[go: up one dir, main page]

JP2023176962A - Anisotropic conductive sheet and method for manufacturing anisotropic conductive sheet - Google Patents

Anisotropic conductive sheet and method for manufacturing anisotropic conductive sheet Download PDF

Info

Publication number
JP2023176962A
JP2023176962A JP2022089576A JP2022089576A JP2023176962A JP 2023176962 A JP2023176962 A JP 2023176962A JP 2022089576 A JP2022089576 A JP 2022089576A JP 2022089576 A JP2022089576 A JP 2022089576A JP 2023176962 A JP2023176962 A JP 2023176962A
Authority
JP
Japan
Prior art keywords
conductive sheet
anisotropic conductive
electrode
insulating layer
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022089576A
Other languages
Japanese (ja)
Inventor
真吾 長谷
Shingo Hase
彰 佐藤
Akira Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Totoku
Takano Co Ltd
TOTOKU CO Ltd
Original Assignee
Totoku
Takano Co Ltd
TOTOKU CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totoku, Takano Co Ltd, TOTOKU CO Ltd filed Critical Totoku
Priority to JP2022089576A priority Critical patent/JP2023176962A/en
Priority to PCT/JP2023/018877 priority patent/WO2023234089A1/en
Priority to KR1020247029977A priority patent/KR20250018464A/en
Priority to TW112120245A priority patent/TW202412398A/en
Publication of JP2023176962A publication Critical patent/JP2023176962A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Leads Or Probes (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

Figure 2023176962000001

【課題】貫通部を分割して複数の貫通孔からなる構成にすることで、半導体デバイス等の被検査物に加わる力を抑えつつ、安定して検査を繰り返し行うことが可能な構成の異方性導電シートを提供することを目的とする。
【解決手段】異方性導電シート1は、樹脂材料からなるシート状の絶縁層2と、絶縁層2を厚み方向に貫通した複数の貫通部3と、貫通部3それぞれに形成された金属薄膜からなる貫通電極31(または貫通電極32)とを有し、貫通部3は、複数の貫通孔2cが区画部2dにて区画されて周方向に独立形成され、貫通電極31(または貫通電極32)は貫通孔2cに配される構成である。
【選択図】図1

Figure 2023176962000001

[Problem] An anisotropic structure that allows stable repeated inspections while suppressing the force applied to an object to be inspected such as a semiconductor device by dividing the penetration part into a configuration consisting of multiple through holes. The purpose of the present invention is to provide a conductive sheet with high conductivity.
[Solution] An anisotropic conductive sheet 1 includes a sheet-like insulating layer 2 made of a resin material, a plurality of through parts 3 penetrating the insulating layer 2 in the thickness direction, and a metal thin film formed in each of the through parts 3. The through hole 3 has a through electrode 31 (or a through electrode 32) consisting of a through electrode 31 (or a through electrode 32), and the through hole 3 is formed independently in the circumferential direction by partitioning a plurality of through holes 2c with a partition 2d. ) is a configuration arranged in the through hole 2c.
[Selection diagram] Figure 1

Description

本発明は、半導体デバイス等の被検査物に対する検査を繰り返し行うための異方性導電シート及び異方性導電シートの製造方法に関する。 The present invention relates to an anisotropic conductive sheet and a method for manufacturing an anisotropic conductive sheet for repeatedly testing objects to be inspected such as semiconductor devices.

従来、樹脂材料からなる基材シートに貫通孔を形成して中空構造にし、前記貫通孔に金属薄膜からなる貫通電極を形成する電気コネクタの製造方法が提案されている(特許文献1:特開2020-027859号公報、特許文献2:国際公開第2018/212277号)。 Conventionally, a method for manufacturing an electrical connector has been proposed in which a through hole is formed in a base sheet made of a resin material to form a hollow structure, and a through electrode made of a metal thin film is formed in the through hole (Patent Document 1: Japanese Patent Application Laid-Open No. 2020-027859, Patent Document 2: International Publication No. 2018/212277).

特開2020-027859号公報Japanese Patent Application Publication No. 2020-027859 国際公開第2018/212277号International Publication No. 2018/212277

半導体デバイスは日進月歩で集積化されており、それら半導体デバイスに対応すべく、より狭ピッチの電極を有する異方性導電シートが求められている。しかしながら、中空構造にすることで貫通電極の体積が減少し抵抗値が大きくなってしまうため、電気特性を検査する際の抵抗値の影響が大きくなるという品質上の問題がある。 Semiconductor devices are becoming increasingly integrated, and anisotropic conductive sheets having narrower pitch electrodes are required to accommodate these semiconductor devices. However, since the hollow structure reduces the volume of the through electrode and increases the resistance value, there is a quality problem in that the influence of the resistance value when testing electrical characteristics becomes large.

本発明は、上記事情に鑑みてなされ、貫通部を分割して複数の貫通孔からなる構成にすることで、半導体デバイス等の被検査物に加わる力を抑えつつ、安定して検査を繰り返し行うことが可能な構成の異方性導電シートを提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and by dividing the penetration part into a configuration consisting of a plurality of through holes, it is possible to stably repeat inspections while suppressing the force applied to the object to be inspected, such as a semiconductor device. An object of the present invention is to provide an anisotropic conductive sheet having a configuration that allows the following.

一実施形態として、以下に開示するような解決策により、前記課題を解決する。 In one embodiment, the above problem is solved by a solution as disclosed below.

本発明に係る異方性導電シートは、樹脂材料からなるシート状の絶縁層と、前記絶縁層を厚み方向に貫通した複数の貫通部と、前記貫通部に形成された金属薄膜からなる貫通電極とを有し、前記貫通部は、複数の貫通孔が区画部にて区画されて周方向に独立形成され、前記貫通電極は前記貫通孔に配される構成であることを特徴とする。 An anisotropic conductive sheet according to the present invention includes a sheet-shaped insulating layer made of a resin material, a plurality of through parts penetrating the insulating layer in the thickness direction, and a through electrode made of a metal thin film formed in the through parts. The through-hole is characterized in that the through-hole is formed independently in the circumferential direction by partitioning a plurality of through-holes into partitions, and the through-hole electrode is disposed in the through-hole.

この構成によれば、被検査物に加わる力を抑えることができるとともに、貫通電極の抵抗値を小さくすることで安定して検査を繰り返し行うことができる。 According to this configuration, it is possible to suppress the force applied to the object to be inspected, and by reducing the resistance value of the through electrode, it is possible to repeatedly perform inspections stably.

前記貫通部それぞれにおける前記貫通孔の数は2以上である。前記貫通部それぞれにおける前記貫通孔の数は2以上9以下であることが好ましい。これにより、絶縁層の伸縮を維持し、かつ、必要な抵抗値を確保できる。前記貫通部それぞれにおける前記貫通孔の数は6以下であることがより好ましい。これにより、必要な導体面積を確保することが容易にできる。 The number of through holes in each of the through parts is two or more. It is preferable that the number of the through holes in each of the through parts is 2 or more and 9 or less. Thereby, expansion and contraction of the insulating layer can be maintained and a necessary resistance value can be ensured. It is more preferable that the number of the through holes in each of the through parts is six or less. This makes it easy to secure the necessary conductor area.

一例として、前記貫通部の形状は、平面視で半円形状、扇形状、三角形状、四角形状、六角形状、多角形状、円形状等に設定される。一例として、前記貫通孔の形状は、平面視で半円形状、扇形状、三角形状、四角形状、六角形状、多角形状、円形状等に設定される。したがって、前記貫通電極の形状は、平面視で半円形状、扇形状、三角形状、四角形状、六角形状、多角形状、円形状等に設定される。 As an example, the shape of the penetrating portion is set to a semicircular shape, a fan shape, a triangular shape, a quadrangular shape, a hexagonal shape, a polygonal shape, a circular shape, etc. in plan view. As an example, the shape of the through hole is set to a semicircular shape, a fan shape, a triangular shape, a quadrangular shape, a hexagonal shape, a polygonal shape, a circular shape, etc. in plan view. Therefore, the shape of the through electrode is set to a semicircular shape, a fan shape, a triangular shape, a quadrangular shape, a hexagonal shape, a polygonal shape, a circular shape, etc. in plan view.

貫通部が平面視で円形状の中空構造と比較すると、当該円形状を2つ以上に分割することにより、貫通電極の形状は半円形状や扇形状となる。よって、単純な真円と面積を比較すると、2分割の半円形状で約1.6倍となり、3分割の扇形状で約1.9倍となり、4分割の扇形状で約2.2倍となり、5分割の扇形状で約2.5倍となり、6分割の扇形状で約2.8倍となり、7分割の扇形状で約3.1倍となり、8分割の扇形状で約3.3倍となり、9分割の扇形状で約3.6倍となり、貫通部の分割数を増やすことで被検査物の外部電極と接する面積を拡大することが出来る。その結果、中空構造で被検査物に掛かる力を抑えながら、抵抗値を小さくして安定して検査を繰り返し行うことができる。 When compared with a hollow structure in which the penetrating portion is circular in plan view, by dividing the circular shape into two or more, the shape of the penetrating electrode becomes semicircular or fan-shaped. Therefore, when comparing the area with a simple perfect circle, a semicircular shape with two divisions is about 1.6 times, a fan shape with three divisions is about 1.9 times, and a fan shape with four divisions is about 2.2 times. So, for a fan shape with 5 divisions, it will be about 2.5 times, for a fan shape of 6 divisions, it will be about 2.8 times, for a fan shape of 7 divisions, it will be about 3.1 times, and for a sector shape of 8 divisions, it will be about 3. It becomes 3 times as much, and becomes about 3.6 times in the fan shape of 9 divisions, and by increasing the number of divisions of the penetration part, it is possible to expand the area in contact with the external electrode of the object to be inspected. As a result, while suppressing the force applied to the test object due to the hollow structure, it is possible to reduce the resistance value and perform repeated tests stably.

貫通部が平面視で四角形状の中空構造と比較すると、当該四角形状を2つ以上に分割することにより、貫通電極の形状は三角形状となる。よって、単純な正方形と面積を比較すると、2分割の三角で約1.45倍となり、3分割の三角形状で約1.7倍となり、4分割の三角形状で約1.95倍となり、5分割の三角形状で約2.2倍となり、6分割の三角形状で約2.45倍となり、7分割の三角形状で約2.7倍となり、8分割の三角形状で約2.95倍となり、9分割の三角形状で約3.2倍となり、貫通部の分割数を増やすことで被検査物の外部電極と接する面積を拡大することが出来る。その結果、中空構造で被検査物に掛かる力を抑えながら、抵抗値を小さくして安定して検査を繰り返し行うことができる。 When compared with a hollow structure in which the penetrating portion has a rectangular shape in plan view, the shape of the through electrode becomes triangular by dividing the rectangular shape into two or more. Therefore, when comparing the area with a simple square, a triangle divided into two is approximately 1.45 times larger, a triangle divided into three is approximately 1.7 times larger, a triangle divided into four is approximately 1.95 times larger, and a triangle divided into four is approximately 1.95 times larger. For a triangular shape divided into three parts, it becomes about 2.2 times, for a triangular shape divided into six parts, it becomes about 2.45 times, for a triangular shape divided into seven parts, it becomes about 2.7 times, and for a triangular shape divided into eight parts, it becomes about 2.95 times. , is approximately 3.2 times larger in a triangular shape divided into nine parts, and by increasing the number of divisions of the penetration part, the area in contact with the external electrode of the object to be inspected can be expanded. As a result, while suppressing the force applied to the test object due to the hollow structure, it is possible to reduce the resistance value and perform repeated tests stably.

前記絶縁層の厚みは0.05mm以上であることが好ましい。これにより、被検査物を検査する際の押圧力を緩和することができる。前記絶縁層の厚みは2.00mm以下であることが好ましい、これにより、被検査物を導通させる際の抵抗値の変動を抑えることができる。前記絶縁層の厚みは0.1mm以上0.5mm以下であることがより好ましい。一例として、前記樹脂材料はゴム弾性体からなる。これにより、伸縮性に富み、弾性復元力に優れた構成にできる。一例として、前記貫通部の直径は0.001mm以上0.040mm以下に設定される。 The thickness of the insulating layer is preferably 0.05 mm or more. Thereby, the pressing force when inspecting the object to be inspected can be alleviated. It is preferable that the thickness of the insulating layer is 2.00 mm or less. This makes it possible to suppress fluctuations in the resistance value when the test object is made conductive. The thickness of the insulating layer is more preferably 0.1 mm or more and 0.5 mm or less. As an example, the resin material is made of a rubber elastic body. This makes it possible to create a structure that is highly stretchable and has excellent elastic restoring force. As an example, the diameter of the penetrating portion is set to 0.001 mm or more and 0.040 mm or less.

一例として、前記貫通電極における前記厚み方向の一端面と他端面とはそれぞれ前記絶縁層における前記厚みの0.8倍以下で突出している構成である。この構成により、被検査物を検査する際の貫通電極との導通をより確実にして接触抵抗を小さくすることができる。 As an example, one end surface and the other end surface of the through electrode in the thickness direction each protrude by 0.8 times or less the thickness of the insulating layer. With this configuration, conduction with the through electrode can be more ensured when inspecting an object to be inspected, and contact resistance can be reduced.

本発明に係る異方性導電シートの製造方法は、樹脂材料からなるシート状の絶縁層と、前記絶縁層を厚み方向に貫通した複数の貫通部と、前記貫通部に形成された金属薄膜からなる貫通電極とを有する異方性導電シートの製造方法であって、複数の貫通孔を区画部にて区画して前記貫通部の周方向に独立形成し、前記貫通電極を前記貫通孔に配することを特徴とする。 The method for producing an anisotropic conductive sheet according to the present invention includes a sheet-like insulating layer made of a resin material, a plurality of penetration parts penetrating the insulating layer in the thickness direction, and a metal thin film formed in the penetration parts. A method for manufacturing an anisotropic conductive sheet having a through electrode, wherein a plurality of through holes are divided into partitions and formed independently in the circumferential direction of the through hole, and the through electrode is disposed in the through hole. It is characterized by

この構成によれば、被検査物に加わる力を抑えることができるとともに、貫通電極の抵抗値を小さくすることで安定して検査を繰り返し行うことができる。一例として、前記貫通電極を金属めっきにて形成する。 According to this configuration, it is possible to suppress the force applied to the object to be inspected, and by reducing the resistance value of the through electrode, it is possible to repeatedly perform inspections stably. As an example, the through electrode is formed by metal plating.

本発明によれば、貫通部を分割して複数の貫通孔からなる構成にすることで、半導体デバイス等の被検査物に加わる力を抑えつつ、安定して検査を繰り返し行うことが可能な構成の異方性導電シートが実現できる。 According to the present invention, by dividing the penetration part into a configuration consisting of a plurality of through holes, the configuration allows stable repeated inspection while suppressing the force applied to the object to be inspected such as a semiconductor device. Anisotropic conductive sheets can be realized.

図1は本発明の実施形態に係る異方性導電シートの第1例を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing a first example of an anisotropic conductive sheet according to an embodiment of the present invention. 図2Aは第1例の異方性導電シートの要部を模式的に示す平面図であり、図2Bは図2AのB-B線断面図であり、図2Cは図2Aの底面図である。FIG. 2A is a plan view schematically showing essential parts of the anisotropic conductive sheet of the first example, FIG. 2B is a sectional view taken along line BB in FIG. 2A, and FIG. 2C is a bottom view in FIG. 2A. . 図3Aは第2例の異方性導電シートの要部を模式的に示す平面図であり、図3Bは図3AのB-B線断面図であり、図3Cは図3Aの底面図である。FIG. 3A is a plan view schematically showing the main parts of the anisotropic conductive sheet of the second example, FIG. 3B is a sectional view taken along the line BB in FIG. 3A, and FIG. 3C is a bottom view in FIG. 3A. . 図4は本発明の実施形態に係る異方性導電シートの製造手順を示すフロー図である。FIG. 4 is a flow diagram showing a manufacturing procedure of an anisotropic conductive sheet according to an embodiment of the present invention. 図5Aは第1例の変形例の要部を模式的に示す平面図であり、図5Bは第1例の変形例の要部を模式的に示す平面図であり、図5Cは第2例の変形例の要部を模式的に示す平面図である。FIG. 5A is a plan view schematically showing a main part of a modification of the first example, FIG. 5B is a plan view schematically showing a main part of a modification of the first example, and FIG. 5C is a plan view schematically showing a main part of a modification of the first example. It is a top view which shows typically the principal part of the modification. 図6は本発明の実施形態に係る異方性導電シートと半導体デバイスとの位置関係を模式的に示す側面図である。FIG. 6 is a side view schematically showing the positional relationship between the anisotropic conductive sheet and the semiconductor device according to the embodiment of the present invention.

以下、図面を参照して、本発明の実施形態について詳しく説明する。本実施形態に係る異方性導電シート1は、半導体デバイスや半導体素子等の被検査物の電気特性検査に適用される。異方性導電シート1は、樹脂材料からなるシート状の絶縁層2と、絶縁層2を厚み方向に貫通した複数の貫通部3と、貫通部3それぞれに形成された金属薄膜からなる貫通電極31(または貫通電極32)とを有し、貫通部3は、複数の貫通孔2cが区画部2dにて区画されて周方向に独立形成され、貫通電極31(または貫通電極32)は貫通孔2cそれぞれに配される構成である。ここで、異方性導電シート1の各部の位置関係を説明し易くするため、図中にX,Y,Zの矢印で向きを示している。異方性導電シート1は、いずれの向きにおいても使用できる。なお、実施形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The anisotropic conductive sheet 1 according to this embodiment is applied to testing the electrical characteristics of objects to be tested such as semiconductor devices and semiconductor elements. The anisotropic conductive sheet 1 includes a sheet-like insulating layer 2 made of a resin material, a plurality of through parts 3 that penetrate the insulating layer 2 in the thickness direction, and a through electrode made of a metal thin film formed in each of the through parts 3. 31 (or through electrode 32), the through hole 3 has a plurality of through holes 2c separated by partitions 2d and formed independently in the circumferential direction, and the through hole 31 (or through electrode 32) has a through hole. 2c. Here, in order to make it easier to explain the positional relationship of each part of the anisotropic conductive sheet 1, the directions are indicated by X, Y, and Z arrows in the figure. The anisotropic conductive sheet 1 can be used in any orientation. In addition, in all the figures for explaining the embodiment, members having the same function are given the same reference numerals, and repeated explanation thereof may be omitted.

絶縁層2を構成する樹脂材料は、ゴム弾性体からなる。前記樹脂材料としては、シリコーンゴム、フッ素ゴム、ウレタンゴム、アクリルゴム、イソプレンゴム、スチレン・ブタジエンゴム、ブタジエンゴム、ブチルゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエンゴム、エチレン・酢ビゴム、クロロプレンゴム、クロロスルホン化ポリエチレンゴム、塩素化ポリエチレンゴム、エピクロルヒドリンゴム、チオコールゴム、天然ゴム、ニトリルゴム、その他既知のゴム弾性体が適用可能である。特に、シリコーンゴム、フッ素ゴム、ウレタンゴム、アクリルゴムは、耐薬品性に優れているので好ましい。 The resin material constituting the insulating layer 2 is made of a rubber elastic body. The resin materials include silicone rubber, fluorine rubber, urethane rubber, acrylic rubber, isoprene rubber, styrene-butadiene rubber, butadiene rubber, butyl rubber, ethylene-propylene rubber, ethylene-propylene-diene rubber, ethylene-vinyl acetate rubber, chloroprene rubber, Chlorosulfonated polyethylene rubber, chlorinated polyethylene rubber, epichlorohydrin rubber, thiol rubber, natural rubber, nitrile rubber, and other known rubber elastic bodies are applicable. In particular, silicone rubber, fluororubber, urethane rubber, and acrylic rubber are preferred because they have excellent chemical resistance.

一例として、絶縁層2の厚みは2.00mm以下であり、絶縁層2の厚み方向の圧縮弾性率は5N/mm2以下に設定され、絶縁層2の体積抵抗率は10^12Ω・cm超に設定される。半導体デバイスや半導体素子等の被検査物40を検査する際に、被検査物40に加わる荷重は10gf以下に設定される。 As an example, the thickness of the insulating layer 2 is 2.00 mm or less, the compressive elastic modulus of the insulating layer 2 in the thickness direction is set to 5 N/mm 2 or less, and the volume resistivity of the insulating layer 2 is more than 10^12 Ω·cm. is set to When inspecting the test object 40 such as a semiconductor device or a semiconductor element, the load applied to the test object 40 is set to 10 gf or less.

貫通電極31(または貫通電極32)は、良導電性の金属導体により形成されている。良導電性の金属導体としては、金、白金、銅、銅合金、ニッケル、ニッケル合金、その他既知の貴金属等を好適に採用することができる。貫通電極31(または貫通電極32)が形成される貫通孔2cは、一例として、ピッチP1でX方向に5~50個が配されており、ピッチP1でY方向に5~50個が配されている。貫通孔2cはマトリクス配置されており、ピッチP1は、一例として0.005mm以上0.05mm以下である。貫通孔2cの形状は、平面視で半円形状、扇形状、三角形状、四角形状、六角形状、多角形状、円形状等に設定される。一例として、貫通孔2cの直径は0.005mm以上0.025mm以下に設定される。ここで、貫通部3の形状や配置は、半導体デバイスや半導体素子等の被検査物40の外部電極41に、複数の貫通電極31(または貫通電極32)のうちの2つ以上が接触可能な構成であればよく、上記構成に限定されない。なお、外部電極41は、金属端子に限定されず、半田ボールの場合がある。 The through electrode 31 (or the through electrode 32) is formed of a highly conductive metal conductor. As the highly conductive metal conductor, gold, platinum, copper, copper alloy, nickel, nickel alloy, and other known noble metals can be suitably employed. For example, 5 to 50 through holes 2c in which the through electrodes 31 (or through electrodes 32) are formed are arranged in the X direction at a pitch P1, and 5 to 50 through holes 2c are arranged in the Y direction at a pitch P1. ing. The through holes 2c are arranged in a matrix, and the pitch P1 is, for example, 0.005 mm or more and 0.05 mm or less. The shape of the through hole 2c is set to a semicircular shape, a fan shape, a triangular shape, a quadrangular shape, a hexagonal shape, a polygonal shape, a circular shape, etc. in plan view. As an example, the diameter of the through hole 2c is set to 0.005 mm or more and 0.025 mm or less. Here, the shape and arrangement of the penetration part 3 are such that two or more of the plurality of penetration electrodes 31 (or penetration electrodes 32) can come into contact with the external electrode 41 of the test object 40 such as a semiconductor device or a semiconductor element. Any configuration may be used, and the configuration is not limited to the above configuration. Note that the external electrode 41 is not limited to a metal terminal, but may be a solder ball.

続いて、第1例の異方性導電シート1Aについて、以下に説明する。 Next, the first example of the anisotropic conductive sheet 1A will be described below.

[第1例]
図2Aは第1例の異方性導電シート1Aの要部を模式的に示す平面図であり、図2Bは図2AのB-B線断面図であり、図2Cは図2Aの底面図である。異方性導電シート1Aは、樹脂材料からなるシート状の絶縁層2と、絶縁層2を厚み方向に貫通した複数の円形状の貫通部3と、貫通部3それぞれに形成された金属薄膜からなる貫通電極31とを有し、貫通部3は、合計3つの扇形状の貫通孔2cが絶縁層2の内壁に形成された区画部2dにて区画されて周方向に等間隔で独立形成され、貫通電極31は貫通孔2cそれぞれに配される構成である。貫通電極31は、貫通部3の厚み方向の中心線P3に対して回転対称となる位置に配される。各貫通電極31は平面視で扇形状である。ここで、貫通電極31の数は、2~9の範囲内で増減可能である。図5Aは、第1例の変形例の要部を模式的に示す平面図であり、この例では、合計2つの半円形状の貫通電極31が配されて貫通部3が構成される。図5Bは、第1例の変形例の要部を模式的に示す平面図であり、この例では、合計4つの扇形状の貫通電極31が配されて貫通部3が構成される。
[First example]
FIG. 2A is a plan view schematically showing a main part of the anisotropic conductive sheet 1A of the first example, FIG. 2B is a sectional view taken along the line BB in FIG. 2A, and FIG. 2C is a bottom view in FIG. 2A. be. The anisotropic conductive sheet 1A includes a sheet-like insulating layer 2 made of a resin material, a plurality of circular penetration parts 3 penetrating the insulating layer 2 in the thickness direction, and a metal thin film formed in each of the penetration parts 3. The penetrating part 3 has a total of three fan-shaped through holes 2c divided by partition parts 2d formed on the inner wall of the insulating layer 2, and formed independently at equal intervals in the circumferential direction. , the through electrodes 31 are arranged in each of the through holes 2c. The through electrode 31 is arranged at a position rotationally symmetrical with respect to the center line P3 of the through part 3 in the thickness direction. Each through electrode 31 has a fan shape in plan view. Here, the number of through electrodes 31 can be increased or decreased within the range of 2 to 9. FIG. 5A is a plan view schematically showing a main part of a modification of the first example, and in this example, a total of two semicircular through electrodes 31 are arranged to form the through part 3. FIG. 5B is a plan view schematically showing a main part of a modification of the first example, and in this example, a total of four fan-shaped through electrodes 31 are arranged to form the through part 3.

図2Bの例では、貫通電極31における厚み方向のサイズT2は、絶縁層2における厚み方向のサイズT2よりも大きい値に設定される。貫通電極31における前記厚み方向の一端面と他端面とはそれぞれ絶縁層2における前記厚みの0.8倍以下で突出している。 In the example of FIG. 2B, the size T2 of the through electrode 31 in the thickness direction is set to a larger value than the size T2 of the insulating layer 2 in the thickness direction. One end surface and the other end surface of the through electrode 31 in the thickness direction each protrude by 0.8 times or less the thickness of the insulating layer 2.

図6は、異方性導電シート1Aと半導体デバイスなどの被検査物40との位置関係を模式的に示す側面図であり、部分拡大図である。一例として、被検査物40はチップ型ICであり、複数の外部電極41を有する。ここで、貫通部3のピッチP1は、外部電極41のピッチP2よりも小さい値に設定される。一例として、ピッチP1は、ピッチP2の1/3以下に設定される。これにより、半導体デバイスや半導体素子等の被検査物40の外部電極41に、貫通部3における複数の貫通電極31(または貫通電極32)のうちの2つ以上が接触可能な構成にできるので、マルチコンタクトとなって、貫通電極31(または貫通電極32)と外部電極41との位置合わせの自由度が高くなる。 FIG. 6 is a side view schematically showing the positional relationship between the anisotropic conductive sheet 1A and an object to be inspected 40 such as a semiconductor device, and is a partially enlarged view. As an example, the test object 40 is a chip-type IC, and has a plurality of external electrodes 41. Here, the pitch P1 of the penetrating portions 3 is set to a smaller value than the pitch P2 of the external electrodes 41. As an example, the pitch P1 is set to 1/3 or less of the pitch P2. As a result, a configuration can be created in which two or more of the plurality of through electrodes 31 (or through electrodes 32) in the through part 3 can come into contact with the external electrode 41 of the object to be inspected 40 such as a semiconductor device or a semiconductor element. A multi-contact structure is formed, and the degree of freedom in alignment between the through electrode 31 (or the through electrode 32) and the external electrode 41 is increased.

本実施形態によれば、被検査物40における外部電極41のピッチやサイズ等のバリエーションに容易に対応可能な構成の異方性導電シート1Aにできる。そして、半導体デバイスや半導体素子等の被検査物40に加わる力を抑えつつ均等に分散することができる。尚且つ、貫通電極31の抵抗値を小さくできる。そして、区画部によって、より堅牢な構造になる。よって、安定して検査を繰り返し行うことができる。 According to this embodiment, the anisotropic conductive sheet 1A can be configured to easily accommodate variations in the pitch, size, etc. of the external electrodes 41 in the object 40 to be inspected. The force applied to the object 40 to be inspected, such as a semiconductor device or a semiconductor element, can be suppressed and evenly distributed. Furthermore, the resistance value of the through electrode 31 can be reduced. The partitions also provide a more robust structure. Therefore, inspections can be performed repeatedly and stably.

図4は本実施形態に係る異方性導電シート1の製造手順を示すフロー図である。続いて、本実施形態の製造方法について、フロー図に沿って以下に説明する。 FIG. 4 is a flow diagram showing the manufacturing procedure of the anisotropic conductive sheet 1 according to this embodiment. Next, the manufacturing method of this embodiment will be described below along with a flowchart.

金属製で丸針状の芯材をピッチP1で配列した基台を準備する。前記芯材は外周方向に等間隔でスリットが形成され当該スリットによって分割形成されている。ステップS1は、前記芯材に金または白金もしくは銅からなる金属めっきを施して複数の貫通電極31を分割形成された前記芯材の外周に形成する。 A base is prepared in which circular needle-shaped core materials made of metal are arranged at a pitch P1. The core material has slits formed at equal intervals in the outer circumferential direction, and is divided into sections by the slits. In step S1, the core material is plated with a metal made of gold, platinum, or copper to form a plurality of through electrodes 31 on the outer periphery of the divided core material.

ステップS1に続いてステップS2にて、一例として、液状のシリコーン樹脂またはフッ素樹脂またはウレタン樹脂を前記基台が配された型枠に注型し、樹脂硬化させて、区画部2dを含む絶縁層2を形成する。 Following step S1, in step S2, for example, liquid silicone resin, fluororesin, or urethane resin is poured into the mold in which the base is placed, and the resin is cured to form an insulating layer including the partitioned portion 2d. form 2.

ステップS2に続いてステップS3にて、エッチャントにて前記芯材を溶かして不要領域を除去する。例えば、前記芯材が鉄またはアルミニウムであり、前記金属めっきが金または白金である場合、フッ化水素(HF)をエッチャントにすることができる。エッチャントは、所望のエッチャント濃度で水または水溶液に溶解したエッチング液の状態でノズルから吐出される。前記不要領域を除去した後、エッチング液は水などで洗い流される。このようにして、異方性導電シート1を製造する。 Following step S2, in step S3, the core material is melted with an etchant to remove unnecessary areas. For example, when the core material is iron or aluminum and the metal plating is gold or platinum, hydrogen fluoride (HF) can be used as the etchant. The etchant is discharged from the nozzle in the form of an etchant dissolved in water or an aqueous solution at a desired etchant concentration. After removing the unnecessary area, the etching solution is washed away with water or the like. In this way, the anisotropic conductive sheet 1 is manufactured.

この構成によれば、貫通部3の周方向に複数の貫通電極31(または貫通電極32)を等間隔で形成するので、半導体デバイス等の被検査物40に加わる力を抑えつつ均等に分散することができる。尚且つ、貫通電極31(または貫通電極32)の抵抗値を小さくできる。そして、区画部2dによって、より堅牢な構造になり、貫通電極31(または貫通電極32)と絶縁層2との密着力をより向上させることができる。また、ナノメートルサイズの貫通部3を再現性良く製造することができる。 According to this configuration, the plurality of through electrodes 31 (or through electrodes 32) are formed at equal intervals in the circumferential direction of the through part 3, so that the force applied to the object to be inspected 40 such as a semiconductor device is suppressed and evenly distributed. be able to. Furthermore, the resistance value of the through electrode 31 (or the through electrode 32) can be reduced. Further, the partition portion 2d provides a more robust structure, and the adhesion between the through electrode 31 (or the through electrode 32) and the insulating layer 2 can be further improved. Furthermore, nanometer-sized penetration portions 3 can be manufactured with good reproducibility.

続いて、第2例の異方性導電シート1Bについて、以下に説明する。 Next, a second example of the anisotropic conductive sheet 1B will be described below.

[第2例]
図3Aは第2例の異方性導電シート1Bの要部を模式的に示す平面図であり、図3Bは図3AのB-B線断面図であり、図3Cは図3Aの底面図である。異方性導電シート1Bは、樹脂材料からなるシート状の絶縁層2と、絶縁層2を厚み方向に貫通した複数の四角形状の貫通部3と、貫通部3それぞれに形成された金属薄膜からなる貫通電極32とを有し、貫通部3は、合計3つの三角形状の貫通孔2cが絶縁層2の内壁に形成された区画部2dにて区画されて周方向に等間隔で独立形成され、貫通電極31は貫通孔2cそれぞれに配される構成である。貫通電極31は、貫通部3の厚み方向の中心線P3に対して回転対称となる位置に配される。各貫通電極32は平面視で三角形状である。ここで、貫通電極32の数は、2~9の範囲内で増減可能である。図5Cは、第2例の変形例の要部を模式的に示す平面図であり、この例では、合計6つの三角形状の貫通電極32が配されて六角形状の貫通部3が構成される。
[Second example]
3A is a plan view schematically showing the main parts of the anisotropic conductive sheet 1B of the second example, FIG. 3B is a sectional view taken along the line BB in FIG. 3A, and FIG. 3C is a bottom view in FIG. 3A. be. The anisotropic conductive sheet 1B includes a sheet-shaped insulating layer 2 made of a resin material, a plurality of square-shaped penetration parts 3 penetrating the insulating layer 2 in the thickness direction, and a metal thin film formed in each of the penetration parts 3. The penetrating part 3 has a total of three triangular through holes 2c divided by partition parts 2d formed on the inner wall of the insulating layer 2, and formed independently at equal intervals in the circumferential direction. , the through electrodes 31 are arranged in each of the through holes 2c. The through electrode 31 is arranged at a position rotationally symmetrical with respect to the center line P3 of the through part 3 in the thickness direction. Each through electrode 32 has a triangular shape in plan view. Here, the number of through electrodes 32 can be increased or decreased within the range of 2 to 9. FIG. 5C is a plan view schematically showing a main part of a modification of the second example, and in this example, a total of six triangular through electrodes 32 are arranged to form a hexagonal through hole 3. .

図3Bの例では、貫通電極32における厚み方向のサイズT2は、絶縁層2における厚み方向のサイズT2よりも大きい値に設定される。貫通電極32における前記厚み方向の一端面と他端面とはそれぞれ絶縁層2における前記厚みの0.8倍以下で突出している。 In the example of FIG. 3B, the size T2 of the through electrode 32 in the thickness direction is set to a larger value than the size T2 of the insulating layer 2 in the thickness direction. One end surface and the other end surface of the through electrode 32 in the thickness direction each protrude by 0.8 times or less the thickness of the insulating layer 2.

第2例の構成は、金属製で角針状の芯材をピッチP1で配列した基台を準備して、前記芯材は外周方向に等間隔で、スリットを形成することで、第1例と同じように製造できる。貫通部3は、四角形状や六角形状に限定されず、五角形状や八角形状などにすることもできる。 The configuration of the second example is to prepare a base in which rectangular needle-shaped core materials made of metal are arranged at a pitch P1, and to form slits in the core materials at equal intervals in the outer circumferential direction. can be manufactured in the same way. The penetrating portion 3 is not limited to a square shape or a hexagonal shape, but may also be a pentagonal shape, an octagonal shape, or the like.

本発明は、以上説明した実施例に限定されることなく、本発明を逸脱しない範囲において種々変更が可能である。 The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the scope of the present invention.

1、1A、1B、1C 異方性導電シート
2 絶縁層、2c 貫通孔、2d 区画部
3 貫通部
31 貫通電極
32 貫通電極
40 被検査物(半導体デバイス)
41 外部電極
1, 1A, 1B, 1C Anisotropic conductive sheet 2 Insulating layer, 2c Through hole, 2d Division section 3 Through section 31 Through electrode 32 Through electrode 40 Test object (semiconductor device)
41 External electrode

Claims (5)

樹脂材料からなるシート状の絶縁層と、前記絶縁層を厚み方向に貫通した複数の貫通部と、前記貫通部に形成された金属薄膜からなる貫通電極とを有し、前記貫通部は、複数の貫通孔が区画部にて区画されて周方向に独立形成されており、前記貫通電極は前記貫通孔に配される構成であること
を特徴とする異方性導電シート。
It has a sheet-shaped insulating layer made of a resin material, a plurality of through parts penetrating the insulating layer in the thickness direction, and a through electrode made of a metal thin film formed in the through part, and the through part has a plurality of through parts. An anisotropic conductive sheet characterized in that the through holes are separated by partitions and formed independently in the circumferential direction, and the through electrodes are disposed in the through holes.
前記貫通部それぞれにおける前記貫通孔の数は2以上9以下であること
を特徴とする請求項1に記載の異方性導電シート。
The anisotropic conductive sheet according to claim 1, wherein the number of the through holes in each of the through parts is 2 or more and 9 or less.
前記絶縁層の厚みは0.05~2.00mmであること
を特徴とする請求項1または2に記載の異方性導電シート。
The anisotropic conductive sheet according to claim 1 or 2, wherein the thickness of the insulating layer is 0.05 to 2.00 mm.
前記貫通電極における前記厚み方向の一端面と他端面とはそれぞれ前記絶縁層の厚みの0.8倍以下で突出していること
を特徴とする請求項3に記載の異方性導電シート。
4. The anisotropic conductive sheet according to claim 3, wherein one end surface and the other end surface of the through electrode in the thickness direction each protrude by 0.8 times or less the thickness of the insulating layer.
樹脂材料からなるシート状の絶縁層と、前記絶縁層を厚み方向に貫通した複数の貫通部と、前記貫通部に形成された金属薄膜からなる貫通電極とを有する異方性導電シートの製造方法であって、複数の貫通孔を区画部にて区画して前記貫通部の周方向に独立形成し、前記貫通電極を前記貫通孔に配すること
を特徴とする異方性導電シートの製造方法。
A method for producing an anisotropic conductive sheet having a sheet-shaped insulating layer made of a resin material, a plurality of through parts penetrating the insulating layer in the thickness direction, and a through electrode made of a metal thin film formed in the through parts. A method for manufacturing an anisotropic conductive sheet, characterized in that a plurality of through holes are divided by partitions and formed independently in the circumferential direction of the through holes, and the through electrodes are arranged in the through holes. .
JP2022089576A 2022-06-01 2022-06-01 Anisotropic conductive sheet and method for manufacturing anisotropic conductive sheet Pending JP2023176962A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022089576A JP2023176962A (en) 2022-06-01 2022-06-01 Anisotropic conductive sheet and method for manufacturing anisotropic conductive sheet
PCT/JP2023/018877 WO2023234089A1 (en) 2022-06-01 2023-05-22 Anisotropic electroconductive sheet and method for manufacturing anisotropic electroconductive sheet
KR1020247029977A KR20250018464A (en) 2022-06-01 2023-05-22 Anisotropic challenge sheet and method for manufacturing anisotropic challenge sheet
TW112120245A TW202412398A (en) 2022-06-01 2023-05-31 Anisotropic conductive sheet and manufacturing method of anisotropic conductive sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022089576A JP2023176962A (en) 2022-06-01 2022-06-01 Anisotropic conductive sheet and method for manufacturing anisotropic conductive sheet

Publications (1)

Publication Number Publication Date
JP2023176962A true JP2023176962A (en) 2023-12-13

Family

ID=89024757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022089576A Pending JP2023176962A (en) 2022-06-01 2022-06-01 Anisotropic conductive sheet and method for manufacturing anisotropic conductive sheet

Country Status (4)

Country Link
JP (1) JP2023176962A (en)
KR (1) KR20250018464A (en)
TW (1) TW202412398A (en)
WO (1) WO2023234089A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7129567B2 (en) * 2004-08-31 2006-10-31 Micron Technology, Inc. Substrate, semiconductor die, multichip module, and system including a via structure comprising a plurality of conductive elements
TWI242783B (en) * 2004-10-20 2005-11-01 Ind Tech Res Inst Cut via structure for and manufacturing method of connecting separate conductors
JP5043691B2 (en) * 2008-01-11 2012-10-10 富士フイルム株式会社 Method for producing metal-filled microstructure, metal-filled microstructure and anisotropic conductive member
CN110582895B (en) 2017-05-18 2022-01-14 信越聚合物株式会社 Electric connector and manufacturing method thereof
JP7175132B2 (en) 2018-08-10 2022-11-18 信越ポリマー株式会社 Electrical connector manufacturing method

Also Published As

Publication number Publication date
WO2023234089A1 (en) 2023-12-07
TW202412398A (en) 2024-03-16
KR20250018464A (en) 2025-02-06

Similar Documents

Publication Publication Date Title
US6558560B2 (en) Method for the fabrication of electrical contacts
JP7263060B2 (en) Electrical connection device
KR20180057520A (en) Probe for the test device
JP2004095547A5 (en)
JP2005517192A5 (en)
JPWO2007017955A1 (en) Probe for current test
KR20210005155A (en) Cylindrical body and its manufacturing method
JPWO2017208690A1 (en) Contact conductive jig and inspection device
JP2023176962A (en) Anisotropic conductive sheet and method for manufacturing anisotropic conductive sheet
KR20090115868A (en) Contact sheet and connecting device provided with the same
JP2023176957A (en) Anisotropic conductive sheet and method for manufacturing anisotropic conductive sheet
JPH11344521A (en) Laminated connector device and circuit board inspection device
JP3904564B2 (en) Electronic component inspection probe and electronic component inspection socket including the probe
JP2012047748A (en) Connection terminal and manufacturing method of connection terminal
KR102271347B1 (en) Probe-head for led probe device
JP2011039066A (en) Multilayer electric probe and method of manufacturing the same
JPH11167945A (en) Electrical connector and its manufacture
TWI871764B (en) Cantilever probe for probe card and probe card
CN119907923A (en) Cantilever probe for probe card
US6839965B2 (en) Method of manufacturing a resistor connector
JP4839777B2 (en) Plating jig and plating method using the same
KR20250074351A (en) Pogo pin and socket
JP2006003252A (en) Electrical connection device
JPH11295344A (en) Semiconductor inspection jig and method of manufacturing semiconductor inspection jig
CN119895273A (en) Probe for probe card

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20250407