010955 niobium Substances 0.000 claims description 6
- RHDUVDHGVHBHCL-UHFFFAOYSA-N niobium tantalum Chemical group [Nb].[Ta] RHDUVDHGVHBHCL-UHFFFAOYSA-N 0.000 claims description 6
- 238000005096 rolling process Methods 0.000 claims description 5
- 238000003466 welding Methods 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 238000002788 crimping Methods 0.000 claims description 3
- 239000002360 explosive Substances 0.000 claims description 3
- 238000001125 extrusion Methods 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 238000004663 powder metallurgy Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 238000003672 processing method Methods 0.000 claims description 2
- 238000000927 vapour-phase epitaxy Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 abstract description 17
- 238000002048 anodisation reaction Methods 0.000 abstract description 5
- 239000002344 surface layer Substances 0.000 abstract description 4
- 239000011162 core material Substances 0.000 description 18
- 239000010408 film Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229920001342 Bakelite® Polymers 0.000 description 3
- 239000004637 bakelite Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910001093 Zr alloy Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 241001062472 Stokellia anisodon Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/008—Terminals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/0029—Processes of manufacture
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Powder Metallurgy (AREA)
- Chemical Treatment Of Metals (AREA)
Abstract
【課題】 本発明は、タンタルコンデンサの陽極リード線用複合線材及び製造方法を開示する。
【解決手段】 ただし、当該タンタルコンデンサの陽極リード線用複合線材は、純タンタル以外の他の金属、又はタンタル合金若しくは他の金属合金を材質とするコアと、コアの外面を被覆するタンタル金属層とを含む。本発明の技術的解決手段を用いれば、タンタルコンデンサの陽極リード線用複合線材は純タンタル以外の他の金属又は合金のコアと、コアの外面を被覆するタンタル金属層とを有し、このように、表層のタンタル金属が陽極酸化によってその表面に高誘電率、高信頼性の酸化膜を形成できるという特性を十分に利用し、また安価な金属又は合金でそのコア部を充填することにより、タンタルコンデンサに求められる陽極リード線の高誘電率を満たすとともに、コストを大幅に低減する。
【選択図】図1
Kind Code: A1 The present invention discloses a composite wire for an anode lead wire of a tantalum capacitor and a manufacturing method thereof.
SOLUTION: However, the composite wire material for the anode lead wire of the tantalum capacitor includes a core made of a metal other than pure tantalum, a tantalum alloy or another metal alloy, and a tantalum metal layer covering the outer surface of the core. including. According to the technical solution of the present invention, the composite wire for the anode lead of a tantalum capacitor has a core made of a metal or alloy other than pure tantalum, and a tantalum metal layer covering the outer surface of the core, such Secondly, by making full use of the characteristic that the tantalum metal on the surface layer can form an oxide film with a high dielectric constant and high reliability on the surface by anodization, and by filling the core with an inexpensive metal or alloy, The high dielectric constant of the anode lead required for tantalum capacitors is satisfied, and the cost is greatly reduced.
[Selection drawing] Fig. 1
Description
本発明は、コンデンサの技術分野に関し、具体的には、タンタルコンデンサの陽極リード線用複合線材及び製造方法に関する。 TECHNICAL FIELD The present invention relates to the technical field of capacitors, and more particularly to a composite wire for anode lead wires of tantalum capacitors and a manufacturing method thereof.
現在、タンタルコンデンサは、通信、コンピュータ、自動車、家電、航空宇宙の分野に広く用いられている。タンタル粉を陽極とし、タンタル線を陽極リード線として製造されるタンタルコンデンサは、体積が小さく、容量が大きく、表面実装が容易であり、信頼性に優れ、耐用年数が長いなどの利点を有する。そのため、多くの他のコンデンサ(例えばセラミック、アルミニウム薄膜などのコンデンサ)が適切でない過酷な条件で安定的に動作することができる。 Currently, tantalum capacitors are widely used in the fields of communications, computers, automobiles, home appliances, and aerospace. A tantalum capacitor manufactured with tantalum powder as the anode and tantalum wire as the anode lead has advantages such as small volume, large capacitance, easy surface mounting, high reliability, and long service life. Therefore, it can operate stably in harsh conditions where many other capacitors (eg, ceramic, aluminum thin film capacitors, etc.) are not suitable.
しかし、タンタルは希有金属として、資源が乏しく、抽出製錬が困難であり、コストが高く、純タンタル又は高タンタル含有量の合金を陽極リード線として使用すれば、その表面における陽極酸化によって形成された高誘電率で、高信頼性の酸化膜を保証するが、タンタル金属が高価であるため、その高コストもその適用分野及び範囲を大きく制限する。 However, tantalum, as a rare metal, is scarce in resources, difficult to extract and smelt, and has a high cost. Although it guarantees a high dielectric constant and highly reliable oxide film, its high cost also greatly limits its application and scope, since tantalum metal is expensive.
したがって、コストが比較的低いが、誘電率がタンタルコンデンサの要求を満たすことができる陽極リード線を早急に開発しなければならない。 Therefore, there is an urgent need to develop anode leads that are relatively low in cost but whose dielectric constant can meet the requirements of tantalum capacitors.
本発明は、コストが比較的低いが、誘電率がタンタルコンデンサの要求を満たすことができる陽極リード線を提供するように、タンタルコンデンサの陽極リード線用複合線材及び製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION The object of the present invention is to provide a composite wire for the anode lead wire of a tantalum capacitor and a manufacturing method, so as to provide an anode lead wire that is relatively low in cost but whose dielectric constant can meet the requirements of the tantalum capacitor. and
上記目的を達成するために、本発明の一態様によれば、タンタルコンデンサの陽極リード線用複合線材を提供する。当該タンタルコンデンサの陽極リード線用複合線材は、純タンタル以外の他の金属、又はタンタル合金若しくは他の金属合金を材質とするコアと、コアの外面を被覆するタンタル金属層とを含む。 In order to achieve the above object, according to one aspect of the present invention, a composite wire for an anode lead wire of a tantalum capacitor is provided. The composite wire for the anode lead wire of the tantalum capacitor includes a core made of a metal other than pure tantalum, a tantalum alloy, or another metal alloy, and a tantalum metal layer covering the outer surface of the core.
さらに、タンタル金属層の材質がタンタルニオブ合金である場合、タンタルの含有量は50%より大きく、かつタンタルとニオブの含有量の和は95%より大きく、タンタル金属層の材質がタンタルニオブ合金以外の他の合金である場合、タンタルの含有量は95%より大きい。 Furthermore, when the material of the tantalum metal layer is a tantalum-niobium alloy, the content of tantalum is greater than 50% and the sum of the contents of tantalum and niobium is greater than 95%, and the material of the tantalum metal layer is other than a tantalum-niobium alloy. other alloys, the tantalum content is greater than 95%.
さらに、タンタルコンデンサの陽極リード線用複合線材の横断面は円形、楕円形、又は多角形である。 Furthermore, the cross-section of the composite wire for the anode lead of the tantalum capacitor is circular, elliptical, or polygonal.
さらに、タンタル金属層の横断面積がタンタルコンデンサの陽極リード線用複合線材の横断面積を占める比率範囲は1%~80%であり、好ましくは1~50%である。 Furthermore, the ratio of the cross-sectional area of the tantalum metal layer to the cross-sectional area of the composite wire for the anode lead wire of the tantalum capacitor is 1% to 80%, preferably 1% to 50%.
さらに、複合線材の横断面は軸対称形状であり、最長軸≦3.0mm、最短軸≧0.1mmである。 Furthermore, the cross section of the composite wire is axially symmetrical, with the longest axis≦3.0 mm and the shortest axis≧0.1 mm.
さらに、コアの材料はニオブ、ジルコニウム、タングステン、モリブデン、チタン、ニッケル、鉄、銅、アルミニウム、マグネシウム、コバルト及びその合金からなる群から選択された1種又は多種である。 Furthermore, the core material is one or more selected from the group consisting of niobium, zirconium, tungsten, molybdenum, titanium, nickel, iron, copper, aluminum, magnesium, cobalt and alloys thereof.
本発明の一態様によれば、タンタルコンデンサの陽極リード線用複合線材の製造方法を提供する。当該製造方法は、コアを提供するステップS1と、コアの外面をタンタル金属層で被覆し、タンタルコンデンサの陽極リード線用複合線材を得るステップS2とを含む。 SUMMARY OF THE INVENTION According to one aspect of the present invention, a method for manufacturing a composite wire for an anode lead of a tantalum capacitor is provided. The manufacturing method includes a step S1 of providing a core and a step S2 of coating the outer surface of the core with a tantalum metal layer to obtain a composite wire for the anode lead of a tantalum capacitor.
さらに、S2の後、タンタルコンデンサの陽極リード線用複合線材に対して押出、圧延、ロータリースウェージング及び引き抜きのうち1種又は多種の加工方式を用いて必要な寸法に加工するステップをさらに含む。 Further, after S2, the step of processing the composite wire for the anode lead wire of the tantalum capacitor into a required size using one or more processing methods of extrusion, rolling, rotary swaging and drawing is further included.
さらに、S2においてコアの外面をタンタル金属層で被覆することは、粉末冶金、肉盛溶接、爆発圧着(爆着クラッド)、管装いクラッド又は鋳込みクラッド、気相成長の方法によって実現される。 In addition, coating the outer surface of the core with a tantalum metal layer in S2 is achieved by methods of powder metallurgy, build-up welding, explosive crimping (explosion clad), tube sheath clad or cast clad, and vapor deposition.
本発明の技術的解決手段を用いれば、タンタルコンデンサの陽極リード線用複合線材は純タンタル以外の他の金属、又はタンタル合金若しくは他の合金のコアと、コアの外面を被覆するタンタル金属層とを有し、このように、表層のタンタル金属が陽極酸化によってその表面に高誘電率、高信頼性の酸化膜を形成できるという特性を十分に利用し、また安価な金属又は合金でそのコア部を充填することにより、タンタルコンデンサに求められる陽極リード線の高誘電率を満たすとともに、コストを大幅に低減する。 According to the technical solution of the present invention, the composite wire for the anode lead of a tantalum capacitor comprises a core made of a metal other than pure tantalum, a tantalum alloy or other alloys, and a tantalum metal layer covering the outer surface of the core. In this way, the tantalum metal of the surface layer can form an oxide film with a high dielectric constant and high reliability on the surface by anodization, and the core part is made of an inexpensive metal or alloy. By filling with , the high dielectric constant of the anode lead required for tantalum capacitors is satisfied, and the cost is greatly reduced.
本願の一部を構成する明細書の図面は、本発明のさらなる理解を提供するために用いられ、本発明の例示的な実施例及びその説明は、本発明を解釈するために用いられ、本発明を不当に限定するものではない。 The drawings of the specification, which forms part of the present application, are used to provide a further understanding of the invention, and the illustrative embodiments of the invention and their descriptions are used to interpret the invention, and the description thereof. The invention is not to be unduly limited.
なお、矛盾しない場合、本願の実施例及び実施例における特徴は互いに組み合わせることができる。以下、図面を参照し、かつ実施例と合わせて、本発明について詳細に説明する。 It should be noted that the embodiments of the present application and the features in the embodiments can be combined with each other when not inconsistent. The present invention will now be described in detail with reference to the drawings and together with examples.
タンタル線又は高タンタル含有量の合金線がタンタルコンデンサの陽極リード線用線材となるのは、主にタンタルが陽極酸化によりその表面に非常に薄く、高誘電率を有し、かつ信頼性が高い酸化膜を形成できるからである。しかし、従来技術で製造されるタンタル線又は高タンタル含有量の合金線は、価格が高く、広く使用できないか、又は性能がタンタルコンデンサのすべての品質要求を満たすことができない。これらの技術問題に対して、本発明は以下の技術的解決手段を提案する。 The tantalum wire or alloy wire with high tantalum content is used as the wire material for the anode lead wire of the tantalum capacitor, mainly because tantalum is very thin on the surface due to anodization, has a high dielectric constant, and has high reliability. This is because an oxide film can be formed. However, the tantalum wire or high tantalum content alloy wire produced by the prior art is expensive, cannot be widely used, or the performance cannot meet all the quality requirements of tantalum capacitors. The present invention proposes the following technical solutions to these technical problems.
本発明の典型的な実施形態によれば、タンタルコンデンサの陽極リード線用複合線材を提供する。当該タンタルコンデンサの陽極リード線用複合線材は、図1に示すように、コア10と、コアの外面を被覆するタンタル金属層20とを含み、ただし、コアの材質は純タンタル以外の他の金属、又はタンタル合金若しくは他の金属合金である。 According to an exemplary embodiment of the present invention, a composite wire for a tantalum capacitor anode lead is provided. The composite wire material for the anode lead wire of the tantalum capacitor includes, as shown in FIG. , or a tantalum alloy or other metal alloy.
本発明の技術的解決手段を用いれば、タンタルコンデンサの陽極リード線用複合線材は純タンタル以外の他の金属、又はタンタル合金若しくは他の金属合金のコアと、コアの外面を被覆するタンタル金属層とを有し、このように、表層のタンタル金属が陽極酸化によってその表面に高誘電率、高信頼性の酸化膜を形成できるという特性を十分に利用し、また安価な金属又は合金でそのコア部を充填することにより、タンタルコンデンサに求められる陽極リード線の高誘電率を満たすとともに、コストを大幅に低減する。 According to the technical solution of the present invention, the composite wire for the anode lead of a tantalum capacitor comprises a core made of a metal other than pure tantalum, or a tantalum alloy or other metal alloy, and a tantalum metal layer covering the outer surface of the core. In this way, the tantalum metal of the surface layer can form an oxide film with a high dielectric constant and high reliability on the surface by anodization, and the core is made of an inexpensive metal or alloy. By filling the part, the high dielectric constant of the anode lead required for the tantalum capacitor is satisfied and the cost is greatly reduced.
タンタル金属層の材質がタンタルニオブ合金である場合、タンタルの含有量は50%より大きく、かつタンタルとニオブの含有量の和は95%より大きく、タンタル金属層の材質がタンタルニオブ合金以外の他の合金である場合、タンタルの含有量は95%より大きい。典型的には、タンタルコンデンサの陽極リード線用複合線材の表層が陽極酸化によってその表面に高誘電率の酸化膜を形成できることを保証するように、タンタル金属層中のタンタルの含有量を95%以上とする。コアは、用いるタンタル合金中のタンタルの含有量が90%未満であれば、コストの低減に十分であり、当然ながら、タンタル合金中のタンタルの含有量は、80%、70%、60%未満であることが好ましく、50%、40%、30%、20%、10%など未満であることがより好ましい。本発明の典型的な実施例では、コアの材料はニオブ、ジルコニウム、タングステン、モリブデン、チタン、ニッケル、鉄、銅、アルミニウム、マグネシウム、コバルト及びその合金からなる群から選択された1種又は多種である。タンタルコンデンサの陽極リード線用複合線材の横断面は、実際の需要に応じて、例えば円形、楕円形又は多角形など、任意の形状に設定することができ、ただし、多角形は正方形、長方形、菱形、五角形、六角形などである。 When the material of the tantalum metal layer is a tantalum-niobium alloy, the tantalum content is greater than 50% and the sum of the tantalum and niobium contents is greater than 95%, and the material of the tantalum metal layer is other than the tantalum-niobium alloy. , the tantalum content is greater than 95%. Typically, the tantalum content in the tantalum metal layer is 95% so as to ensure that the surface layer of the composite wire for the anode lead of a tantalum capacitor can form a high dielectric constant oxide film on its surface by anodization. That's it. The core is sufficient for cost reduction if the tantalum content in the tantalum alloy used is less than 90%, of course the tantalum content in the tantalum alloy is less than 80%, 70%, 60%. and more preferably less than 50%, 40%, 30%, 20%, 10%, etc. In an exemplary embodiment of the invention, the core material is one or more selected from the group consisting of niobium, zirconium, tungsten, molybdenum, titanium, nickel, iron, copper, aluminum, magnesium, cobalt and alloys thereof. be. The cross section of the composite wire for the anode lead wire of the tantalum capacitor can be set to any shape, such as circular, oval or polygonal, according to the actual demand, provided that the polygon can be square, rectangular, Rhombus, pentagon, hexagon, etc.
タンタルの性能を十分に発揮し、その優れた性能指標を保証する上でコストが高すぎないことを可能にするために、タンタル金属層の被覆面積比を1%~80%とすることが好ましく、1%~50%とすることがより好ましく、すなわち、表面タンタル金属層の横断面積がタンタルコンデンサの陽極リード線用複合線材の横断面積を占める比率範囲は1%~80%であり、より好ましくは、1%~50%である。 A coverage ratio of 1% to 80% of the tantalum metal layer is preferred to allow the full performance of tantalum and not be too costly to ensure its excellent performance indicators. , more preferably 1% to 50%, that is, the ratio range of the cross-sectional area of the surface tantalum metal layer to the cross-sectional area of the composite wire for the anode lead wire of the tantalum capacitor is 1% to 80%, more preferably. is between 1% and 50%.
本発明の典型的な実施形態によれば、前記複合線材の横断面は軸対称形状であり、最長軸≦3.0mm、最短軸≧0.1mmである。 According to a typical embodiment of the present invention, the cross-section of said composite wire is axially symmetrical, with the longest axis≦3.0 mm and the shortest axis≧0.1 mm.
本発明の発明目的の下で、本発明の典型的な実施形態によれば、タンタルコンデンサを提供する。当該タンタルコンデンサは陽極リード線を含み、陽極リード線は、上記タンタルコンデンサの陽極リード線用複合線材を用いて作製される。本発明のタンタルコンデンサの陽極リード線用複合線材を用いるため、当該タンタルコンデンサは、性能が優れるとともに、コストが大幅に低下する。 SUMMARY OF THE INVENTION Under the inventive object of the present invention, a tantalum capacitor is provided according to an exemplary embodiment of the present invention. The tantalum capacitor includes an anode lead wire, and the anode lead wire is produced using the composite wire material for the anode lead wire of the tantalum capacitor. Since the composite wire material for the anode lead wire of the tantalum capacitor of the present invention is used, the tantalum capacitor is excellent in performance and significantly reduced in cost.
本発明の典型的な実施形態によれば、上記タンタルコンデンサの陽極リード線用複合線材の製造方法を提供する。当該製造方法は、コアを提供するステップS1と、コアの外面をタンタル金属層で被覆し、タンタルコンデンサの陽極リード線用複合線材を得るステップS2とを含む。 According to a typical embodiment of the present invention, there is provided a method of manufacturing a composite wire for the anode lead of the tantalum capacitor. The manufacturing method includes a step S1 of providing a core and a step S2 of coating the outer surface of the core with a tantalum metal layer to obtain a composite wire for the anode lead of a tantalum capacitor.
本発明の典型的な実施例では、実際の需要に応じて、S2の後、タンタルコンデンサの陽極リード線用複合線材に対して押出、圧延、ロータリースウェージング、引き抜きに限定されない方式を用いて必要な寸法に加工するステップをさらに含む。ただし、S2においてコアの外面をタンタル金属層で被覆することは、粉末冶金、肉盛溶接、爆発圧着、管装いクラッド又は鋳込みクラッドなどに限定されない方法を用いて実現することができる。 In a typical embodiment of the present invention, after S2, the composite wire for the anode lead wire of the tantalum capacitor is processed according to the actual demand, using methods that are not limited to extrusion, rolling, rotary swaging, and drawing. further comprising machining to suitable dimensions. However, coating the outer surface of the core with a tantalum metal layer in S2 can be accomplished using methods such as, but not limited to, powder metallurgy, overlay welding, explosive crimping, tube sheathing cladding, or cast cladding.
以下、実施例と合わせて、本発明の有益な効果についてさらに説明する。
(実施例1)
直径30mmで、長さ600mmのTa-40%Nb合金棒を、内径50mmで、長さ700mmの薄壁プラスチックパイプに入れ、まず、一端をベークライトキャップで密封し、3kgのタンタル粉末をパイプに入れ、それをTa-40%Nb合金棒の周りに均一に分布させる。そして、他端をベークライトキャップで密封する。200MPaの圧力下で静水圧プレスを行い、5×10^-2Pa以上の真空下で、2000℃で180分間焼結し、また250MPaで静水圧プレスを行い、また2200℃で、真空下で180分間焼結し、外径35mmの複合棒材を得る。
The beneficial effects of the present invention will be further described below in conjunction with examples.
(Example 1)
A Ta-40%Nb alloy rod with a diameter of 30 mm and a length of 600 mm was put into a thin-walled plastic pipe with an inner diameter of 50 mm and a length of 700 mm, one end was first sealed with a bakelite cap, and 3 kg of tantalum powder was put into the pipe. , to distribute it uniformly around the Ta-40%Nb alloy rod. The other end is then sealed with a bakelite cap. It is isostatically pressed under a pressure of 200 MPa, sintered at 2000° C. for 180 minutes under a vacuum of 5×10 −2 Pa or more, and isostatically pressed at 250 MPa and 180° C. under vacuum at 2200° C. After sintering for a minute, a composite bar with an outer diameter of 35 mm is obtained.
この複合棒を直径が13mmになるようにロータリースウェージング加工し、酸洗後、真空下で、1250℃で60分間保温して焼鈍し、また直径が3mmになるようにロータリースウェージング加工し、酸洗後、真空下で、1250℃で60分間保温して焼鈍し、直径1.2mmの複合線材になるようにマルチダイス引き抜き(2つまたは2つ以上のダイで連続して2回または2回以上の引き抜きを行うこと)を行い、酸洗を行い、真空下で、1250℃で60分間保温して焼鈍し、直径0.25mmの複合線材になるようにマルチダイス引き抜きを行う。 This composite rod was subjected to rotary swaging so as to have a diameter of 13 mm, pickled, annealed at 1250° C. for 60 minutes under vacuum, and further subjected to rotary swaging so as to have a diameter of 3 mm, After pickling, annealed at 1250°C for 60 minutes under vacuum, multi-die drawing (2 or more dies continuously twice or twice) to form a composite wire with a diameter of 1.2 mm. It is pickled, annealed at 1250° C. for 60 minutes under vacuum, and multi-die drawing is performed to obtain a composite wire with a diameter of 0.25 mm.
(実施例2)
直径30mmで、長さ600mmのNb-1%Zr合金棒を、内径50mmで、長さ700mmの薄壁プラスチックパイプに入れ、まず、一端をベークライトキャップで密封し、3kgの(タンタル粉末95%+ニオブ粉末5%)をパイプに入れ、それをNb-1%Zr合金棒の周りに均一に分布させる。そして、他端をベークライトキャップで密封する。200MPaの圧力下で静水圧プレスを行い、5×10^-2Pa以上の真空下で、2000℃で180分間焼結し、また250MPaで静水圧プレスを行い、また2200℃で、真空下で180分間焼結し、外径35mmの複合棒材を得る。
(Example 2)
A Nb-1%Zr alloy rod with a diameter of 30 mm and a length of 600 mm is placed in a thin-walled plastic pipe with an inner diameter of 50 mm and a length of 700 mm. Niobium powder 5%) is put into the pipe and it is evenly distributed around the Nb-1%Zr alloy rod. The other end is then sealed with a bakelite cap. It is isostatically pressed under a pressure of 200 MPa, sintered at 2000° C. for 180 minutes under a vacuum of 5×10 −2 Pa or more, and isostatically pressed at 250 MPa and 180° C. under vacuum at 2200° C. After sintering for a minute, a composite bar with an outer diameter of 35 mm is obtained.
この複合棒を直径が13mmになるようにロータリースウェージング加工し、酸洗後、真空下で、1250℃で60分間保温して焼鈍し、また直径が3mmになるようにロータリースウェージング加工し、酸洗後、真空下で、1250℃で60分間保温して焼鈍し、直径1.2mmの複合線材になるようにマルチダイス引き抜きを行い、酸洗を行い、真空下で、1250℃で60分間保温して焼鈍し、直径0.25mmの複合線材になるようにマルチダイス引き抜きを行う。 This composite rod was subjected to rotary swaging so as to have a diameter of 13 mm, pickled, annealed at 1250° C. for 60 minutes under vacuum, and further subjected to rotary swaging so as to have a diameter of 3 mm, After pickling, the wire is annealed at 1,250°C for 60 minutes under vacuum, drawn with a multi-die to form a composite wire with a diameter of 1.2 mm, pickled, and vacuumed at 1,250°C for 60 minutes. It is heat-retained and annealed, and multi-die drawing is performed so as to obtain a composite wire having a diameter of 0.25 mm.
(実施例3)
直径12mmで、長さ1000mmのSS304ステンレス棒に対して、長さ1000mmで、幅39mmで、厚さ0.5mmのタンタルテープを、図1に示すように、ステンレス棒の表面に密着し、タンタルテープをアルゴンアーク溶接によりシーム溶接し、外径13mmの複合棒材を形成し、真空下で、1250℃で180分間保温して焼鈍する。
(Example 3)
As shown in FIG. 1, a tantalum tape having a length of 1000 mm, a width of 39 mm, and a thickness of 0.5 mm is applied to an SS304 stainless steel bar having a diameter of 12 mm and a length of 1000 mm. The tape is seam-welded by argon arc welding to form a composite bar with an outer diameter of 13 mm, which is annealed under vacuum at 1250° C. for 180 minutes.
直径13mmの複合棒材の後続する加工プロセスは、実施例1と同じで、最終的に直径0.25mmの複合線材を得る。 The subsequent working process of the 13 mm diameter composite bar is the same as in Example 1, finally obtaining a 0.25 mm diameter composite wire.
(実施例4)
直径24mmで、長さ500mmのTa-50%Nb合金棒に対して、長さ500mmで、幅78mmで、厚さ0.5mmのタンタルテープを、図1に示すように、合金棒の表面に密着し、タンタルテープをアルゴンアーク溶接によりシーム溶接し、外径25mmの複合棒材を形成し、真空下で、1250℃で180分間保温して焼鈍する。
(Example 4)
For a Ta-50%Nb alloy rod with a diameter of 24 mm and a length of 500 mm, a tantalum tape having a length of 500 mm, a width of 78 mm and a thickness of 0.5 mm was applied to the surface of the alloy rod as shown in FIG. The tantalum tape is seam-welded by argon arc welding to form a composite bar with an outer diameter of 25 mm, which is annealed under vacuum at 1250° C. for 180 minutes.
直径25mmの複合棒材の後続する加工プロセスは、実施例1と同じで、最終的に直径0.80mmの複合線材を得る。 The subsequent working process of the 25 mm diameter composite bar is the same as in Example 1, finally obtaining a 0.80 mm diameter composite wire.
(実施例5)
直径12mmで、長さ1000mmのニッケル棒を、外径17mmで、内径12.5mmで、長さ1000mmのタンタルパイプに貫入し、真空下で、1250℃で180分間保温して焼鈍し、外径17mmの複合棒材を得る。
(Example 5)
A nickel rod with a diameter of 12 mm and a length of 1000 mm is penetrated into a tantalum pipe with an outer diameter of 17 mm, an inner diameter of 12.5 mm and a length of 1000 mm, and is annealed under vacuum at 1250° C. for 180 minutes to obtain an outer diameter of A 17 mm composite bar is obtained.
直径17mmの複合棒材の後続する加工プロエスは、実施例1と同じで、最終的に直径0.15mmの複合線材を得る。 The subsequent processing process of the 17 mm diameter composite bar is the same as in Example 1 to finally obtain a 0.15 mm diameter composite wire.
(実施例6)
直径10.5mmで、長さ1000mmのニッケル棒を、外径12mmで、内径11mmで、長さ1000mmのタンタルパイプに貫入し、真空下で、1250℃で180分間保温して焼鈍し、外径12mmの複合棒材を得る。
(Example 6)
A nickel rod with a diameter of 10.5 mm and a length of 1000 mm is penetrated into a tantalum pipe with an outer diameter of 12 mm, an inner diameter of 11 mm and a length of 1000 mm, and is annealed under vacuum at 1250° C. for 180 minutes to obtain an outer diameter of A 12 mm composite bar is obtained.
この複合棒を直径が3mmになるようにロータリースウェージング加工し、酸洗後、真空下で、1250℃で60分間保温して焼鈍し、直径1.2mmの複合線材になるようにマルチダイス引き抜きを行い、酸洗を行い、真空下で、1250℃で60分間保温して焼鈍し、1.5mm×0.5mmの複合フラットワイヤになるように小型マルチローラ圧延機で圧延する。 This composite rod is rotary swaged to a diameter of 3 mm, pickled, annealed at 1250° C. for 60 minutes under vacuum, and multi-die drawn to a composite wire with a diameter of 1.2 mm. and pickled, annealed at 1250° C. for 60 minutes under vacuum, and rolled with a small multi-roller rolling mill to form a composite flat wire of 1.5 mm×0.5 mm.
(実施例7)
直径12mmで、長さ1000mmの65黄銅棒を、外径14mmで、内径12.5mmで、長さ1000mmの微小結晶粒をドープしたタンタルパイプ(シリコンを500PPM、ランタンを200PPM含有する)に貫入し、真空下で、1250℃で180分間保温して焼鈍し、外径14mmの複合棒材を得る。
(Example 7)
A 12 mm diameter, 1000 mm long 65 brass rod was penetrated into a 14 mm outer diameter, 12.5 mm inner diameter, and 1000 mm long micrograin-doped tantalum pipe (containing 500 PPM silicon and 200 PPM lanthanum). and annealed at 1250° C. for 180 minutes under vacuum to obtain a composite bar with an outer diameter of 14 mm.
この複合棒を直径が3mmになるようにロータリースウェージング加工し、酸洗後、真空下で、1250℃で60分間保温して焼鈍し、直径1.2mmの複合線材になるようにマルチダイス引き抜きを行い、酸洗を行い、真空下で、1250℃で60分間保温して焼鈍し、1.5mm×0.5mmの複合フラットワイヤになるように小型マルチローラ圧延機で圧延する。 This composite rod is rotary swaged to a diameter of 3 mm, pickled, annealed at 1250° C. for 60 minutes under vacuum, and multi-die drawn to a composite wire with a diameter of 1.2 mm. and pickled, annealed at 1250° C. for 60 minutes under vacuum, and rolled with a small multi-roller rolling mill to form a composite flat wire of 1.5 mm×0.5 mm.
実施例1-7において作製されたタンタルコンデンサの陽極リード線用複合線及び純金属タンタル線についての検出結果を以下の表1-4に示す。 Table 1-4 below shows the detection results for the composite anode lead wire and the pure metal tantalum wire of the tantalum capacitor produced in Example 1-7.
以上の結果から見れば、複合線の各検出結果はいずれも純金属タンタル線の中国国家標準(GB/T 26012-2010)による要求を達成するか、又はそれより優れ、純金属タンタル線の試験レベルに相当する。 From the above results, it can be seen that each detection result of the composite wire meets or exceeds the requirements of the Chinese national standard for pure metal tantalum wire (GB/T 26012-2010). Equivalent to level.
以上の実施例1、2、3に従って作製された複合線と、純金属タンタル線をそれぞれタンタル粉末とプレスし、焼結して製造されたタンタルコンデンサの陽極ブロックについて、検出結果の比較を以下の表5、6及び7に示す。 The composite wire and the pure metal tantalum wire produced according to Examples 1, 2, and 3 above are respectively pressed with tantalum powder and sintered to manufacture the anode block of the tantalum capacitor. The detection results are compared below. Shown in Tables 5, 6 and 7.
今回の実験は複合線、純金属タンタル線をそれぞれタンタル粉末とプレス成形し、焼結してタンタルコンデンサの陽極ブロックを製造し、漏れ電流の湿式、乾式検出結果によれば、複合線と純金属タンタル線の試験値は基本的に相当し、いずれも中国国家標準(GB/T 2612-2010)の要求より優れるか、又はそれに合致する。 In this experiment, the composite wire and pure metal tantalum wire were pressed with tantalum powder and sintered to produce the anode block of the tantalum capacitor. The test values of the tantalum wire are basically equivalent, and they all exceed or meet the requirements of the Chinese national standard (GB/T 2612-2010).
以上の説明から分かるように、本発明の上記実施例は、以下のような技術的効果を果たす。
1)本発明の上記実施例で製造された複合線材の表面はタンタルの高誘電率を有し、タンタルコンデンサの使用要求を満たすことができ、かつ優れた電気性能を有する。
2)コア部は安価な金属又は合金を採用し、希有資源であるタンタルの使用量を大幅に減少し、コストを大幅に低減する。
As can be seen from the above description, the above embodiments of the present invention achieve the following technical effects.
1) The surface of the composite wire produced in the above embodiment of the present invention has a high dielectric constant of tantalum, which can meet the application requirements of tantalum capacitors and has excellent electrical performance.
2) Inexpensive metals or alloys are used for the core portion, the amount of rare resource tantalum used is greatly reduced, and the cost is greatly reduced.
以上は本発明の好ましい実施例にすぎず、本発明を限定するものではなく、当業者にとって、本発明は様々な修正及び変更が可能である。本発明の精神と原則内で行われたすべての修正、同等の置換、改善などは、いずれも本発明の保護範囲内に含まれるべきである。
The above are only preferred embodiments of the present invention, and are not intended to limit the present invention, and various modifications and changes are possible for those skilled in the art. All modifications, equivalent replacements, improvements, etc. made within the spirit and principle of the present invention shall all fall within the protection scope of the present invention.
Claims (10)
前記コアの外面を被覆するタンタル金属層とを含む、
ことを特徴とするタンタルコンデンサの陽極リード線用複合線材。 a core made of metal other than pure tantalum, or a tantalum alloy or other metal alloy;
a tantalum metal layer covering the outer surface of the core;
A composite wire for an anode lead wire of a tantalum capacitor, characterized by:
ことを特徴とする請求項1に記載のタンタルコンデンサの陽極リード線用複合線材。 When the material of the tantalum metal layer is a tantalum-niobium alloy, the tantalum content is greater than 50% and the sum of the tantalum and niobium contents is greater than 95%, and the material of the tantalum metal layer is other than the tantalum-niobium alloy. the tantalum content is greater than 95%, if other alloys of
The composite wire for anode lead wire of a tantalum capacitor according to claim 1, characterized in that:
ことを特徴とする請求項1に記載のタンタルコンデンサの陽極リード線用複合線材。 The cross section of the composite wire for the anode lead wire of the tantalum capacitor is circular, elliptical, or polygonal.
The composite wire for anode lead wire of a tantalum capacitor according to claim 1, characterized in that:
ことを特徴とする請求項1に記載のタンタルコンデンサの陽極リード線用複合線材。 The ratio of the cross-sectional area of the tantalum metal layer to the cross-sectional area of the composite wire for the anode lead of the tantalum capacitor is 1% to 80%, preferably 1 to 50%.
The composite wire for anode lead wire of a tantalum capacitor according to claim 1, characterized in that:
ことを特徴とする請求項4に記載のタンタルコンデンサの陽極リード線用複合線材。 The cross section of the composite wire is axially symmetrical, with the longest axis ≤ 3.0 mm and the shortest axis ≥ 0.1 mm.
The composite wire for anode lead wire of a tantalum capacitor according to claim 4, characterized in that:
ことを特徴とする請求項1に記載のタンタルコンデンサの陽極リード線用複合線材。 The material of the core is one or more selected from the group consisting of niobium, zirconium, tungsten, molybdenum, titanium, nickel, iron, copper, aluminum, magnesium, cobalt and alloys thereof.
The composite wire for anode lead wire of a tantalum capacitor according to claim 1, characterized in that:
ことを特徴とするタンタルコンデンサ。 A tantalum capacitor comprising an anode lead wire, wherein the anode lead wire is manufactured using the composite wire for the anode lead wire of a tantalum capacitor according to any one of claims 1 to 6,
A tantalum capacitor characterized by:
コアを提供するステップS1と、
前記コアの外面をタンタル金属層で被覆し、前記タンタルコンデンサの陽極リード線用複合線材を得るステップS2とを含む、
ことを特徴とするタンタルコンデンサの陽極リード線用複合線材の製造方法。 A method for manufacturing a composite wire for an anode lead wire of a tantalum capacitor according to any one of claims 1 to 6,
a step S1 of providing a core;
and a step S2 of coating the outer surface of the core with a tantalum metal layer to obtain a composite wire for the anode lead of the tantalum capacitor.
A method for producing a composite wire for an anode lead wire of a tantalum capacitor, characterized by:
ことを特徴とする請求項8に記載の製造方法。 After S2, the step of processing the composite wire for the anode lead wire of the tantalum capacitor to a required size using one or more processing methods of extrusion, rolling, rotary swaging, and drawing,
The manufacturing method according to claim 8, characterized in that:
ことを特徴とする請求項8に記載の製造方法。
Coating the outer surface of the core with a tantalum metal layer in S2 is achieved by a method of powder metallurgy, overlay welding, explosive crimping, tube sheathing clad, cast clad or vapor phase epitaxy.
The manufacturing method according to claim 8, characterized in that:
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010351049.7A CN111524707B (en) | 2020-04-28 | 2020-04-28 | Composite wire material for anode lead of tantalum capacitor and preparation method thereof |
CN202010351049.7 | 2020-04-28 | ||
PCT/CN2020/121951 WO2021218058A1 (en) | 2020-04-28 | 2020-10-19 | Composite wire for anode lead of tantalum capacitor, and preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023516457A true JP2023516457A (en) | 2023-04-19 |
JP7667580B2 JP7667580B2 (en) | 2025-04-23 |
Family
ID=71911144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022553607A Active JP7667580B2 (en) | 2020-04-28 | 2020-10-19 | Composite wire for anode lead wire of tantalum capacitor and manufacturing method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7667580B2 (en) |
CN (1) | CN111524707B (en) |
MX (1) | MX2022013062A (en) |
WO (1) | WO2021218058A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111524707B (en) * | 2020-04-28 | 2022-07-08 | 北京安邦特资源技术有限公司 | Composite wire material for anode lead of tantalum capacitor and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63502072A (en) * | 1985-12-23 | 1988-08-11 | ス−パ−コン インコ−ポレ−テツド | Lead wire for tantalum capacitor, tantalum capacitor including this lead wire, and method for manufacturing the lead wire |
JPH05228527A (en) * | 1992-02-24 | 1993-09-07 | Toshiba Corp | High melting metal composite wire |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4646197A (en) * | 1985-12-23 | 1987-02-24 | Supercon, Inc. | Tantalum capacitor lead wire |
US4734827A (en) * | 1985-12-23 | 1988-03-29 | Supercon, Inc. | Tantalum capacitor lead wire |
JPH088202B2 (en) * | 1990-06-08 | 1996-01-29 | 日立エーアイシー株式会社 | Tantalum solid electrolytic capacitor |
JPH06291000A (en) * | 1993-04-02 | 1994-10-18 | Shinko Metal Prod Kk | Lead wire for tantalum capacitor |
US6051326A (en) * | 1997-04-26 | 2000-04-18 | Cabot Corporation | Valve metal compositions and method |
JP2003272958A (en) | 2002-03-18 | 2003-09-26 | Matsushita Electric Ind Co Ltd | Electrode member for solid electrolytic capacitor and solid electrolytic capacitor using the same |
CN101345139B (en) * | 2007-07-12 | 2011-10-05 | 电子科技大学 | A solid tantalum electrolytic capacitor and its manufacturing method |
CN104823253A (en) * | 2013-02-26 | 2015-08-05 | 宁夏东方钽业股份有限公司 | Tantalum-niobium alloy wire used for anode lead of electrolytic capacitor and manufacturing method thereof |
CN103390506B (en) * | 2013-07-30 | 2016-04-27 | 株洲宏达电子股份有限公司 | A kind of microminiature non-solid tantalum electrolytic capacitor and manufacture method thereof |
CN111524707B (en) * | 2020-04-28 | 2022-07-08 | 北京安邦特资源技术有限公司 | Composite wire material for anode lead of tantalum capacitor and preparation method thereof |
-
2020
- 2020-04-28 CN CN202010351049.7A patent/CN111524707B/en active Active
- 2020-10-19 JP JP2022553607A patent/JP7667580B2/en active Active
- 2020-10-19 WO PCT/CN2020/121951 patent/WO2021218058A1/en active Application Filing
- 2020-10-19 MX MX2022013062A patent/MX2022013062A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63502072A (en) * | 1985-12-23 | 1988-08-11 | ス−パ−コン インコ−ポレ−テツド | Lead wire for tantalum capacitor, tantalum capacitor including this lead wire, and method for manufacturing the lead wire |
JPH05228527A (en) * | 1992-02-24 | 1993-09-07 | Toshiba Corp | High melting metal composite wire |
Also Published As
Publication number | Publication date |
---|---|
JP7667580B2 (en) | 2025-04-23 |
CN111524707A (en) | 2020-08-11 |
WO2021218058A1 (en) | 2021-11-04 |
MX2022013062A (en) | 2022-12-08 |
CN111524707B (en) | 2022-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7480978B1 (en) | Production of electrolytic capacitors and superconductors | |
US6521173B2 (en) | Low oxygen refractory metal powder for powder metallurgy | |
WO2007109612A2 (en) | Valve metal ribbon type fibers for solid electrolytic capacitors | |
WO2013011881A1 (en) | Electrode material for aluminum electrolytic capacitor, and method for producing same | |
EP0576634B1 (en) | Porous electrolytic anode | |
JPH07507421A (en) | Extruded capacitor electrode and its manufacturing method | |
WO2012161158A1 (en) | Electrode material for aluminum electrolytic capacitor, and process for producing same | |
JP2023516457A (en) | Composite wire for anode lead wire of tantalum capacitor and manufacturing method | |
AU585113B2 (en) | Tantalum capacitor lead wire | |
JP6719141B2 (en) | Nb3Sn superconducting wire manufacturing method, precursor for Nb3Sn superconducting wire, and Nb3Sn superconducting wire using the same | |
US4646197A (en) | Tantalum capacitor lead wire | |
US4734827A (en) | Tantalum capacitor lead wire | |
WO2019073616A1 (en) | Electrode material for aluminum electrolytic capacitors and method for producing same | |
CN100369168C (en) | Solid Electrolytic Capacitor | |
JP2019019403A (en) | Manufacturing method of electrode material | |
JP2008047756A (en) | Manufacturing method of valve metal composite electrode foil | |
EP1573828B1 (en) | Production of electrolytic capacitors and superconductors | |
JP4157369B2 (en) | Cold cathode tube electrode and cold cathode tube using the same | |
WO2014131149A1 (en) | Tantalum-niobium alloy wire used for anode lead of electrolytic capacitor and manufacturing method thereof | |
JPH06291000A (en) | Lead wire for tantalum capacitor | |
JPS5946412B2 (en) | Composite wire material for tantalum capacitor lead wire | |
Sedlatschek | Refractory metals Tungsten, Molybdenum and Tantalum= Trudnotopliwqe metale: wolfram, molibden i tantal | |
JPH06252005A (en) | Lead terminal for electrolytic capacitor | |
GB191205028A (en) | A Drawn Metal Filament and a Process of Manufacturing same. | |
JPH0737453A (en) | Superconducting wire manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220905 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230912 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231212 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20240312 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240710 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20240710 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20240730 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20240906 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20250404 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7667580 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |