[go: up one dir, main page]

JP2023158373A - oxygen removal equipment - Google Patents

oxygen removal equipment Download PDF

Info

Publication number
JP2023158373A
JP2023158373A JP2022068174A JP2022068174A JP2023158373A JP 2023158373 A JP2023158373 A JP 2023158373A JP 2022068174 A JP2022068174 A JP 2022068174A JP 2022068174 A JP2022068174 A JP 2022068174A JP 2023158373 A JP2023158373 A JP 2023158373A
Authority
JP
Japan
Prior art keywords
gas
oxygen
honeycomb body
nitrogen
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022068174A
Other languages
Japanese (ja)
Inventor
章裕 藤
Akihiro Fuji
隆寛 島田
Takahiro Shiimada
宏志 井上
Koji Inoue
仁美 萩原
Hitomi Hagiwara
麻由 岩崎
Mayu Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Giken Co Ltd
Original Assignee
Seibu Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seibu Giken Co Ltd filed Critical Seibu Giken Co Ltd
Priority to JP2022068174A priority Critical patent/JP2023158373A/en
Priority to CN202310094857.3A priority patent/CN116899401A/en
Priority to KR1020230023266A priority patent/KR20230148737A/en
Publication of JP2023158373A publication Critical patent/JP2023158373A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/68Regeneration of the filtering material or filter elements inside the filter by means acting on the cake side involving movement with regard to the filter elements
    • B01D46/682Regeneration of the filtering material or filter elements inside the filter by means acting on the cake side involving movement with regard to the filter elements by nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/80Chemical processes for the removal of the retained particles, e.g. by burning
    • B01D46/84Chemical processes for the removal of the retained particles, e.g. by burning by heating only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8671Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Geometry (AREA)
  • Physics & Mathematics (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

To provide a simply structured oxygen removal device capable of reducing a pressure loss and continuously treating a great volume of gas.SOLUTION: The oxygen removal device has a honeycomb body carrying a gas separation member which can separate oxygen or nitrogen such as a catalyst or an absorbent instead of filling an adsorption tower used for a catalyst/adsorption method with a catalyst/absorbent pellet or the like. In a treatment operation, treatment gas is passed through the honeycomb body to remove oxygen or nitrogen from the treatment gas. In a reproduction operation, reproduced gas is passed to reproduce the honeycomb body. Thus, a pressure loss can be reduced, and a great volume of gas can be treated.SELECTED DRAWING: Figure 1

Description

本発明は、酸素又は窒素を分離可能なガス分離部材を用いた酸素除去装置に関する。 The present invention relates to an oxygen removal device using a gas separation member capable of separating oxygen or nitrogen.

酸素除去濃縮技術として、PSA(圧力スイング吸着:Pressure Swing Adsorption)方式、膜分離方式、深冷分離方式、触媒・吸着方式等が知られている。PSA方式、膜分離方式、深冷分離方式の原理は、それぞれ圧力による吸着剤の吸着速度、気体の膜通過速度、気体の沸点の差を利用して気体を分離する。触媒・吸着方式は、触媒や吸着剤等のペレットを充填した吸着塔が吸着(精製)と再生を繰り返すことで酸素を選択的に除去するものである。 As oxygen removal and concentration techniques, PSA (Pressure Swing Adsorption) method, membrane separation method, cryogenic separation method, catalyst/adsorption method, etc. are known. The principle of the PSA method, membrane separation method, and cryogenic separation method is to separate gases using the adsorption rate of an adsorbent due to pressure, the membrane passage rate of gas, and the difference in boiling point of gas. The catalyst/adsorption method selectively removes oxygen by repeating adsorption (purification) and regeneration using an adsorption tower filled with pellets such as a catalyst or adsorbent.

特許文献1には、PSA方式による酸素濃縮装置が開示されている。すなわち、窒素ガスを選択的に吸着するゼオライト等の吸着剤を充填した吸着筒へ加圧した空気を導入して、空気中に含まれる窒素ガスを吸着剤によって吸着し、選択的に除去して空気中の酸素濃度を上げ、その一方で、吸着筒内を減圧することによって、酸素濃縮が終わった後の吸着剤に吸着した窒素ガスを脱着させて吸着剤の吸着能を回復させることを特徴とする。 Patent Document 1 discloses an oxygen concentrator using a PSA method. In other words, pressurized air is introduced into an adsorption column filled with an adsorbent such as zeolite that selectively adsorbs nitrogen gas, and the adsorbent adsorbs nitrogen gas contained in the air, which then selectively removes it. The feature is that by increasing the oxygen concentration in the air and reducing the pressure inside the adsorption cylinder, the nitrogen gas adsorbed on the adsorbent after oxygen concentration is desorbed and the adsorption capacity of the adsorbent is restored. shall be.

また、特許文献2には、分離膜を使用した酸素分離装置が開示されている。すなわち、空気から濃縮した酸素ガスを得るため、酸素ガスを選択的に透過する分離膜を使用し、透過速度が速い酸素と遅い窒素を分離することを特徴とする。 Further, Patent Document 2 discloses an oxygen separation device using a separation membrane. That is, in order to obtain concentrated oxygen gas from air, a separation membrane that selectively permeates oxygen gas is used to separate oxygen, which has a high permeation rate, and nitrogen, which has a low permeation rate.

さらに、特許文献3には、触媒・吸着方式によりグローブボックス内の酸素や水分等を除去する不活性ガス循環精製装置付グローブボックスが開示されている。すなわち、グローブボックス内の不活性ガスの雰囲気を一定に保ち、効率良く酸素と水分を除去するため、ガス中の酸素を除去する金属触媒を充填した金属触媒充填部と、ガス中の水分を吸着除去するモレキュラーシーブの乾燥剤を充填した乾燥剤充填部から構成される吸着塔によって、酸素及び水分を除去した循環ガスを供給するように構成し、グローブボックス内のガスを循環ポンプで吸い出し、吸着塔内を通過中に酸素と水分を除去して再びグローブボックスに戻して、ガス循環を行う。 Further, Patent Document 3 discloses a glove box equipped with an inert gas circulation purification device that removes oxygen, moisture, etc. in the glove box using a catalyst/adsorption method. In other words, in order to maintain a constant inert gas atmosphere inside the glove box and efficiently remove oxygen and moisture, a metal catalyst filling section is used that is filled with a metal catalyst that removes oxygen from the gas, and a metal catalyst filling section that adsorbs moisture from the gas. The structure is configured to supply circulating gas from which oxygen and moisture have been removed by an adsorption tower consisting of a desiccant-filled part filled with a desiccant for the molecular sieve to be removed, and the gas in the glove box is sucked out by a circulation pump and adsorbed. While passing through the tower, oxygen and moisture are removed and the gas is returned to the glove box for gas circulation.

特開2006-87683号JP2006-87683 特開2010-184844号JP2010-184844 特許5676521号Patent No. 5676521 特開2019-52835号JP2019-52835 特開2020-193765号JP2020-193765

PSA方式、膜分離方式、深冷分離方式では、断続的な運転となるため、精製した窒素を貯蔵するためのバッファタンクを要する。さらに窒素使用量はバッファタンク容量の制限を受ける。また、PSA方式では、空気の加減圧をポンプやコンプレッサ等により行うため、加圧と減圧を繰り返すことにより、装置内部で動作音が発生するという問題がある。また、PSA方式では、得られる酸素濃度が加圧する空気の圧力に大きく依存するので、高酸素濃度ガスを得るために、ポンプやコンプレッサ等の加圧能力を高めると、大型化したり、多くの電力を消費したり、高負荷状態での運転に伴う短寿命につながるという問題もある。 The PSA method, membrane separation method, and cryogenic separation method require a buffer tank to store purified nitrogen because they operate intermittently. Furthermore, the amount of nitrogen used is limited by the capacity of the buffer tank. Further, in the PSA system, since air is pressurized and depressurized using a pump, compressor, etc., there is a problem in that operation noise is generated inside the device due to repeated pressurization and depressurization. In addition, in the PSA method, the oxygen concentration obtained is largely dependent on the pressure of the pressurized air, so increasing the pressurizing capacity of pumps and compressors to obtain high oxygen concentration gas may result in larger sizes and higher power consumption. There are also problems such as consumption of energy and short life due to operation under high load conditions.

膜分離方式では、空気中の酸素ガスを高濃度に濃縮することができないという問題を有している。深冷分離方式においても、極低温までの冷却が必要となるため、設備が大きくなる、起動に時間がかかるというような欠点がある。さらに、窒素を生成する酸素除去の目的の場合には、不活性ガスとしての窒素は、ボンベに入ったもの、液化窒素を気化したもの、あるいはPSA方式、膜分離方式や深冷分離方式により空気から酸素を除去した窒素であっても、ガスの価格が高く、不活性ガスとして酸素を除去した窒素を用いる場合には、そのコストを削減することが課題である。 The membrane separation method has a problem in that oxygen gas in the air cannot be concentrated to a high concentration. The cryogenic separation method also requires cooling to extremely low temperatures, which has drawbacks such as increased equipment size and a longer start-up time. Furthermore, in the case of the purpose of oxygen removal that generates nitrogen, nitrogen as an inert gas can be used in cylinders, vaporized liquefied nitrogen, or air by PSA method, membrane separation method, or cryogenic separation method. Even nitrogen from which oxygen has been removed is expensive, and when using nitrogen from which oxygen has been removed as an inert gas, it is a challenge to reduce the cost.

触媒・吸着方式を用いた特許文献3のようなグローブボックスにおいて、酸素除去と水分除去が直列カラムで行われるため、水分除去能力律速での機器選定が行われており、酸素と水分では精製速度が異なり、酸素の除去と比較して水分の除去に非常に時間がかかるため、同時に除去するのは難しいという課題があった。また、保守等による休止中に付随して、酸素除去と水分除去を同時に行う不活性ガス精製装置も停止するため、再度、グローブボックス内を低露点の不活性ガス環境に戻すための時間が掛かり過ぎるという問題がある。このように、酸素除去を不活性ガス供給の目的で行い、水分除去も同時に行う場合、従来の技術ではグローブボックスやドライルーム内において製造装置のメンテナンスや調整等を行う場合、低露点の不活性ガス環境を大気環境に戻す大気ブレーク後、不活性ガス環境に戻すまでの復帰時間が長くなり、これに伴い製造装置のライン立上げにも時間がかかっていた。 In a glove box like the one disclosed in Patent Document 3 that uses a catalyst/adsorption method, oxygen removal and moisture removal are performed in a series column, so equipment is selected based on the moisture removal capacity, and the purification rate for oxygen and moisture is The problem is that it is difficult to remove water at the same time as it takes much longer to remove water than to remove oxygen. Additionally, the inert gas purification equipment that removes oxygen and moisture at the same time will also be shut down during the shutdown for maintenance, etc., so it will take time to return the inside of the glove box to a low dew point inert gas environment. There is a problem with too much. In this way, when oxygen removal is performed for the purpose of supplying an inert gas and moisture removal is also performed at the same time, conventional technology requires maintenance and adjustment of manufacturing equipment in a glove box or dry room. After the atmospheric break, which returns the gas environment to the atmospheric environment, it takes a long time to return to the inert gas environment, and as a result, it takes time to start up the manufacturing equipment line.

そこで、発明者らは、保管空間内を低露点、低活性ガス濃度で清浄に保つ必要のある、リチウムイオン電池材料等を開発するために用いるグローブボックス等の収納容器やドライルームに対しても用いることができる、不活性ガス精製装置と低露点ガス供給装置を開発してきた。例えば、特許文献4に開示のガス置換用ドライルームは、乾燥空気供給装置からの乾燥空気を循環させた乾燥室の内部に、OLEDの製造や研究開発に用いる製造装置を格納する気密容器を設け、この気密容器に不活性ガス及び低露点ガスを供給するようにしてある。また、気密容器の循環路に不活性ガス精製装置と低露点ガス供給装置を分割して直列に配置し、その循環路と切り離した循環路を別途設け、互いに独立して制御するようにしたので、水分除去性能と酸素除去性能を個別に調整できる。さらに、大気ブレーク中に別途設けた循環路を循環させることにより、気密容器の大気ブレーク後の大気環境から不活性ガス環境へ戻す復帰時間を大幅に短縮できる。不活性ガスの供給を停止した状態で、低露点ガスの供給を維持することができるので、大気ブレークの後でも速やかに気密ブース内の露点は低い状態に到達する。特許文献4に開示のガス置換用ドライルームでは、低露点ガス供給装置として水分除去にデシカント除湿機を用いており、ロータはハニカム状であるため表面積が広く、低圧損であり、かつハニカムの壁は非常に薄く吸着水分の拡散が速いため、ハニカムエレメント全体において瞬時に吸脱着が行われるので、ドライルーム内の所定の水分濃度への到達時間が大幅に短縮される。 Therefore, the inventors developed a solution for storage containers such as glove boxes and dry rooms used for developing lithium-ion battery materials, etc., which require keeping the storage space clean with a low dew point and low active gas concentration. We have developed an inert gas purification device and a low dew point gas supply device that can be used. For example, in the dry room for gas replacement disclosed in Patent Document 4, an airtight container for storing manufacturing equipment used for OLED manufacturing and research and development is provided inside the drying room in which dry air from a dry air supply device is circulated. , an inert gas and a low dew point gas are supplied to this airtight container. In addition, the inert gas purification device and low dew point gas supply device are separated and placed in series in the circulation path of the airtight container, and a separate circulation path is provided to control each other independently. , moisture removal performance and oxygen removal performance can be adjusted individually. Furthermore, by circulating through a separately provided circulation path during the atmospheric break, the time required for the airtight container to return from the atmospheric environment to the inert gas environment after the atmospheric break can be significantly shortened. Since the supply of low dew point gas can be maintained while the supply of inert gas is stopped, the dew point in the airtight booth quickly reaches a low state even after an atmospheric break. In the dry room for gas replacement disclosed in Patent Document 4, a desiccant dehumidifier is used as a low dew point gas supply device to remove moisture, and the rotor has a honeycomb shape, so it has a large surface area, low pressure loss, and has a honeycomb wall. Since the honeycomb element is very thin and the adsorbed moisture diffuses quickly, adsorption and desorption occur instantaneously throughout the honeycomb element, which greatly shortens the time it takes to reach a predetermined moisture concentration in the dry room.

また、特許文献5に開示のガス置換用ドライルームでは、特許文献4に記載の気密容器を覆う乾燥室及び乾燥室内部に乾燥空気を供給循環させるための乾燥空気供給装置を省略し、低露点ガス供給装置及び不活性ガス精製装置を接続して一体型として構成したもので、特許文献4に記載のガス置換用ドライルームに比べて、装置の簡便化、省スペース化、運転方法の簡素化を目指したものである。これにより、低露点ガス供給装置(デシカント除湿機)と不活性ガス精製装置(窒素精製機)を接続して、一体型の装置とすることにより、特許文献4に比べて省スペースなガス置換システムとすることが可能となり、配管や設置工事等にかかるイニシャルコストを抑えることが可能になる。 In addition, in the dry room for gas replacement disclosed in Patent Document 5, the drying chamber covering the airtight container described in Patent Document 4 and the dry air supply device for supplying and circulating dry air inside the drying chamber are omitted, and the dew point is low. A gas supply device and an inert gas purification device are connected to form an integrated unit, which simplifies the device, saves space, and simplifies the operating method compared to the dry room for gas replacement described in Patent Document 4. This is what we aimed for. As a result, by connecting the low dew point gas supply device (desiccant dehumidifier) and the inert gas purification device (nitrogen purification device) to form an integrated device, the gas replacement system saves space compared to Patent Document 4. This makes it possible to reduce the initial cost of piping, installation work, etc.

しかしながら、特許文献3だけでなく、特許文献4及び特許文献5においても、不活性ガス精製装置はニッケル触媒や銅触媒、白金触媒等の金属触媒ペレット等を吸着塔に充填し、処理ガス中の酸素と触媒を反応させて酸素除去を行っている。この触媒・吸着方式は、複数の吸着塔を設けることで連続運転を可能とするが、吸着塔に触媒・吸着剤ペレット等を充填することによる大幅な圧力損失の増大により、大風量に対応することが難しいという課題がある。さらに高い圧力損失が由来して、触媒・吸着剤ペレット等の再生運転時に生じる水分の排出に時間を要することから、真空ポンプ等で水分の排出を促す機構を備える必要があり、本来の酸素除去システム以外にコストが追加されるという課題がある。また、ガス流により粒子が流動して粒子が摩滅、破損して粉塵の発生や充填層の部分閉塞による圧力損失の上昇等の不具合の原因となりうる。さらに、ペレット状ではなく、粒状のものを用いる場合には、粒子を小さくして処理ガスとの接触面積を多くすることが高性能化や小型化の点で有利であるが、粒子が小さくなるほど圧力損失が課題になり、ガス流による触媒や吸着剤の流動も誘起しやすく、設計が困難になり、また大型の装置に適用することは困難である。 However, in not only Patent Document 3, but also Patent Documents 4 and 5, the inert gas purification apparatus fills an adsorption tower with metal catalyst pellets such as nickel catalyst, copper catalyst, platinum catalyst, etc. Oxygen is removed by reacting oxygen with a catalyst. This catalyst/adsorption method enables continuous operation by installing multiple adsorption towers, but it is difficult to handle large air volumes due to the significant increase in pressure loss caused by filling the adsorption towers with catalyst/adsorbent pellets, etc. The problem is that it is difficult to do so. Furthermore, due to the high pressure loss, it takes time to discharge moisture generated during regeneration operation of catalysts, adsorbent pellets, etc., so it is necessary to have a mechanism to promote moisture discharge using a vacuum pump, etc. There is a problem in that costs are added in addition to the system. In addition, the particles flow due to the gas flow and are worn out and damaged, which may cause problems such as generation of dust and increased pressure loss due to partial blockage of the packed bed. Furthermore, when using granules rather than pellets, it is advantageous in terms of performance and downsizing to make the particles smaller and increase the contact area with the processing gas, but the smaller the particles, the more Pressure loss becomes an issue, and the flow of the catalyst and adsorbent due to the gas flow is likely to be induced, making design difficult and making it difficult to apply to large-scale equipment.

本発明は以上のような課題を解決するため、触媒・吸着方式で用いる吸着塔内に、触媒・吸着剤ペレット等を充填するのではなく、触媒又は吸着剤といった酸素又は窒素を分離可能なガス分離部材を担持したハニカム体とすることで圧力損失を低減し、大風量に対応できるようにしたことを主な特徴とする。 In order to solve the above-mentioned problems, the present invention does not fill the adsorption tower used in the catalyst/adsorption method with catalyst/adsorbent pellets, etc., but instead uses a gas such as a catalyst or adsorbent that can separate oxygen or nitrogen. The main feature is that the honeycomb body supporting the separation member reduces pressure loss and can handle large air volumes.

本発明の酸素除去装置によれば、触媒・吸着方式で用いる吸着塔内に充填した触媒・吸着剤ペレット等ではなくハニカム体にすることで圧力損失を大幅に低減し、大風量に対応することができる。すなわち、酸素を除去したガスを大風量で供給することが可能である。また、ハニカム体に担持する触媒又は吸着剤の量を、ペレット等を用いる場合に比べて低減できるので、ハニカム体を用いればより少ない触媒・吸着剤使用量で、より低い圧力損失を実現でき、かつペレット等と同じ性能を発揮することができる。すなわち、ハニカム体に触媒又は吸着剤を担持することにより、ペレット等に比べて高効率に触媒又は吸着剤を利用することができる。 According to the oxygen removal device of the present invention, by using a honeycomb body instead of the catalyst/adsorbent pellets filled in the adsorption tower used in the catalyst/adsorption method, pressure loss can be significantly reduced and large air volume can be handled. I can do it. That is, it is possible to supply gas from which oxygen has been removed at a large air volume. In addition, the amount of catalyst or adsorbent supported on the honeycomb body can be reduced compared to when using pellets or the like, so using a honeycomb body can achieve lower pressure loss with less catalyst and adsorbent usage. Moreover, it can exhibit the same performance as pellets, etc. That is, by supporting the catalyst or adsorbent on the honeycomb body, the catalyst or adsorbent can be used more efficiently than pellets or the like.

さらに、再生運転時に生じる水分は減圧等の操作が不要であり、コンプレッサや真空ポンプ等の加減圧手段を利用しなくてもガス置換(再生操作におけるガスの流通)により排出が可能となるため、システム全体の部品や部材性能を低減することができる。また、簡易な構成により、酸素除去装置の小型化が可能であり、消費電力も小さくできるという利点がある。 Furthermore, moisture generated during regeneration operation does not require operations such as depressurization, and can be discharged by gas replacement (gas flow during regeneration operation) without using pressure reduction means such as compressors or vacuum pumps. It is possible to reduce the performance of parts and components of the entire system. Further, due to the simple configuration, it is possible to downsize the oxygen removal device, and the power consumption can also be reduced.

図1は本発明の酸素除去装置における処理操作と再生操作を交互に行う場合のフローの一例である。FIG. 1 is an example of a flow when processing operations and regeneration operations are performed alternately in the oxygen removal apparatus of the present invention. 図2は本発明の酸素除去装置における処理操作及び再生操作を同時に連続的に行うフローの一例である。FIG. 2 is an example of a flow in which processing operations and regeneration operations are performed simultaneously and continuously in the oxygen removal apparatus of the present invention. 図3は本発明の酸素除去装置における吸着塔の高さを揃えたペレット充填層とハニカム体の圧力損失の比較を示すグラフである。FIG. 3 is a graph showing a comparison of pressure loss between a pellet packed bed and a honeycomb body in which the adsorption tower heights are the same in the oxygen removal apparatus of the present invention. 図4は本発明の酸素除去装置において、ハニカム体をハニカムロータとして適用する場合の模式図であり、図4(A)はハニカム体を円柱(ロータ)状に巻付けて作製した円盤型ロータ、図4(B)は扇形のブロックとして組み立てた場合の円盤型ロータである。FIG. 4 is a schematic diagram of a case where a honeycomb body is applied as a honeycomb rotor in the oxygen removal device of the present invention, and FIG. FIG. 4(B) shows a disk-shaped rotor assembled as a fan-shaped block. 図5は本発明の酸素除去装置において、ハニカム体を扇形のブロックにして円筒型ロータに組み立て、ハニカムロータとして適用する場合の模式図である。FIG. 5 is a schematic diagram of the oxygen removal device of the present invention in which a honeycomb body is made into a fan-shaped block and assembled into a cylindrical rotor and applied as a honeycomb rotor. 図6は本発明の酸素除去装置の実施例1における閉鎖系流路を組み込んだブース内ガスのフローと酸素除去実験結果を示すグラフである。FIG. 6 is a graph showing the flow of gas in a booth incorporating a closed system flow path and the results of an oxygen removal experiment in Example 1 of the oxygen removal apparatus of the present invention.

以下に本発明を実施するための形態について図面を用いて説明する。なお、本発明は以下の実施形態及び図面について限定されるものではない。 EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated using drawing. Note that the present invention is not limited to the following embodiments and drawings.

図1は本発明の酸素除去装置における処理操作と再生操作を交互に行う場合のフローの一例である。吸着塔5、6にはそれぞれハニカム体7、8が充填されている。ハニカム体7、8には処理ガス2中の酸素又は窒素を分離可能なガス分離部材をバインダー等を用いて担持してある。処理操作は、処理ガス2をハニカム体7、8に通過させて行い、再生操作は再生ガス1を用いて行う。ガス流路の切替操作は、例えばバルブ9~16を用いて行う。 FIG. 1 is an example of a flow when processing operations and regeneration operations are performed alternately in the oxygen removal apparatus of the present invention. Adsorption towers 5 and 6 are filled with honeycomb bodies 7 and 8, respectively. A gas separation member capable of separating oxygen or nitrogen in the processing gas 2 is supported on the honeycomb bodies 7 and 8 using a binder or the like. The processing operation is performed by passing the processing gas 2 through the honeycomb bodies 7 and 8, and the regeneration operation is performed using the regeneration gas 1. The gas flow path switching operation is performed using, for example, valves 9 to 16.

処理操作において、バルブ9、11を閉じ、バルブ10、12、13、14、15、16を開く。処理ガス2を、吸着塔5に充填したハニカム体7及び吸着塔6に充填したハニカム体8を通過させることにより、ハニカム体7及び8に担持されたガス分離部材が処理ガス2中の酸素又は窒素を除去し、ハニカム体通過ガス4となる。ハニカム体通過ガス4は、処理ガス2が例えば空気である場合は、酸素が除去されると酸素貧化空気(窒素富化空気)となり、窒素が除去されると酸素富化空気となる。 In the processing operation, valves 9, 11 are closed and valves 10, 12, 13, 14, 15, 16 are opened. By passing the treated gas 2 through the honeycomb body 7 filled in the adsorption tower 5 and the honeycomb body 8 packed in the adsorption tower 6, the gas separation member supported on the honeycomb bodies 7 and 8 separates the oxygen or Nitrogen is removed and the honeycomb body passing gas 4 is obtained. When the process gas 2 is air, for example, the gas 4 passing through the honeycomb body becomes oxygen-depleted air (nitrogen-enriched air) when oxygen is removed, and becomes oxygen-enriched air when nitrogen is removed.

一方、再生操作では、バルブ10、12を閉じ、バルブ9、11、13、14、15、16を開く。再生ガス1を、吸着塔5に充填したハニカム体7及び吸着塔6に充填したハニカム体8を通過させることにより、ハニカム体7及び8に担持されたガス分離部材が再生され、排気3として排気される。再生ガス1が例えば空気であって、ガス分離部材が活性炭やゼオライト等の吸着剤である場合、処理操作において酸素が除去されると排気3は酸素が脱着され酸素富化空気となり、処理操作において窒素が吸着除去されると窒素が脱着されるので窒素富化空気となる。 On the other hand, in the regeneration operation, valves 10 and 12 are closed and valves 9, 11, 13, 14, 15, and 16 are opened. By passing the regenerated gas 1 through the honeycomb body 7 filled in the adsorption tower 5 and the honeycomb body 8 filled in the adsorption tower 6, the gas separation members supported on the honeycomb bodies 7 and 8 are regenerated, and the gas is exhausted as the exhaust gas 3. be done. For example, when the regeneration gas 1 is air and the gas separation member is an adsorbent such as activated carbon or zeolite, when oxygen is removed in the treatment operation, the exhaust gas 3 is desorbed with oxygen and becomes oxygen-enriched air. When nitrogen is adsorbed and removed, nitrogen is desorbed, resulting in nitrogen-enriched air.

このように、図1のフローでは、吸着塔5、6に処理ガス2または再生ガス1の一方を流して、処理操作と再生操作を交互に行う。なお、図1では吸着塔を二つ設けたが、一つでも複数設けるようにしてもよい。 In this manner, in the flow shown in FIG. 1, either the processing gas 2 or the regeneration gas 1 is caused to flow through the adsorption towers 5 and 6, and the processing operation and the regeneration operation are performed alternately. Although two adsorption towers are provided in FIG. 1, one or more adsorption towers may be provided.

図2では処理操作及び再生操作を同時に連続的に行う構成とする。処理操作において、バルブ10、12、13、14を開く。処理ガス2を、吸着塔5に充填したハニカム体7を通過させることにより、ハニカム体7に担持されたガス分離部材が処理ガス2中の酸素又は窒素を除去し、ハニカム体通過ガス4となる。一方、同時にもう一方の吸着塔6では再生操作を行う。再生操作では、バルブ9、11、18、20を開く。再生ガス1を、吸着塔6に充填したハニカム体8を通過させることにより、ハニカム体8に担持されたガス分離部材が再生され、脱離した酸素又は窒素は排気3として排気される。このように、吸着塔5では処理操作、吸着塔6では再生操作が行われている場合、バルブ15、16、17、19は閉じた状態となる。逆に、処理操作と再生操作が切り替わり、吸着塔5では再生操作、吸着塔6では処理操作が行われている場合、バルブ13、14、18、20は閉じ、その他のバルブは開いた状態となる。 In FIG. 2, the configuration is such that the processing operation and the reproduction operation are performed simultaneously and continuously. In the treatment operation, valves 10, 12, 13, 14 are opened. By passing the treated gas 2 through the honeycomb body 7 filled in the adsorption tower 5, the gas separation member supported on the honeycomb body 7 removes oxygen or nitrogen from the treated gas 2, and becomes the honeycomb body passing gas 4. . Meanwhile, at the same time, the other adsorption tower 6 performs a regeneration operation. In the regeneration operation, valves 9, 11, 18, 20 are opened. By passing the regeneration gas 1 through the honeycomb body 8 filled in the adsorption tower 6, the gas separation member supported on the honeycomb body 8 is regenerated, and the desorbed oxygen or nitrogen is exhausted as exhaust gas 3. In this way, when the adsorption tower 5 is undergoing a treatment operation and the adsorption tower 6 is undergoing a regeneration operation, the valves 15, 16, 17, and 19 are in a closed state. Conversely, when the processing operation and the regeneration operation are switched, and the regeneration operation is performed in the adsorption tower 5 and the treatment operation is performed in the adsorption tower 6, the valves 13, 14, 18, and 20 are closed, and the other valves are open. Become.

このように、図2の実施形態では二つの吸着塔を並列に設置し(二塔式)、一方の吸着塔には再生ガス1を流してハニカム体を再生している間、もう一方の吸着塔に処理ガス2を流して酸素又は窒素除去を行う。なお、吸着塔二つに限るものではなく、複数設けるようにしてもよい。図1に例えば四方弁のような流路切替バルブ等を用いて、図2のように連続的に処理操作及び再生操作を同時に行う構成としてもよい。 In this way, in the embodiment shown in Fig. 2, two adsorption towers are installed in parallel (two-tower type), and while the regeneration gas 1 is flowing through one adsorption tower to regenerate the honeycomb body, the other adsorption tower is regenerated. Processing gas 2 is passed through the column to remove oxygen or nitrogen. Note that the number of adsorption towers is not limited to two, and a plurality of adsorption towers may be provided. For example, a configuration may be adopted in which a flow path switching valve such as a four-way valve is used in FIG. 1 to perform the processing operation and the regeneration operation simultaneously as shown in FIG. 2 continuously.

ハニカム体に担持したガス分離部材は、酸素除去を行うため、酸素を吸着する吸着剤、酸素を除去する触媒、窒素を吸着する吸着剤のうち、少なくとも一つを用いるようにしてもよい。酸素又は窒素を吸着する吸着剤として、ゼオライトや活性炭、シリカゲル、メソポーラスシリカ等が挙げられる。酸素を除去する触媒を用いる場合には、遷移金属元素としてマンガン、鉄、コバルト、ニッケル、銅、白金族元素としてパラジウム、ロジウム、ルテニウム、白金、それ以外のものとして金属間化合物や複合金属酸化物(例えば、LaMnO、LaFeO、NiMn等)や、これらの混合物等を用いる。 In order to remove oxygen, the gas separation member supported on the honeycomb body may use at least one of an adsorbent that adsorbs oxygen, a catalyst that removes oxygen, and an adsorbent that adsorbs nitrogen. Examples of adsorbents that adsorb oxygen or nitrogen include zeolite, activated carbon, silica gel, mesoporous silica, and the like. When using a catalyst to remove oxygen, transition metal elements such as manganese, iron, cobalt, nickel, and copper, platinum group elements such as palladium, rhodium, ruthenium, and platinum, and other materials such as intermetallic compounds and composite metal oxides. (For example, LaMnO 3 , LaFeO 3 , NiMn 2 O 4 etc.) or a mixture thereof.

ハニカム体にガス分離部材を担持する場合には、ガス分離部材の性質に応じて、適宜バインダーや製法を選定・調製し、例えばガス分離部材とバインダーを含むスラリー中にハニカム体を浸漬担持する。あるいは、ガス分離部材を混抄又は接着コートしたシートをコルゲートしてハニカム加工するようにしてもよく、ガス分離部材を含む粘土を型押ししてハニカム体を形成するようにしてもよい。 When supporting a gas separation member on a honeycomb body, the binder and manufacturing method are appropriately selected and prepared depending on the properties of the gas separation member, and the honeycomb body is immersed and supported in a slurry containing the gas separation member and the binder, for example. Alternatively, a sheet mixed or adhesive coated with the gas separation member may be corrugated to form a honeycomb, or clay containing the gas separation member may be pressed to form a honeycomb body.

含浸法やコート法で作製されるハニカム体は、セラミック繊維紙やガラス繊維紙等の無機性及び/又は不燃性シート、金属シート、プラスチックシート、耐熱繊維不織布等のシートをコルゲート(波付け)加工し、ブロック状に積層または円柱(ロータ)状に巻付け加工したものである。ハニカム体の断面の形状は、段ボールの断面のような波形に限らず、三角形や台形、六角形等、ガスが通風するのに問題ない形状であれば特に問わない。ハニカム体は接触面積が広くても、圧力損失が低く、軽量でありながら強度が高いので、大型化が容易という特長がある。ハニカム体は吸着塔に充填するため、ハニカム断面にガスが通気するように、適宜ブロック状又は円柱状等の形状に加工する。 Honeycomb bodies produced by the impregnation method or coating method are made by corrugating sheets such as inorganic and/or nonflammable sheets such as ceramic fiber paper and glass fiber paper, metal sheets, plastic sheets, and heat-resistant fiber nonwoven fabrics. It is laminated into blocks or wrapped into a cylinder (rotor). The cross-sectional shape of the honeycomb body is not limited to a waveform like the cross-section of a cardboard box, and may be triangular, trapezoidal, hexagonal, or other shapes as long as they do not pose a problem for gas ventilation. Honeycomb bodies have a low pressure loss even though the contact area is large, and are lightweight yet high in strength, so they can easily be made larger. In order to fill an adsorption tower with the honeycomb body, the honeycomb body is processed into a shape such as a block or a cylinder as appropriate so that gas can be vented through the cross section of the honeycomb.

図3は本発明の酸素除去装置における吸着塔の高さを揃えたペレット充填層とハニカム体の圧力損失の比較を示すグラフである。ペレット充填層は、一定の面風速を超えるガス風量において圧力損失が急激に増加する。よって、ペレット充填層で大風量を処理するには、送風機等の出力を上げる等の工夫が必要となる。ペレット充填層で急激に圧力損失が立ち上がる面風速の領域では、ハニカム体の圧力損失は急激に立ち上がることなく、低い値を維持する。従って、ハニカム体は大風量の処理を可能とする能力を有することを示す。 FIG. 3 is a graph showing a comparison of pressure loss between a pellet packed bed and a honeycomb body in which the adsorption tower heights are the same in the oxygen removal apparatus of the present invention. In a pellet-filled bed, pressure loss increases rapidly when the gas flow rate exceeds a certain surface wind speed. Therefore, in order to process a large amount of air with a pellet-filled bed, it is necessary to take measures such as increasing the output of a blower or the like. In the area of surface wind speed where the pressure loss suddenly rises in the pellet packed bed, the pressure loss in the honeycomb body does not rise suddenly and maintains a low value. Therefore, it is shown that the honeycomb body has the ability to process a large amount of air.

吸着塔の高さを揃えたペレット充填層とハニカム体の圧力損失を比較すると、例えば面速1m/sのハニカム体の圧力損失は、ペレット充填層の圧力損失の4分の1まで低減する。 例えば、このグラフに用いた触媒の場合、触媒担持ハニカム体は触媒ペレットの約30%程度の触媒重量で作製することができ、触媒ペレットと同じ体積を有する触媒担持ハニカム体の酸素除去性能は、再生時に減圧等の水分の排出操作なしに、100ppmの酸素を99%以上除去できる性能を発揮する。 Comparing the pressure loss of a honeycomb body with a pellet packed bed with adsorption towers of the same height, for example, the pressure loss of a honeycomb body with a face velocity of 1 m/s is reduced to one-fourth of the pressure loss of a pellet packed bed. For example, in the case of the catalyst used in this graph, the catalyst-supported honeycomb body can be produced with a catalyst weight of about 30% of the catalyst pellet, and the oxygen removal performance of the catalyst-supported honeycomb body having the same volume as the catalyst pellet is: It exhibits the ability to remove 99% or more of 100 ppm oxygen without requiring depressurization or other moisture discharge operations during regeneration.

なお、図1及び図2のフローにおいて、ガス流路は処理操作及び再生操作のフローのみに限らず、パージ操作を含めるなど複数の流路から構成されるようにしてもよい。処理温度や再生温度に応じてガスを冷却又は加熱したり、ハニカム体又は吸着塔自体、流路全体を冷却又は加熱するようにしてもよい。また、バルブについては、これに限定されるものではなく、ダンパやVAV(Variable Air Volume)等の風量調整装置を用いてもよい。 In addition, in the flow of FIG. 1 and FIG. 2, the gas flow path is not limited to only the flow of the processing operation and the regeneration operation, but may be configured to include a plurality of flow paths, such as including a purge operation. The gas may be cooled or heated depending on the processing temperature or the regeneration temperature, or the honeycomb body, the adsorption tower itself, or the entire flow path may be cooled or heated. Further, the valve is not limited to this, and an air volume adjusting device such as a damper or a VAV (Variable Air Volume) may be used.

ハニカム体を単に吸着塔に充填するのではなく、図4及び図5に示すように、ハニカムロータとして、少なくとも処理ゾーン23及び再生ゾーン24を有し、処理ゾーン23には処理ガス2を通風することにより処理ガス中の酸素又は窒素を除去し、再生ゾーン24には加熱した再生ガス1を通風する及び/又はハニカム体としてのハニカムロータを加熱することにより、ハニカム体を再生するようにしてもよい。 Rather than simply filling an adsorption tower with honeycomb bodies, as shown in FIGS. 4 and 5, the honeycomb rotor has at least a processing zone 23 and a regeneration zone 24, and the processing zone 23 is ventilated with the processing gas 2. The honeycomb body may be regenerated by removing oxygen or nitrogen from the processing gas and passing the heated regeneration gas 1 through the regeneration zone 24 and/or heating the honeycomb rotor as the honeycomb body. good.

ハニカムロータの形態として、図4(A)のようにハニカム体を円柱(ロータ)状に巻付けて作製して円盤型ロータ22とするか、図4(B)のように扇形のブロック25として組み立てて円盤型ロータ22とし、周方向に直交する方向にガスを通気する。あるいは、図5のようにハニカム体を扇形のブロック25にして、円柱状の枠にセットして円筒型ロータ26に組み立て、外周方向から内周方向へガスを通気するようにしてもよい。いずれにしても、少なくとも処理ゾーン23と再生ゾーン24に分割シールした装置内にハニカムロータを設置し、連続回転させる。これにより、連続的に酸素除去が可能となる。なお、必要に応じて、パージゾーン等その他のゾーンを設けるようにしてもよい。 The honeycomb rotor can be formed by winding a honeycomb body into a cylinder (rotor) shape to form a disk-shaped rotor 22 as shown in FIG. 4(A), or as a fan-shaped block 25 as shown in FIG. 4(B). It is assembled to form a disk-shaped rotor 22, and gas is vented in a direction perpendicular to the circumferential direction. Alternatively, as shown in FIG. 5, the honeycomb body may be made into a fan-shaped block 25, set in a cylindrical frame, and assembled into a cylindrical rotor 26, so that gas can be vented from the outer circumferential direction to the inner circumferential direction. In any case, a honeycomb rotor is installed in an apparatus that is divided and sealed into at least a processing zone 23 and a regeneration zone 24, and is continuously rotated. This allows continuous oxygen removal. Note that other zones such as a purge zone may be provided as necessary.

以下、本発明の酸素除去装置の実施例1について図6に沿って説明する。実施例1では、特許文献4や特許文献5のように、ブース内を低露点の不活性ガス環境で清浄に保つ必要のある、ディスプレイや電池製造のドライルームを想定した。製造装置のメンテナンスや調整等を行った後、大気環境から低露点の不活性ガス環境にする場合に、まず比較的大量の窒素を供給してブース21内の大気を窒素に置換する窒素置換運転を行い、ブース内の酸素濃度が例えば100ppmとなった場合に、本発明の酸素除去装置による酸素除去運転を開始する。 Example 1 of the oxygen removal device of the present invention will be described below with reference to FIG. 6. In Example 1, as in Patent Document 4 and Patent Document 5, a dry room for manufacturing displays and batteries is assumed, where the inside of the booth needs to be kept clean in an inert gas environment with a low dew point. After performing maintenance and adjustment of manufacturing equipment, when changing from an atmospheric environment to an inert gas environment with a low dew point, a nitrogen replacement operation is performed in which a relatively large amount of nitrogen is first supplied to replace the atmosphere in the booth 21 with nitrogen. When the oxygen concentration in the booth reaches, for example, 100 ppm, oxygen removal operation by the oxygen removal apparatus of the present invention is started.

図6のフロー図は、基本的に図1に示されたものと同じであるが、ブース21を含む閉鎖系流路を組んでおり、図1におけるハニカム体通過ガス4は給気SAとしてブース21に供給され、処理ガス2にはブース21からの還気RAが用いられる。図6に示すグラフは、このフローにおける処理(酸素除去)操作時のブース21内の酸素濃度の変化を示すグラフである。このグラフによれば、ブース21内のガスをRA、すなわち処理ガスとして触媒を担持したハニカム体7又は/及び8に通過させるように通過流路を切り替えることで、大風量(ブース21容積は43mであった)の100ppmの酸素を99%以上除去できる性能を有することを示した。 The flow diagram in FIG. 6 is basically the same as that shown in FIG. 1, but a closed system flow path including a booth 21 is constructed, and the gas 4 passing through the honeycomb body in FIG. 1 is supplied to the booth as supply air SA. Return air RA from the booth 21 is used as the processing gas 2. The graph shown in FIG. 6 is a graph showing changes in the oxygen concentration within the booth 21 during the processing (oxygen removal) operation in this flow. According to this graph, by switching the passage flow path so that the gas in the booth 21 passes through the honeycomb bodies 7 and/or 8 carrying catalyst as RA, that is, the process gas, a large air volume (the volume of the booth 21 is 43 m It was shown that it has the ability to remove 99% or more of 100 ppm of oxygen ( 3 ).

実施例1では、金属触媒に銅が含まれている触媒をバインダーにより担持したハニカム体を用いた。次式のように、実施例1における処理操作では、銅が酸素と反応して酸化し、酸化銅となることにより酸素が除去される。
2Cu+O→2CuO
一方、再生操作においては、再生(還元)ガス1として水素をハニカム体に流通して触媒を還元した。この場合、次式のように、酸化銅が水素と反応して還元され、水分が排出される。なお、この水分は触媒ペレット充填層を用いる場合は、高い圧力損失が由来して、触媒ペレットの再生運転時に生じる水分の排出に時間を要するので、真空ポンプ等で水分の排出を促す機構を設ける必要がある。しかし、本発明では、ハニカム体を用いることで、圧力損失が大幅に低減するので、水分の排出を促す減圧等の操作が不要で、再生ガスを流すだけで発生した水分の排出が可能となるため、システム全体の部品や部材を低減することができる。
2CuO+H→2Cu+H
In Example 1, a honeycomb body in which a metal catalyst containing copper was supported by a binder was used. As shown in the following equation, in the treatment operation in Example 1, copper reacts with oxygen and is oxidized to become copper oxide, thereby removing oxygen.
2Cu+O 2 →2CuO
On the other hand, in the regeneration operation, hydrogen was passed through the honeycomb body as regeneration (reduction) gas 1 to reduce the catalyst. In this case, copper oxide reacts with hydrogen and is reduced, as shown in the following equation, and water is discharged. In addition, when using a catalyst pellet packed bed, this moisture comes from a high pressure loss, and it takes time to discharge the moisture generated during catalyst pellet regeneration operation, so a mechanism is provided to facilitate the discharge of moisture, such as a vacuum pump. There is a need. However, in the present invention, by using a honeycomb body, the pressure loss is significantly reduced, so there is no need for operations such as depressurization to promote the discharge of moisture, and the generated moisture can be discharged simply by flowing regeneration gas. Therefore, the number of parts and members for the entire system can be reduced.
2CuO+H 2 →2Cu+H 2 O

実施例1ではブース内の酸素濃度が100ppmと極めて低濃度となったときに、ハニカム体による酸素除去を開始したが、これに限るものではなく、ハニカム体に担持する触媒や吸着剤によって、例えば空気中の21%の酸素を除去するようにしてもよく、他の濃度であってもよい。 In Example 1, when the oxygen concentration in the booth reached an extremely low concentration of 100 ppm, oxygen removal using the honeycomb body was started, but the invention is not limited to this. 21% of the oxygen in the air may be removed, or other concentrations may be used.

以上のように、本発明の酸素除去装置は、窒素精製機(不活性ガス精製装置)として除湿機(低露点ガス供給装置)と組み合わせることで、除湿装置特許文献5に記載の除湿機と精製機の一体型でも、特許文献4に記載の除湿機と精製機の分離型でも、どちらのパターンにも適用できる。担持した触媒や吸着剤の特性に合わせて、様々な酸素濃度を含むガスから酸素を除去することができ、窒素吸着剤を用いれば、空気中や窒素及び酸素を含むガスから、窒素を除去することで、酸素を分離することも可能である。 As described above, the oxygen removal device of the present invention can be combined with a dehumidifier (low dew point gas supply device) as a nitrogen purifier (inert gas purification device), and can be combined with the dehumidifier described in Patent Document 5. It can be applied to both patterns, including an integrated type machine and a separated type dehumidifier and purifier described in Patent Document 4. Oxygen can be removed from gases containing various oxygen concentrations depending on the characteristics of the supported catalyst and adsorbent, and by using a nitrogen adsorbent, nitrogen can be removed from the air or from gases containing nitrogen and oxygen. By doing so, it is also possible to separate oxygen.

本発明はハニカム体を用いており、従来のペレット充填層に比べて圧力損失を低減でき、少ない触媒又は吸着剤量で、高性能な酸素除去を可能とする。よって、ペレット充填層で課題であった大風量のガスの酸素除去処理が連続的に可能となる。 The present invention uses a honeycomb body, which can reduce pressure loss compared to conventional pellet packed beds, and enables high-performance oxygen removal with a small amount of catalyst or adsorbent. Therefore, it becomes possible to continuously remove oxygen from a large amount of gas, which was a problem with pellet-filled beds.

ディスプレイや電池産業の拡大に伴い、それらの製造に必要な無酸素空間の大容量化が求められている。 酸素が共存する空間でディスプレイや電池を製造すると、材料表面に酸化物を形成してしまい、本来のポテンシャルを発揮することができない。従来、グローブボックス等人間の手が届く範囲での作業しか行えなかった作業が大規模生産まで至った背景にはロボット産業の発展が一翼を担っている。無酸素空間で製造された製品は、最終的には大気開放して使用されるため、無酸素空間と大気開放の切り替え時間が製造速度を大きく左右する。大風量の窒素精製又は酸素除去を可能とする本発明の酸素除去装置は、短時間での無酸素空間の生成に資する。 As the display and battery industries expand, there is a need for a larger capacity oxygen-free space for their production. If displays and batteries are manufactured in spaces where oxygen coexists, oxides will form on the surfaces of the materials, making it impossible to demonstrate their original potential. The development of the robot industry has played a role in the development of large-scale production of tasks that previously could only be performed within the reach of humans, such as glove boxes. Products manufactured in an oxygen-free space are ultimately used after being exposed to the atmosphere, so the switching time between the oxygen-free space and the atmosphere has a large effect on manufacturing speed. The oxygen removal device of the present invention, which enables nitrogen purification or oxygen removal with a large air volume, contributes to the creation of an oxygen-free space in a short time.

また、種々の酸素濃度を含有するガスに対応しているので、例えば、空気を原料とし、外気よりも酸素濃度が低い低酸素空気を生成し、この低酸素空気を例えば模擬的な高地トレーニングを行うことができるトレーニング装置等に用いることもできる。 In addition, it is compatible with gases containing various oxygen concentrations, so for example, air can be used as a raw material to generate hypoxic air, which has a lower oxygen concentration than outside air, and this hypoxic air can be used, for example, for simulated high-altitude training. It can also be used as a training device for training.

1 再生ガス
2 処理ガス
3 排気
4 ハニカム体通過ガス
5、6 吸着塔
7、8 ハニカム体
9、10、11、12、13、14、15、16、17、18、19、20 バルブ
21 ブース
22 ハニカムロータ
23 処理ゾーン
24 再生ゾーン
25、26 ブロック
1 Regeneration gas 2 Processing gas 3 Exhaust 4 Honeycomb body passing gas 5, 6 Adsorption tower 7, 8 Honeycomb body 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 Valve 21 Booth 22 Honeycomb rotor 23 Processing zone 24 Regeneration zone 25, 26 Block

Claims (6)

処理ガス中の酸素又は窒素を分離可能なガス分離部材を担持したハニカム体。 A honeycomb body supporting a gas separation member capable of separating oxygen or nitrogen in a processing gas. 前記ガス分離部材は、酸素を吸着する吸着剤、酸素を除去する触媒、窒素を吸着する吸着剤の少なくとも一つからなる請求項1に記載のハニカム体。 The honeycomb body according to claim 1, wherein the gas separation member comprises at least one of an adsorbent that adsorbs oxygen, a catalyst that removes oxygen, and an adsorbent that adsorbs nitrogen. 前記ハニカム体は円柱状またはブロック状であることを特徴とする請求項1または請求項2に記載のハニカム体。 The honeycomb body according to claim 1 or 2, wherein the honeycomb body is columnar or block-shaped. 請求項1又は請求項2に記載のハニカム体を吸着塔に充填し、処理ガスを前記ハニカム体に通風することにより前記処理ガス中の酸素又は窒素を除去し、再生ガスを通風することにより、前記ハニカム体を再生し、前記吸着塔は少なくとも一つからなることを特徴とする酸素除去装置。 Filling an adsorption tower with the honeycomb body according to claim 1 or claim 2, removing oxygen or nitrogen in the process gas by ventilating the process gas through the honeycomb body, and ventilating the regeneration gas, An oxygen removal device for regenerating the honeycomb body and comprising at least one adsorption tower. 請求項4に記載の酸素除去装置において、前記再生ガス及び/又は前記ハニカム体を加熱することにより、前記ハニカム体を再生することを特徴とする除去装置。 5. The oxygen removal apparatus according to claim 4, wherein the honeycomb body is regenerated by heating the regeneration gas and/or the honeycomb body. 請求項1又は請求項2に記載のハニカム体はハニカムロータであって、少なくとも処理ゾーン及び再生ゾーンを有し、処理ゾーンには処理ガスを通風することにより前記処理ガス中の酸素又は窒素を除去し、再生ゾーンには加熱した再生ガスを通風する及び/又は前記ハニカムロータを加熱することにより、前記ハニカム体を再生することを特徴とする酸素除去装置。 The honeycomb body according to claim 1 or 2 is a honeycomb rotor, and has at least a treatment zone and a regeneration zone, and the treatment zone is provided with a treatment gas that is ventilated to remove oxygen or nitrogen from the treatment gas. The oxygen removal apparatus is characterized in that the honeycomb body is regenerated by passing heated regeneration gas through the regeneration zone and/or heating the honeycomb rotor.
JP2022068174A 2022-04-18 2022-04-18 oxygen removal equipment Pending JP2023158373A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022068174A JP2023158373A (en) 2022-04-18 2022-04-18 oxygen removal equipment
CN202310094857.3A CN116899401A (en) 2022-04-18 2023-02-03 Oxygen removal device
KR1020230023266A KR20230148737A (en) 2022-04-18 2023-02-22 Oxygen removing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022068174A JP2023158373A (en) 2022-04-18 2022-04-18 oxygen removal equipment

Publications (1)

Publication Number Publication Date
JP2023158373A true JP2023158373A (en) 2023-10-30

Family

ID=88360829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022068174A Pending JP2023158373A (en) 2022-04-18 2022-04-18 oxygen removal equipment

Country Status (3)

Country Link
JP (1) JP2023158373A (en)
KR (1) KR20230148737A (en)
CN (1) CN116899401A (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676521U (en) 1979-11-19 1981-06-22
JP2006087683A (en) 2004-09-24 2006-04-06 Teijin Pharma Ltd Oxygen concentrator
JP2010184844A (en) 2009-02-13 2010-08-26 Nippon Steel Corp Method of operating oxygen-producing plant
JP7080478B2 (en) 2017-09-14 2022-06-06 株式会社西部技研 Dry room for gas replacement
JP7306683B2 (en) 2019-05-29 2023-07-11 株式会社西部技研 Dry room for gas replacement

Also Published As

Publication number Publication date
CN116899401A (en) 2023-10-20
KR20230148737A (en) 2023-10-25

Similar Documents

Publication Publication Date Title
EP1070531B1 (en) Air separation using monolith adsorbent bed
US7166149B2 (en) Adsorption process for continuous purification of high value gas feeds
US6521019B2 (en) Air separation using monolith adsorbent bed
JP3699822B2 (en) Multi-layer adsorption bed for PSA gas separation
KR100926498B1 (en) Performance stability in rapid cycle pressure swing adsorption system
US7037358B2 (en) PSA with adsorbents sensitive to contaminants
US5074892A (en) Air separation pressure swing adsorption process
US7608133B2 (en) Lithium-exchanged faujasites for carbon dioxide removal
US20050217481A1 (en) Rotary adsorbent contactors for drying, purification and separation of gases
JP2673300B2 (en) Low concentration gas sorption machine
KR20070118980A (en) Pressure swing adsorption method with improved recovery of high purity products
KR20010052184A (en) Pressure swing adsorption gas separation method, using adsorbents with high intrinsic diffusivity and low pressure ratios
JP2019034302A (en) Rapid cycle pressure swing adsorption step and adsorptive laminate for use in the same
JP4867786B2 (en) Low dew point compressed air production equipment
JP2023158373A (en) oxygen removal equipment
JP7132475B1 (en) Carbon dioxide gas separator/concentrator capable of supplying air conditioning
CN114483546A (en) Method for improving quality of compressed air of air compression station
CN112892166A (en) System and method for eliminating harmful gas in closed space
CN109745828B (en) A monolithic adsorbent for oxygen production from air
CA2430156C (en) Psa with adsorbents sensitive to contaminants
WO2025009184A1 (en) Gas concentration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20250311