[go: up one dir, main page]

JP2023156362A - Resin materials, laminated films and multilayer printed wiring boards - Google Patents

Resin materials, laminated films and multilayer printed wiring boards Download PDF

Info

Publication number
JP2023156362A
JP2023156362A JP2023122240A JP2023122240A JP2023156362A JP 2023156362 A JP2023156362 A JP 2023156362A JP 2023122240 A JP2023122240 A JP 2023122240A JP 2023122240 A JP2023122240 A JP 2023122240A JP 2023156362 A JP2023156362 A JP 2023156362A
Authority
JP
Japan
Prior art keywords
compound
resin material
skeleton
weight
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023122240A
Other languages
Japanese (ja)
Other versions
JP7607711B2 (en
Inventor
悠子 川原
Yuko Kawahara
達史 林
Tatsuji Hayashi
俊章 田中
Toshiaki Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of JP2023156362A publication Critical patent/JP2023156362A/en
Application granted granted Critical
Publication of JP7607711B2 publication Critical patent/JP7607711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

To provide a resin material which 1) enhances embedding properties to an uneven surface, 2) suppresses excess squeeze out from a periphery of a substrate of a resin material during lamination, 3) keeps curing temperature low, 4) reduces dielectric loss tangent of a cured article, 5) enhances adhesiveness with a metal, and 6) can enhance bending stability of the cured article.SOLUTION: The resin material contains a polyimide compound, and at least one of aliphatic skeleton-containing compound of a maleimide compound having an aliphatic skeleton and a benzoxazine compound having the aliphatic skeleton.SELECTED DRAWING: Figure 1

Description

本発明は、ポリイミド化合物を含む樹脂材料に関する。また、本発明は、上記樹脂材料を用いた多層プリント配線板に関する。 The present invention relates to a resin material containing a polyimide compound. The present invention also relates to a multilayer printed wiring board using the above resin material.

従来、半導体装置、積層板及びプリント配線板等の電子部品を得るために、様々な樹脂材料が用いられている。例えば、多層プリント配線板では、内部の層間を絶縁するための絶縁層を形成したり、表層部分に位置する絶縁層を形成したりするために、樹脂材料が用いられている。上記絶縁層の表面には、一般に金属である配線が積層される。また、上記絶縁層を形成するために、上記樹脂材料がフィルム化された樹脂フィルムが用いられることがある。上記樹脂材料及び上記樹脂フィルムは、ビルドアップフィルムを含む多層プリント配線板用の絶縁材料等として用いられている。 Conventionally, various resin materials have been used to obtain electronic components such as semiconductor devices, laminates, and printed wiring boards. For example, in a multilayer printed wiring board, a resin material is used to form an insulating layer for insulating between internal layers, and to form an insulating layer located on a surface layer. Wiring, which is generally metal, is laminated on the surface of the insulating layer. Moreover, in order to form the above-mentioned insulating layer, a resin film obtained by forming the above-mentioned resin material into a film may be used. The resin material and the resin film are used as insulating materials for multilayer printed wiring boards including build-up films.

下記の特許文献1には、マレイミド基と、少なくとも2つのイミド結合を有する2価の基及び飽和又は不飽和の2価の炭化水素基とを有する化合物を含有する樹脂組成物が開示されている。特許文献1には、この樹脂組成物の硬化物を、多層プリント配線板等の絶縁層として用いることができることが記載されている。 Patent Document 1 below discloses a resin composition containing a compound having a maleimide group, a divalent group having at least two imide bonds, and a saturated or unsaturated divalent hydrocarbon group. . Patent Document 1 describes that a cured product of this resin composition can be used as an insulating layer of a multilayer printed wiring board or the like.

下記の特許文献2には、(A)多官能エポキシ樹脂(但し、フェノキシ樹脂を除く)、(B)フェノール系硬化剤及び/又は活性エステル系硬化剤、(C)熱可塑性樹脂、(D)無機充填材、並びに(E)4級ホスホニウム系硬化促進剤を含有する樹脂組成物が開示されている。(C)熱可塑性樹脂は、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリイミド、ポリアミドイミド樹脂、ポリエーテルスルホン樹脂、及びポリスルホン樹脂から選択される熱可塑性樹脂である。(E)4級ホスホニウム系硬化促進剤は、テトラブチルホスホニウムデカン酸塩、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、及びブチルトリフェニルホスホニウムチオシアネートから選ばれる1種以上の4級ホスホニウム系硬化促進剤である。 Patent Document 2 below describes (A) polyfunctional epoxy resin (excluding phenoxy resin), (B) phenolic curing agent and/or active ester curing agent, (C) thermoplastic resin, (D) A resin composition containing an inorganic filler and (E) a quaternary phosphonium curing accelerator is disclosed. (C) Thermoplastic resin is a thermoplastic resin selected from phenoxy resin, polyvinyl acetal resin, polyimide, polyamideimide resin, polyethersulfone resin, and polysulfone resin. (E) The quaternary phosphonium curing accelerator is one or more quaternary phosphonium thiocyanates selected from tetrabutylphosphonium decanoate, (4-methylphenyl)triphenylphosphonium thiocyanate, tetraphenylphosphonium thiocyanate, and butyltriphenylphosphonium thiocyanate. It is a phosphonium curing accelerator.

WO2016/114286A1WO2016/114286A1 特開2015-145498号公報Japanese Patent Application Publication No. 2015-145498

特許文献1に記載のような従来の樹脂材料を用いて絶縁層を形成した場合、基板等の凹凸に対する樹脂材料の埋め込み性が十分に高くならなかったり、ラミネート時に樹脂材料が基板周囲から過度にはみ出したりして、膜厚の制御が困難になることがある。また、特許文献2に記載のような従来の樹脂材料を用いて絶縁層を形成した場合には、該絶縁層の誘電正接が十分に低くならなかったり、該絶縁層と銅基板との密着性が十分に高くならなかったりすることがある。 When an insulating layer is formed using a conventional resin material as described in Patent Document 1, the embedding ability of the resin material into the irregularities of the substrate etc. may not be sufficiently high, or the resin material may be excessively removed from the periphery of the substrate during lamination. The film may protrude, making it difficult to control the film thickness. Furthermore, when an insulating layer is formed using a conventional resin material as described in Patent Document 2, the dielectric loss tangent of the insulating layer may not be sufficiently low, or the adhesion between the insulating layer and the copper substrate may be insufficient. may not be high enough.

一方、芳香族骨格を有するマレイミド化合物のみが配合された従来の樹脂材料では、該マレイミド化合物のTgが高いため、硬化温度を低くする(例えば200℃以下)ことは困難である。また、硬化温度を低くした場合には、十分な分子運動が起こりにくいため、硬化不良が生じることがある。また、硬化温度を低くした場合には、多層プリント配線板の製造時において、初期に積層された樹脂材料が、後期に積層された樹脂材料よりも、より多くの回数かつより長い時間加熱されるため、絶縁層の電気特性や物性が変化することがある。 On the other hand, in conventional resin materials containing only a maleimide compound having an aromatic skeleton, it is difficult to lower the curing temperature (eg, 200° C. or lower) because the maleimide compound has a high Tg. Furthermore, when the curing temperature is lowered, sufficient molecular movement is difficult to occur, which may result in poor curing. In addition, when the curing temperature is lowered, during the production of multilayer printed wiring boards, the resin material laminated in the early stages is heated more times and for a longer time than the resin materials laminated in the later stages. Therefore, the electrical properties and physical properties of the insulating layer may change.

また、従来の樹脂材料では、硬化物の折り曲げ安定性が十分に高くならないことがある。 Furthermore, with conventional resin materials, the bending stability of the cured product may not be sufficiently high.

このように、1)凹凸表面に対する埋め込み性を高め、2)ラミネート時における樹脂材料の基板周囲からの過度のはみ出しを抑え、3)硬化温度を低く抑え、4)硬化物の誘電正接を低くし、5)金属との密着性を高め、かつ6)硬化物の折り曲げ安定性を高めることは極めて困難であるという現状がある。すなわち、上記1)-6)の効果を全て発揮する樹脂材料を得ることは極めて困難であるという現状がある。 In this way, 1) the ability to embed into uneven surfaces is improved, 2) excessive protrusion of the resin material from the substrate periphery during lamination is suppressed, 3) the curing temperature is kept low, and 4) the dielectric loss tangent of the cured product is reduced. , 5) It is extremely difficult to improve the adhesion to metals, and 6) to improve the bending stability of the cured product. That is, the current situation is that it is extremely difficult to obtain a resin material that exhibits all of the effects 1) to 6) above.

本発明の目的は、1)凹凸表面に対する埋め込み性を高め、2)ラミネート時における樹脂材料の基板周囲からの過度のはみ出しを抑え、3)硬化温度を低く抑え、4)硬化物の誘電正接を低くし、5)金属との密着性を高め、かつ6)硬化物の折り曲げ安定性を高めることができる樹脂材料を提供することである。また、本発明は、上記樹脂材料を用いた積層フィルム及び多層プリント配線板を提供することも目的とする。 The objects of the present invention are 1) to improve the embeddability into uneven surfaces, 2) to suppress excessive extrusion of the resin material from the periphery of the substrate during lamination, 3) to keep the curing temperature low, and 4) to reduce the dielectric loss tangent of the cured product. 5) improve adhesion to metal; and 6) provide a resin material that can increase the bending stability of a cured product. Another object of the present invention is to provide a laminated film and a multilayer printed wiring board using the above resin material.

本発明の広い局面によれば、ポリイミド化合物と、脂肪族骨格を有するマレイミド化合物及び脂肪族骨格を有するベンゾオキサジン化合物の内の少なくとも一方の脂肪族骨格含有化合物とを含む、樹脂材料が提供される。 According to a broad aspect of the present invention, there is provided a resin material comprising a polyimide compound and an aliphatic skeleton-containing compound of at least one of a maleimide compound having an aliphatic skeleton and a benzoxazine compound having an aliphatic skeleton. .

本発明に係るある特定の局面では、前記脂肪族骨格含有化合物において、マレイミド骨格又はベンゾオキサジン骨格を形成している窒素原子に、前記脂肪族骨格が結合している。 In a particular aspect of the present invention, in the aliphatic skeleton-containing compound, the aliphatic skeleton is bonded to a nitrogen atom forming a maleimide skeleton or a benzoxazine skeleton.

本発明に係るある特定の局面では、前記ポリイミド化合物の重量平均分子量が15000以上であり、前記脂肪族骨格含有化合物の重量平均分子量が15000未満である。 In a particular aspect of the present invention, the polyimide compound has a weight average molecular weight of 15,000 or more, and the aliphatic skeleton-containing compound has a weight average molecular weight of less than 15,000.

本発明に係る樹脂材料のある特定の局面では、前記脂肪族骨格含有化合物が、脂肪族骨格を有するポリアミン化合物とカルボン酸二無水物との反応物に由来する骨格を有する。 In a particular aspect of the resin material according to the present invention, the aliphatic skeleton-containing compound has a skeleton derived from a reaction product of a polyamine compound having an aliphatic skeleton and a carboxylic dianhydride.

本発明に係る樹脂材料のある特定の局面では、前記脂肪族骨格含有化合物が、脂肪族骨格を有するジアミン化合物とカルボン酸二無水物との反応物に由来する骨格を有する。 In a particular aspect of the resin material according to the present invention, the aliphatic skeleton-containing compound has a skeleton derived from a reaction product of a diamine compound having an aliphatic skeleton and a carboxylic dianhydride.

本発明に係る樹脂材料のある特定の局面では、前記脂肪族骨格を有するジアミン化合物が、ダイマージアミンに由来する骨格を有するジアミン化合物である。 In a particular aspect of the resin material according to the present invention, the diamine compound having an aliphatic skeleton is a diamine compound having a skeleton derived from a dimer diamine.

本発明に係る樹脂材料のある特定の局面では、前記樹脂材料は、熱硬化性化合物と、無機充填材とを含む。 In a particular aspect of the resin material according to the present invention, the resin material includes a thermosetting compound and an inorganic filler.

本発明に係る樹脂材料のある特定の局面では、前記熱硬化性化合物がエポキシ化合物である。 In a particular aspect of the resin material according to the present invention, the thermosetting compound is an epoxy compound.

本発明に係る樹脂材料のある特定の局面では、樹脂材料中の溶剤を除く成分100重量%中、前記無機充填材の含有量が、50重量%以上である。 In a particular aspect of the resin material according to the present invention, the content of the inorganic filler is 50% by weight or more based on 100% by weight of the components excluding the solvent in the resin material.

本発明に係る樹脂材料のある特定の局面では、前記ポリイミド化合物と前記脂肪族骨格含有化合物との合計100重量%中、前記ポリイミド化合物の含有量が、3重量%以上80重量%以下である。 In a particular aspect of the resin material according to the present invention, the content of the polyimide compound is 3% by weight or more and 80% by weight or less out of the total 100% by weight of the polyimide compound and the aliphatic skeleton-containing compound.

本発明に係る樹脂材料のある特定の局面では、前記ポリイミド化合物が、ダイマージアミンに由来する骨格を有するポリイミド化合物である。 In a particular aspect of the resin material according to the present invention, the polyimide compound is a polyimide compound having a skeleton derived from dimer diamine.

本発明に係る樹脂材料のある特定の局面では、樹脂材料中の溶剤を除く有機成分100重量%中、前記ポリイミド化合物と前記脂肪族骨格含有化合物との合計の含有量が、10重量%以上98重量%以下である。 In a particular aspect of the resin material according to the present invention, the total content of the polyimide compound and the aliphatic skeleton-containing compound is 10% by weight or more in 100% by weight of the organic components excluding the solvent in the resin material. % by weight or less.

本発明に係る樹脂材料のある特定の局面では、前記樹脂材料は、硬化促進剤を含み、前記硬化促進剤が、ラジカル性硬化促進剤及びアニオン性硬化促進剤の内の少なくとも一方を含む。 In a particular aspect of the resin material according to the present invention, the resin material includes a curing accelerator, and the curing accelerator includes at least one of a radical curing accelerator and an anionic curing accelerator.

本発明に係る樹脂材料のある特定の局面では、前記硬化促進剤が、ラジカル性硬化促進剤とジメチルアミノピリジンとを含むか、又は、ラジカル性硬化促進剤とイミダゾール化合物とを含むか、又はラジカル性硬化促進剤とリン化合物とを含む。 In a certain aspect of the resin material according to the present invention, the curing accelerator contains a radical curing accelerator and dimethylaminopyridine, or a radical curing accelerator and an imidazole compound, or a radical curing accelerator and an imidazole compound. Contains a hardening accelerator and a phosphorus compound.

本発明に係る樹脂材料のある特定の局面では、前記樹脂材料は、硬化剤と硬化促進剤とを含み、前記硬化促進剤が、イミダゾール化合物を含む。 In a particular aspect of the resin material according to the present invention, the resin material includes a curing agent and a curing accelerator, and the curing accelerator includes an imidazole compound.

本発明に係る樹脂材料のある特定の局面では、前記樹脂材料は、樹脂フィルムである。 In a particular aspect of the resin material according to the present invention, the resin material is a resin film.

本発明に係る樹脂材料は、多層プリント配線板において、絶縁層を形成するために好適に用いられる。 The resin material according to the present invention is suitably used for forming an insulating layer in a multilayer printed wiring board.

本発明の広い局面によれば、基材と、前記基材の表面上に積層された樹脂フィルムとを備え、前記樹脂フィルムが、上述した樹脂材料である、積層フィルムが提供される。 According to a broad aspect of the present invention, there is provided a laminated film comprising a base material and a resin film laminated on the surface of the base material, the resin film being the resin material described above.

本発明の広い局面によれば、回路基板と、前記回路基板の表面上に配置された複数の絶縁層と、複数の前記絶縁層間に配置された金属層とを備え、複数の前記絶縁層の内の少なくとも1層が、上述した樹脂材料の硬化物である、多層プリント配線板が提供される。 According to a broad aspect of the present invention, the invention includes a circuit board, a plurality of insulating layers disposed on a surface of the circuit board, and a metal layer disposed between the plurality of insulating layers. A multilayer printed wiring board is provided, in which at least one layer is a cured product of the resin material described above.

本発明に係る樹脂材料は、ポリイミド化合物と、脂肪族骨格を有するマレイミド化合物及び脂肪族骨格を有するベンゾオキサジン化合物の内の少なくとも一方の脂肪族骨格含有化合物とを含む。本発明に係る樹脂材料では、上記の構成が備えられているので、1)凹凸表面に対する埋め込み性を高め、2)ラミネート時における樹脂材料の基板周囲からの過度のはみ出しを抑え、3)硬化温度を低く抑え、4)硬化物の誘電正接を低くし、5)金属との密着性を高め、かつ6)硬化物の折り曲げ安定性を高めることができる。本発明に係る樹脂材料では、上記1)-6)の効果を全て発揮することができる。 The resin material according to the present invention includes a polyimide compound and at least one aliphatic skeleton-containing compound selected from a maleimide compound having an aliphatic skeleton and a benzoxazine compound having an aliphatic skeleton. Since the resin material according to the present invention has the above-mentioned configuration, 1) it improves embeddability into uneven surfaces, 2) suppresses excessive protrusion of the resin material from the periphery of the substrate during lamination, and 3) lowers the curing temperature. 4) the dielectric loss tangent of the cured product can be lowered, 5) the adhesion to metals can be improved, and 6) the bending stability of the cured product can be improved. The resin material according to the present invention can exhibit all of the effects 1) to 6) above.

図1は、本発明の一実施形態に係る樹脂材料を用いた多層プリント配線板を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a multilayer printed wiring board using a resin material according to an embodiment of the present invention.

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明に係る樹脂材料は、ポリイミド化合物と、脂肪族骨格を有するマレイミド化合物及び脂肪族骨格を有するベンゾオキサジン化合物の内の少なくとも一方の脂肪族骨格含有化合物とを含む。 The resin material according to the present invention includes a polyimide compound and at least one aliphatic skeleton-containing compound selected from a maleimide compound having an aliphatic skeleton and a benzoxazine compound having an aliphatic skeleton.

本発明に係る樹脂材料では、上記の構成が備えられているので、1)凹凸表面に対する埋め込み性を高め、2)ラミネート時における樹脂材料の基板周囲からの過度のはみ出しを抑え、3)硬化温度を低く抑え、4)硬化物の誘電正接を低くし、5)金属との密着性を高め、かつ6)硬化物の折り曲げ安定性を高めることができることができる。本発明に係る樹脂材料では、上記1)-6)の効果を全て発揮することができる。本発明に係る樹脂材料では、5)金属との密着性として、例えば、絶縁層と金属層(銅層)とのピール強度を高めることができる。 Since the resin material according to the present invention has the above-mentioned configuration, 1) it improves embeddability into uneven surfaces, 2) suppresses excessive protrusion of the resin material from the periphery of the substrate during lamination, and 3) lowers the curing temperature. 4) the dielectric loss tangent of the cured product can be lowered, 5) the adhesion to metals can be improved, and 6) the bending stability of the cured product can be improved. The resin material according to the present invention can exhibit all of the effects 1) to 6) above. In the resin material according to the present invention, as for 5) adhesion to metal, for example, the peel strength between the insulating layer and the metal layer (copper layer) can be increased.

また、本発明に係る樹脂材料では、上記の構成が備えられているので、熱寸法安定性を高めることができる。また、本発明に係る樹脂材料では、上記の構成が備えられているので、ハンドリング性を高めることができる。 Further, since the resin material according to the present invention has the above-mentioned configuration, thermal dimensional stability can be improved. Further, since the resin material according to the present invention has the above-mentioned configuration, handling properties can be improved.

本発明に係る樹脂材料は、樹脂組成物であってもよく、樹脂フィルムであってもよい。上記樹脂組成物は、流動性を有する。上記樹脂組成物は、ペースト状であってもよい。上記ペースト状には液状が含まれる。取扱性に優れることから、本発明に係る樹脂材料は、樹脂フィルムであることが好ましい。本発明に係る樹脂材料が樹脂組成物である場合には、塗布時又はフィルム成形時のハンドリング性を高めることができる。本発明に係る樹脂材料が樹脂フィルムである場合には、ラミネート時のハンドリング性を高めることができる。 The resin material according to the present invention may be a resin composition or a resin film. The resin composition has fluidity. The resin composition may be in the form of a paste. The pasty state includes a liquid state. The resin material according to the present invention is preferably a resin film because of its excellent handling properties. When the resin material according to the present invention is a resin composition, it is possible to improve handling properties during coating or film forming. When the resin material according to the present invention is a resin film, handling properties during lamination can be improved.

特に、上記ポリイミド化合物と、上記脂肪族骨格含有化合物との双方が、下記式(X)で表される構造を有する場合には、該ポリイミド化合物と該脂肪族骨格含有化合物との相溶が向上するため、硬化物の折り曲げ安定性をより一層高めることができる。 In particular, when both the polyimide compound and the aliphatic skeleton-containing compound have a structure represented by the following formula (X), the compatibility between the polyimide compound and the aliphatic skeleton-containing compound is improved. Therefore, the bending stability of the cured product can be further improved.

Figure 2023156362000002
Figure 2023156362000002

上記式(X)中、R1は、4価の有機基を表す。 In the above formula (X), R1 represents a tetravalent organic group.

本発明に係る樹脂材料は、熱硬化性材料であることが好ましい。上記樹脂材料が樹脂フィルムである場合には、該樹脂フィルムは、熱硬化性樹脂フィルムであることが好ましい。 The resin material according to the present invention is preferably a thermosetting material. When the resin material is a resin film, the resin film is preferably a thermosetting resin film.

本発明では、ポリイミド化合物と、特定の脂肪族骨格含有化合物との組み合せが重要かつ技術的意義のある構成である。樹脂材料が、ポリイミド化合物を含み、かつ特定の脂肪族骨格含有化合物を含まない場合に、上述した1)-6)の本発明の効果を全て効果的に発揮することは困難である。特に、樹脂材料が、ポリイミド化合物を含み、かつ特定の脂肪族骨格含有化合物を含まない場合に、凹凸表面に対する埋め込み性を高めたり、誘電正接を低くしたり、硬化温度を低くしたり、硬化物の折り曲げ安定性を高めることは困難である。特に、マレイミド化合物がN-フェニルマレイミド化合物(例えば、複数のマレイミド骨格を有し、かつ全ての窒素原子が芳香族環と結合した構造を有するマレイミド化合物)である場合、該N-フェニルマレイミド化合物はTgが高いため、硬化温度を低くすることは困難であり、誘電正接を低くすることは困難である。一方、樹脂材料が、ポリイミド化合物を含まず、特定の脂肪族骨格含有化合物を含む場合も、上述した1)-6)の本発明の効果を全て効果的に発揮することは困難である。特に、樹脂材料が、ポリイミド化合物を含まず、特定の脂肪族骨格含有化合物を含む場合に、ラミネート時に樹脂材料が基板周囲から過度にはみ出したりして、絶縁層の膜厚制御が困難になったり、周囲の基板等が汚染したりすることがある。また、樹脂材料が樹脂フィルムである場合、ラミネート時のフロー量が大きくなることがある。その結果、絶縁層の厚みにむらが生じることがある。 In the present invention, the combination of a polyimide compound and a specific aliphatic skeleton-containing compound is an important and technically significant configuration. When the resin material contains a polyimide compound and does not contain a specific aliphatic skeleton-containing compound, it is difficult to effectively exhibit all of the effects of the present invention described in 1) to 6) above. In particular, when the resin material contains a polyimide compound but does not contain a specific aliphatic skeleton-containing compound, it is possible to improve the embeddability on uneven surfaces, lower the dielectric loss tangent, lower the curing temperature, or cure the cured product. It is difficult to increase the bending stability of In particular, when the maleimide compound is an N-phenylmaleimide compound (for example, a maleimide compound having a structure in which all nitrogen atoms are bonded to aromatic rings), the N-phenylmaleimide compound Since Tg is high, it is difficult to lower the curing temperature and it is difficult to lower the dielectric loss tangent. On the other hand, even when the resin material does not contain a polyimide compound but contains a specific aliphatic skeleton-containing compound, it is difficult to effectively exhibit all of the effects of the present invention described in 1) to 6) above. In particular, if the resin material does not contain a polyimide compound but contains a specific aliphatic skeleton-containing compound, the resin material may protrude excessively from the periphery of the substrate during lamination, making it difficult to control the thickness of the insulating layer. , surrounding substrates, etc. may be contaminated. Further, when the resin material is a resin film, the amount of flow during lamination may become large. As a result, the thickness of the insulating layer may become uneven.

以下、本発明に係る樹脂材料に用いられる各成分の詳細、及び本発明に係る樹脂材料の用途などを説明する。 Hereinafter, details of each component used in the resin material according to the present invention, uses of the resin material according to the present invention, etc. will be explained.

[ポリイミド化合物]
本発明に係る樹脂材料は、ポリイミド化合物を含む。上記ポリイミド化合物は、マレイミド化合物とは異なる化合物である。上記ポリイミド化合物は末端に、マレイミド骨格を有していてもよく、有していなくてもよい。なお、上記ポリイミド化合物は末端に、酸無水物構造、シトラコンイミド構造を有していてもよい。上記ポリイミド化合物として、従来公知のポリイミド化合物を使用可能である。上記ポリイミド化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Polyimide compound]
The resin material according to the present invention includes a polyimide compound. The above polyimide compound is a compound different from a maleimide compound. The polyimide compound may or may not have a maleimide skeleton at the end. In addition, the said polyimide compound may have an acid anhydride structure or a citraconimide structure at the terminal. As the polyimide compound, conventionally known polyimide compounds can be used. Only one kind of the above-mentioned polyimide compound may be used, or two or more kinds thereof may be used in combination.

ポリイミド化合物は、テトラカルボン酸二無水物とイソシアネートエステル化合物とを反応させる方法、テトラカルボン酸二無水物とジアミン化合物とを反応させる方法、並びにテトラカルボン酸二無水物とトリアミン化合物とを反応させる方法等によって得ることができる。 Polyimide compounds can be produced by reacting tetracarboxylic dianhydride with an isocyanate ester compound, by reacting tetracarboxylic dianhydride with a diamine compound, and by reacting tetracarboxylic dianhydride with a triamine compound. etc. can be obtained by

上記テトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジメチルジフェニルシランテトラカルボン酸二無水物、3,3’,4,4’-テトラフェニルシランテトラカルボン酸二無水物、1,2,3,4-フランテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3’,4,4’-パーフルオロイソプロピリデンジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、p-フェニレン-ビス(トリフェニルフタル酸)二無水物、m-フェニレン-ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルエーテル二無水物、及びビス(トリフェニルフタル酸)-4,4’-ジフェニルメタン二無水物等が挙げられる。 Examples of the tetracarboxylic dianhydride include pyromellitic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 3,3',4,4'-biphenylsulfone tetra Carboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3',4,4'-biphenyl ether Tetracarboxylic dianhydride, 3,3',4,4'-dimethyldiphenylsilane tetracarboxylic dianhydride, 3,3',4,4'-tetraphenylsilane tetracarboxylic dianhydride, 1,2 , 3,4-furantetracarboxylic dianhydride, 4,4'-bis(3,4-dicarboxyphenoxy) diphenyl sulfide dianhydride, 4,4'-bis(3,4-dicarboxyphenoxy) diphenyl Sulfone dianhydride, 4,4'-bis(3,4-dicarboxyphenoxy)diphenylpropane dianhydride, 3,3',4,4'-perfluoroisopropylidene diphthalic dianhydride, 3,3 ',4,4'-biphenyltetracarboxylic dianhydride, bis(phthalic acid) phenylphosphine oxide dianhydride, p-phenylene-bis(triphenylphthalic acid) dianhydride, m-phenylene-bis(triphenyl phthalic acid) dianhydride, bis(triphenylphthalic acid)-4,4'-diphenyl ether dianhydride, and bis(triphenylphthalic acid)-4,4'-diphenylmethane dianhydride.

上記ジアミン化合物としては、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ビス(アミノメチル)ノルボルナン、3(4),8(9)-ビス(アミノメチル)トリシクロ[5.2.1.02,6]デカン、1,1-ビス(4-アミノフェニル)シクロヘキサン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、2,7-ジアミノフルオレン、4,4’-エチレンジアニリン、イソホロンジアミン、4,4’-メチレンビス(シクロヘキシルアミン)、4,4’-メチレンビス(2,6-ジエチルアニリン)、4,4’-メチレンビス(2-エチル-6-メチルアニリン)、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)、1,4-ジアミノブタン、1,10-ジアミノデカン、1,12-ジアミノドデカン、1,7-ジアミノヘプタン、1,6-ジアミノヘキサン、1,5-ジアミノペンタン、1,8-ジアミノオクタン、1,3-ジアミノプロパン、1,11-ジアミノウンデカン、2-メチル-1,5-ジアミノペンタン、及びダイマージアミン等が挙げられる。 Examples of the diamine compounds include 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, bis(aminomethyl)norbornane, 3(4),8(9)-bis(aminomethyl) Tricyclo[5.2.1.02,6]decane, 1,1-bis(4-aminophenyl)cyclohexane, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine, 2,7-diaminofluorene, 4, 4'-ethylenedianiline, isophoronediamine, 4,4'-methylenebis(cyclohexylamine), 4,4'-methylenebis(2,6-diethylaniline), 4,4'-methylenebis(2-ethyl-6-methyl aniline), 4,4'-methylenebis(2-methylcyclohexylamine), 1,4-diaminobutane, 1,10-diaminodecane, 1,12-diaminododecane, 1,7-diaminoheptane, 1,6-diamino Examples include hexane, 1,5-diaminopentane, 1,8-diaminooctane, 1,3-diaminopropane, 1,11-diaminoundecane, 2-methyl-1,5-diaminopentane, and dimer diamine.

上記テトラカルボン酸二無水物と上記ジアミン化合物との反応により、イミド骨格が形成される。 An imide skeleton is formed by the reaction between the tetracarboxylic dianhydride and the diamine compound.

上述した1)-6)の本発明の効果を効果的に発揮する観点からは、上記ポリイミド化合物は、ダイマージアミンに由来する骨格を有するポリイミド化合物であることが好ましい。上記ダイマージアミンに由来する骨格は、上記ポリイミド化合物において、部分骨格として存在する。 From the viewpoint of effectively exhibiting the effects of the present invention described in 1) to 6) above, the polyimide compound is preferably a polyimide compound having a skeleton derived from dimer diamine. The skeleton derived from the dimer diamine is present as a partial skeleton in the polyimide compound.

上記ダイマージアミンに由来する骨格を有するポリイミド化合物は、上記テトラカルボン酸二無水物と上記ダイマージアミンとを反応させて得ることが好ましい。 The polyimide compound having a skeleton derived from the dimer diamine is preferably obtained by reacting the tetracarboxylic dianhydride with the dimer diamine.

上記ダイマージアミンとしては、例えば、バーサミン551(商品名、BASFジャパン社製、3,4-ビス(1-アミノヘプチル)-6-ヘキシル-5-(1-オクテニル)シクロヘキセン)、バーサミン552(商品名、コグニクスジャパン社製、バーサミン551の水添物)、PRIAMINE1075、PRIAMINE1074(商品名、いずれもクローダジャパン社製)等が挙げられる。 Examples of the dimer diamine include Versamine 551 (trade name, manufactured by BASF Japan, 3,4-bis(1-aminoheptyl)-6-hexyl-5-(1-octenyl)cyclohexene), Versamine 552 (trade name) , manufactured by Cognix Japan Co., Ltd., hydrogenated product of Versamine 551), PRIAMINE 1075, PRIAMINE 1074 (trade names, all manufactured by Croda Japan Co., Ltd.).

上記ポリイミド化合物と上記脂肪族骨格含有化合物との合計100重量%中、上記ポリイミド化合物の含有量は、好ましくは3重量%以上、より好ましくは5重量%以上、更に好ましくは10重量%以上、好ましくは80重量%以下、より好ましくは60重量%以下、更に好ましくは50重量%以下である。上記ポリイミド化合物の含有量が上記下限以上及び上記上限以下であると、樹脂材料の粘度が高くなりすぎず、ハンドリング性及び凹凸表面に対する埋め込み性をより一層高めることができる。また、上記ポリイミド化合物の含有量が上記下限以上及び上記上限以下であると、ラミネート時のフロー量が大きくなりすぎることを抑えることができる。 The content of the polyimide compound is preferably 3% by weight or more, more preferably 5% by weight or more, still more preferably 10% by weight or more, out of the total 100% by weight of the polyimide compound and the aliphatic skeleton-containing compound. is 80% by weight or less, more preferably 60% by weight or less, even more preferably 50% by weight or less. When the content of the polyimide compound is not less than the lower limit and not more than the upper limit, the viscosity of the resin material does not become too high, and the handleability and embeddability into uneven surfaces can be further improved. Further, when the content of the polyimide compound is at least the above lower limit and at most the above upper limit, it is possible to prevent the flow amount during lamination from becoming too large.

上記樹脂材料中の無機充填材及び溶剤を除く成分100重量%中、上記ポリイミド化合物の含有量は、好ましくは3重量%以上、より好ましくは5重量%以上、更に好ましくは7重量%以上である。上記樹脂材料中の無機充填材及び溶剤を除く成分100重量%中、上記ポリイミド化合物の含有量は、好ましくは40重量%以下、より好ましくは30重量%以下、更に好ましくは25重量%以下、特に好ましくは20重量%以下である。上記ポリイミド化合物の含有量が上記下限以上であると、硬化物の誘電正接を低くでき、フロー量を良好に制御するこができ、絶縁層と金属層の密着性をより一層高めることができる。上記ポリイミド化合物の含有量が上記上限以下であると、凹凸表面に対する埋め込み性をより一層高めることができる。上記ポリイミド化合物の含有量が上記下限以上及び上記上限以下であると、ハンドリング性を高めることができる。 The content of the polyimide compound is preferably 3% by weight or more, more preferably 5% by weight or more, and even more preferably 7% by weight or more in 100% by weight of the components excluding the inorganic filler and solvent in the resin material. . The content of the polyimide compound is preferably 40% by weight or less, more preferably 30% by weight or less, still more preferably 25% by weight or less, especially in 100% by weight of the components excluding the inorganic filler and solvent in the resin material. Preferably it is 20% by weight or less. When the content of the polyimide compound is at least the above lower limit, the dielectric loss tangent of the cured product can be lowered, the flow amount can be favorably controlled, and the adhesion between the insulating layer and the metal layer can be further improved. When the content of the polyimide compound is at most the above upper limit, the embeddability into the uneven surface can be further improved. Handlability can be improved when the content of the polyimide compound is at least the above lower limit and at most the above upper limit.

凹凸表面に対する埋め込み性をより一層高める観点からは、上記ポリイミド化合物の重量平均分子量は、好ましくは15000以上、より好ましくは20000以上、好ましくは50000未満、より好ましく40000未満である。 From the viewpoint of further improving the embeddability into the uneven surface, the weight average molecular weight of the polyimide compound is preferably 15,000 or more, more preferably 20,000 or more, preferably less than 50,000, and more preferably less than 40,000.

上記ポリイミド化合物の重量平均分子量は、該ポリイミド化合物が重合体ではない場合、及び該ポリイミド化合物の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記ポリイミド化合物の重量平均分子量は、該ポリイミド化合物が重合体である場合は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。 The weight average molecular weight of the polyimide compound means, when the polyimide compound is not a polymer and when the structural formula of the polyimide compound can be specified, the molecular weight that can be calculated from the structural formula. Furthermore, when the polyimide compound is a polymer, the weight average molecular weight of the polyimide compound indicates the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).

上記ポリイミド化合物が末端にマレイミド骨格を有する場合、上記ポリイミド化合物の重量分子量は、15000以上であることが好ましく、20000以上であることがより好ましい。 When the polyimide compound has a maleimide skeleton at the end, the weight molecular weight of the polyimide compound is preferably 15,000 or more, more preferably 20,000 or more.

[脂肪族骨格含有化合物]
本発明に係る樹脂材料は、脂肪族骨格含有化合物を含む。該脂肪族骨格含有化合物は、脂肪族骨格を有するマレイミド化合物及び脂肪族骨格を有するベンゾオキサジン化合物の内の少なくとも一方の化合物である。本発明に係る樹脂材料は、該脂肪族骨格含有化合物として、脂肪族骨格を有するマレイミド化合物のみを含んでいてもよく、脂肪族骨格を有するベンゾオキサジン化合物のみを含んでいてもよく、脂肪族骨格を有するマレイミド化合物と脂肪族骨格を有するベンゾオキサジン化合物との双方を含んでいてもよい。
[Aliphatic skeleton-containing compound]
The resin material according to the present invention contains an aliphatic skeleton-containing compound. The aliphatic skeleton-containing compound is at least one of a maleimide compound having an aliphatic skeleton and a benzoxazine compound having an aliphatic skeleton. The resin material according to the present invention may contain only a maleimide compound having an aliphatic skeleton, or may contain only a benzoxazine compound having an aliphatic skeleton, as the aliphatic skeleton-containing compound. It may contain both a maleimide compound having an aliphatic skeleton and a benzoxazine compound having an aliphatic skeleton.

<脂肪族骨格を有するマレイミド化合物>
本発明に係る樹脂材料は、脂肪族骨格含有化合物として、脂肪族骨格を有するマレイミド化合物(以下、マレイミド化合物Xと記載することがある)を含むことが好ましい。上記マレイミド化合物Xは、ポリイミド化合物とは異なる化合物である。マレイミド化合物Xは、マレイミド基を有する。マレイミド化合物Xは、末端にマレイミド基を有する。マレイミド化合物Xは、脂肪族骨格を有する。したがって、マレイミド化合物Xは、マレイミド基と脂肪族骨格とを有する。マレイミド化合物Xにおいて、マレイミド骨格を形成している窒素原子に、上記脂肪族骨格が結合していることが好ましい。なお、マレイミド化合物Xは、イミド骨格を有していてもよい。上記マレイミド化合物Xとして、従来公知のマレイミド化合物を使用可能である。なお、上記マレイミド化合物Xには、シトラコンイミド化合物が含まれる。上記シトラコンイミド化合物とは、マレイミド基における炭素原子間の二重結合を構成する炭素原子の一方にメチル基が結合した化合物である。上記マレイミド化合物Xは末端に、シトラコンイミド構造を有していてもよい。上記マレイミド化合物Xは、1種のみが用いられてもよく、2種以上が併用されてもよい。
<Maleimide compound having an aliphatic skeleton>
The resin material according to the present invention preferably contains a maleimide compound having an aliphatic skeleton (hereinafter sometimes referred to as maleimide compound X) as the aliphatic skeleton-containing compound. The maleimide compound X is a compound different from a polyimide compound. Maleimide compound X has a maleimide group. Maleimide compound X has a maleimide group at the end. Maleimide compound X has an aliphatic skeleton. Therefore, maleimide compound X has a maleimide group and an aliphatic skeleton. In the maleimide compound X, the aliphatic skeleton is preferably bonded to the nitrogen atom forming the maleimide skeleton. Note that the maleimide compound X may have an imide skeleton. As the maleimide compound X, conventionally known maleimide compounds can be used. Note that the maleimide compound X includes a citraconimide compound. The above-mentioned citraconimide compound is a compound in which a methyl group is bonded to one of the carbon atoms forming a double bond between carbon atoms in a maleimide group. The maleimide compound X may have a citraconimide structure at its terminal. Only one kind of the maleimide compound X may be used, or two or more kinds thereof may be used in combination.

上記マレイミド化合物Xは、脂肪族骨格を有するポリアミン化合物とカルボン酸二無水物との反応物に由来する骨格を有することが好ましい。上記ポリアミン化合物とは、2個以上の1級のアミノ基を有する化合物を意味する。上記マレイミド化合物Xは、脂肪族骨格を有するポリアミン化合物とカルボン酸二無水物との反応物に由来する骨格を有してもよく、脂肪族骨格を有するポリアミン化合物と、脂肪族骨格を有するポリアミン化合物とは異なるアミン化合物と、カルボン酸二無水物との反応物に由来する骨格を有してもよい。 The maleimide compound X preferably has a skeleton derived from a reaction product of a polyamine compound having an aliphatic skeleton and a carboxylic dianhydride. The above polyamine compound means a compound having two or more primary amino groups. The maleimide compound X may have a skeleton derived from a reaction product of a polyamine compound having an aliphatic skeleton and a carboxylic dianhydride, and the maleimide compound It may have a skeleton derived from a reaction product of a carboxylic dianhydride and an amine compound different from the above.

上記脂肪族骨格を有するポリアミン化合物とカルボン酸二無水物との反応物に由来する骨格を有するマレイミド化合物Xは、例えば、脂肪族骨格を有するポリアミン化合物とカルボン酸二無水物とを反応させて両末端がアミノ基である反応物を得た後、該反応物と無水マレイン酸とを反応させて得ることができる。 For example, the maleimide compound It can be obtained by obtaining a reactant having an amino group at the end and then reacting the reactant with maleic anhydride.

上記マレイミド化合物Xは、具体的には、脂肪族骨格を有するジアミン化合物又は脂肪族骨格を有するトリアミン化合物とカルボン酸二無水物との反応物に由来する骨格を有することが好ましい。上記マレイミド化合物Xは、脂肪族骨格を有するジアミン化合物とカルボン酸二無水物との反応物に由来する骨格を有していてもよい。上記マレイミド化合物Xは、脂肪族骨格を有するジアミン化合物と、脂肪族骨格を有するジアミン化合物とは異なるアミン化合物(例えば、芳香族骨格を有するジアミン化合物)と、カルボン酸二無水物との反応物に由来する骨格を有していてもよい。上記マレイミド化合物Xは、脂肪族骨格を有するトリアミン化合物とカルボン酸二無水物との反応物に由来する骨格を有していてもよく、脂肪族骨格を有するトリアミン化合物と、脂肪族骨格を有するトリアミン化合物とは異なるアミン化合物と、カルボン酸二無水物との反応物に由来する骨格を有していてもよい。この場合に、該反応物を得るために、脂肪族骨格を有するジアミン化合物及び脂肪族骨格を有するトリアミン化合物の内の一方が用いられていることが好ましい。該反応物を得るために、脂肪族骨格を有するジアミン化合物と脂肪族骨格を有するトリアミン化合物との双方が用いられていることがより好ましい。なお、この場合に、脂肪族骨格を有するトリアミン化合物の配合量(重量%)は脂肪族骨格を有するジアミン化合物の配合量(重量%)の5%以下であることが好ましい。 Specifically, the maleimide compound X preferably has a skeleton derived from a reaction product of a diamine compound having an aliphatic skeleton or a triamine compound having an aliphatic skeleton and a carboxylic dianhydride. The maleimide compound X may have a skeleton derived from a reaction product of a diamine compound having an aliphatic skeleton and a carboxylic dianhydride. The above-mentioned maleimide compound It may have a skeleton derived from it. The above-mentioned maleimide compound It may have a skeleton derived from a reaction product of an amine compound different from the compound and a carboxylic dianhydride. In this case, it is preferable that one of a diamine compound having an aliphatic skeleton and a triamine compound having an aliphatic skeleton be used to obtain the reactant. In order to obtain the reactant, it is more preferable that both a diamine compound having an aliphatic skeleton and a triamine compound having an aliphatic skeleton are used. In this case, the amount (wt%) of the triamine compound having an aliphatic skeleton is preferably 5% or less of the amount (wt%) of the diamine compound having an aliphatic skeleton.

上記脂肪族骨格を有するジアミン化合物とカルボン酸二無水物との反応物に由来する骨格を有するマレイミド化合物Xは、例えば、脂肪族骨格を有するジアミン化合物とカルボン酸二無水物を反応させて両末端がアミノ基である反応物を得た後、該反応物と無水マレイン酸とを反応させて得ることができる。 For example, the maleimide compound After obtaining a reactant in which is an amino group, it can be obtained by reacting the reactant with maleic anhydride.

上記脂肪族骨格を有するトリアミン化合物とカルボン酸二無水物との反応物に由来する骨格を有するマレイミド化合物Xは、例えば、脂肪族骨格を有するトリアミン化合物とカルボン酸二無水物を反応させて両末端がアミノ基である反応物を得た後、該反応物と無水マレイン酸とを反応させて得ることができる。 For example, the maleimide compound After obtaining a reactant in which is an amino group, it can be obtained by reacting the reactant with maleic anhydride.

上記マレイミド化合物Xが、ジアミン化合物とカルボン酸二無水物との反応物である場合において、マレイミド化合物Xが、以下の(1)又は(2)を満足することが好ましく、(1)及び(2)を満足することがより好ましい。(1)両末端にジアミン骨格を有する。(2)カルボン酸二無水物と直接結合していないジアミン化合物のアミノ基において、該アミノ基を有する骨格がマレイミド骨格である。 In the case where the maleimide compound X is a reaction product of a diamine compound and a carboxylic dianhydride, the maleimide compound X preferably satisfies the following (1) or (2), ) is more preferable. (1) It has a diamine skeleton at both ends. (2) In the amino group of the diamine compound that is not directly bonded to the carboxylic dianhydride, the skeleton having the amino group is a maleimide skeleton.

上記脂肪族骨格を有するジアミン化合物としては、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ビス(アミノメチル)ノルボルナン、3(4),8(9)-ビス(アミノメチル)トリシクロ[5.2.1.02,6]デカン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、イソホロンジアミン、4,4’-メチレンビス(シクロヘキシルアミン)、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)、1,4-ジアミノブタン、1,10-ジアミノデカン、1,12-ジアミノドデカン、1,7-ジアミノヘプタン、1,6-ジアミノヘキサン、1,5-ジアミノペンタン、1,8-ジアミノオクタン、1,3-ジアミノプロパン、1,11-ジアミノウンデカン、2-メチル-1,5-ジアミノペンタン、及びダイマージアミンに由来する骨格を有するジアミン化合物等が挙げられる。 Examples of the diamine compounds having an aliphatic skeleton include 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, bis(aminomethyl)norbornane, 3(4),8(9)- Bis(aminomethyl)tricyclo[5.2.1.02,6]decane, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine, isophoronediamine, 4,4'-methylenebis(cyclohexylamine), 4,4 '-Methylenebis(2-methylcyclohexylamine), 1,4-diaminobutane, 1,10-diaminodecane, 1,12-diaminododecane, 1,7-diaminoheptane, 1,6-diaminohexane, 1,5- Examples include diaminopentane, 1,8-diaminooctane, 1,3-diaminopropane, 1,11-diaminoundecane, 2-methyl-1,5-diaminopentane, and diamine compounds having skeletons derived from dimer diamine. .

上記芳香族骨格を有するジアミン化合物としては、1,1-ビス(4-アミノフェニル)シクロヘキサン、2,7-ジアミノフルオレン、4,4’-エチレンジアニリン、4,4’-メチレンビス(2,6-ジエチルアニリン)、及び4,4’-メチレンビス(2-エチル-6-メチルアニリン)等が挙げられる。 Examples of the diamine compounds having an aromatic skeleton include 1,1-bis(4-aminophenyl)cyclohexane, 2,7-diaminofluorene, 4,4'-ethylenedianiline, 4,4'-methylenebis(2,6 -diethylaniline), and 4,4'-methylenebis(2-ethyl-6-methylaniline).

上記カルボン酸二無水物としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジメチルジフェニルシランテトラカルボン酸二無水物、3,3’,4,4’-テトラフェニルシランテトラカルボン酸二無水物、1,2,3,4-フランテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3’,4,4’-パーフルオロイソプロピリデンジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、p-フェニレン-ビス(トリフェニルフタル酸)二無水物、m-フェニレン-ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルエーテル二無水物、及びビス(トリフェニルフタル酸)-4,4’-ジフェニルメタン二無水物等が挙げられる。 Examples of the carboxylic dianhydride include pyromellitic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, and 3,3',4,4'-biphenylsulfone tetracarboxylic dianhydride. Acid dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3',4,4'-biphenyl ether tetra Carboxylic dianhydride, 3,3',4,4'-dimethyldiphenylsilane tetracarboxylic dianhydride, 3,3',4,4'-tetraphenylsilane tetracarboxylic dianhydride, 1,2, 3,4-furantetracarboxylic dianhydride, 4,4'-bis(3,4-dicarboxyphenoxy) diphenyl sulfide dianhydride, 4,4'-bis(3,4-dicarboxyphenoxy) diphenyl sulfone Dianhydride, 4,4'-bis(3,4-dicarboxyphenoxy)diphenylpropane dianhydride, 3,3',4,4'-perfluoroisopropylidene diphthalic dianhydride, 3,3' , 4,4'-biphenyltetracarboxylic dianhydride, bis(phthalic acid) phenylphosphine oxide dianhydride, p-phenylene-bis(triphenylphthalic acid) dianhydride, m-phenylene-bis(triphenylphthalic acid) dianhydride, acid) dianhydride, bis(triphenylphthalic acid)-4,4'-diphenyl ether dianhydride, and bis(triphenylphthalic acid)-4,4'-diphenylmethane dianhydride.

誘電正接を低くする観点からは、脂肪族骨格を有するジアミン化合物は、ダイマージアミンに由来する骨格を有するジアミン化合物であることが好ましい。 From the viewpoint of lowering the dielectric loss tangent, the diamine compound having an aliphatic skeleton is preferably a diamine compound having a skeleton derived from dimer diamine.

上記ダイマージアミンに由来する骨格を有するジアミン化合物は、ダイマージアミンとテトラカルボン酸二無水物との反応物であることが好ましい。なお、上記ダイマージアミンに由来する骨格を有するジアミン化合物が、ダイマージアミンとテトラカルボン酸二無水物との反応物である場合に、該反応物(該ジアミン化合物)は、ダイマージアミンに由来する骨格以外のジアミン骨格を有していてもよい。 The diamine compound having a skeleton derived from a dimer diamine is preferably a reaction product of a dimer diamine and a tetracarboxylic dianhydride. In addition, when the diamine compound having a skeleton derived from dimer diamine is a reaction product of dimer diamine and tetracarboxylic dianhydride, the reactant (the diamine compound) has a skeleton other than the skeleton derived from dimer diamine. may have a diamine skeleton.

上記ダイマージアミンとしては、例えば、バーサミン551(商品名、BASFジャパン社製、3,4-ビス(1-アミノヘプチル)-6-ヘキシル-5-(1-オクテニル)シクロヘキセン)、バーサミン552(商品名、コグニクスジャパン社製、バーサミン551の水添物)、PRIAMINE1075、PRIAMINE1074(商品名、いずれもクローダジャパン社製)等が挙げられる。 Examples of the dimer diamine include Versamine 551 (trade name, manufactured by BASF Japan, 3,4-bis(1-aminoheptyl)-6-hexyl-5-(1-octenyl)cyclohexene), Versamine 552 (trade name) , manufactured by Cognix Japan Co., Ltd., hydrogenated product of Versamine 551), PRIAMINE 1075, PRIAMINE 1074 (trade names, all manufactured by Croda Japan Co., Ltd.).

上記テトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジメチルジフェニルシランテトラカルボン酸二無水物、3,3’,4,4’-テトラフェニルシランテトラカルボン酸二無水物、1,2,3,4-フランテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3’,4,4’-パーフルオロイソプロピリデンジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、p-フェニレン-ビス(トリフェニルフタル酸)二無水物、m-フェニレン-ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルエーテル二無水物、及びビス(トリフェニルフタル酸)-4,4’-ジフェニルメタン二無水物等が挙げられる。 Examples of the tetracarboxylic dianhydride include pyromellitic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 3,3',4,4'-biphenylsulfone tetra Carboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3',4,4'-biphenyl ether Tetracarboxylic dianhydride, 3,3',4,4'-dimethyldiphenylsilane tetracarboxylic dianhydride, 3,3',4,4'-tetraphenylsilane tetracarboxylic dianhydride, 1,2 , 3,4-furantetracarboxylic dianhydride, 4,4'-bis(3,4-dicarboxyphenoxy) diphenyl sulfide dianhydride, 4,4'-bis(3,4-dicarboxyphenoxy) diphenyl Sulfone dianhydride, 4,4'-bis(3,4-dicarboxyphenoxy)diphenylpropane dianhydride, 3,3',4,4'-perfluoroisopropylidene diphthalic dianhydride, 3,3 ',4,4'-biphenyltetracarboxylic dianhydride, bis(phthalic acid) phenylphosphine oxide dianhydride, p-phenylene-bis(triphenylphthalic acid) dianhydride, m-phenylene-bis(triphenyl phthalic acid) dianhydride, bis(triphenylphthalic acid)-4,4'-diphenyl ether dianhydride, and bis(triphenylphthalic acid)-4,4'-diphenylmethane dianhydride.

上述した1)-6)の本発明の効果をより一層効果的に発揮する観点からは、上記マレイミド化合物Xは、ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物であることが好ましい。 From the viewpoint of more effectively exhibiting the effects of the present invention described in 1) to 6) above, the maleimide compound X is preferably an N-alkyl bismaleimide compound having a skeleton derived from dimer diamine.

上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物の市販品としては、Designer Molecules Inc.社製「BMI-1500」、「BMI-1700」、及び「BMI-3000」等が挙げられる。 A commercially available N-alkyl bismaleimide compound having a skeleton derived from the dimer diamine is available from Designer Molecules Inc. Examples include "BMI-1500," "BMI-1700," and "BMI-3000" manufactured by the company.

上記マレイミド化合物Xの含有量の、後述する熱硬化性化合物と後述する成分Xとの合計の含有量に対する重量比(マレイミド化合物Xの含有量/熱硬化性化合物と成分Xとの合計の含有量)は、好ましくは0.05以上、より好ましくは0.1以上、好ましくは0.9以下、より好ましくは0.75以下である。上記重量比(マレイミド化合物Xの含有量/熱硬化性化合物と成分Xとの合計の含有量)が上記下限以上及び上記上限以下であると、誘電正接をより一層低くでき、絶縁層と金属層との密着性をより一層高めることができる。 Weight ratio of the content of the maleimide compound X to the total content of the thermosetting compound described below and the component X described below (content of the maleimide compound ) is preferably 0.05 or more, more preferably 0.1 or more, preferably 0.9 or less, and more preferably 0.75 or less. When the above weight ratio (content of maleimide compound X/total content of thermosetting compound and component It is possible to further improve the adhesion with.

上記樹脂材料中の無機充填材及び溶剤を除く成分100重量%中、上記マレイミド化合物Xの含有量は、好ましくは3重量%以上、より好ましくは5重量%以上、更に好ましくは10重量%以上、好ましくは90重量%以下、より好ましくは80重量%以下である。上記マレイミド化合物Xの含有量が上記下限以上であると、誘電正接をより一層低くでき、絶縁層と金属層との密着性をより一層高めることができる。上記マレイミド化合物Xの含有量が上記上限以下であると、ラミネート時の埋め込み性を良好にすることができる。 The content of the maleimide compound X is preferably 3% by weight or more, more preferably 5% by weight or more, even more preferably 10% by weight or more, based on 100% by weight of the components excluding the inorganic filler and solvent in the resin material. It is preferably 90% by weight or less, more preferably 80% by weight or less. When the content of the maleimide compound X is at least the above lower limit, the dielectric loss tangent can be further lowered, and the adhesion between the insulating layer and the metal layer can be further improved. When the content of the maleimide compound X is at most the above upper limit, embeddability during lamination can be improved.

絶縁層と金属層との密着性をより一層高める観点からは、上記マレイミド化合物Xの重量平均分子量は、好ましくは500以上、より好ましくは1000以上、好ましくは15000未満、より好ましくは12000未満、更に好ましくは10000未満である。 From the viewpoint of further increasing the adhesion between the insulating layer and the metal layer, the weight average molecular weight of the maleimide compound Preferably it is less than 10,000.

上記マレイミド化合物Xの重量平均分子量は、該マレイミド化合物Xが重合体ではない場合、及び該マレイミド化合物Xの構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記マレイミド化合物Xの重量平均分子量は、該マレイミド化合物Xが重合体である場合は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。 The weight average molecular weight of the maleimide compound X means the molecular weight that can be calculated from the structural formula when the maleimide compound X is not a polymer and when the structural formula of the maleimide compound X can be specified. Furthermore, when the maleimide compound X is a polymer, the weight average molecular weight of the maleimide compound X indicates the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).

<脂肪族骨格を有するベンゾオキサジン化合物>
本発明に係る樹脂材料は、脂肪族骨格含有化合物として、脂肪族骨格を有するベンゾオキサジン化合物(以下、ベンゾオキサジン化合物Xと記載することがある)を含むことが好ましい。ベンゾオキサジン化合物Xは、ベンゾオキサジン骨格を有する。したがって、ベンゾオキサジン化合物Xは、ベンゾオキサジン骨格と脂肪族骨格とを有する。ベンゾオキサジン化合物Xにおいて、ベンゾオキサジン骨格を形成している窒素原子に、上記脂肪族骨格が結合していることが好ましい。なお、ベンゾオキサジン化合物Xは、イミド骨格を有していてもよい。上記ベンゾオキサジン化合物Xとして、従来公知のベンゾオキサジン化合物を使用可能である。上記ベンゾオキサジン化合物Xは、1種のみが用いられてもよく、2種以上が併用されてもよい。
<Benzoxazine compound having an aliphatic skeleton>
The resin material according to the present invention preferably contains a benzoxazine compound having an aliphatic skeleton (hereinafter sometimes referred to as benzoxazine compound X) as the aliphatic skeleton-containing compound. Benzoxazine compound X has a benzoxazine skeleton. Therefore, benzoxazine compound X has a benzoxazine skeleton and an aliphatic skeleton. In the benzoxazine compound X, it is preferable that the aliphatic skeleton is bonded to the nitrogen atom forming the benzoxazine skeleton. Note that the benzoxazine compound X may have an imide skeleton. As the benzoxazine compound X, conventionally known benzoxazine compounds can be used. The benzoxazine compound X may be used alone or in combination of two or more.

上記ベンゾオキサジン化合物Xとしては、N-アルキルベンゾオキサジン化合物等が挙げられる。 Examples of the benzoxazine compound X include N-alkylbenzoxazine compounds.

上記ベンゾオキサジン化合物Xは、上述したマレイミド化合物Xのマレイミド骨格が、ベンゾオキサジン骨格に置換された化合物であることが好ましい。 The benzoxazine compound X is preferably a compound in which the maleimide skeleton of the maleimide compound X described above is substituted with a benzoxazine skeleton.

上記ベンゾオキサジン化合物Xは、例えば、上述したテトラカルボン酸二無水物と上述したジアミン化合物とを反応させて両末端がアミノ基である反応物を得た後、該反応物とフェノールとパラホルムアルデヒドとを反応させて得ることができる。また、上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物は、例えば、テトラカルボン酸二無水物とダイマージアミンとを反応させて両末端がダイマージアミンに由来する骨格を有する反応物を得た後、該反応物とフェノールとパラホルムアルデヒドとを反応させて得ることができる。 The above-mentioned benzoxazine compound It can be obtained by reacting. Further, the N-alkylbenzoxazine compound having a skeleton derived from a dimer diamine can be obtained by, for example, reacting a tetracarboxylic dianhydride with a dimer diamine to obtain a reactant having a skeleton at both ends derived from a dimer diamine. After that, it can be obtained by reacting the reactant with phenol and paraformaldehyde.

上記ベンゾオキサジン化合物Xは、主鎖にイミド骨格を有することが好ましい。この場合、上記ポリイミド化合物との相溶性を高めることができるため、硬化物の折り曲げ安定性をより一層高めることができる。 The benzoxazine compound X preferably has an imide skeleton in its main chain. In this case, since the compatibility with the polyimide compound can be improved, the bending stability of the cured product can be further improved.

上記ベンゾオキサジン化合物Xは、脂肪族骨格を有するポリアミン化合物とカルボン酸二無水物との反応物に由来する骨格を有することが好ましい。上記ポリアミン化合物とは、2個以上の1級のアミノ基を有する化合物を意味する。上記ベンゾオキサジン化合物Xは、脂肪族骨格を有するポリアミン化合物とカルボン酸二無水物との反応物に由来する骨格を有してもよく、脂肪族骨格を有するポリアミン化合物と、脂肪族骨格を有するポリアミン化合物とは異なるアミン化合物と、カルボン酸二無水物との反応物に由来する骨格を有してもよい。 The benzoxazine compound X preferably has a skeleton derived from a reaction product of a polyamine compound having an aliphatic skeleton and a carboxylic dianhydride. The above polyamine compound means a compound having two or more primary amino groups. The above-mentioned benzoxazine compound It may have a skeleton derived from a reaction product of an amine compound different from the compound and a carboxylic dianhydride.

上記脂肪族骨格を有するポリアミン化合物とカルボン酸二無水物との反応物に由来する骨格を有するベンゾオキサジン化合物Xは、例えば、脂肪族骨格を有するポリアミン化合物とカルボン酸二無水物とを反応させて両末端がアミノ基である反応物を得た後、該反応物とフェノールとパラホルムアルデヒドとを反応させて得ることができる。 The above benzoxazine compound After obtaining a reactant having amino groups at both ends, it can be obtained by reacting the reactant with phenol and paraformaldehyde.

上記ベンゾオキサジン化合物Xは、具体的には、脂肪族骨格を有するジアミン化合物又は脂肪族骨格を有するトリアミン化合物とカルボン酸二無水物との反応物に由来する骨格を有することが好ましい。上記ベンゾオキサジン化合物Xは、脂肪族骨格を有するジアミン化合物とカルボン酸二無水物との反応物に由来する骨格を有していてもよい。上記ベンゾオキサジン化合物Xは、脂肪族骨格を有するジアミン化合物と、脂肪族骨格を有するジアミン化合物とは異なるアミン化合物(例えば、芳香族骨格を有するジアミン化合物)と、カルボン酸二無水物との反応物に由来する骨格を有していてもよい。上記ベンゾオキサジン化合物Xは、脂肪族骨格を有するトリアミン化合物とカルボン酸二無水物との反応物に由来する骨格を有していてもよく、脂肪族骨格を有するトリアミン化合物と、脂肪族骨格を有するトリアミン化合物とは異なるアミン化合物と、カルボン酸二無水物との反応物に由来する骨格を有していてもよい。この場合に、該反応物を得るために、脂肪族骨格を有するジアミン化合物及び脂肪族骨格を有するトリアミン化合物の内の一方が用いられていることが好ましい。該反応物を得るために、脂肪族骨格を有するジアミン化合物と脂肪族骨格を有するトリアミン化合物との双方が用いられていることがより好ましい。なお、この場合に、脂肪族骨格を有するトリアミン化合物の配合量(重量%)は脂肪族骨格を有するジアミン化合物の配合量(重量%)の5%以下であることが好ましい。 Specifically, the benzoxazine compound X preferably has a skeleton derived from a reaction product of a diamine compound having an aliphatic skeleton or a triamine compound having an aliphatic skeleton and a carboxylic dianhydride. The benzoxazine compound X may have a skeleton derived from a reaction product of a diamine compound having an aliphatic skeleton and a carboxylic dianhydride. The above-mentioned benzoxazine compound It may have a skeleton derived from. The benzoxazine compound X may have a skeleton derived from a reaction product of a triamine compound having an aliphatic skeleton and a carboxylic dianhydride; It may have a skeleton derived from a reaction product of an amine compound different from the triamine compound and a carboxylic dianhydride. In this case, it is preferable that one of a diamine compound having an aliphatic skeleton and a triamine compound having an aliphatic skeleton be used to obtain the reactant. In order to obtain the reactant, it is more preferable that both a diamine compound having an aliphatic skeleton and a triamine compound having an aliphatic skeleton are used. In this case, the amount (wt%) of the triamine compound having an aliphatic skeleton is preferably 5% or less of the amount (wt%) of the diamine compound having an aliphatic skeleton.

上記脂肪族骨格を有するジアミン化合物とカルボン酸二無水物との反応物に由来する骨格を有するベンゾオキサジン化合物Xは、例えば、脂肪族骨格を有するジアミン化合物とカルボン酸二無水物を反応させて両末端がアミノ基である反応物を得た後、該反応物とフェノールとパラホルムアルデヒドとを反応させて得ることができる。 The benzoxazine compound After obtaining a reactant having an amino group at the end, it can be obtained by reacting the reactant with phenol and paraformaldehyde.

上記脂肪族骨格を有するトリアミン化合物とカルボン酸二無水物との反応物に由来する骨格を有するベンゾオキサジン化合物Xは、例えば、脂肪族骨格を有するトリアミン化合物とカルボン酸二無水物を反応させて両末端がアミノ基である反応物を得た後、該反応物とフェノールとパラホルムアルデヒドとを反応させて得ることができる。 The benzoxazine compound After obtaining a reactant having an amino group at the end, it can be obtained by reacting the reactant with phenol and paraformaldehyde.

上記脂肪族骨格を有するジアミン化合物としては、上述したジアミン化合物等が挙げられる。 Examples of the diamine compound having an aliphatic skeleton include the diamine compounds described above.

上記芳香族骨格を有するジアミン化合物としては、上述したジアミン化合物等が挙げられる。 Examples of the diamine compound having an aromatic skeleton include the diamine compounds described above.

上記カルボン酸二無水物としては、上述したカルボン酸二無水物が挙げられる。 Examples of the carboxylic dianhydride include the carboxylic dianhydrides mentioned above.

誘電正接を低くする観点からは、脂肪族骨格を有するジアミン化合物は、ダイマージアミンに由来する骨格を有するジアミン化合物であることが好ましい。 From the viewpoint of lowering the dielectric loss tangent, the diamine compound having an aliphatic skeleton is preferably a diamine compound having a skeleton derived from dimer diamine.

上記ダイマージアミンに由来する骨格を有するジアミン化合物は、ダイマージアミンとテトラカルボン酸二無水物との反応物であることが好ましい。なお、上記ダイマージアミンに由来する骨格を有するジアミン化合物が、ダイマージアミンとテトラカルボン酸二無水物との反応物である場合に、該反応物(該ジアミン化合物)は、ダイマージアミンに由来する骨格以外のジアミン骨格を有していてもよい。 The diamine compound having a skeleton derived from a dimer diamine is preferably a reaction product of a dimer diamine and a tetracarboxylic dianhydride. In addition, when the diamine compound having a skeleton derived from dimer diamine is a reaction product of dimer diamine and tetracarboxylic dianhydride, the reactant (the diamine compound) has a skeleton other than the skeleton derived from dimer diamine. may have a diamine skeleton.

上記ダイマージアミンとしては、上述したダイマージアミンが挙げられる。 Examples of the above-mentioned dimer diamine include the above-mentioned dimer diamine.

上記テトラカルボン酸二無水物としては、上述したテトラカルボン酸二無水物が挙げられる。 Examples of the above-mentioned tetracarboxylic dianhydride include the above-mentioned tetracarboxylic dianhydride.

上述した1)-6)の本発明の効果をより一層効果的に発揮する観点からは、上記ベンゾオキサジン化合物Xは、ダイマージアミンに由来する骨格を有するN-アルキルビスベンゾオキサジン化合物であることが好ましい。 From the viewpoint of more effectively exhibiting the effects of the present invention described in 1) to 6) above, the benzoxazine compound preferable.

上記ベンゾオキサジン化合物Xの含有量の、後述する熱硬化性化合物と後述する成分Xとの合計の含有量に対する重量比(ベンゾオキサジン化合物Xの含有量/熱硬化性化合物と成分Xとの合計の含有量)は、好ましくは0.05以上、より好ましくは0.1以上、好ましくは0.9以下、より好ましくは0.75以下である。上記重量比(ベンゾオキサジン化合物Xの含有量/熱硬化性化合物と成分Xとの合計の含有量)が上記下限以上及び上記上限以下であると、誘電正接をより一層低くでき、絶縁層と金属層との密着性をより一層高めることができる。 Weight ratio of the content of the benzoxazine compound X to the total content of the thermosetting compound described below and the component X described below (content of the benzoxazine compound content) is preferably 0.05 or more, more preferably 0.1 or more, preferably 0.9 or less, and more preferably 0.75 or less. When the above weight ratio (content of benzoxazine compound X/total content of thermosetting compound and component The adhesion between the layers can be further improved.

上記樹脂材料中の無機充填材及び溶剤を除く成分100重量%中、上記ベンゾオキサジン化合物Xの含有量は、好ましくは3重量%以上、より好ましくは5重量%以上、更に好ましくは10重量%以上、好ましくは90重量%以下、より好ましくは80重量%以下である。上記ベンゾオキサジン化合物Xの含有量が上記下限以上であると、誘電正接をより一層低くでき、絶縁層と金属層との密着性をより一層高めることができる。上記ベンゾオキサジン化合物Xの含有量が上記上限以下であると、ラミネート時の埋め込み性を良好にすることができる。 The content of the benzoxazine compound X is preferably 3% by weight or more, more preferably 5% by weight or more, even more preferably 10% by weight or more in 100% by weight of the components excluding the inorganic filler and solvent in the resin material. , preferably 90% by weight or less, more preferably 80% by weight or less. When the content of the benzoxazine compound X is at least the above lower limit, the dielectric loss tangent can be further lowered, and the adhesion between the insulating layer and the metal layer can be further improved. When the content of the benzoxazine compound X is at most the above upper limit, embeddability during lamination can be improved.

絶縁層と金属層との密着性をより一層高める観点からは、上記ベンゾオキサジン化合物Xの重量平均分子量は、好ましくは500以上、より好ましくは1000以上、好ましくは15000未満、より好ましくは12000未満、更に好ましくは10000未満である。 From the perspective of further increasing the adhesion between the insulating layer and the metal layer, the weight average molecular weight of the benzoxazine compound X is preferably 500 or more, more preferably 1000 or more, preferably less than 15000, more preferably less than 12000 More preferably, it is less than 10,000.

上記ベンゾオキサジン化合物Xの重量平均分子量は、該ベンゾオキサジン化合物Xが重合体ではない場合、及び該ベンゾオキサジン化合物Xの構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記ベンゾオキサジン化合物Xの重量平均分子量は、該ベンゾオキサジン化合物Xが重合体である場合は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。 The weight average molecular weight of the benzoxazine compound X means the molecular weight that can be calculated from the structural formula when the benzoxazine compound X is not a polymer and when the structural formula of the benzoxazine compound X can be specified. Further, the weight average molecular weight of the benzoxazine compound X, when the benzoxazine compound X is a polymer, indicates the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).

上記樹脂材料中の溶剤を除く有機成分100重量%中、上記ポリイミド化合物と上記脂肪族骨格含有化合物との合計の含有量は、好ましくは10重量%以上、より好ましくは15重量%以上、更に好ましくは20重量%以上である。上記樹脂材料中の溶剤を除く有機成分100重量%中、上記ポリイミド化合物と上記脂肪族骨格含有化合物との合計の含有量は、好ましくは98重量%以下、より好ましくは80重量%以下である。上記合計の含有量が上記下限以上及び上記上限以下であると、上述した1)-6)の本発明の効果をより一層効果的に発揮することができる。 The total content of the polyimide compound and the aliphatic skeleton-containing compound in 100% by weight of the organic components excluding the solvent in the resin material is preferably 10% by weight or more, more preferably 15% by weight or more, and even more preferably is 20% by weight or more. The total content of the polyimide compound and the aliphatic skeleton-containing compound in 100% by weight of the organic components excluding the solvent in the resin material is preferably 98% by weight or less, more preferably 80% by weight or less. When the above-mentioned total content is at least the above-mentioned lower limit and below the above-mentioned upper limit, the above-mentioned effects 1)-6) of the present invention can be exhibited even more effectively.

[熱硬化性化合物]
上記樹脂材料は、熱硬化性化合物を含むことが好ましい。上記熱硬化性化合物は、上記ポリイミド化合物、上記マレイミド化合物X及び上記ベンゾオキサジン化合物Xとは異なる熱硬化性化合物である。上記熱硬化性化合物としては、スチレン化合物、ビニル化合物、フェノキシ化合物、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、及びシリコーン化合物等が挙げられる。上記熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Thermosetting compound]
The resin material preferably contains a thermosetting compound. The thermosetting compound is a thermosetting compound different from the polyimide compound, the maleimide compound X, and the benzoxazine compound X. Examples of the thermosetting compounds include styrene compounds, vinyl compounds, phenoxy compounds, oxetane compounds, epoxy compounds, episulfide compounds, (meth)acrylic compounds, phenol compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, and silicone compounds. can be mentioned. The above thermosetting compounds may be used alone or in combination of two or more.

上述した1)-6)の本発明の効果をより一層効果的に発揮する観点、また、熱寸法安定性を高める観点からは、上記熱硬化性化合物は、エポキシ化合物であることが好ましい。 From the viewpoint of more effectively exhibiting the effects of the present invention described in 1) to 6) above, and from the viewpoint of increasing thermal dimensional stability, the thermosetting compound is preferably an epoxy compound.

上記エポキシ化合物としては、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、フェノールノボラック型エポキシ化合物、ビフェニル型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ビフェノール型エポキシ化合物、ナフタレン型エポキシ化合物、フルオレン型エポキシ化合物、フェノールアラルキル型エポキシ化合物、ナフトールアラルキル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、アントラセン型エポキシ化合物、アダマンタン骨格を有するエポキシ化合物、トリシクロデカン骨格を有するエポキシ化合物、ナフチレンエーテル型エポキシ化合物、及びトリアジン核を骨格に有するエポキシ化合物等が挙げられる。 The above-mentioned epoxy compounds include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, phenol novolak type epoxy compounds, biphenyl type epoxy compounds, biphenyl novolac type epoxy compounds, biphenol type epoxy compounds, and naphthalene type epoxy compounds. , fluorene type epoxy compound, phenol aralkyl type epoxy compound, naphthol aralkyl type epoxy compound, dicyclopentadiene type epoxy compound, anthracene type epoxy compound, epoxy compound having an adamantane skeleton, epoxy compound having a tricyclodecane skeleton, naphthylene ether type Examples include epoxy compounds and epoxy compounds having a triazine nucleus in their skeleton.

上記エポキシ化合物は、芳香族骨格を有するエポキシ化合物を含むことが好ましく、ナフタレン骨格又はフェニル骨格を有するエポキシ化合物を含むことが好ましく、芳香族骨格を有するエポキシ化合物であることがより好ましく、ナフタレン骨格を有するエポキシ化合物であることが更に好ましい。この場合には、誘電正接をより一層低くし、かつ耐熱性、難燃性及び熱寸法安定性を高めることができる。 The epoxy compound preferably includes an epoxy compound having an aromatic skeleton, preferably an epoxy compound having a naphthalene skeleton or a phenyl skeleton, and more preferably an epoxy compound having an aromatic skeleton. More preferably, it is an epoxy compound having In this case, the dielectric loss tangent can be further lowered, and the heat resistance, flame retardance, and thermal dimensional stability can be improved.

誘電正接をより一層低くし、かつ硬化物の熱線膨張係数(CTE)を良好にする観点からは、上記エポキシ化合物は、25℃で液状のエポキシ化合物と、25℃で固形のエポキシ化合物とを含むことが好ましい。 From the viewpoint of further lowering the dielectric loss tangent and improving the coefficient of linear thermal expansion (CTE) of the cured product, the epoxy compound includes an epoxy compound that is liquid at 25°C and an epoxy compound that is solid at 25°C. It is preferable.

上記25℃で液状のエポキシ化合物の25℃での粘度は、1000mPa・s以下であることが好ましく、500mPa・s以下であることがより好ましい。 The viscosity at 25° C. of the epoxy compound which is liquid at 25° C. is preferably 1000 mPa·s or less, more preferably 500 mPa·s or less.

上記エポキシ化合物の粘度を測定する際には、例えば動的粘弾性測定装置(レオロジカ・インスツルメンツ社製「VAR-100」)等が用いられる。 When measuring the viscosity of the epoxy compound, for example, a dynamic viscoelasticity measuring device ("VAR-100" manufactured by Rheologica Instruments) or the like is used.

上記エポキシ化合物の分子量は1000以下であることがより好ましい。この場合には、樹脂材料中の溶剤を除く成分100重量%、無機充填材の含有量が50重量%以上であっても、絶縁層の形成時に流動性が高い樹脂材料が得られる。このため、樹脂材料の未硬化物又はBステージ化物を回路基板上にラミネートした場合に、無機充填材を均一に存在させることができる。 It is more preferable that the molecular weight of the epoxy compound is 1000 or less. In this case, even if the components excluding the solvent in the resin material are 100% by weight and the content of the inorganic filler is 50% by weight or more, a resin material with high fluidity can be obtained when forming the insulating layer. Therefore, when an uncured resin material or a B-staged resin material is laminated on a circuit board, the inorganic filler can be uniformly present.

上記エポキシ化合物の分子量は、上記エポキシ化合物が重合体ではない場合、及び上記エポキシ化合物の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記エポキシ化合物が重合体である場合は、重量平均分子量を意味する。 When the epoxy compound is not a polymer and when the structural formula of the epoxy compound can be specified, the molecular weight of the epoxy compound means the molecular weight that can be calculated from the structural formula. Moreover, when the above-mentioned epoxy compound is a polymer, it means the weight average molecular weight.

硬化物と金属層との接着強度をより一層高める観点からは、樹脂材料中の溶剤を除く有機成分100重量%中、上記エポキシ化合物の含有量は、好ましくは5重量%以上、より好ましくは25重量%以上、好ましくは50重量%以下、より好ましくは40重量%以下である。 From the viewpoint of further increasing the adhesive strength between the cured product and the metal layer, the content of the epoxy compound is preferably 5% by weight or more, more preferably 25% by weight of the 100% by weight of the organic components excluding the solvent in the resin material. It is at least 50% by weight, preferably at most 50% by weight, and more preferably at most 40% by weight.

上記エポキシ化合物の含有量の、上記脂肪族骨格含有化合物と後述する成分Xとの合計の含有量に対する重量比(上記エポキシ化合物の含有量/上記脂肪族骨格含有化合物と上記成分Xとの合計の含有量)は、好ましくは0.1以上、より好ましくは0.2以上である。上記エポキシ化合物の含有量の、上記脂肪族骨格含有化合物と後述する成分Xとの合計の含有量に対する重量比(上記エポキシ化合物の含有量/上記脂肪族骨格含有化合物と上記成分Xとの合計の含有量)は、好ましくは0.9以下、より好ましくは0.8以下である。上記重量比(上記エポキシ化合物の含有量/上記脂肪族骨格含有化合物と上記成分Xとの合計の含有量)が上記下限以上及び上記上限以下であると、誘電正接を低くすることができ、線膨張係数を小さくすることができ、絶縁層と金属層との密着性をより一層高め、かつハンドリング性を高めることができる。 Weight ratio of the content of the epoxy compound to the total content of the aliphatic skeleton-containing compound and component X described below (content of the epoxy compound/total of the aliphatic skeleton-containing compound and component content) is preferably 0.1 or more, more preferably 0.2 or more. Weight ratio of the content of the epoxy compound to the total content of the aliphatic skeleton-containing compound and component X described below (content of the epoxy compound/total of the aliphatic skeleton-containing compound and component content) is preferably 0.9 or less, more preferably 0.8 or less. When the weight ratio (content of the epoxy compound/total content of the aliphatic skeleton-containing compound and component The coefficient of expansion can be reduced, the adhesion between the insulating layer and the metal layer can be further improved, and the handling properties can be improved.

[無機充填材]
上記樹脂材料は、無機充填材を含むことが好ましい。上記無機充填材の使用により、硬化物の誘電正接をより一層低くすることができる。また、上記無機充填材の使用により、硬化物の熱による寸法変化がより一層小さくなる。上記無機充填材は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Inorganic filler]
The resin material preferably contains an inorganic filler. By using the above inorganic filler, the dielectric loss tangent of the cured product can be further lowered. Further, by using the above-mentioned inorganic filler, the dimensional change due to heat of the cured product is further reduced. Only one kind of the above-mentioned inorganic filler may be used, or two or more kinds thereof may be used in combination.

上記無機充填材としては、シリカ、タルク、クレイ、マイカ、ハイドロタルサイト、アルミナ、酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム、及び窒化ホウ素等が挙げられる。 Examples of the inorganic filler include silica, talc, clay, mica, hydrotalcite, alumina, magnesium oxide, aluminum hydroxide, aluminum nitride, and boron nitride.

硬化物の表面の表面粗さを小さくし、硬化物と金属層との接着強度をより一層高くし、かつ硬化物の表面により一層微細な配線を形成し、かつ硬化物により良好な絶縁信頼性を付与する観点からは、上記無機充填材は、シリカ又はアルミナであることが好ましく、シリカであることがより好ましく、溶融シリカであることが更に好ましい。シリカの使用により、硬化物の熱膨張率がより一層低くなり、また、硬化物の誘電正接がより一層低くなる。また、シリカの使用により、硬化物の表面の表面粗さが効果的に小さくなり、硬化物と金属層との接着強度が効果的に高くなる。シリカの形状は球状であることが好ましい。 The surface roughness of the cured product is reduced, the adhesive strength between the cured product and the metal layer is further increased, finer wiring is formed on the surface of the cured product, and the cured product has better insulation reliability. From the viewpoint of imparting this, the inorganic filler is preferably silica or alumina, more preferably silica, and even more preferably fused silica. By using silica, the coefficient of thermal expansion of the cured product becomes even lower, and the dielectric loss tangent of the cured product becomes even lower. Moreover, by using silica, the surface roughness of the surface of the cured product is effectively reduced, and the adhesive strength between the cured product and the metal layer is effectively increased. The shape of the silica is preferably spherical.

硬化環境によらず、樹脂の硬化を進め、硬化物のガラス転移温度を効果的に高くし、硬化物の熱線膨張係数を効果的に小さくする観点からは、上記無機充填材は球状シリカであることが好ましい。 The inorganic filler is spherical silica from the viewpoint of curing the resin, effectively increasing the glass transition temperature of the cured product, and effectively reducing the linear thermal expansion coefficient of the cured product regardless of the curing environment. It is preferable.

上記無機充填材の平均粒径は、好ましくは50nm以上、より好ましくは100nm以上、更に好ましくは500nm以上、好ましくは5μm以下、より好ましくは3μm以下、更に好ましくは1μm以下である。上記無機充填材の平均粒径が上記下限以上及び上記上限以下であると、凹凸表面に対する埋め込み性をより一層高め、絶縁層と金属層との密着性をより一層高めることができる。 The average particle size of the inorganic filler is preferably 50 nm or more, more preferably 100 nm or more, even more preferably 500 nm or more, preferably 5 μm or less, more preferably 3 μm or less, and still more preferably 1 μm or less. When the average particle diameter of the inorganic filler is not less than the above lower limit and not more than the above upper limit, it is possible to further improve the embeddability into the uneven surface and further improve the adhesion between the insulating layer and the metal layer.

上記無機充填材の平均粒径として、50%となるメディアン径(d50)の値が採用される。上記平均粒径は、レーザー回折散乱方式の粒度分布測定装置を用いて測定可能である。 As the average particle size of the inorganic filler, a value of the median diameter (d50) that is 50% is adopted. The above average particle size can be measured using a laser diffraction scattering type particle size distribution measuring device.

上記無機充填材は、球状であることが好ましく、球状シリカであることがより好ましい。この場合には、硬化物の表面の表面粗さが効果的に小さくなり、更に硬化物と金属層との接着強度が効果的に高くなる。上記無機充填材が球状である場合には、上記無機充填材のアスペクト比は好ましくは2以下、より好ましくは1.5以下である。 The inorganic filler is preferably spherical, more preferably spherical silica. In this case, the surface roughness of the surface of the cured product is effectively reduced, and furthermore, the adhesive strength between the cured product and the metal layer is effectively increased. When the inorganic filler is spherical, the aspect ratio of the inorganic filler is preferably 2 or less, more preferably 1.5 or less.

上記無機充填材は、表面処理されていることが好ましく、カップリング剤による表面処理物であることがより好ましく、シランカップリング剤による表面処理物であることが更に好ましい。上記無機充填材が表面処理されていることにより、粗化硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属層との接着強度がより一層高くなる。また、上記無機充填材が表面処理されていることにより、硬化物の表面により一層微細な配線を形成することができ、かつより一層良好な配線間絶縁信頼性及び層間絶縁信頼性を硬化物に付与することができる。 The inorganic filler is preferably surface-treated, more preferably surface-treated with a coupling agent, and even more preferably surface-treated with a silane coupling agent. By surface-treating the inorganic filler, the surface roughness of the roughened cured product is further reduced, and the adhesive strength between the cured product and the metal layer is further increased. Furthermore, since the inorganic filler is surface-treated, finer wiring can be formed on the surface of the cured product, and even better inter-wiring insulation reliability and interlayer insulation reliability can be achieved on the cured product. can be granted.

上記カップリング剤としては、シランカップリング剤、チタンカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、メタクリルシラン、アクリルシラン、アミノシラン、イミダゾールシラン、ビニルシラン、及びエポキシシラン等が挙げられる。 Examples of the coupling agent include a silane coupling agent, a titanium coupling agent, and an aluminum coupling agent. Examples of the silane coupling agent include methacrylsilane, acrylicsilane, aminosilane, imidazolesilane, vinylsilane, and epoxysilane.

樹脂材料中の溶剤を除く成分100重量%中、上記無機充填材の含有量は、好ましくは50重量%以上、より好ましくは60重量%以上、更に好ましくは65重量%以上、特に好ましくは68重量%以上である。樹脂材料中の溶剤を除く成分100重量%中、上記無機充填材の含有量は、好ましくは90重量%以下、より好ましくは85重量%以下、更に好ましくは80重量%以下、特に好ましくは75重量%以下である。上記無機充填材の含有量が上記下限以上であると、誘電正接が効果的に低くなり、線膨張係数を小さくすることができる。上記無機充填材の含有量が上記上限以下であると、接着性、凹凸表面に対する埋め込み性、及びエッチング性能を高めることができる。上記無機充填材の含有量が上記下限以上及び上記上限以下であると、硬化物の表面の表面粗さをより一層小さくすることができ、かつ硬化物の表面により一層微細な配線を形成することができる。さらに、この無機充填材量であれば、硬化物の熱膨張率を低くすることと同時に、スミア除去性を良好にすることも可能である。 The content of the inorganic filler is preferably 50% by weight or more, more preferably 60% by weight or more, even more preferably 65% by weight or more, and particularly preferably 68% by weight in 100% by weight of the components excluding the solvent in the resin material. % or more. The content of the inorganic filler is preferably 90% by weight or less, more preferably 85% by weight or less, even more preferably 80% by weight or less, particularly preferably 75% by weight in 100% by weight of the components excluding the solvent in the resin material. % or less. When the content of the inorganic filler is equal to or higher than the lower limit, the dielectric loss tangent becomes effectively low, and the coefficient of linear expansion can be reduced. When the content of the inorganic filler is equal to or less than the upper limit, adhesiveness, embeddability to an uneven surface, and etching performance can be improved. When the content of the inorganic filler is not less than the above lower limit and not more than the above upper limit, the surface roughness of the surface of the cured product can be further reduced, and finer wiring can be formed on the surface of the cured product. I can do it. Furthermore, with this amount of inorganic filler, it is possible to lower the coefficient of thermal expansion of the cured product and at the same time improve smear removability.

[硬化剤]
上記樹脂材料は、硬化剤を含むことが好ましい。上記硬化剤は特に限定されない。上記硬化剤として、従来公知の硬化剤を使用可能である。上記硬化剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
[Curing agent]
The resin material preferably contains a curing agent. The above curing agent is not particularly limited. As the curing agent, conventionally known curing agents can be used. Only one kind of the above curing agent may be used, or two or more kinds thereof may be used in combination.

上記硬化剤としては、シアネートエステル化合物(シアネートエステル硬化剤)、アミン化合物(アミン硬化剤)、チオール化合物(チオール硬化剤)、イミダゾール化合物、ホスフィン化合物、ジシアンジアミド、フェノール化合物(フェノール硬化剤)、酸無水物、活性エステル化合物、カルボジイミド化合物(カルボジイミド硬化剤)、脂肪族骨格を有さないベンゾオキサジン化合物(ベンゾオキサジン硬化剤)、及び脂肪族骨格を有さないマレイミド化合物等が挙げられる。上記硬化剤は、上記エポキシ化合物のエポキシ基と反応可能な官能基を有することが好ましい。 The above curing agents include cyanate ester compounds (cyanate ester curing agents), amine compounds (amine curing agents), thiol compounds (thiol curing agents), imidazole compounds, phosphine compounds, dicyandiamide, phenol compounds (phenol curing agents), acid anhydrides. Examples include active ester compounds, carbodiimide compounds (carbodiimide curing agents), benzoxazine compounds without an aliphatic skeleton (benzoxazine curing agents), and maleimide compounds without an aliphatic skeleton. The curing agent preferably has a functional group capable of reacting with the epoxy group of the epoxy compound.

誘電正接を低くし、熱寸法安定性を高める観点から、上記硬化剤は、フェノール化合物、シアネートエステル化合物、酸無水物、活性エステル化合物、カルボジイミド化合物、及び脂肪族骨格を有さないベンゾオキサジン化合物の内の少なくとも1種の成分を含むことが好ましい。すなわち、上記樹脂材料は、フェノール化合物、シアネートエステル化合物、酸無水物、活性エステル化合物、カルボジイミド化合物、及び脂肪族骨格を有さないベンゾオキサジン化合物の内の少なくとも1種の成分を含む硬化剤を含むことが好ましい。上記脂肪族骨格を有さないベンゾオキサジン化合物は、ベンゾオキサジン骨格を形成している窒素原子に、芳香族骨格が結合しているNフェニルベンゾオキサジン化合物であることが好ましい。 From the viewpoint of lowering the dielectric loss tangent and increasing thermal dimensional stability, the above-mentioned curing agent is a phenolic compound, a cyanate ester compound, an acid anhydride, an active ester compound, a carbodiimide compound, and a benzoxazine compound having no aliphatic skeleton. It is preferable to include at least one component of the following. That is, the resin material includes a curing agent containing at least one component of a phenol compound, a cyanate ester compound, an acid anhydride, an active ester compound, a carbodiimide compound, and a benzoxazine compound having no aliphatic skeleton. It is preferable. The benzoxazine compound having no aliphatic skeleton is preferably an N-phenylbenzoxazine compound in which an aromatic skeleton is bonded to the nitrogen atom forming the benzoxazine skeleton.

本明細書において、「フェノール化合物、シアネートエステル化合物、酸無水物、活性エステル化合物、カルボジイミド化合物、及びベンゾオキサジン骨格を形成している窒素原子に、芳香族骨格が結合しているNフェニルベンゾオキサジン化合物の内の少なくとも1種の成分」を「成分X」と記載することがある。 In this specification, "phenol compounds, cyanate ester compounds, acid anhydrides, active ester compounds, carbodiimide compounds, and N-phenylbenzoxazine compounds in which an aromatic skeleton is bonded to the nitrogen atom forming the benzoxazine skeleton. "at least one component of the following" may be referred to as "component X".

上記樹脂材料は、成分Xを含む硬化剤を含むことが好ましい。上記成分Xは、1種のみが用いられてもよく、2種以上が併用されてもよい。 The resin material preferably contains a curing agent containing component X. The above component X may be used alone or in combination of two or more.

上記フェノール化合物としては、ノボラック型フェノール、ビフェノール型フェノール、ナフタレン型フェノール、ジシクロペンタジエン型フェノール、アラルキル型フェノール及びジシクロペンタジエン型フェノール等が挙げられる。 Examples of the above-mentioned phenol compounds include novolac-type phenol, biphenol-type phenol, naphthalene-type phenol, dicyclopentadiene-type phenol, aralkyl-type phenol, and dicyclopentadiene-type phenol.

上記フェノール化合物の市販品としては、ノボラック型フェノール(DIC社製「TD-2091」)、ビフェニルノボラック型フェノール(明和化成社製「MEH-7851」)、アラルキル型フェノール化合物(明和化成社製「MEH-7800」)、並びにアミノトリアジン骨格を有するフェノール(DIC社製「LA1356」及び「LA3018-50P」)等が挙げられる。 Commercially available products of the above-mentioned phenol compounds include novolac type phenol ("TD-2091" manufactured by DIC Corporation), biphenyl novolac type phenol ("MEH-7851" manufactured by Meiwa Kasei Co., Ltd.), and aralkyl type phenol compound ("MEH" manufactured by Meiwa Kasei Co., Ltd.). -7800''), and phenols having an aminotriazine skeleton (“LA1356” and “LA3018-50P” manufactured by DIC Corporation).

上記シアネートエステル化合物としては、ノボラック型シアネートエステル樹脂、ビスフェノール型シアネートエステル樹脂、並びにこれらが一部三量化されたプレポリマー等が挙げられる。上記ノボラック型シアネートエステル樹脂としては、フェノールノボラック型シアネートエステル樹脂及びアルキルフェノール型シアネートエステル樹脂等が挙げられる。上記ビスフェノール型シアネートエステル樹脂としては、ビスフェノールA型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂及びテトラメチルビスフェノールF型シアネートエステル樹脂等が挙げられる。 Examples of the cyanate ester compound include novolak-type cyanate ester resins, bisphenol-type cyanate ester resins, and prepolymers obtained by partially trimerizing these. Examples of the novolac cyanate ester resins include phenol novolac cyanate ester resins and alkylphenol cyanate ester resins. Examples of the bisphenol type cyanate ester resin include bisphenol A type cyanate ester resin, bisphenol E type cyanate ester resin, and tetramethylbisphenol F type cyanate ester resin.

上記シアネートエステル化合物の市販品としては、フェノールノボラック型シアネートエステル樹脂(ロンザジャパン社製「PT-30」及び「PT-60」)、及びビスフェノール型シアネートエステル樹脂が三量化されたプレポリマー(ロンザジャパン社製「BA-230S」、「BA-3000S」、「BTP-1000S」及び「BTP-6020S」)等が挙げられる。 Commercial products of the above cyanate ester compounds include phenol novolak cyanate ester resins (PT-30 and PT-60 manufactured by Lonza Japan), and prepolymers in which bisphenol cyanate ester resins are trimerized (Lonza Japan). ``BA-230S'', ``BA-3000S'', ``BTP-1000S'', and ``BTP-6020S'' manufactured by the company.

上記酸無水物としては、テトラヒドロフタル酸無水物、及びアルキルスチレン-無水マレイン酸共重合体等が挙げられる。 Examples of the acid anhydride include tetrahydrophthalic anhydride, alkylstyrene-maleic anhydride copolymer, and the like.

上記酸無水物の市販品としては、新日本理化社製「リカシッド TDA-100」等が挙げられる。 Examples of commercially available acid anhydrides include "Rikacid TDA-100" manufactured by Shin Nippon Rika Co., Ltd.

上記活性エステル化合物とは、構造体中にエステル結合を少なくとも1つ含み、かつ、エステル結合の両側に芳香族環が結合している化合物をいう。活性エステル化合物は、例えばカルボン酸化合物又はチオカルボン酸化合物と、ヒドロキシ化合物又はチオール化合物との縮合反応によって得られる。活性エステル化合物の例としては、下記式(1)で表される化合物が挙げられる。 The above-mentioned active ester compound refers to a compound that contains at least one ester bond in its structure and has aromatic rings bonded to both sides of the ester bond. The active ester compound is obtained, for example, by a condensation reaction between a carboxylic acid compound or a thiocarboxylic acid compound and a hydroxy compound or a thiol compound. Examples of active ester compounds include compounds represented by the following formula (1).

Figure 2023156362000003
Figure 2023156362000003

上記式(1)中、X1は、脂肪族鎖を含む基、脂肪族環を含む基又は芳香族環を含む基を表し、X2は、芳香族環を含む基を表す。上記芳香族環を含む基の好ましい例としては、置換基を有していてもよいベンゼン環、及び置換基を有していてもよいナフタレン環等が挙げられる。上記置換基としては、炭化水素基が挙げられる。該炭化水素基の炭素数は、好ましくは12以下、より好ましくは6以下、更に好ましくは4以下である。 In the above formula (1), X1 represents a group containing an aliphatic chain, a group containing an aliphatic ring, or a group containing an aromatic ring, and X2 represents a group containing an aromatic ring. Preferred examples of the group containing the aromatic ring include a benzene ring which may have a substituent, a naphthalene ring which may have a substituent, and the like. Examples of the above-mentioned substituents include hydrocarbon groups. The number of carbon atoms in the hydrocarbon group is preferably 12 or less, more preferably 6 or less, still more preferably 4 or less.

X1及びX2の組み合わせとしては、置換基を有していてもよいベンゼン環と、置換基を有していてもよいベンゼン環との組み合わせ、置換基を有していてもよいベンゼン環と、置換基を有していてもよいナフタレン環との組み合わせが挙げられる。さらに、X1及びX2の組み合わせとしては、置換基を有していてもよいナフタレン環と、置換基を有していてもよいナフタレン環との組み合わせが挙げられる。 Examples of the combination of X1 and A combination with a naphthalene ring which may have a group is exemplified. Further, examples of the combination of X1 and X2 include a combination of a naphthalene ring that may have a substituent and a naphthalene ring that may have a substituent.

上記活性エステル化合物は特に限定されない。熱寸法安定性をより一層高める観点からは、上記活性エステル化合物は、2個以上の芳香族骨格を有する活性エステル化合物であることが好ましい。硬化物の誘電正接を低くし、かつ硬化物の熱寸法安定性を高める観点から、活性エステルの主鎖骨格中にナフタレン環を有することがより好ましい。 The above active ester compound is not particularly limited. From the viewpoint of further increasing thermal dimensional stability, the active ester compound is preferably an active ester compound having two or more aromatic skeletons. From the viewpoint of lowering the dielectric loss tangent of the cured product and increasing the thermal dimensional stability of the cured product, it is more preferable that the active ester has a naphthalene ring in its main chain skeleton.

上記活性エステル化合物の市販品としては、DIC社製「HPC-8000-65T」、「EXB9416-70BK」、「EXB8100-65T」、及び「HPC-8150-60T」等が挙げられる。 Examples of commercially available active ester compounds include "HPC-8000-65T", "EXB9416-70BK", "EXB8100-65T", and "HPC-8150-60T" manufactured by DIC.

上記カルボジイミド化合物は、下記式(2)で表される構造単位を有する。下記式(2)において、右端部及び左端部は、他の基との結合部位である。上記カルボジイミド化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。 The carbodiimide compound has a structural unit represented by the following formula (2). In the following formula (2), the right end and left end are bonding sites with other groups. Only one kind of the above-mentioned carbodiimide compound may be used, or two or more kinds thereof may be used in combination.

Figure 2023156362000004
Figure 2023156362000004

上記式(2)中、Xは、アルキレン基、アルキレン基に置換基が結合した基、シクロアルキレン基、シクロアルキレン基に置換基が結合した基、アリーレン基、又はアリーレン基に置換基が結合した基を表し、pは1~5の整数を表す。Xが複数存在する場合、複数のXは同一であってもよく、異なっていてもよい。 In the above formula (2), represents a group, and p represents an integer of 1 to 5. When a plurality of Xs exist, the plurality of Xs may be the same or different.

好適な一つの形態において、少なくとも1つのXは、アルキレン基、アルキレン基に置換基が結合した基、シクロアルキレン基、又はシクロアルキレン基に置換基が結合した基である。 In one preferred form, at least one X is an alkylene group, a group having a substituent bonded to an alkylene group, a cycloalkylene group, or a group having a substituent bonded to a cycloalkylene group.

上記カルボジイミド化合物の市販品としては、日清紡ケミカル社製「カルボジライト V-02B」、「カルボジライト V-03」、「カルボジライト V-04K」、「カルボジライト V-07」、「カルボジライト V-09」、「カルボジライト 10M-SP」、及び「カルボジライト 10M-SP(改)」、並びに、ラインケミー社製「スタバクゾールP」、「スタバクゾールP400」、及び「ハイカジル510」等が挙げられる。 Commercially available carbodiimide compounds include "Carbodilite V-02B", "Carbodilite V-03", "Carbodilite V-04K", "Carbodilite V-07", "Carbodilite V-09", and "Carbodilite V-04K" manufactured by Nisshinbo Chemical Co., Ltd. 10M-SP" and "Carbodilite 10M-SP (revised)," as well as Rhein Chemie's "Stavaxol P," "Stavaxol P400," and "Hikasil 510."

上記脂肪族骨格を有さないベンゾオキサジン化合物としては、P-d型ベンゾオキサジン、及びF-a型ベンゾオキサジン等が挙げられる。 Examples of the benzoxazine compounds without an aliphatic skeleton include Pd-type benzoxazine and Fa-type benzoxazine.

上記脂肪族骨格を有さないベンゾオキサジン化合物の市販品としては、四国化成工業社製「P-d型」等が挙げられる。 Examples of commercially available benzoxazine compounds having no aliphatic skeleton include "P-d type" manufactured by Shikoku Kasei Kogyo Co., Ltd.

上記ポリイミド化合物と、上記脂肪族骨格含有化合物と、上記熱硬化性化合物との合計100重量部に対する上記成分Xの含有量は、好ましくは70重量部以上、より好ましくは85重量部以上、好ましくは150重量部以下、より好ましくは120重量部以下である。上記成分Xの含有量が上記下限以上及び上記上限以下であると、硬化性により一層優れ、熱寸法安定性をより一層高め、残存未反応成分の揮発をより一層抑制できる。 The content of the component X is preferably 70 parts by weight or more, more preferably 85 parts by weight or more, and preferably It is 150 parts by weight or less, more preferably 120 parts by weight or less. When the content of the component X is not less than the lower limit and not more than the upper limit, the curability is even better, the thermal dimensional stability is further improved, and the volatilization of remaining unreacted components can be further suppressed.

上記熱硬化性化合物100重量部に対する上記成分Xの含有量は、好ましくは70重量部以上、より好ましくは85重量部以上、好ましくは150重量部以下、より好ましくは120重量部以下である。上記成分Xの含有量が上記下限以上及び上記上限以下であると、硬化性により一層優れ、熱寸法安定性をより一層高め、残存未反応成分の揮発をより一層抑制できる。 The content of the component X based on 100 parts by weight of the thermosetting compound is preferably 70 parts by weight or more, more preferably 85 parts by weight or more, preferably 150 parts by weight or less, and more preferably 120 parts by weight or less. When the content of the component X is not less than the lower limit and not more than the upper limit, the curability is even better, the thermal dimensional stability is further improved, and the volatilization of remaining unreacted components can be further suppressed.

上記樹脂材料中の無機充填材及び溶剤を除く成分100重量%中、上記ポリイミド化合物と、上記脂肪族骨格含有化合物と、上記熱硬化性化合物と、上記成分Xとの合計の含有量は、好ましくは50重量%以上、より好ましくは60重量%以上、好ましくは90重量%以下、より好ましくは85重量%以下である。上記熱硬化性化合物と上記成分Xとの合計の含有量が上記下限以上及び上記上限以下であると、硬化性により一層優れ、熱寸法安定性をより一層高めることができる。 The total content of the polyimide compound, the aliphatic skeleton-containing compound, the thermosetting compound, and the component X in 100% by weight of the components excluding the inorganic filler and solvent in the resin material is preferably is 50% by weight or more, more preferably 60% by weight or more, preferably 90% by weight or less, more preferably 85% by weight or less. When the total content of the thermosetting compound and the component X is not less than the above lower limit and not more than the above upper limit, the curability is even better and the thermal dimensional stability can be further improved.

上記樹脂材料中の無機充填材及び溶剤を除く成分100重量%中、上記熱硬化性化合物と上記成分Xとの合計の含有量は、好ましくは50重量%以上、より好ましくは60重量%以上、好ましくは90重量%以下、より好ましくは85重量%以下である。上記熱硬化性化合物と上記成分Xとの合計の含有量が上記下限以上及び上記上限以下であると、硬化性により一層優れ、熱寸法安定性をより一層高めることができる。 Out of 100% by weight of the components excluding the inorganic filler and solvent in the resin material, the total content of the thermosetting compound and the component It is preferably 90% by weight or less, more preferably 85% by weight or less. When the total content of the thermosetting compound and the component X is not less than the above lower limit and not more than the above upper limit, the curability is even better and the thermal dimensional stability can be further improved.

[硬化促進剤]
上記樹脂材料は、硬化促進剤を含むことが好ましい。上記硬化促進剤の使用により、硬化速度がより一層速くなる。樹脂材料を速やかに硬化させることで、硬化物における架橋構造が均一になると共に、未反応の官能基数が減り、結果的に架橋密度が高くなる。上記硬化促進剤は特に限定されず、従来公知の硬化促進剤を使用可能である。上記硬化促進剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Curing accelerator]
The resin material preferably contains a curing accelerator. By using the above-mentioned curing accelerator, the curing speed becomes even faster. By rapidly curing the resin material, the crosslinked structure in the cured product becomes uniform, the number of unreacted functional groups decreases, and the crosslinking density increases as a result. The curing accelerator is not particularly limited, and conventionally known curing accelerators can be used. As for the said hardening accelerator, only 1 type may be used, and 2 or more types may be used together.

上記硬化促進剤としては、例えば、イミダゾール化合物等のアニオン性硬化促進剤、アミン化合物等のカチオン性硬化促進剤、リン化合物及び有機金属化合物等のアニオン性及びカチオン性硬化促進剤以外の硬化促進剤、並びに過酸化物等のラジカル性硬化促進剤等が挙げられる。 Examples of the curing accelerator include anionic curing accelerators such as imidazole compounds, cationic curing accelerators such as amine compounds, and curing accelerators other than anionic and cationic curing accelerators such as phosphorus compounds and organometallic compounds. , and radical curing accelerators such as peroxides.

上記イミダゾール化合物としては、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール及び2-フェニル-4-メチル-5-ジヒドロキシメチルイミダゾール等が挙げられる。 The above imidazole compounds include 2-undecylimidazole, 2-heptadecyl imidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl- 2-Methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-un Decylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6-[2' -Methylimidazolyl-(1')]-ethyl-s-triazine, 2,4-diamino-6-[2'-undecylimidazolyl-(1')]-ethyl-s-triazine, 2,4-diamino- 6-[2'-ethyl-4'-methylimidazolyl-(1')]-ethyl-s-triazine, 2,4-diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s -triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-methylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-dihydroxymethylimidazole etc.

上記アミン化合物としては、ジエチルアミン、トリエチルアミン、ジエチレンテトラミン、トリエチレンテトラミン及び4,4-ジメチルアミノピリジン等が挙げられる。 Examples of the above amine compounds include diethylamine, triethylamine, diethylenetetramine, triethylenetetramine, and 4,4-dimethylaminopyridine.

上記リン化合物としては、トリフェニルホスフィン化合物等が挙げられる。 Examples of the phosphorus compounds include triphenylphosphine compounds.

上記有機金属化合物としては、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)及びトリスアセチルアセトナートコバルト(III)等が挙げられる。 Examples of the organometallic compound include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, cobalt (II) bisacetylacetonate, and cobalt (III) trisacetylacetonate.

上記過酸化物としてはジクミルペルオキシド、及びパーヘキシル25B等が挙げられる。 Examples of the peroxides include dicumyl peroxide and perhexyl 25B.

硬化温度をより一層低く抑える観点からは、上記硬化促進剤は、上記アニオン性硬化促進剤を含むことが好ましく、上記イミダゾール化合物を含むことがより好ましい。 From the viewpoint of keeping the curing temperature even lower, the curing accelerator preferably contains the anionic curing accelerator, and more preferably contains the imidazole compound.

硬化温度をより一層低く抑える観点からは、上記硬化促進剤100重量%中、上記アニオン性硬化促進剤の含有量は、好ましくは50重量%以上、より好ましくは70重量%以上、更に好ましくは80重量%以上、最も好ましくは100重量%(全量)である。 From the viewpoint of keeping the curing temperature even lower, the content of the anionic curing accelerator in 100% by weight of the curing accelerator is preferably 50% by weight or more, more preferably 70% by weight or more, and even more preferably 80% by weight. % by weight or more, most preferably 100% by weight (total amount).

上記硬化促進剤は、ラジカル性硬化促進剤とアニオン性硬化促進剤との少なくとも一方を含むことが好ましい。アニオン性硬化促進剤は、イミダゾール化合物であることが好ましい。上記硬化促進剤は、ラジカル性硬化促進剤とジメチルアミノピリジンとを含むか、又は、ラジカル性硬化促進剤とイミダゾール化合物とを含むか、又はラジカル性硬化促進剤とリン化合物とを含むことが好ましい。樹脂材料の硬化が十分に進行しない場合には、誘電正接が高くなり、また、線膨張係数が大きくなることがある。上記硬化促進剤は、上記ラジカル性硬化促進剤と上記イミダゾール化合物とを含んでいてもよい。ラジカル性硬化促進剤としては、前記ラジカル性硬化促進剤存在下の反応温度がエッチング前の仮硬化温度よりも高く、エッチング後の本硬化温度よりも低いものが好ましい。ラジカル性硬化促進剤として、パーヘキシル25Bを用いた場合に、上記の効果がより一層効果的に発揮される。 The curing accelerator preferably includes at least one of a radical curing accelerator and an anionic curing accelerator. The anionic curing accelerator is preferably an imidazole compound. The curing accelerator preferably contains a radical curing accelerator and dimethylaminopyridine, a radical curing accelerator and an imidazole compound, or a radical curing accelerator and a phosphorus compound. . If the curing of the resin material does not proceed sufficiently, the dielectric loss tangent and linear expansion coefficient may increase. The curing accelerator may include the radical curing accelerator and the imidazole compound. The radical curing accelerator is preferably one whose reaction temperature in the presence of the radical curing accelerator is higher than the temporary curing temperature before etching and lower than the main curing temperature after etching. When Perhexyl 25B is used as the radical curing accelerator, the above effects are exhibited even more effectively.

上記硬化促進剤が、ラジカル性硬化促進剤とイミダゾール化合物とを含むか、又は、ラジカル性硬化促進剤とリン化合物とを含む場合には、上記樹脂材料の硬化を良好に進行させることができ、より一層良好な硬化物を得ることができる。 When the curing accelerator contains a radical curing accelerator and an imidazole compound, or contains a radical curing accelerator and a phosphorus compound, the curing of the resin material can proceed favorably, An even better cured product can be obtained.

上記硬化促進剤は、ラジカル性硬化促進剤と、ジメチルアミノピリジン、イミダゾール化合物、及びリン化合物のうちの少なくとも1種の硬化促進剤を含んでいてもよい。 The curing accelerator may include a radical curing accelerator and at least one curing accelerator selected from dimethylaminopyridine, an imidazole compound, and a phosphorus compound.

上記硬化促進剤の含有量は特に限定されない。樹脂材料中の無機充填材及び溶剤を除く成分100重量%中、上記硬化促進剤の含有量は好ましくは0.01重量%以上、より好ましくは0.05重量%以上、好ましくは5重量%以下、より好ましくは3重量%以下である。上記硬化促進剤の含有量が上記下限以上及び上記上限以下であると、樹脂材料が効率的に硬化する。上記硬化促進剤の含有量がより好ましい範囲であれば、樹脂材料の保存安定性がより一層高くなり、かつより一層良好な硬化物が得られる。 The content of the curing accelerator is not particularly limited. The content of the curing accelerator is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, and preferably 5% by weight or less in 100% by weight of the components excluding inorganic fillers and solvents in the resin material. , more preferably 3% by weight or less. When the content of the curing accelerator is not less than the above lower limit and not more than the above upper limit, the resin material is efficiently cured. If the content of the curing accelerator is in a more preferable range, the storage stability of the resin material will be even higher, and an even better cured product will be obtained.

[熱可塑性樹脂]
上記樹脂材料は、熱可塑性樹脂を含むことが好ましい。上記熱可塑性樹脂としては、ポリビニルアセタール樹脂及びフェノキシ樹脂等が挙げられる。上記熱可塑性樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Thermoplastic resin]
Preferably, the resin material includes a thermoplastic resin. Examples of the thermoplastic resin include polyvinyl acetal resin and phenoxy resin. Only one kind of the above-mentioned thermoplastic resin may be used, or two or more kinds thereof may be used in combination.

硬化環境によらず、誘電正接を効果的に低くし、かつ、金属配線の密着性を効果的に高める観点からは、上記熱可塑性樹脂は、フェノキシ樹脂であることが好ましい。フェノキシ樹脂の使用により、樹脂フィルムの回路基板の穴又は凹凸に対する埋め込み性の悪化及び無機充填材の不均一化が抑えられる。また、フェノキシ樹脂の使用により、溶融粘度を調整可能であるために無機充填材の分散性が良好になり、かつ硬化過程で、意図しない領域に樹脂組成物又はBステージ化物が濡れ拡がり難くなる。 From the viewpoint of effectively lowering the dielectric loss tangent and effectively increasing the adhesion of metal wiring regardless of the curing environment, the thermoplastic resin is preferably a phenoxy resin. By using the phenoxy resin, deterioration in the ability of the resin film to fill holes or irregularities in the circuit board and non-uniformity of the inorganic filler can be suppressed. Further, by using a phenoxy resin, the melt viscosity can be adjusted, so the dispersibility of the inorganic filler is improved, and the resin composition or B-staged product is less likely to wet and spread to unintended areas during the curing process.

上記樹脂材料に含まれているフェノキシ樹脂は特に限定されない。上記フェノキシ樹脂として、従来公知のフェノキシ樹脂を使用可能である。上記フェノキシ樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The phenoxy resin contained in the resin material is not particularly limited. As the phenoxy resin, conventionally known phenoxy resins can be used. Only one type of the above phenoxy resin may be used, or two or more types may be used in combination.

上記フェノキシ樹脂としては、例えば、ビスフェノールA型の骨格、ビスフェノールF型の骨格、ビスフェノールS型の骨格、ビフェニル骨格、ノボラック骨格、ナフタレン骨格及びイミド骨格などの骨格を有するフェノキシ樹脂等が挙げられる。 Examples of the phenoxy resin include phenoxy resins having skeletons such as a bisphenol A type skeleton, a bisphenol F type skeleton, a bisphenol S type skeleton, a biphenyl skeleton, a novolak skeleton, a naphthalene skeleton, and an imide skeleton.

上記フェノキシ樹脂の市販品としては、例えば、新日鐵住金化学社製の「YP50」、「YP55」及び「YP70」、並びに三菱化学社製の「1256B40」、「4250」、「4256H40」、「4275」、「YX6954BH30」及び「YX8100BH30」等が挙げられる。 Commercially available products of the above phenoxy resin include, for example, "YP50", "YP55" and "YP70" manufactured by Nippon Steel & Sumitomo Metal Chemical Co., Ltd., and "1256B40", "4250", "4256H40" and "4256H40" manufactured by Mitsubishi Chemical Corporation. 4275'', ``YX6954BH30'', and ``YX8100BH30''.

保存安定性により一層優れた樹脂材料を得る観点からは、上記熱可塑性樹脂及び上記フェノキシ樹脂の重量平均分子量は、好ましくは5000以上、より好ましくは10000以上、好ましくは100000以下、より好ましくは50000以下である。 From the viewpoint of obtaining a resin material with even better storage stability, the weight average molecular weight of the thermoplastic resin and the phenoxy resin is preferably 5,000 or more, more preferably 10,000 or more, preferably 100,000 or less, and more preferably 50,000 or less. It is.

上記熱可塑性樹脂及び上記フェノキシ樹脂の上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。 The weight average molecular weight of the thermoplastic resin and the phenoxy resin indicates the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).

上記熱可塑性樹脂及び上記フェノキシ樹脂の含有量は特に限定されない。樹脂材料中の上記無機充填材及び上記溶剤を除く成分100重量%中、上記熱可塑性樹脂の含有量(上記熱可塑性樹脂がフェノキシ樹脂である場合にはフェノキシ樹脂の含有量)は好ましくは1重量%以上、より好ましくは2重量%以上、好ましくは30重量%以下、より好ましくは20重量%以下である。上記熱可塑性樹脂の含有量が上記下限以上及び上記上限以下であると、樹脂材料の回路基板の穴又は凹凸に対する埋め込み性が良好になる。上記熱可塑性樹脂の含有量が上記下限以上であると、樹脂フィルムの形成がより一層容易になり、より一層良好な絶縁層が得られる。上記熱可塑性樹脂の含有量が上記上限以下であると、硬化物の熱膨張率がより一層低くなる。上記熱可塑性樹脂の含有量が上記上限以下であると、硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属層との接着強度がより一層高くなる。 The contents of the thermoplastic resin and the phenoxy resin are not particularly limited. The content of the thermoplastic resin (if the thermoplastic resin is a phenoxy resin, the content of the phenoxy resin) is preferably 1% by weight of the components excluding the inorganic filler and the solvent in the resin material. % or more, more preferably 2% by weight or more, preferably 30% by weight or less, more preferably 20% by weight or less. When the content of the thermoplastic resin is not less than the lower limit and not more than the upper limit, the resin material has good embedding properties in holes or irregularities of the circuit board. When the content of the thermoplastic resin is equal to or higher than the lower limit, the resin film can be formed even more easily, and an even better insulating layer can be obtained. When the content of the thermoplastic resin is below the above upper limit, the coefficient of thermal expansion of the cured product becomes even lower. When the content of the thermoplastic resin is below the upper limit, the surface roughness of the surface of the cured product becomes even smaller, and the adhesive strength between the cured product and the metal layer becomes even higher.

[溶剤]
上記樹脂材料は、溶剤を含まないか又は含む。上記溶剤の使用により、樹脂材料の粘度を好適な範囲に制御でき、樹脂材料の塗工性を高めることができる。また、上記溶剤は、上記無機充填材を含むスラリーを得るために用いられてもよい。上記溶剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
[solvent]
The resin material does not contain or contains a solvent. By using the above solvent, the viscosity of the resin material can be controlled within a suitable range, and the coatability of the resin material can be improved. Moreover, the above-mentioned solvent may be used to obtain a slurry containing the above-mentioned inorganic filler. Only one type of the above solvent may be used, or two or more types may be used in combination.

上記溶剤としては、アセトン、メタノール、エタノール、ブタノール、2-プロパノール、2-メトキシエタノール、2-エトキシエタノール、1-メトキシ-2-プロパノール、2-アセトキシ-1-メトキシプロパン、トルエン、キシレン、メチルエチルケトン、N,N-ジメチルホルムアミド、メチルイソブチルケトン、N-メチル-ピロリドン、n-ヘキサン、シクロヘキサン、シクロヘキサノン及び混合物であるナフサ等が挙げられる。 The above solvents include acetone, methanol, ethanol, butanol, 2-propanol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2-propanol, 2-acetoxy-1-methoxypropane, toluene, xylene, methyl ethyl ketone, Examples include N,N-dimethylformamide, methyl isobutyl ketone, N-methyl-pyrrolidone, n-hexane, cyclohexane, cyclohexanone, and naphtha as a mixture.

上記溶剤の多くは、上記樹脂組成物をフィルム状に成形するときに、除去されることが好ましい。従って、上記溶剤の沸点は好ましくは200℃以下、より好ましくは180℃以下である。上記樹脂組成物における上記溶剤の含有量は特に限定されない。上記樹脂組成物の塗工性などを考慮して、上記溶剤の含有量は適宜変更可能である。 It is preferable that most of the solvent be removed when the resin composition is formed into a film. Therefore, the boiling point of the above solvent is preferably 200°C or lower, more preferably 180°C or lower. The content of the solvent in the resin composition is not particularly limited. The content of the solvent can be changed as appropriate in consideration of the coatability of the resin composition.

[他の成分]
耐衝撃性、耐熱性、樹脂の相溶性及び作業性等の改善を目的として、上記樹脂材料には、レベリング剤、難燃剤、カップリング剤、着色剤、酸化防止剤、紫外線劣化防止剤、消泡剤、増粘剤、揺変性付与剤及びエポキシ化合物以外の他の熱硬化性樹脂等を添加してもよい。
[Other ingredients]
In order to improve impact resistance, heat resistance, resin compatibility, workability, etc., the above resin materials contain leveling agents, flame retardants, coupling agents, coloring agents, antioxidants, ultraviolet deterioration inhibitors, and erasers. Foaming agents, thickeners, thixotropic agents, thermosetting resins other than epoxy compounds, etc. may be added.

上記カップリング剤としては、シランカップリング剤、チタンカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、ビニルシラン、アミノシラン、イミダゾールシラン及びエポキシシラン等が挙げられる。 Examples of the coupling agent include a silane coupling agent, a titanium coupling agent, and an aluminum coupling agent. Examples of the silane coupling agent include vinylsilane, aminosilane, imidazolesilane, and epoxysilane.

上記他の熱硬化性樹脂としては、ポリフェニレンエーテル樹脂、ジビニルベンジルエーテル樹脂、ポリアリレート樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、ベンゾオキサジン樹脂、ベンゾオキサゾール樹脂、ビスマレイミド樹脂及びアクリレート樹脂等が挙げられる。 Examples of the other thermosetting resins include polyphenylene ether resin, divinylbenzyl ether resin, polyarylate resin, diallyl phthalate resin, polyimide resin, benzoxazine resin, benzoxazole resin, bismaleimide resin, and acrylate resin.

(樹脂フィルム及び積層フィルム)
上述した樹脂組成物をフィルム状に成形することにより樹脂フィルム(Bステージ化物/Bステージフィルム)が得られる。上記樹脂材料は、樹脂フィルムであることが好ましい。樹脂フィルムは、Bステージフィルムであることが好ましい。
(Resin film and laminated film)
A resin film (B-staged product/B-stage film) is obtained by molding the above-described resin composition into a film. It is preferable that the resin material is a resin film. Preferably, the resin film is a B-stage film.

上記樹脂材料は、熱硬化性材料であることが好ましい。 The resin material is preferably a thermosetting material.

樹脂組成物をフィルム状に成形して、樹脂フィルムを得る方法としては、以下の方法が挙げられる。押出機を用いて、樹脂組成物を溶融混練し、押出した後、Tダイ又はサーキュラーダイ等により、フィルム状に成形する押出成形法。溶剤を含む樹脂組成物をキャスティングしてフィルム状に成形するキャスティング成形法。従来公知のその他のフィルム成形法。薄型化に対応可能であることから、押出成形法又はキャスティング成形法が好ましい。フィルムにはシートが含まれる。 Examples of methods for obtaining a resin film by molding a resin composition into a film include the following methods. An extrusion molding method in which a resin composition is melt-kneaded using an extruder, extruded, and then molded into a film using a T-die, a circular die, or the like. A casting method in which a resin composition containing a solvent is cast and formed into a film. Other conventionally known film forming methods. An extrusion molding method or a casting molding method is preferable because it is possible to reduce the thickness. The film includes sheets.

樹脂組成物をフィルム状に成形し、熱による硬化が進行し過ぎない程度に、例えば50~150℃で1~10分間加熱乾燥させることにより、Bステージフィルムである樹脂フィルムを得ることができる。 A resin film, which is a B-stage film, can be obtained by forming a resin composition into a film and heating and drying it at, for example, 50 to 150° C. for 1 to 10 minutes to the extent that thermal curing does not proceed too much.

上述のような乾燥工程により得ることができるフィルム状の樹脂組成物をBステージフィルムと称する。上記Bステージフィルムは、半硬化状態にある。半硬化物は、完全に硬化しておらず、硬化がさらに進行され得る。 A film-like resin composition that can be obtained by the drying process as described above is referred to as a B-stage film. The B-stage film is in a semi-cured state. A semi-cured product is not completely cured and may be further cured.

上記樹脂フィルムは、プリプレグでなくてもよい。上記樹脂フィルムがプリプレグではない場合には、ガラスクロス等に沿ってマイグレーションが生じなくなる。また、樹脂フィルムをラミネート又はプレキュアする際に、表面にガラスクロスに起因する凹凸が生じなくなる。 The resin film does not need to be prepreg. If the resin film is not a prepreg, migration will not occur along the glass cloth or the like. Moreover, when laminating or pre-curing the resin film, unevenness caused by the glass cloth will not occur on the surface.

上記樹脂フィルムは、積層フィルムの形態で好適に用いることができる。 The above resin film can be suitably used in the form of a laminated film.

上記積層フィルムは、基材と、上記基材の表面上に積層された樹脂フィルムとを備える。上記樹脂フィルムが上述した樹脂材料である。上記積層フィルムは、樹脂フィルムの上記基材とは反対側の表面上に積層された保護フィルムを備えていてもよい。 The laminated film includes a base material and a resin film laminated on the surface of the base material. The resin film is the resin material described above. The laminated film may include a protective film laminated on the surface of the resin film opposite to the base material.

上記基材としては、ポリエチレンテレフタレートフィルム及びポリブチレンテレフタレートフィルム等のポリエステル樹脂フィルム、ポリエチレンフィルム及びポリプロピレンフィルム等のオレフィン樹脂フィルム、ポリイミド樹脂フィルム、及び銅箔等の金属箔等が挙げられる。上記基材の表面は、必要に応じて、離型処理されていてもよい。 Examples of the base material include polyester resin films such as polyethylene terephthalate film and polybutylene terephthalate film, olefin resin films such as polyethylene film and polypropylene film, polyimide resin films, and metal foils such as copper foil. The surface of the base material may be subjected to a mold release treatment, if necessary.

樹脂フィルムの硬化度をより一層均一に制御する観点からは、上記樹脂フィルムの厚さは、好ましくは5μm以上であり、好ましくは200μm以下である。上記樹脂フィルムを回路の絶縁層として用いる場合、上記樹脂フィルムにより形成された絶縁層の厚さは、回路を形成する導体層(金属層)の厚さ以上であることが好ましい。上記絶縁層の厚さは、好ましくは5μm以上であり、好ましくは200μm以下である。 From the viewpoint of controlling the degree of curing of the resin film more uniformly, the thickness of the resin film is preferably 5 μm or more, and preferably 200 μm or less. When the resin film is used as an insulating layer of a circuit, the thickness of the insulating layer formed of the resin film is preferably greater than or equal to the thickness of the conductor layer (metal layer) forming the circuit. The thickness of the insulating layer is preferably 5 μm or more, and preferably 200 μm or less.

(半導体装置、プリント配線板、銅張積層板及び多層プリント配線板)
上記樹脂材料は、半導体装置において半導体チップを埋め込むモールド樹脂を形成するために好適に用いられる。
(Semiconductor devices, printed wiring boards, copper-clad laminates, and multilayer printed wiring boards)
The resin material described above is suitably used to form a mold resin in which a semiconductor chip is embedded in a semiconductor device.

上記樹脂材料は、プリント配線板において絶縁層を形成するために好適に用いられる。 The above resin material is suitably used to form an insulating layer in a printed wiring board.

上記プリント配線板は、例えば、上記樹脂材料を加熱加圧成形することにより得られる。 The printed wiring board can be obtained, for example, by heating and press-molding the resin material.

上記樹脂フィルムに対して、片面又は両面に金属箔を積層できる。上記樹脂フィルムと金属箔とを積層する方法は特に限定されず、公知の方法を用いることができる。例えば、平行平板プレス機又はロールラミネーター等の装置を用いて、加熱しながら又は加熱せずに加圧しながら、上記樹脂フィルムを金属箔に積層可能である。 Metal foil can be laminated on one or both sides of the resin film. The method of laminating the resin film and metal foil is not particularly limited, and any known method can be used. For example, the resin film can be laminated onto the metal foil using a device such as a parallel plate press or a roll laminator while heating or pressing without heating.

上記樹脂材料は、銅張積層板を得るために好適に用いられる。上記銅張積層板の一例として、銅箔と、該銅箔の一方の表面に積層された樹脂フィルムとを備える銅張積層板が挙げられる。 The above resin material is suitably used to obtain a copper-clad laminate. An example of the above-mentioned copper-clad laminate includes a copper-clad laminate including a copper foil and a resin film laminated on one surface of the copper foil.

上記銅張積層板の上記銅箔の厚さは特に限定されない。上記銅箔の厚さは、1~50μmの範囲内であることが好ましい。また、上記樹脂材料の硬化物と銅箔との接着強度を高めるために、上記銅箔は微細な凹凸を表面に有することが好ましい。凹凸の形成方法は特に限定されない。上記凹凸の形成方法としては、公知の薬液を用いた処理による形成方法等が挙げられる。 The thickness of the copper foil of the copper-clad laminate is not particularly limited. The thickness of the copper foil is preferably within the range of 1 to 50 μm. Moreover, in order to increase the adhesive strength between the cured product of the resin material and the copper foil, it is preferable that the copper foil has fine irregularities on its surface. The method of forming the unevenness is not particularly limited. Examples of the method for forming the above-mentioned unevenness include a method of forming the unevenness by a treatment using a known chemical solution.

上記樹脂材料は、多層基板を得るために好適に用いられる。 The above resin material is suitably used to obtain a multilayer substrate.

上記多層基板の一例として、回路基板と、該回路基板上に積層された絶縁層とを備える多層基板が挙げられる。この多層基板の絶縁層が、上記樹脂材料により形成されている。また、多層基板の絶縁層が、積層フィルムを用いて、上記積層フィルムの上記樹脂フィルムにより形成されていてもよい。上記絶縁層は、回路基板の回路が設けられた表面上に積層されていることが好ましい。上記絶縁層の一部は、上記回路間に埋め込まれていることが好ましい。 An example of the multilayer board is a multilayer board that includes a circuit board and an insulating layer laminated on the circuit board. The insulating layer of this multilayer board is formed from the above resin material. Further, the insulating layer of the multilayer substrate may be formed of the resin film of the laminated film using a laminated film. The insulating layer is preferably laminated on the surface of the circuit board on which the circuit is provided. Preferably, a portion of the insulating layer is embedded between the circuits.

上記多層基板では、上記絶縁層の上記回路基板が積層された表面とは反対側の表面が粗化処理されていることが好ましい。 In the multilayer board, it is preferable that the surface of the insulating layer opposite to the surface on which the circuit board is laminated is subjected to a roughening treatment.

粗化処理方法は、従来公知の粗化処理方法を用いることができ、特に限定されない。上記絶縁層の表面は、粗化処理の前に膨潤処理されていてもよい。 A conventionally known roughening treatment method can be used as the roughening treatment method, and is not particularly limited. The surface of the insulating layer may be subjected to swelling treatment before roughening treatment.

また、上記多層基板は、上記絶縁層の粗化処理された表面に積層された銅めっき層をさらに備えることが好ましい。 Preferably, the multilayer substrate further includes a copper plating layer laminated on the roughened surface of the insulating layer.

また、上記多層基板の他の例として、回路基板と、該回路基板の表面上に積層された絶縁層と、該絶縁層の上記回路基板が積層された表面とは反対側の表面に積層された銅箔とを備える多層基板が挙げられる。上記絶縁層が、銅箔と該銅箔の一方の表面に積層された樹脂フィルムとを備える銅張積層板を用いて、上記樹脂フィルムを硬化させることにより形成されていることが好ましい。さらに、上記銅箔はエッチング処理されており、銅回路であることが好ましい。 Another example of the multilayer board is a circuit board, an insulating layer laminated on the surface of the circuit board, and a surface of the insulating layer on the opposite side of the surface on which the circuit board is laminated. For example, a multilayer board may include a copper foil. It is preferable that the insulating layer is formed by using a copper-clad laminate including a copper foil and a resin film laminated on one surface of the copper foil, and by curing the resin film. Furthermore, it is preferable that the copper foil is etched and is a copper circuit.

上記多層基板の他の例として、回路基板と、該回路基板の表面上に積層された複数の絶縁層とを備える多層基板が挙げられる。上記回路基板上に配置された上記複数層の絶縁層の内の少なくとも1層が、上記樹脂材料を用いて形成される。上記多層基板は、上記樹脂フィルムを用いて形成されている上記絶縁層の少なくとも一方の表面に積層されている回路をさらに備えることが好ましい。 Another example of the multilayer board is a multilayer board that includes a circuit board and a plurality of insulating layers stacked on the surface of the circuit board. At least one layer of the plurality of insulating layers arranged on the circuit board is formed using the resin material. Preferably, the multilayer board further includes a circuit laminated on at least one surface of the insulating layer formed using the resin film.

多層基板のうち多層プリント配線板においては、低い誘電正接が求められ、絶縁層による高い絶縁信頼性が求められる。本発明に係る樹脂材料では、誘電正接を低くし、かつ絶縁層と金属層との密着性及びエッチング性能を高めることによって絶縁信頼性を効果的に高めることができる。従って、本発明に係る樹脂材料は、多層プリント配線板において、絶縁層を形成するために好適に用いられる。 Among multilayer substrates, multilayer printed wiring boards are required to have a low dielectric loss tangent and high insulation reliability due to the insulating layers. In the resin material according to the present invention, insulation reliability can be effectively improved by lowering the dielectric loss tangent and improving the adhesion between the insulating layer and the metal layer and the etching performance. Therefore, the resin material according to the present invention is suitably used for forming an insulating layer in a multilayer printed wiring board.

上記多層プリント配線板は、例えば、回路基板と、上記回路基板の表面上に配置された複数の絶縁層と、複数の上記絶縁層間に配置された金属層とを備える。上記絶縁層の内の少なくとも1層が、上記樹脂材料の硬化物である。 The multilayer printed wiring board includes, for example, a circuit board, a plurality of insulating layers disposed on the surface of the circuit board, and a metal layer disposed between the plurality of insulating layers. At least one of the insulating layers is a cured product of the resin material.

図1は、本発明の一実施形態に係る樹脂材料を用いた多層プリント配線板を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing a multilayer printed wiring board using a resin material according to an embodiment of the present invention.

図1に示す多層プリント配線板11では、回路基板12の上面12aに、複数層の絶縁層13~16が積層されている。絶縁層13~16は、硬化物層である。回路基板12の上面12aの一部の領域には、金属層17が形成されている。複数層の絶縁層13~16のうち、回路基板12側とは反対の外側の表面に位置する絶縁層16以外の絶縁層13~15には、上面の一部の領域に金属層17が形成されている。金属層17は回路である。回路基板12と絶縁層13の間、及び積層された絶縁層13~16の各層間に、金属層17がそれぞれ配置されている。下方の金属層17と上方の金属層17とは、図示しないビアホール接続及びスルーホール接続の内の少なくとも一方により互いに接続されている。 In the multilayer printed wiring board 11 shown in FIG. 1, a plurality of insulating layers 13 to 16 are laminated on the upper surface 12a of the circuit board 12. The insulating layers 13 to 16 are cured material layers. A metal layer 17 is formed in a part of the upper surface 12 a of the circuit board 12 . Among the plurality of insulating layers 13 to 16, a metal layer 17 is formed in a part of the upper surface of the insulating layers 13 to 15 other than the insulating layer 16 located on the outer surface opposite to the circuit board 12 side. has been done. Metal layer 17 is a circuit. A metal layer 17 is arranged between the circuit board 12 and the insulating layer 13, and between each of the laminated insulating layers 13 to 16. The lower metal layer 17 and the upper metal layer 17 are connected to each other by at least one of a via hole connection and a through hole connection (not shown).

多層プリント配線板11では、絶縁層13~16が、上記樹脂材料の硬化物により形成されている。本実施形態では、絶縁層13~16の表面が粗化処理されているので、絶縁層13~16の表面に図示しない微細な孔が形成されている。また、微細な孔の内部に金属層17が至っている。また、多層プリント配線板11では、金属層17の幅方向寸法(L)と、金属層17が形成されていない部分の幅方向寸法(S)とを小さくすることができる。また、多層プリント配線板11では、図示しないビアホール接続及びスルーホール接続で接続されていない上方の金属層と下方の金属層との間に、良好な絶縁信頼性が付与されている。 In the multilayer printed wiring board 11, the insulating layers 13 to 16 are formed of a cured product of the resin material described above. In this embodiment, the surfaces of the insulating layers 13 to 16 are roughened, so that fine holes (not shown) are formed in the surfaces of the insulating layers 13 to 16. Further, a metal layer 17 extends inside the fine hole. Furthermore, in the multilayer printed wiring board 11, the widthwise dimension (L) of the metal layer 17 and the widthwise dimension (S) of the portion where the metal layer 17 is not formed can be made smaller. Furthermore, in the multilayer printed wiring board 11, good insulation reliability is provided between the upper metal layer and the lower metal layer that are not connected by via hole connection or through hole connection (not shown).

(粗化処理及び膨潤処理)
上記樹脂材料は、粗化処理又はデスミア処理される硬化物を得るために用いられることが好ましい。上記硬化物には、更に硬化が可能な予備硬化物も含まれる。
(Roughening treatment and swelling treatment)
The resin material is preferably used to obtain a cured product that is subjected to a roughening treatment or a desmear treatment. The above-mentioned cured products also include pre-cured products that can be further cured.

上記樹脂材料を予備硬化させることにより得られた硬化物の表面に微細な凹凸を形成するために、硬化物は粗化処理されることが好ましい。粗化処理の前に、硬化物は膨潤処理されることが好ましい。硬化物は、予備硬化の後、かつ粗化処理される前に、膨潤処理されており、さらに粗化処理の後に硬化されていることが好ましい。ただし、硬化物は、必ずしも膨潤処理されなくてもよい。 In order to form fine irregularities on the surface of the cured product obtained by pre-curing the resin material, the cured product is preferably subjected to a roughening treatment. It is preferable that the cured product is subjected to a swelling treatment before the roughening treatment. It is preferable that the cured product is subjected to a swelling treatment after preliminary curing and before roughening treatment, and further hardened after roughening treatment. However, the cured product does not necessarily need to be subjected to swelling treatment.

上記膨潤処理の方法としては、例えば、エチレングリコールなどを主成分とする化合物の水溶液又は有機溶媒分散溶液などにより、硬化物を処理する方法が用いられる。膨潤処理に用いる膨潤液は、一般にpH調整剤などとして、アルカリを含む。膨潤液は、水酸化ナトリウムを含むことが好ましい。具体的には、例えば、上記膨潤処理は、40重量%エチレングリコール水溶液等を用いて、処理温度30~85℃で1~30分間、硬化物を処理することにより行なわれる。上記膨潤処理の温度は50~85℃の範囲内であることが好ましい。上記膨潤処理の温度が低すぎると、膨潤処理に長時間を要し、更に硬化物と金属層との接着強度が低くなる傾向がある。 As a method for the above-mentioned swelling treatment, for example, a method of treating the cured product with an aqueous solution or an organic solvent dispersion solution of a compound whose main component is ethylene glycol or the like is used. The swelling liquid used in the swelling treatment generally contains an alkali as a pH adjuster. Preferably, the swelling liquid contains sodium hydroxide. Specifically, for example, the swelling treatment is performed by treating the cured product using a 40% by weight aqueous ethylene glycol solution or the like at a treatment temperature of 30 to 85° C. for 1 to 30 minutes. The temperature of the swelling treatment is preferably within the range of 50 to 85°C. If the temperature of the swelling treatment is too low, the swelling treatment takes a long time and the adhesive strength between the cured product and the metal layer tends to decrease.

上記粗化処理には、例えば、マンガン化合物、クロム化合物又は過硫酸化合物などの化学酸化剤等が用いられる。これらの化学酸化剤は、水又は有機溶剤が添加された後、水溶液又は有機溶媒分散溶液として用いられる。粗化処理に用いられる粗化液は、一般にpH調整剤などとしてアルカリを含む。粗化液は、水酸化ナトリウムを含むことが好ましい。 For the roughening treatment, for example, a chemical oxidizing agent such as a manganese compound, a chromium compound, or a persulfuric compound is used. These chemical oxidants are used as an aqueous solution or an organic solvent dispersion solution after water or an organic solvent is added. The roughening liquid used in the roughening treatment generally contains an alkali as a pH adjuster. It is preferable that the roughening liquid contains sodium hydroxide.

上記マンガン化合物としては、過マンガン酸カリウム及び過マンガン酸ナトリウム等が挙げられる。上記クロム化合物としては、重クロム酸カリウム及び無水クロム酸カリウム等が挙げられる。上記過硫酸化合物としては、過硫酸ナトリウム、過硫酸カリウム及び過硫酸アンモニウム等が挙げられる。 Examples of the manganese compound include potassium permanganate and sodium permanganate. Examples of the chromium compound include potassium dichromate and potassium chromate anhydride. Examples of the persulfate compound include sodium persulfate, potassium persulfate, ammonium persulfate, and the like.

硬化物の表面の算術平均粗さRaは好ましくは10nm以上であり、好ましくは300nm未満、より好ましくは200nm未満、更に好ましくは150nm未満である。この場合には、硬化物と金属層との接着強度が高くなり、更に絶縁層の表面により一層微細な配線が形成される。さらに、導体損失を抑えることができ、信号損失を低く抑えることができる。上記算術平均粗さRaは、JIS B0601:1994に準拠して測定される。 The arithmetic mean roughness Ra of the surface of the cured product is preferably 10 nm or more, preferably less than 300 nm, more preferably less than 200 nm, even more preferably less than 150 nm. In this case, the adhesive strength between the cured product and the metal layer is increased, and further finer wiring is formed on the surface of the insulating layer. Furthermore, conductor loss can be suppressed, and signal loss can be kept low. The arithmetic mean roughness Ra is measured in accordance with JIS B0601:1994.

(デスミア処理)
上記樹脂材料を予備硬化させることにより得られた硬化物に、貫通孔が形成されることがある。上記多層基板などでは、貫通孔として、ビア又はスルーホール等が形成される。例えば、ビアは、COレーザー等のレーザーの照射により形成できる。ビアの直径は特に限定されないが、60~80μm程度である。上記貫通孔の形成により、ビア内の底部には、硬化物に含まれている樹脂成分に由来する樹脂の残渣であるスミアが形成されることが多い。
(desmear processing)
Through holes may be formed in the cured product obtained by pre-curing the resin material. In the above-mentioned multilayer substrate, a via, a through hole, or the like is formed as a through hole. For example, vias can be formed by irradiation with a laser such as a CO 2 laser. The diameter of the via is not particularly limited, but is approximately 60 to 80 μm. Due to the formation of the above-described through holes, a smear, which is a resin residue derived from a resin component contained in the cured product, is often formed at the bottom of the via.

上記スミアを除去するために、硬化物の表面は、デスミア処理されることが好ましい。デスミア処理が粗化処理を兼ねることもある。 In order to remove the smear, the surface of the cured product is preferably subjected to a desmear treatment. Desmear treatment may also serve as roughening treatment.

上記デスミア処理には、上記粗化処理と同様に、例えば、マンガン化合物、クロム化合物又は過硫酸化合物等の化学酸化剤等が用いられる。これらの化学酸化剤は、水又は有機溶剤が添加された後、水溶液又は有機溶媒分散溶液として用いられる。デスミア処理に用いられるデスミア処理液は、一般にアルカリを含む。デスミア処理液は、水酸化ナトリウムを含むことが好ましい。 Similar to the roughening treatment, the desmear treatment uses, for example, a chemical oxidizing agent such as a manganese compound, a chromium compound, or a persulfate compound. These chemical oxidants are used as an aqueous solution or an organic solvent dispersion solution after water or an organic solvent is added. Desmear processing liquid used for desmear processing generally contains an alkali. It is preferable that the desmear treatment liquid contains sodium hydroxide.

上記樹脂材料の使用により、デスミア処理された硬化物の表面の表面粗さが十分に小さくなる。 By using the above resin material, the surface roughness of the desmeared cured product becomes sufficiently small.

以下、実施例及び比較例を挙げることにより、本発明を具体的に説明する。本発明は、以下の実施例に限定されない。 Hereinafter, the present invention will be specifically explained by giving Examples and Comparative Examples. The invention is not limited to the following examples.

(脂肪族骨格を有するマレイミド化合物)
N-アルキルビスマレイミド化合物1(Designer Molecules Inc.社製「BMI-1700」、テトラカルボン酸二無水物とダイマージアミンとの反応物であるダイマージアミンに由来する骨格を有する)
N-アルキルビスマレイミド化合物2(Designer Molecules Inc.社製「BMI-3000」、テトラカルボン酸二無水物とダイマージアミンとの反応物であるダイマージアミンに由来する骨格を有する)
N-アルキルビスマレイミド化合物3(Designer Molecules Inc.社製「BMI-1500」)
N-アルキルビスマレイミド化合物4(Designer Molecules Inc.社製「BMI-3000J」)
N-アルキルビスマレイミド化合物5(下記の合成例1に従って合成、ダイマージアミンに由来する骨格を有する)
N-アルキルビスマレイミド化合物6(下記の合成例2に従って合成、ダイマージアミンに由来する骨格を有する)
(Maleimide compound with aliphatic skeleton)
N-alkyl bismaleimide compound 1 (“BMI-1700” manufactured by Designer Molecules Inc., has a skeleton derived from dimer diamine, which is a reaction product of tetracarboxylic dianhydride and dimer diamine)
N-alkyl bismaleimide compound 2 (“BMI-3000” manufactured by Designer Molecules Inc., has a skeleton derived from dimer diamine, which is a reaction product of tetracarboxylic dianhydride and dimer diamine)
N-alkyl bismaleimide compound 3 (“BMI-1500” manufactured by Designer Molecules Inc.)
N-alkyl bismaleimide compound 4 (“BMI-3000J” manufactured by Designer Molecules Inc.)
N-alkyl bismaleimide compound 5 (synthesized according to Synthesis Example 1 below, has a skeleton derived from dimer diamine)
N-alkyl bismaleimide compound 6 (synthesized according to Synthesis Example 2 below, has a skeleton derived from dimer diamine)

(合成例1)
撹拌機、分水器、温度計及び窒素ガス導入管を備えた反応容器に、テトラカルボン酸二無水物(SABICジャパン合同会社製「BisDA-1000」)135.0gと、シクロヘキサノン400gとを入れ、反応容器中の溶液を60℃まで加熱した。次いで、反応容器中に、1,3-ビスアミノメチルシクロヘキサン(三菱ガス化学社製)17.5gを滴下して、反応させて、両末端が酸無水物である反応生成物を得た。次いで、反応容器中に、ダイマージアミン(クローダジャパン社製「PRIAMINE1075」)148gをゆっくり添加した後、メチルシクロヘキサン60.0gを反応容器中に添加した。ディーンスタークトラップとコンデンサーとをフラスコに取り付け、混合物を2時間還流に熱し、両末端にアミン構造を有するイミド化合物を得た。次いで、無水マレイン酸28gを添加し、得られた混合物をさらに12時間還流した。反応終了後、イソプロパノールを添加し、再沈殿させたのち、沈殿物を回収し、乾燥させ、ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物を得た。ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物の回収率は83%であった。(重量平均分子量10000)
(Synthesis example 1)
Put 135.0 g of tetracarboxylic dianhydride ("BisDA-1000" manufactured by SABIC Japan LLC) and 400 g of cyclohexanone into a reaction container equipped with a stirrer, a water separator, a thermometer, and a nitrogen gas introduction tube, The solution in the reaction vessel was heated to 60°C. Next, 17.5 g of 1,3-bisaminomethylcyclohexane (manufactured by Mitsubishi Gas Chemical Co., Ltd.) was added dropwise into the reaction vessel and reacted to obtain a reaction product having acid anhydride at both ends. Next, 148 g of dimer diamine ("PRIAMINE 1075" manufactured by Croda Japan) was slowly added into the reaction container, and then 60.0 g of methylcyclohexane was added into the reaction container. A Dean-Stark trap and a condenser were attached to the flask, and the mixture was heated to reflux for 2 hours to obtain an imide compound having amine structures at both ends. 28 g of maleic anhydride were then added and the resulting mixture was refluxed for a further 12 hours. After the reaction was completed, isopropanol was added to cause reprecipitation, and the precipitate was collected and dried to obtain an N-alkyl bismaleimide compound having a skeleton derived from dimer diamine. The recovery rate of the N-alkyl bismaleimide compound having a skeleton derived from dimer diamine was 83%. (Weight average molecular weight 10000)

(合成例2)
撹拌後、分水器、温度計及び窒素ガス導入管を備えた反応容器に、ピロメリット酸二無水物(東京化成社製、分子量254.15)55gと、シクロヘキサノン300gとを入れ、反応容器中の溶液を60℃まで加熱した。次いで、反応容器中に、ビス(アミノメチル)ノルボルナン(東京化成工業社製、分子量154.26)26.7gをシクロヘキサノンに溶解させた溶液を滴下して、反応させて、両末端が酸無水物である反応生成物を得た。その後、イソプロパノールを入れ、両末端が酸無水物のイミド化合物を回収した。次いで、沈殿を再度シクロヘキサンに溶解させ、反応容器中にダイマージアミン(クローダジャパン社製「PRIAMINE1075」)46.0gをゆっくり添加した後、メチルシクロヘキサン45.0gを反応容器中に添加した。ディーンスタークトラップとコンデンサーとをフラスコに取り付け、混合物を2時間還流に熱し、両末端にアミン構造を有するイミド化合物を得た。マレイミド化合物の回収率は70%であった。(重量平均分子量8700)
(Synthesis example 2)
After stirring, 55 g of pyromellitic dianhydride (manufactured by Tokyo Kasei Co., Ltd., molecular weight 254.15) and 300 g of cyclohexanone were placed in a reaction container equipped with a water separator, a thermometer, and a nitrogen gas inlet tube. solution was heated to 60°C. Next, a solution in which 26.7 g of bis(aminomethyl)norbornane (manufactured by Tokyo Kasei Kogyo Co., Ltd., molecular weight 154.26) was dissolved in cyclohexanone was added dropwise into the reaction vessel, and the reaction was carried out to form an acid anhydride at both ends. A reaction product was obtained. Thereafter, isopropanol was added, and an imide compound having acid anhydride at both ends was recovered. Next, the precipitate was dissolved in cyclohexane again, and 46.0 g of dimer diamine ("PRIAMINE 1075" manufactured by Croda Japan) was slowly added into the reaction container, and then 45.0 g of methylcyclohexane was added into the reaction container. A Dean-Stark trap and a condenser were attached to the flask, and the mixture was heated to reflux for 2 hours to obtain an imide compound having amine structures at both ends. The recovery rate of maleimide compound was 70%. (Weight average molecular weight 8700)

(脂肪族骨格を有するベンゾオキサジン化合物)
N-アルキルビスベンゾオキサジン化合物(下記の合成例3に従って合成)
(Benzoxazine compound having an aliphatic skeleton)
N-alkylbisbenzoxazine compound (synthesized according to Synthesis Example 3 below)

(合成例3)
撹拌機、分水器、温度計及び窒素ガス導入管を備えた反応容器に、ピロメリット酸二無水物(東京化成工業社製、分子量218.12)65gとシクロヘキサノン500mLとを入れ、続いて、ダイマージアミン(クローダジャパン社製「PRIAMINE1075」)164gをシクロヘキサノンに溶解させた後、滴下して入れた。その後、ディーンスタークトラップとコンデンサーとをフラスコに取り付け、混合物を2時間還流に熱し、両末端にアミン構造を有するイミド化合物を得た。得られたイミド化合物とフェノール(東京化成工業社製、分子量94.11)38gとパラホルムアルデヒド(東京化成工業社製)12gとを混合して得られた混合物をさらに12時間還流して、ベンゾオキサジン化を行った。その後イソプロパノールで再沈殿することにより、N-アルキルベンゾオキサジン化合物(重量平均分子量7700)を得た。
(Synthesis example 3)
65 g of pyromellitic dianhydride (manufactured by Tokyo Chemical Industry Co., Ltd., molecular weight 218.12) and 500 mL of cyclohexanone were placed in a reaction vessel equipped with a stirrer, a water separator, a thermometer, and a nitrogen gas introduction tube, and then, After dissolving 164 g of dimer diamine ("PRIAMINE 1075" manufactured by Croda Japan) in cyclohexanone, it was added dropwise. Thereafter, a Dean-Stark trap and a condenser were attached to the flask, and the mixture was heated to reflux for 2 hours to obtain an imide compound having amine structures at both ends. The resulting imide compound, 38 g of phenol (manufactured by Tokyo Kasei Kogyo Co., Ltd., molecular weight 94.11), and 12 g of paraformaldehyde (manufactured by Tokyo Kasei Kogyo Co., Ltd.) were mixed, and the resulting mixture was further refluxed for 12 hours to form benzoxazine. . Thereafter, by reprecipitation with isopropanol, an N-alkylbenzoxazine compound (weight average molecular weight 7,700) was obtained.

(脂肪族骨格を有さないマレイミド化合物(芳香族骨格を有するマレイミド化合物)) N-フェニルマレイミド化合物1(大和化成工業社製「BMI-2300」)
N-フェニルマレイミド化合物2(大和化成工業社製「BMI-4000」)
(Maleimide compound without an aliphatic skeleton (maleimide compound with an aromatic skeleton)) N-phenylmaleimide compound 1 (“BMI-2300” manufactured by Daiwa Kasei Kogyo Co., Ltd.)
N-phenylmaleimide compound 2 (“BMI-4000” manufactured by Daiwa Kasei Kogyo Co., Ltd.)

(ポリイミド化合物)
テトラカルボン酸二無水物とダイマージアミンとの反応物であるポリイミド化合物含有溶液(不揮発分26.8重量%)を以下の合成例4に従って合成した。
(Polyimide compound)
A solution containing a polyimide compound (non-volatile content: 26.8% by weight), which is a reaction product of tetracarboxylic dianhydride and dimer diamine, was synthesized according to Synthesis Example 4 below.

(合成例4)
撹拌機、分水器、温度計及び窒素ガス導入管を備えた反応容器に、テトラカルボン酸二無水物(SABICジャパン合同会社製「BisDA-1000」)300.0gと、シクロヘキサノン665.5gとを入れ、反応容器中の溶液を60℃まで加熱した。次いで、反応容器中に、ダイマージアミン(クローダジャパン社製「PRIAMINE1075」)89.0gと、1,3-ビスアミノメチルシクロヘキサン(三菱ガス化学社製)54.7gとを滴下した。次いで、反応容器中に、メチルシクロヘキサン121.0gと、エチレングリコールジメチルエーテル423.5gとを添加し、140℃で10時間かけてイミド化反応を行った。このようにして、ポリイミド化合物含有溶液(不揮発分26.8重量%)を得た。得られたポリイミド化合物の分子量(重量平均分子量)は20000であった。なお、酸成分/アミン成分のモル比は1.04であった。
(Synthesis example 4)
300.0 g of tetracarboxylic dianhydride ("BisDA-1000" manufactured by SABIC Japan LLC) and 665.5 g of cyclohexanone were placed in a reaction vessel equipped with a stirrer, a water separator, a thermometer, and a nitrogen gas introduction tube. The solution in the reaction vessel was heated to 60°C. Next, 89.0 g of dimer diamine ("PRIAMINE1075" manufactured by Croda Japan) and 54.7 g of 1,3-bisaminomethylcyclohexane (manufactured by Mitsubishi Gas Chemical Company) were added dropwise into the reaction vessel. Next, 121.0 g of methylcyclohexane and 423.5 g of ethylene glycol dimethyl ether were added into the reaction vessel, and an imidization reaction was carried out at 140° C. for 10 hours. In this way, a polyimide compound-containing solution (nonvolatile content: 26.8% by weight) was obtained. The molecular weight (weight average molecular weight) of the obtained polyimide compound was 20,000. Note that the molar ratio of acid component/amine component was 1.04.

合成例4で合成したポリイミド化合物の分子量は、以下のようにして求めた。 The molecular weight of the polyimide compound synthesized in Synthesis Example 4 was determined as follows.

GPC(ゲルパーミエーションクロマトグラフィー)測定:
島津製作所社製高速液体クロマトグラフシステムを使用し、テトラヒドロフラン(THF)を展開媒として、カラム温度40℃、流速1.0ml/分で測定を行った。検出器として「SPD-10A」を用い、カラムはShodex社製「KF-804L」(排除限界分子量400,000)を2本直列につないで使用した。標準ポリスチレンとして、東ソー社製「TSKスタンダードポリスチレン」を用い、重量平均分子量Mw=354,000、189,000、98,900、37,200、17,100、9,830、5,870、2,500、1,050、500の物質を使用して較正曲線を作成し、分子量の計算を行った。
GPC (gel permeation chromatography) measurement:
Measurement was performed using a high performance liquid chromatography system manufactured by Shimadzu Corporation, using tetrahydrofuran (THF) as a developing medium, at a column temperature of 40° C., and at a flow rate of 1.0 ml/min. "SPD-10A" was used as a detector, and two columns "KF-804L" manufactured by Shodex (exclusion limit molecular weight 400,000) were connected in series. As the standard polystyrene, "TSK Standard Polystyrene" manufactured by Tosoh Corporation was used, and weight average molecular weight Mw = 354,000, 189,000, 98,900, 37,200, 17,100, 9,830, 5,870, 2, Calibration curves were created using 500, 1,050, and 500 substances, and molecular weight calculations were performed.

(熱可塑性樹脂)
フェノキシ樹脂(三菱化学社製「YX6954BH30」)
(Thermoplastic resin)
Phenoxy resin (“YX6954BH30” manufactured by Mitsubishi Chemical Corporation)

(熱硬化性化合物)
ビフェニル型エポキシ化合物(日本化薬社製「NC-3000」)
ナフタレン型エポキシ化合物(DIC社製「HP-4032D」)
レゾルシノールジグリシジルエーテル(ナガセケムテックス社製「EX-201」)
ジシクロペンタジエン型エポキシ化合物(アデカ社製「EP4088S」)
ナフトールアラルキル型エポキシ化合物(新日鐵住金化学社製「ESN-475V」)
(thermosetting compound)
Biphenyl type epoxy compound (“NC-3000” manufactured by Nippon Kayaku Co., Ltd.)
Naphthalene type epoxy compound (“HP-4032D” manufactured by DIC Corporation)
Resorcinol diglycidyl ether (“EX-201” manufactured by Nagase ChemteX)
Dicyclopentadiene type epoxy compound (“EP4088S” manufactured by Adeka)
Naphthol aralkyl type epoxy compound (“ESN-475V” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.)

(無機充填材)
シリカ含有スラリー(シリカ75重量%:アドマテックス社製「SC4050-HOA」、平均粒径1.0μm、アミノシラン処理、シクロヘキサノン25重量%)
(Inorganic filler)
Silica-containing slurry (75% by weight silica: “SC4050-HOA” manufactured by Admatex, average particle size 1.0 μm, aminosilane treatment, 25% by weight cyclohexanone)

(硬化剤)
成分X:
シアネートエステル化合物含有液(ロンザジャパン社製「BA-3000S」、固形分75重量%)
活性エステル化合物1含有液(DIC社製「EXB-9416-70BK」、固形分70重量%)
活性エステル化合物2含有液(DIC社製「HPC-8000L」、固形分65重量%)
活性エステル化合物3含有液(DIC社製「HPC-8150」、固形分62重量%) フェノール化合物含有液(DIC社製「LA-1356」、固形分60重量%)
カルボジイミド化合物含有液(日清紡ケミカル社製「V-03」、固形分50重量%)
(hardening agent)
Ingredient X:
Cyanate ester compound-containing liquid (“BA-3000S” manufactured by Lonza Japan, solid content 75% by weight)
Liquid containing active ester compound 1 (“EXB-9416-70BK” manufactured by DIC, solid content 70% by weight)
Active ester compound 2-containing liquid (“HPC-8000L” manufactured by DIC, solid content 65% by weight)
Liquid containing active ester compound 3 (“HPC-8150” manufactured by DIC, solid content 62% by weight) Liquid containing phenol compound (“LA-1356” manufactured by DIC, solid content 60% by weight)
Carbodiimide compound-containing liquid (“V-03” manufactured by Nisshinbo Chemical Co., Ltd., solid content 50% by weight)

(硬化促進剤)
ジメチルアミノピリジン(和光純薬工業社製「DMAP」)
2-フェニル-4-メチルイミダゾール(四国化成工業社製「2P4MZ」)
2-エチル-4-メチルイミダゾール(四国化成工業社製「2E4MZ」)
ジクミルペルオキシド(東京化成工業社製)
(hardening accelerator)
Dimethylaminopyridine (“DMAP” manufactured by Wako Pure Chemical Industries, Ltd.)
2-phenyl-4-methylimidazole (“2P4MZ” manufactured by Shikoku Kasei Kogyo Co., Ltd.)
2-ethyl-4-methylimidazole (“2E4MZ” manufactured by Shikoku Kasei Kogyo Co., Ltd.)
Dicumyl peroxide (manufactured by Tokyo Chemical Industry Co., Ltd.)

(実施例1~16及び比較例1~6)
下記の表1,2に示す成分を下記の表1,2に示す配合量で配合し、均一な溶液となるまで常温で攪拌し、樹脂材料を得た。
(Examples 1 to 16 and Comparative Examples 1 to 6)
The components shown in Tables 1 and 2 below were blended in the amounts shown in Tables 1 and 2 below, and stirred at room temperature until a uniform solution was obtained to obtain a resin material.

樹脂フィルムの作製:
アプリケーターを用いて、離型処理されたPETフィルム(東レ社製「XG284」、厚み25μm)の離型処理面上に得られた樹脂材料を塗工した後、100℃のギヤオーブン内で2分30秒間乾燥し、溶剤を揮発させた。このようにして、PETフィルム上に、厚さが40μmである樹脂フィルム(Bステージフィルム)が積層されている積層フィルム(PETフィルムと樹脂フィルムとの積層フィルム)を得た。
Preparation of resin film:
Using an applicator, the resulting resin material was applied onto the release-treated surface of a release-treated PET film ("XG284" manufactured by Toray Industries, Inc., thickness 25 μm), and then placed in a gear oven at 100°C for 2 minutes. It was dried for 30 seconds to evaporate the solvent. In this way, a laminated film (a laminated film of a PET film and a resin film) in which a resin film (B stage film) having a thickness of 40 μm was laminated on a PET film was obtained.

(評価)
(1)ハンドリング性
得られた樹脂フィルム(Bステージフィルム)を180度に10回折り曲げた。10回中、樹脂フィルムにひび又は割れが生じる回数を観察した。
(evaluation)
(1) Handling property The obtained resin film (B stage film) was bent 10 times at 180 degrees. Out of 10 tests, the number of times the resin film cracked or cracked was observed.

[ハンドリング性の判定基準]
○:10回中、ひび又は割れが生じる回数が3回未満である
△:10回中、ひび又は割れが生じる回数が3回以上、6回未満である
×:10回中、ひび又は割れが生じる回数が6回以上である
[Handling performance criteria]
○: Out of 10 times, cracks or cracks occur less than 3 times. △: Out of 10 times, cracks or breaks occur more than 3 times but less than 6 times. ×: Out of 10 times, cracks or breaks occur less than 3 times. Occurs 6 or more times

(2)凹凸表面に対する埋め込み性、及び、はみ出し防止性(過度の濡れ拡がり防止性)
100mm角の銅張積層板(厚さ400μmのガラスエポキシ基板と厚さ25μmの銅箔との積層体)の銅箔のみをエッチングして、直径100μm及び深さ25μmの窪み(開口部)を、基板の中心30mm角のエリアに対して直線上にかつ隣接する穴の中心の間隔が900μmになるように開けた。このようにして、計900穴の窪みを持つ評価基板を準備した。
(2) Ability to embed into uneven surfaces and prevent extrusion (prevent excessive wetting and spreading)
By etching only the copper foil of a 100 mm square copper-clad laminate (a laminate of a 400 μm thick glass epoxy board and a 25 μm thick copper foil), a recess (opening) with a diameter of 100 μm and a depth of 25 μm was created. Holes were drilled in a straight line in a 30 mm square area at the center of the substrate so that the distance between the centers of adjacent holes was 900 μm. In this way, an evaluation board having a total of 900 depressions was prepared.

得られた積層フィルムの樹脂フィルム側を評価基板上に重ねて、名機製作所社製「バッチ式真空ラミネーターMVLP-500-IIA」を用い、ラミネート圧0.4MPaで20秒、プレス圧力0.8MPaで20秒、ラミネート及びプレスの温度90℃で加熱加圧した。常温で冷却した後、PETフィルムを剥離した。このようにして、評価基板上に樹脂フィルムが積層された評価サンプルを得た。 The resin film side of the obtained laminated film was stacked on the evaluation substrate, and using a "batch type vacuum laminator MVLP-500-IIA" manufactured by Meiki Seisakusho Co., Ltd., the lamination pressure was 0.4 MPa for 20 seconds, and the press pressure was 0.8 MPa. Heat and pressure was applied for 20 seconds at a lamination and press temperature of 90°C. After cooling to room temperature, the PET film was peeled off. In this way, an evaluation sample was obtained in which a resin film was laminated on an evaluation substrate.

得られた評価サンプルについて光学顕微鏡を用いて、窪みの中のボイドを観察した。ボイドが観察された窪みの割合を評価することによって、凹凸表面に対する埋め込み性を下記の基準で判定した。 The voids in the depressions of the obtained evaluation sample were observed using an optical microscope. By evaluating the proportion of depressions in which voids were observed, the embeddability into the uneven surface was determined according to the following criteria.

[凹凸表面に対する埋め込み性の判定基準]
○:ボイドが観察された窪みの割合0%
△:ボイドが観察された窪みの割合0%を超え、5%未満
×:ボイドが観察された窪みの割合5%以上
[Criteria for determining embeddability on uneven surfaces]
○: Percentage of depressions where voids were observed 0%
△: Proportion of depressions in which voids were observed exceeds 0% and less than 5% ×: Proportion of depressions in which voids were observed is 5% or more

得られた評価サンプルについて光学顕微鏡を用いて、基板上の所定の領域から、樹脂フィルムがはみ出しているか否かを観察して、はみ出し防止性を以下の基準で判定した。 Using an optical microscope, it was observed whether or not the resin film protruded from a predetermined area on the substrate for the obtained evaluation sample, and the protrusion prevention property was determined based on the following criteria.

[はみ出し防止性の判定基準]
○:ラミネート後の評価基板周辺部からの樹脂フィルムのはみ出しが2mm以下
△:ラミネート後の評価基板周辺部からの樹脂フィルムのはみ出しが2mmを超え、3mm以下
×:ラミネート後の評価基板周辺部からの樹脂フィルムのはみ出しが3mmを超える
[Criteria for determining protrusion prevention properties]
○: The protrusion of the resin film from the periphery of the evaluation board after lamination is 2 mm or less. △: The protrusion of the resin film from the periphery of the evaluation board after lamination is more than 2 mm and 3 mm or less. ×: From the periphery of the evaluation board after lamination. The protrusion of the resin film exceeds 3 mm.

(3)硬化温度
得られた樹脂フィルム(Bステージフィルム)の硬化に伴う発熱ピークを、示差走査熱量測定装置(TA・インスツルメント社製「Q2000」)を用いて評価した。専用アルミパンに樹脂フィルム8mgを取り、専用治具を用いて蓋をした。この専用アルミパンと空のアルミパン(リファレンス)とを加熱ユニット内に設置し、昇温速度3℃/分で-30℃から250℃まで窒素雰囲気下で加熱を行い、リバースヒートフロー及びノンリバースヒートフローの観測を行った。ノンリバースヒートフローにおいて観測される発熱ピークにより、硬化温度を確認した。
(3) Curing temperature The exothermic peak accompanying curing of the obtained resin film (B-stage film) was evaluated using a differential scanning calorimetry device ("Q2000" manufactured by TA Instruments). 8 mg of resin film was placed in a special aluminum pan, and a lid was placed using a special jig. This dedicated aluminum pan and an empty aluminum pan (reference) were placed in a heating unit and heated from -30°C to 250°C in a nitrogen atmosphere at a heating rate of 3°C/min. Heat flow was observed. The curing temperature was confirmed by the exothermic peak observed in non-reverse heat flow.

[硬化温度の判定基準]
○:200℃以下に全ての発熱ピークを有する
×:200℃よりも高い温度に少なくとも一つの発熱ピークを有する
[Criteria for curing temperature]
○: All exothermic peaks are below 200°C ×: At least one exothermic peak is above 200°C

(4)誘電正接
得られた樹脂フィルムを幅2mm、長さ80mmの大きさに裁断して5枚を重ね合わせて、厚み200μmの積層体を得た。得られた積層体を190℃で90分間加熱して、硬化物を得た。得られた硬化物について、関東電子応用開発社製「空洞共振摂動法誘電率測定装置CP521」及びキーサイトテクノロジー社製「ネットワークアナライザーN5224A PNA」を用いて、空洞共振法で常温(23℃)にて、周波数1.0GHzにて誘電正接を測定した。
(4) Dielectric Dissipation Tangent The obtained resin film was cut into pieces with a width of 2 mm and a length of 80 mm, and five pieces were stacked on top of each other to obtain a laminate with a thickness of 200 μm. The obtained laminate was heated at 190° C. for 90 minutes to obtain a cured product. The obtained cured product was heated to room temperature (23°C) using the cavity resonance method using the "Cavity Resonance Perturbation Method Permittivity Measurement Device CP521" manufactured by Kanto Denshi Application Development Co., Ltd. and the "Network Analyzer N5224A PNA" manufactured by Keysight Technologies. The dielectric loss tangent was measured at a frequency of 1.0 GHz.

[誘電正接の判定基準]
○:誘電正接が3.5×10-3以下
×:誘電正接が3.5×10-3を超える
[Judgment criteria for dielectric loss tangent]
○: Dielectric loss tangent is 3.5×10 −3 or less ×: Dielectric loss tangent exceeds 3.5×10 −3

(5)絶縁層と金属層との密着性(ピール強度)
ラミネート工程:
両面銅張積層板(各面の銅箔の厚み18μm、基板の厚み0.7mm、基板サイズ100mm×100mm、日立化成社製「MCL-E679FG」)を用意した。この両面銅張積層板の銅箔面の両面をメック社製「Cz8101」に浸漬して、銅箔の表面を粗化処理した。粗化処理された銅張積層板の両面に、名機製作所社製「バッチ式真空ラミネーターMVLP-500-IIA」を用いて、積層フィルムの樹脂フィルム(Bステージフィルム)側を銅張積層板上に重ねてラミネートして、積層構造体を得た。ラミネートの条件は、30秒減圧して気圧を13hPa以下とし、その後30秒間、100℃及び圧力0.4MPaでプレスする条件とした。
(5) Adhesion between insulating layer and metal layer (peel strength)
Lamination process:
A double-sided copper-clad laminate (copper foil thickness on each side of 18 μm, substrate thickness of 0.7 mm, substrate size of 100 mm×100 mm, “MCL-E679FG” manufactured by Hitachi Chemical) was prepared. Both sides of the copper foil side of this double-sided copper-clad laminate were immersed in "Cz8101" manufactured by MEC Corporation to roughen the surface of the copper foil. Both sides of the roughened copper clad laminate are coated with the resin film (B stage film) side of the laminate film on the copper clad laminate using Meiki Seisakusho's "Batch Vacuum Laminator MVLP-500-IIA". These were stacked and laminated to obtain a laminated structure. The lamination conditions were that the pressure was reduced to 13 hPa or less by reducing the pressure for 30 seconds, and then pressing was performed for 30 seconds at 100° C. and a pressure of 0.4 MPa.

フィルム剥離工程:
得られた積層構造体において、両面のPETフィルムを剥離した。
Film peeling process:
In the obtained laminated structure, the PET films on both sides were peeled off.

銅箔貼り付け工程:
銅箔(厚み35μm、三井金属社製)のシャイニー面をCz処理(メック社製「Cz8101」)して、銅箔表面を1μm程度エッチングした。PETフィルムを剥離した上記積層構造体に、エッチング処理した銅箔を貼り合せて、銅箔付き基板を得た。得られた銅箔付き基板をギアオーブン内で190℃で90分熱処理し、評価サンプルを得た。
Copper foil pasting process:
The shiny surface of a copper foil (35 μm thick, manufactured by Mitsui Kinzoku Co., Ltd.) was subjected to Cz treatment (“Cz8101” manufactured by MEC Corporation), and the surface of the copper foil was etched by about 1 μm. An etched copper foil was bonded to the laminated structure from which the PET film had been peeled off, to obtain a substrate with copper foil. The obtained substrate with copper foil was heat treated at 190° C. for 90 minutes in a gear oven to obtain an evaluation sample.

ピール強度の測定:
評価サンプルの銅箔の表面に1cm幅の短冊状の切込みを入れた。90°剥離試験機(テスター産業社製「TE-3001」)に評価サンプルをセットし、つかみ具で切込みの入った銅箔の端部をつまみあげ、銅箔を20mm剥離して剥離強度(ピール強度)を測定した。
Measuring peel strength:
A rectangular incision with a width of 1 cm was made on the surface of the copper foil of the evaluation sample. Set the evaluation sample in a 90° peel tester (TE-3001 manufactured by Tester Sangyo Co., Ltd.), pick up the notched end of the copper foil with a grip, peel off 20 mm of the copper foil, and test the peel strength (peel strength). strength) was measured.

[絶縁層と金属層との密着性(ピール強度)の判定基準]
○○:ピール強度が0.6kgf以上
〇:ピール強度が0.4kgf以上0.6kgf未満
×:ピール強度が0.4kgf未満
[Criteria for adhesion (peel strength) between insulating layer and metal layer]
○○: Peel strength is 0.6 kgf or more ○: Peel strength is 0.4 kgf or more and less than 0.6 kgf ×: Peel strength is less than 0.4 kgf

(6)平均線膨張係数(CTE)
得られた厚さ40μmの樹脂フィルム(Bステージフィルム)を190℃で90分間加熱して得られた硬化物を3mm×25mmの大きさに裁断した。熱機械的分析装置(エスアイアイ・ナノテクノロジー社製「EXSTAR TMA/SS6100」)を用いて、引っ張り荷重33mN及び昇温速度5℃/分の条件で、裁断された硬化物の25℃~150℃までの平均線膨張係数(ppm/℃)を算出した。
(6) Average coefficient of linear expansion (CTE)
The resulting resin film (B stage film) with a thickness of 40 μm was heated at 190° C. for 90 minutes, and the resulting cured product was cut into a size of 3 mm×25 mm. Using a thermomechanical analysis device ("EXSTAR TMA/SS6100" manufactured by SII Nanotechnology), the cured product was cut at 25 to 150 °C under the conditions of a tensile load of 33 mN and a temperature increase rate of 5 °C/min. The average coefficient of linear expansion (ppm/°C) was calculated.

[平均線膨張係数の判定基準]
○:平均線膨張係数が25ppm/℃以下
△:平均線膨張係数が25ppm/℃を超え30ppm/℃以下
×:平均線膨張係数が30ppm/℃を超える
[Judgment criteria for average linear expansion coefficient]
○: Average linear expansion coefficient is 25 ppm/℃ or less △: Average linear expansion coefficient exceeds 25 ppm/℃ and 30 ppm/℃ or less ×: Average linear expansion coefficient exceeds 30 ppm/℃

(7)硬化物の折り曲げ安定性
得られた厚さ40μmの樹脂フィルム(Bステージフィルム)を190℃で90分間加熱して得られた硬化物を30mm×150mmの大きさに裁断した。面状体U字折り返し試験機(ユアサ社製)を用いて、200回/分、180℃折り曲げ(折り曲げギャップ5mm)、フィルムストローク70mmの条件で降り曲げ試験を行った。測定は繰り返し5回行い、平均値を算出した。
(7) Bending stability of cured product The obtained resin film (B stage film) with a thickness of 40 μm was heated at 190° C. for 90 minutes, and the obtained cured product was cut into a size of 30 mm×150 mm. Using a sheet U-shaped folding tester (manufactured by Yuasa Corporation), a downward bending test was conducted under the conditions of 200 times/minute of bending at 180° C. (bending gap of 5 mm) and film stroke of 70 mm. The measurement was repeated 5 times and the average value was calculated.

[硬化物の折り曲げ安定性の判定基準]
〇〇:2000回折り曲げ後割れなし
〇:折り曲げ回数が100回以上2000回未満で割れが発生
×:折り曲げ回数が100回未満で割れが発生
[Criteria for determining bending stability of cured product]
〇〇: No cracking after 2000 times of bending 〇: Cracking occurs when the number of bending is 100 or more and less than 2000 times ×: Cracking occurs when the number of bending is less than 100 times

組成及び結果を下記の表1,2に示す。なお、表1中、各成分の含有量は、純分量で記載した。 The composition and results are shown in Tables 1 and 2 below. In addition, in Table 1, the content of each component is described in pure amount.

Figure 2023156362000005
Figure 2023156362000005

Figure 2023156362000006
Figure 2023156362000006

11…多層プリント配線板
12…回路基板
12a…上面
13~16…絶縁層
17…金属層
11...Multilayer printed wiring board 12...Circuit board 12a...Top surface 13-16...Insulating layer 17...Metal layer

(実施例1~13、参考例14、実施例15,16及び比較例1~6)
下記の表1,2に示す成分を下記の表1,2に示す配合量で配合し、均一な溶液となるまで常温で攪拌し、樹脂材料を得た。
(Examples 1 to 13, Reference Example 14, Examples 15 and 16, and Comparative Examples 1 to 6)
The components shown in Tables 1 and 2 below were blended in the amounts shown in Tables 1 and 2 below, and stirred at room temperature until a uniform solution was obtained to obtain a resin material.

Figure 2023156362000008
Figure 2023156362000008

Claims (19)

ポリイミド化合物と、
脂肪族骨格を有するマレイミド化合物及び脂肪族骨格を有するベンゾオキサジン化合物の内の少なくとも一方の脂肪族骨格含有化合物とを含む、樹脂材料。
polyimide compound,
A resin material comprising at least one aliphatic skeleton-containing compound of a maleimide compound having an aliphatic skeleton and a benzoxazine compound having an aliphatic skeleton.
前記脂肪族骨格含有化合物において、マレイミド骨格又はベンゾオキサジン骨格を形成している窒素原子に、前記脂肪族骨格が結合している、請求項1に記載の樹脂材料。 The resin material according to claim 1, wherein in the aliphatic skeleton-containing compound, the aliphatic skeleton is bonded to a nitrogen atom forming a maleimide skeleton or a benzoxazine skeleton. 前記ポリイミド化合物の重量平均分子量が15000以上であり、
前記脂肪族骨格含有化合物の重量平均分子量が15000未満である、請求項1又は2に記載の樹脂材料。
The weight average molecular weight of the polyimide compound is 15,000 or more,
The resin material according to claim 1 or 2, wherein the aliphatic skeleton-containing compound has a weight average molecular weight of less than 15,000.
前記脂肪族骨格含有化合物が、脂肪族骨格を有するポリアミン化合物とカルボン酸二無水物との反応物に由来する骨格を有する、請求項1~3のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 3, wherein the aliphatic skeleton-containing compound has a skeleton derived from a reaction product of a polyamine compound having an aliphatic skeleton and a carboxylic dianhydride. 前記脂肪族骨格含有化合物が、脂肪族骨格を有するジアミン化合物とカルボン酸二無水物との反応物に由来する骨格を有する、請求項1~4のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 4, wherein the aliphatic skeleton-containing compound has a skeleton derived from a reaction product of a diamine compound having an aliphatic skeleton and a carboxylic dianhydride. 前記脂肪族骨格を有するジアミン化合物が、ダイマージアミンに由来する骨格を有するジアミン化合物である、請求項5に記載の樹脂材料。 The resin material according to claim 5, wherein the diamine compound having an aliphatic skeleton is a diamine compound having a skeleton derived from dimer diamine. 熱硬化性化合物と、無機充填材とを含む、請求項1~6のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 6, comprising a thermosetting compound and an inorganic filler. 前記熱硬化性化合物がエポキシ化合物である、請求項7に記載の樹脂材料。 The resin material according to claim 7, wherein the thermosetting compound is an epoxy compound. 樹脂材料中の溶剤を除く成分100重量%中、前記無機充填材の含有量が、50重量%以上である、請求項7又は8に記載の樹脂材料。 The resin material according to claim 7 or 8, wherein the content of the inorganic filler is 50% by weight or more in 100% by weight of components excluding the solvent in the resin material. 前記ポリイミド化合物と前記脂肪族骨格含有化合物との合計100重量%中、前記ポリイミド化合物の含有量が、3重量%以上80重量%以下である、請求項1~9のいずれか1項に記載の樹脂材料。 According to any one of claims 1 to 9, the content of the polyimide compound is 3% by weight or more and 80% by weight or less in a total of 100% by weight of the polyimide compound and the aliphatic skeleton-containing compound. resin material. 前記ポリイミド化合物が、ダイマージアミンに由来する骨格を有するポリイミド化合物である、請求項1~10のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 10, wherein the polyimide compound has a skeleton derived from dimer diamine. 樹脂材料中の溶剤を除く有機成分100重量%中、前記ポリイミド化合物と前記脂肪族骨格含有化合物との合計の含有量が、10重量%以上98重量%以下である、請求項1~11のいずれか1項に記載の樹脂材料。 Any one of claims 1 to 11, wherein the total content of the polyimide compound and the aliphatic skeleton-containing compound is 10% by weight or more and 98% by weight or less in 100% by weight of the organic component excluding the solvent in the resin material. The resin material according to item 1. 硬化促進剤を含み、
前記硬化促進剤が、ラジカル性硬化促進剤及びアニオン性硬化促進剤の内の少なくとも一方を含む、請求項1~12のいずれか1項に記載の樹脂材料。
Contains curing accelerator,
The resin material according to any one of claims 1 to 12, wherein the curing accelerator includes at least one of a radical curing accelerator and an anionic curing accelerator.
前記硬化促進剤が、ラジカル性硬化促進剤とジメチルアミノピリジンとを含むか、又は、ラジカル性硬化促進剤とイミダゾール化合物とを含むか、又はラジカル性硬化促進剤とリン化合物とを含む、請求項13に記載の樹脂材料。 A claim in which the curing accelerator contains a radical curing accelerator and dimethylaminopyridine, or a radical curing accelerator and an imidazole compound, or a radical curing accelerator and a phosphorus compound. 13. The resin material according to item 13. 硬化剤と硬化促進剤とを含み、
前記硬化促進剤が、イミダゾール化合物を含む、請求項1~12のいずれか1項に記載の樹脂材料。
Contains a curing agent and a curing accelerator,
The resin material according to any one of claims 1 to 12, wherein the curing accelerator contains an imidazole compound.
樹脂フィルムである、請求項1~15のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 15, which is a resin film. 多層プリント配線板において、絶縁層を形成するために用いられる、請求項1~16のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 16, which is used for forming an insulating layer in a multilayer printed wiring board. 基材と、
前記基材の表面上に積層された樹脂フィルムとを備え、
前記樹脂フィルムが、請求項1~17のいずれか1項に記載の樹脂材料である、積層フィルム。
base material and
a resin film laminated on the surface of the base material,
A laminated film, wherein the resin film is the resin material according to any one of claims 1 to 17.
回路基板と、
前記回路基板の表面上に配置された複数の絶縁層と、
複数の前記絶縁層間に配置された金属層とを備え、
複数の前記絶縁層の内の少なくとも1層が、請求項1~17のいずれか1項に記載の樹脂材料の硬化物である、多層プリント配線板。
a circuit board;
a plurality of insulating layers disposed on the surface of the circuit board;
a metal layer disposed between the plurality of insulating layers,
A multilayer printed wiring board, wherein at least one of the plurality of insulating layers is a cured product of the resin material according to any one of claims 1 to 17.
JP2023122240A 2018-03-28 2023-07-27 Resin materials, laminated films and multilayer printed wiring boards Active JP7607711B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018062918 2018-03-28
JP2018062918 2018-03-28
JP2019061453A JP7323314B2 (en) 2018-03-28 2019-03-27 Resin materials, laminated films and multilayer printed wiring boards

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019061453A Division JP7323314B2 (en) 2018-03-28 2019-03-27 Resin materials, laminated films and multilayer printed wiring boards

Publications (2)

Publication Number Publication Date
JP2023156362A true JP2023156362A (en) 2023-10-24
JP7607711B2 JP7607711B2 (en) 2024-12-27

Family

ID=68166563

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019061453A Active JP7323314B2 (en) 2018-03-28 2019-03-27 Resin materials, laminated films and multilayer printed wiring boards
JP2023122240A Active JP7607711B2 (en) 2018-03-28 2023-07-27 Resin materials, laminated films and multilayer printed wiring boards

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019061453A Active JP7323314B2 (en) 2018-03-28 2019-03-27 Resin materials, laminated films and multilayer printed wiring boards

Country Status (1)

Country Link
JP (2) JP7323314B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2025082217A (en) * 2023-11-16 2025-05-28 南亞塑膠工業股▲分▼有限公司 Low dielectric resin composition

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189764A1 (en) * 2019-03-20 2020-09-24 積水化学工業株式会社 Adhesive composition, adhesive tape, and method for processing electronic component
JP7434727B2 (en) * 2019-05-31 2024-02-21 株式会社レゾナック Adhesive compositions, laminates and adhesive sheets
JP7378122B2 (en) * 2019-10-23 2023-11-13 ユニチカ株式会社 polyimide film
JP7283409B2 (en) * 2020-02-07 2023-05-30 信越化学工業株式会社 Bismaleimide compound and method for producing the same
JP7112438B2 (en) * 2020-02-07 2022-08-03 積水化学工業株式会社 Cured body, B stage film and multilayer printed wiring board
JP7112439B2 (en) * 2020-02-07 2022-08-03 積水化学工業株式会社 Cured body, B stage film and multilayer printed wiring board
JP7112440B2 (en) * 2020-02-07 2022-08-03 積水化学工業株式会社 Cured body, B stage film and multilayer printed wiring board
JP7455475B2 (en) * 2020-05-19 2024-03-26 信越化学工業株式会社 Thermosetting maleimide resin composition, adhesives, substrate materials, primers, coating materials, and semiconductor devices using the same
WO2021261308A1 (en) * 2020-06-24 2021-12-30 パナソニックIpマネジメント株式会社 Resin composition, prepreg, resin-attached film, resin-attached metal foil, metal-clad layered board, and printed circuit board
JPWO2022025123A1 (en) * 2020-07-29 2022-02-03
JP7547137B2 (en) 2020-09-23 2024-09-09 積水化学工業株式会社 Resin materials and multilayer printed wiring boards
JP7563988B2 (en) * 2021-01-05 2024-10-08 積水化学工業株式会社 Curable resin composition, cured product, adhesive, and adhesive film
JP2022150087A (en) * 2021-03-26 2022-10-07 日鉄ケミカル&マテリアル株式会社 Polyimides, cross-linked polyimides, adhesive films, laminates, coverlay films, resin-coated copper foils, metal-clad laminates, circuit boards and multilayer circuit boards
JP7599800B2 (en) * 2021-07-12 2024-12-16 信越化学工業株式会社 Photocurable maleimide resin composition
JP2023062903A (en) * 2021-10-22 2023-05-09 信越化学工業株式会社 Cyclic imide resin composition, liquid adhesive, film, prepreg, copper-clad laminate, and printed wiring board
JP2024139793A (en) * 2023-03-28 2024-10-10 日本化薬株式会社 Polyimide resin composition and cured product thereof
WO2025142909A1 (en) * 2023-12-27 2025-07-03 株式会社レゾナック Resin composition, resin-attached metal foil, laminate, printed wiring board, and semiconductor package

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119507A (en) * 2005-10-24 2007-05-17 Sekisui Chem Co Ltd Thermosetting polyimide resin composition and molded product and electronic part using the same
JP2012528236A (en) * 2009-05-28 2012-11-12 サイテク・テクノロジー・コーポレーシヨン Particle reinforced fiber reinforced polymer composite
JP2013199645A (en) * 2012-02-24 2013-10-03 Arakawa Chem Ind Co Ltd Polyimide-based adhesive composition, cured product, adhesive sheet, laminate, and flexible printed board
JP2017119361A (en) * 2014-12-26 2017-07-06 荒川化学工業株式会社 Copper foil with resin, copper-clad laminate, printed wiring board and multilayer wiring board
JP2018014390A (en) * 2016-07-20 2018-01-25 日立化成株式会社 Multi-layer transmission line plate
WO2018237377A1 (en) * 2017-06-24 2018-12-27 Designer Molecules, Inc Curable polyimides
JP2020173945A (en) * 2019-04-10 2020-10-22 信越化学工業株式会社 Low-dielectric heat dissipation film composition and low-dielectric heat dissipation film
JP2024014399A (en) * 2022-07-22 2024-02-01 四国化成工業株式会社 Bismaleimide resin composition and prepreg

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090305046A1 (en) 2006-07-20 2009-12-10 Tsuyoshi Bito Thermocurable Polyimide Resin Composition
JP6303407B2 (en) 2012-12-03 2018-04-04 Jnc株式会社 Curable composition and use thereof
KR20190025948A (en) 2016-07-05 2019-03-12 히타치가세이가부시끼가이샤 Resin composition, resin film, laminate, multilayer printed wiring board and manufacturing method of multilayer printed wiring board

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119507A (en) * 2005-10-24 2007-05-17 Sekisui Chem Co Ltd Thermosetting polyimide resin composition and molded product and electronic part using the same
JP2012528236A (en) * 2009-05-28 2012-11-12 サイテク・テクノロジー・コーポレーシヨン Particle reinforced fiber reinforced polymer composite
JP2013199645A (en) * 2012-02-24 2013-10-03 Arakawa Chem Ind Co Ltd Polyimide-based adhesive composition, cured product, adhesive sheet, laminate, and flexible printed board
JP2017119361A (en) * 2014-12-26 2017-07-06 荒川化学工業株式会社 Copper foil with resin, copper-clad laminate, printed wiring board and multilayer wiring board
JP2018014390A (en) * 2016-07-20 2018-01-25 日立化成株式会社 Multi-layer transmission line plate
WO2018237377A1 (en) * 2017-06-24 2018-12-27 Designer Molecules, Inc Curable polyimides
JP2020173945A (en) * 2019-04-10 2020-10-22 信越化学工業株式会社 Low-dielectric heat dissipation film composition and low-dielectric heat dissipation film
JP2024014399A (en) * 2022-07-22 2024-02-01 四国化成工業株式会社 Bismaleimide resin composition and prepreg

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2025082217A (en) * 2023-11-16 2025-05-28 南亞塑膠工業股▲分▼有限公司 Low dielectric resin composition

Also Published As

Publication number Publication date
JP7323314B2 (en) 2023-08-08
JP2019173010A (en) 2019-10-10
JP7607711B2 (en) 2024-12-27

Similar Documents

Publication Publication Date Title
JP7607711B2 (en) Resin materials, laminated films and multilayer printed wiring boards
JP6805338B2 (en) Resin material, laminated structure and multi-layer printed wiring board
JP7332479B2 (en) Resin material, laminated structure and multilayer printed wiring board
KR102713659B1 (en) Resin materials and multilayer printed wiring boards
JP7474064B2 (en) Resin materials and multilayer printed wiring boards
JP2019173009A (en) Cured body, resin material and multilayer printed board
WO2021182207A1 (en) Resin material and multilayer printed wiring board
JP2020094213A (en) Resin material and multilayer printed wiring board
JP7563912B2 (en) Resin materials and multilayer printed wiring boards
JP2021025053A (en) Resin material and multilayer printed wiring board
WO2021020563A1 (en) Resin material and multilayer printed wiring board
JP2021042295A (en) Resin material and multilayer printed board
JP7704944B2 (en) Resin materials and multilayer printed wiring boards
JP2021025052A (en) Resin material and multilayer printed wiring board
JP2022001615A (en) Resin material and multi-layer printed wiring board
JP2020094089A (en) Resin material and multilayer printed wiring board
JP7437215B2 (en) Resin materials and multilayer printed wiring boards
JP2020094212A (en) Resin material and multilayer printed wiring board
JP7506486B2 (en) Resin materials and multilayer printed wiring boards
JP2022134490A (en) Resin materials and multilayer printed wiring boards
JP2022134491A (en) Resin materials and multilayer printed wiring boards
JP2020019951A (en) Resin material, laminated structure, and multilayer printed circuit board
JP2021017505A (en) Resin material and multilayer printed wiring board
JP2020111695A (en) Resin material and multilayer printed wiring board

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230825

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240531

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241024

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20241101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241217

R150 Certificate of patent or registration of utility model

Ref document number: 7607711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150