[go: up one dir, main page]

JP2023140745A - Composition for improving bioavailability of catechins - Google Patents

Composition for improving bioavailability of catechins Download PDF

Info

Publication number
JP2023140745A
JP2023140745A JP2022046739A JP2022046739A JP2023140745A JP 2023140745 A JP2023140745 A JP 2023140745A JP 2022046739 A JP2022046739 A JP 2022046739A JP 2022046739 A JP2022046739 A JP 2022046739A JP 2023140745 A JP2023140745 A JP 2023140745A
Authority
JP
Japan
Prior art keywords
catechins
egcg
composition
bioavailability
improving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022046739A
Other languages
Japanese (ja)
Inventor
知紀 海野
Tomonori Unno
誠 小林
Makoto Kobayashi
義晴 荒木
Yoshiharu Araki
隼 稲垣
Hayato Inagaki
秀人 常深
Hideto Tsunemi
賢太 麻生
Kenta Aso
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Kasei Gakuin
Ito En Ltd
Original Assignee
Tokyo Kasei Gakuin
Ito En Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Kasei Gakuin, Ito En Ltd filed Critical Tokyo Kasei Gakuin
Priority to JP2022046739A priority Critical patent/JP2023140745A/en
Publication of JP2023140745A publication Critical patent/JP2023140745A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicinal Preparation (AREA)

Abstract

To provide a novel composition for improving the bioavailability of catechins that can increase the rate at which catechins reach during systemic circulation when ingested orally, that is, the bioavailability.SOLUTION: Provided is a composition for improving the bioavailability of catechins, which contains fermentable carbohydrates as an active ingredient.SELECTED DRAWING: None

Description

新規性喪失の例外適用申請有り There is an application for exception to loss of novelty.

本発明は、カテキン類を経口摂取した際に体循環液中に到達する割合、すなわち、カテキン類の生物学的利用率を高めることができる、カテキン類のバイオアベイラビリティ向上組成物及びその有効成分を含有する組成物に関する。 The present invention provides a composition for improving the bioavailability of catechins and its active ingredients, which can increase the rate at which catechins reach the systemic circulation when ingested, that is, the bioavailability of catechins. Containing composition.

緑茶に含まれる茶カテキン類には、コレステロ-ル上昇抑制作用、抗腫瘍作用、下痢症ウイルス感染阻害作用、う蝕予防作用、インフルエンザウイルス感染予防作用、マイコプラズマ感染予防作用、α-アミラ-ゼ活性阻害作用、血糖上昇抑制作用、大腸癌予防作用、胃炎、胃または十二指腸潰瘍防止作用、抗動脈硬化作用、活性酸素発生抑制作用、ガストリン分泌抑制作用など、様々な薬理作用が報告されている。
最近では、緑茶の摂取が、心血管疾患を含む多くの慢性疾患のリスクを低下させる作用があることが認識されている。このような作用は、主に緑茶に含まれるカテキン類、中でもエピガロカテキンガレート (「EGCG」とも称する)が、血液中の活性酸素種を除去する作用によるものであると推定される。
Tea catechins contained in green tea have the effect of suppressing cholesterol rise, antitumor effect, diarrheal virus infection inhibiting effect, caries preventive effect, influenza virus infection preventive effect, mycoplasma infection preventive effect, and α-amylase activity. Various pharmacological actions have been reported, including inhibitory action, action to suppress blood sugar rise, action to prevent colorectal cancer, action to prevent gastritis, gastric or duodenal ulcer, anti-arteriosclerotic action, action to suppress active oxygen generation, and action to suppress gastrin secretion.
Recently, green tea consumption has been recognized to reduce the risk of many chronic diseases, including cardiovascular disease. It is presumed that this effect is mainly due to the action of catechins contained in green tea, especially epigallocatechin gallate (also referred to as "EGCG"), which removes active oxygen species from the blood.

しかし、カテキン類、特にEGCGは、生物学的利用率(バイオアベイラビリティ)が低いことが知られている。例えば、ヒトがEGCG50mgを経口摂取しても、摂取後の最高血漿中濃度はわずか0.12μmol/Lとも推定されている。これは他のポリフェノールに比べると比較的低い数値である。
そのため、従来から、カテキン類の生物学的利用率(バイオアベイラビリティ)を改善するいくつかのアプローチが提案されている。
However, catechins, especially EGCG, are known to have low bioavailability. For example, even if a human orally ingests 50 mg of EGCG, the maximum plasma concentration after ingestion is estimated to be only 0.12 μmol/L. This is a relatively low value compared to other polyphenols.
Therefore, several approaches have been proposed to improve the bioavailability of catechins.

例えば特許文献1には、高濃度で非重合体カテキン類を含有する容器詰紅茶飲料中の非重合体カテキン類中のエピ体カテキン類比率を制御することにより、同一の非重合体カテキン類濃度でありながら飲用した時の非重合体カテキン類の血液中への移行量を更に増加できることが開示されている。 For example, Patent Document 1 discloses that by controlling the ratio of epi-catechins in non-polymer catechins in a packaged black tea beverage containing non-polymer catechins at a high concentration, the same concentration of non-polymer catechins can be obtained. However, it has been disclosed that the amount of non-polymer catechins transferred into the blood when drunk can be further increased.

特許文献2には、セリン、アスパラギン酸、リンゴ酸、カプリン酸、ラウリン酸、及びグレープフルーツ果汁からなる群から選ばれた少なくとも1種が、ポリフェノール類化合物の吸収を促進する作用があることが開示されている。 Patent Document 2 discloses that at least one selected from the group consisting of serine, aspartic acid, malic acid, capric acid, lauric acid, and grapefruit juice has the effect of promoting absorption of polyphenolic compounds. ing.

特許文献3には、べにふうきエキスがポリフェノール類化合物の吸収を促進する作用があることが開示されており、べにふうきの抽出物をカテキン類と同時に摂取することでカテキン類の吸収性および体内滞留時間が高まる旨が開示されている。 Patent Document 3 discloses that Benifuuki extract has the effect of promoting the absorption of polyphenol compounds, and by ingesting Benifuuki extract at the same time as catechins, the absorbability and residence time of catechins can be improved. It has been disclosed that this will increase.

特許文献4には、コハク酸、システイン、アスパラギン、イソロイシン、及びピニトールからなる群から選ばれた少なくとも1種が、ポリフェノール類化合物の吸収を促進する作用があることが開示されている。 Patent Document 4 discloses that at least one selected from the group consisting of succinic acid, cysteine, asparagine, isoleucine, and pinitol has an effect of promoting absorption of polyphenol compounds.

特許文献5には、ヘスペレチン、ライム抽出物、及びレモン抽出物が、カテキン類の吸収を促進することが開示されている。 Patent Document 5 discloses that hesperetin, lime extract, and lemon extract promote absorption of catechins.

特許文献6には、ホウキギ抽出物、シカカイ抽出物、セイヨウウマノミツバ抽出物、ツキヌキサイコ抽出物、及びチャ種子抽出物が、ポリフェノールの吸収を促進することが開示されている。 Patent Document 6 discloses that a broom extract, a shikakai extract, a sycamore extract, a tsukinukisako extract, and a tea seed extract promote the absorption of polyphenols.

特開2003-333989公報Japanese Patent Application Publication No. 2003-333989 特開2009-247282号公報JP2009-247282A 特開2010-11751号公報Japanese Patent Application Publication No. 2010-11751 特開 2011-79770号公報Japanese Patent Application Publication No. 2011-79770 特開2016-216440号公報JP2016-216440A 特開2017-109991号公報Japanese Patent Application Publication No. 2017-109991

本発明は、カテキン類を経口摂取した際に、該カテキン類が体循環液中に到達する割合、すなわち、カテキン類の生物学的利用率を高めることができる、新たなカテキン類のバイオアベイラビリティ向上組成物及び組成物を提供せんとするものである。 The present invention provides a new method for improving the bioavailability of catechins that can increase the rate at which catechins reach the systemic circulation when catechins are ingested orally, that is, the bioavailability of catechins. The present invention seeks to provide compositions and compositions.

本発明は、発酵性炭水化物を有効成分として含有する、カテキン類のバイオアベイラビリティ向上組成物を提案する。
本発明はまた、カテキン類と発酵性炭水化物を含有する組成物を提案する。
本発明はさらにまた、発酵性炭水化物を経口摂取することを特徴とする、カテキン類のバイオアベイラビリティ向上方法を提案する。
The present invention proposes a composition for improving the bioavailability of catechins, which contains a fermentable carbohydrate as an active ingredient.
The invention also proposes compositions containing catechins and fermentable carbohydrates.
The present invention further proposes a method for improving the bioavailability of catechins, which comprises orally ingesting fermentable carbohydrates.

本発明が提案するカテキン類のバイオアベイラビリティ向上組成物は、従来開示されていたものとは異なる組成であり、カテキン類を経口摂取した際に、該カテキン類が体循環液中に到達する割合を高めることができる。 The composition for improving the bioavailability of catechins proposed by the present invention has a composition different from that previously disclosed, and the composition improves the bioavailability of catechins by reducing the rate at which the catechins reach the systemic fluid when catechins are ingested orally. can be increased.

ラット経口摂取試験において、食餌にEGCG及びフラクトオリゴ糖(FOS)を添加した際の、フラクトオリゴ糖(FOS)の添加割合と、EGCGの血漿濃度との関係を示した棒グラフであり、グループ内の各点は個々のラットの値を示し、棒グラフの値は平均値±SDを示し、****はEGCG単独群と比較してp<0.0001であることを示す。This is a bar graph showing the relationship between the addition ratio of fructooligosaccharide (FOS) and the plasma concentration of EGCG when EGCG and fructooligosaccharide (FOS) were added to the diet in a rat oral intake test, and each point within the group is indicates values for individual rats, bar graph values indicate mean ± SD, **** indicates p<0.0001 compared to EGCG alone group. ラット経口摂取試験において、食餌にEGCG及びフラクトオリゴ糖(FOS)を添加した際の、フラクトオリゴ糖(FOS)の添加割合と、盲腸のパラメータとの関係を示した図であり、(a)は糞便内容物のpH値との関係を示し、(b)は1匹あたりの盲腸内容物中の乳酸値との関係を示し、(c)は、盲腸内容物中のSCFA濃度(Short-chain fatty level)を示し、棒グラフの数値は平均値±SDを示し、グループ内の各点は個々のラットの値を表し、横線はその平均値を表す。棒グラフの値は平均値±SDを示す。また、EGCG単独投与群と比較して、*はp<0.05を示し,**はp<0.01を示し,****はp<0.0001を示す。Fig. 2 is a diagram showing the relationship between the addition ratio of fructooligosaccharide (FOS) and cecal parameters when EGCG and fructooligosaccharide (FOS) were added to the diet in a rat oral ingestion test; (a) shows the relationship between the fecal content (b) shows the relationship with the lactic acid value in the cecal contents per animal, and (c) shows the SCFA concentration (Short-chain fatty level) in the cecal contents. The numbers in the bar graph indicate the mean value ± SD, each point within a group represents the value of an individual rat, and the horizontal line represents the mean value. Bar graph values indicate mean ± SD. Also, compared to the EGCG single administration group, * indicates p<0.05, ** indicates p<0.01, and **** indicates p<0.0001. ラット経口摂取試験において、メタゲノムシークエンスで測定した給餌2週目に採取した糞の微生物組成を示す図であり、(a)は属名レベルでの分類群の存在量を表す棒グラフであり、(b)は主要な属の比率を示し、(c)はアルファダイバーシティ(シャノンインデックス)の平均値を示す。また、EGCG単独投与群と比較して、*はp<0.05を示し,**はp<0.01を示し,****はp<0.0001を示す。This figure shows the microbial composition of feces collected during the second week of feeding as measured by metagenomic sequencing in a rat oral ingestion test. (a) is a bar graph showing the abundance of taxonomic groups at the genus name level; (b) ) shows the proportion of major genera, and (c) shows the average value of alpha diversity (Shannon index). Also, compared to the EGCG single administration group, * indicates p<0.05, ** indicates p<0.01, and **** indicates p<0.0001.

次に、実施の形態例に基づいて本発明を説明する。但し、本発明が次に説明する実施形態に限定されるものではない。 Next, the present invention will be described based on embodiments. However, the present invention is not limited to the embodiment described below.

<本カテキン類バイオアベイラビリティ向上組成物>
本発明の実施形態の一例に係るカテキン類のバイオアベイラビリティ向上組成物(「本カテキン類バイオアベイラビリティ向上組成物」と称する)は、発酵性炭水化物を有効成分として含有するものである。
<Catechin bioavailability improving composition>
A composition for improving the bioavailability of catechins (referred to as "the composition for improving the bioavailability of catechins") according to an embodiment of the present invention contains fermentable carbohydrates as an active ingredient.

発酵性炭水化物を経口摂取することにより、経口摂取したカテキン類が体循環液中に到達する割合、すなわち、当該カテキン類のバイオアベイラビリティを高めることができる。例えば、カテキン類を経口摂取する前に、或いは、同時に、或いは、後に、発酵性炭水化物若しくは本カテキン類バイオアベイラビリティ向上組成物を経口摂取すると、当該カテキン類のバイオアベイラビリティを高めることができる。
また、本カテキン類バイオアベイラビリティ向上組成物は、上記作用と共に、カテキン類の自動酸化を抑制する作用、管腔を低pH状態に保持する作用、乳酸産生量を高める作用、及び、乳酸産生菌を活性化させる作用のうちの何れか又は二種以上を併せ持つものである。
By orally ingesting fermentable carbohydrates, it is possible to increase the rate at which the orally ingested catechins reach the systemic circulation, that is, the bioavailability of the catechins. For example, if a fermentable carbohydrate or the present catechin bioavailability improving composition is orally ingested before, at the same time, or after the catechins are ingested, the bioavailability of the catechins can be increased.
In addition to the above-mentioned effects, the composition for improving catechin bioavailability also has the effect of suppressing autoxidation of catechins, maintaining the lumen in a low pH state, increasing the amount of lactic acid production, and inhibiting lactic acid-producing bacteria. It has any one of the activating effects or a combination of two or more of them.

(カテキン類)
本発明において、バイオアベイラビリティ向上の対象となる「カテキン類」は、(-)カテキン(C)、(-)カテキンガレート(CG)、(-)ガロカテキン(GC)、(-)ガロカテキンガレート(GCG)、(-)エピカテキン(EC)、(-)エピカテキンガレート(ECG)、(-)エピガロカテキン(EGC)、(-)エピガロカテキンガレート(EGCG)からなる群から選ばれる一種、又は二種以上の組み合わせからなる混合物である。
(Catechins)
In the present invention, the "catechins" whose bioavailability is to be improved include (-) catechin (C), (-) catechin gallate (CG), (-) gallocatechin (GC), (-) gallocatechin gallate (GCG ), (-) epicatechin (EC), (-) epicatechin gallate (ECG), (-) epigallocatechin (EGC), (-) epigallocatechin gallate (EGCG), or It is a mixture consisting of a combination of two or more types.

上記カテキン類の中でも、「エピガロカテキンガレート(EGCG)」が最も好適である。すなわち、本カテキン類バイオアベイラビリティ向上組成物のカテキン類の主成分はEGCGであるのが好ましい。
この際、「主成分」とは、カテキン類のうち最も質量割合の高い成分を意味し、例えば有効成分の40質量%以上、中でも50質量%以上、その中でも60質量%以上、その中でも70質量%以上、その中でも80質量%以上、その中でも90質量%以上、その中でも95質量%以上(100質量%を含む)を占める場合が想定される。ど
Among the above catechins, "epigallocatechin gallate (EGCG)" is most preferred. That is, it is preferable that the main component of the catechins in the present composition for improving the bioavailability of catechins is EGCG.
In this case, "main component" means the component with the highest mass percentage among catechins, for example, 40% by mass or more of the active ingredient, especially 50% by mass or more, 60% by mass or more, and 70% by mass of the active ingredient. % or more, especially 80% by mass or more, especially 90% by mass or more, and even more than 95% by mass (including 100% by mass). degree

EGCGとは、緑茶に含まれるカテキン類の中でも最も含有割合の高いカテキンであり、エピガロカテキンと、没食子酸とのエステルである。
なお、エピガロカテキンガレートは、エピガロカテキンガレートの薬学的に許容可能な塩であってもよい。例えば、ナトリウム、カリウム等のアルカリ金属、カルシウム等のアルカリ土類金属とエピガロカテキンガレートとの塩、エピガロカテキンガレートのアンモニウム塩等の4級アンモニウム塩などを挙げることができる。
また、エピガロカテキンガレートは、生体内においてエピガロカテキンガレートを放出するプロドラッグであってもよい。
EGCG is a catechin with the highest content among the catechins contained in green tea, and is an ester of epigallocatechin and gallic acid.
Note that epigallocatechin gallate may be a pharmaceutically acceptable salt of epigallocatechin gallate. Examples include salts of epigallocatechin gallate with alkali metals such as sodium and potassium, and alkaline earth metals such as calcium, and quaternary ammonium salts such as ammonium salts of epigallocatechin gallate.
Furthermore, epigallocatechin gallate may be a prodrug that releases epigallocatechin gallate in vivo.

(発酵性炭水化物)
本発明において「発酵性炭水化物」とは、発酵を起こす炭水化物の意味であり、具体的には、フラクトオリゴ糖以外に、例えばブドウ糖、果糖、ショ糖、麦芽糖、乳糖などや、規格基準型の特定保健用食品として使用されている食物繊維,オリゴ糖、難消化性デキストリンなどを挙げることができる。これらは一種であってもよいし、また、これらのうちの2種類以上の組み合わせであってもよい。
中でも、カテキン類のバイオアベイラビリティ向上の観点から、フラクトオリゴ糖が好ましい。
(fermentable carbohydrates)
In the present invention, "fermentable carbohydrates" refers to carbohydrates that undergo fermentation, and specifically includes, in addition to fructooligosaccharides, glucose, fructose, sucrose, maltose, lactose, etc. Examples include dietary fibers, oligosaccharides, and indigestible dextrins that are used as food products. These may be used alone or in combination of two or more of them.
Among these, fructooligosaccharides are preferred from the viewpoint of improving the bioavailability of catechins.

フラクトオリゴ糖は、イヌリン型フルクタンであり、上部腸管での消化酵素に抵抗性のβ結合を有することが知られている。
フラクトオリゴ糖は、難消化性炭水化物であり、未消化のフラクトオリゴ糖は最終的に下部腸管に到達し、そこで、乳酸および短鎖脂肪酸(short-chain fatty acid:「SCFA」とも称する)の産生基質となり、腸管内腔を酸性側に傾け、消化管内のpHを低下させる。腸管内のpHを低いレベルに維持することは、EGCGを自動酸化から保護するのに役立つと考えられる。
Fructooligosaccharides are inulin-type fructans and are known to have β bonds that are resistant to digestive enzymes in the upper intestinal tract.
Fructooligosaccharides are indigestible carbohydrates, and undigested fructooligosaccharides eventually reach the lower intestinal tract, where they become substrates for the production of lactic acid and short-chain fatty acids (also called "SCFA"). , tilts the intestinal lumen toward the acidic side and lowers the pH within the gastrointestinal tract. Maintaining the pH in the intestinal tract at a low level is believed to help protect EGCG from autoxidation.

本カテキン類バイオアベイラビリティ向上組成物は、カテキン類とは別に、単独で経口摂取することが可能である。例えば、カテキン類を経口摂取する前に本カテキン類バイオアベイラビリティ向上組成物を経口摂取してもよいし、カテキン類を経口摂取するのと同時に本カテキン類バイオアベイラビリティ向上組成物を経口摂取してもよいし、また、カテキン類を経口摂取した後に本カテキン類バイオアベイラビリティ向上組成物を経口摂取してもよい。 The present composition for improving catechin bioavailability can be taken orally alone, separately from catechins. For example, the present catechin bioavailability improving composition may be orally ingested before catechins are orally ingested, or the present catechin bioavailability improving composition may be orally ingested at the same time as catechins being orally ingested. Alternatively, the catechin bioavailability improving composition may be orally ingested after catechins are orally ingested.

本カテキン類バイオアベイラビリティ向上組成物は、経口摂取したカテキン類100質量部に対して有効成分を333~1667質量部の割合で経口摂取するのが好ましく、中でも1000質量部以上の割合で経口摂取するのがさらに好ましい。 The present catechin bioavailability improving composition is preferably orally ingested at a ratio of 333 to 1667 parts by mass of the active ingredient per 100 parts by mass of catechins orally ingested, particularly at a ratio of 1000 parts by mass or more. It is even more preferable.

他方、本カテキン類バイオアベイラビリティ向上組成物は、カテキン類と共に経口摂取することも可能である。
例えば、後述するカテキン類と発酵性炭水化物を含有する組成物として、経口摂取することも可能である。
On the other hand, the present catechin bioavailability improving composition can also be orally ingested together with catechins.
For example, it is also possible to take it orally as a composition containing catechins and fermentable carbohydrates, which will be described later.

(その他の成分)
本カテキン類バイオアベイラビリティ向上組成物は、必要に応じて、発酵性炭水化物以外に他の成分を含有することができる。
(Other ingredients)
The present composition for improving catechin bioavailability may contain other components in addition to fermentable carbohydrates, if necessary.

(必要摂取量及び含有量)
本カテキン類バイオアベイラビリティ向上組成物において、有効成分である発酵性炭水化物、例えばフラクトオリゴ糖の濃度は0.1~100質量%であるのが好ましく、中でも1質量%以上、中でも10質量%以上、その中でも50質量%以上、その中でも60質量%以上、その中でも70質量%以上、その中でも80質量%以上、その中でも90質量%以上であるのが好ましい。
(Required intake and content)
In the composition for improving the bioavailability of catechins, the concentration of the fermentable carbohydrate, such as fructooligosaccharide, which is an active ingredient, is preferably 0.1 to 100% by mass, preferably 1% by mass or more, especially 10% by mass or more, Among these, it is preferably 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, and 90% by mass or more.

本カテキン類バイオアベイラビリティ向上組成物において、有効成分の摂取量又は投与量は、用途に応じて適宜調整するのが好ましい。目安としては、1回1mg~10000mg、中でも1回5mg以上或いは1000mg以下、その中でも1回10mg以上或いは500mg以下を想定することができる。
摂取回数又は投与回数は、特に限定されない。目安としては、1日1~3回を想定することができ、必要に応じて摂取回数を増減してもよい。
In the present composition for improving catechin bioavailability, the amount of intake or administration of the active ingredient is preferably adjusted as appropriate depending on the intended use. As a guideline, it can be assumed to be 1 mg to 10,000 mg at a time, particularly 5 mg or more or less than 1,000 mg at a time, and within that, 10 mg or more or less than 500 mg at a time.
The number of times of intake or administration is not particularly limited. As a guideline, it can be assumed to be taken 1 to 3 times a day, and the number of times of intake may be increased or decreased as necessary.

(安全性)
本カテキン類バイオアベイラビリティ向上組成物の安全性に関しては、有効成分である発酵性炭水化物は、長年に渡って人類が経口摂取している成分であるから、安全性は食経験の観点から保証されていると言える。
(safety)
Regarding the safety of this catechin bioavailability-improving composition, the active ingredient, fermentable carbohydrate, has been orally ingested by humans for many years, so its safety cannot be guaranteed from the perspective of dietary experience. I can say that there is.

<本組成物>
本組成物は、カテキン類と発酵性炭水化物を含有する組成物である。
カテキン類と発酵性炭水化物を含有する本組成物を経口摂取すれば、当該カテキン類のバイオアベイラビリティを高めることができる。
また、本組成物は、上記作用と共に、カテキン類の自動酸化を抑制する作用、管腔を低pH状態に保持する作用、乳酸産生量を高める作用、及び、乳酸産生菌を活性化させる作用のうちの何れか又は二種以上を併せ持つものである。
<This composition>
This composition is a composition containing catechins and fermentable carbohydrates.
If this composition containing catechins and fermentable carbohydrates is orally ingested, the bioavailability of the catechins can be increased.
In addition to the above-mentioned effects, this composition also has the effects of suppressing autoxidation of catechins, maintaining the lumen in a low pH state, increasing lactic acid production, and activating lactic acid-producing bacteria. It has either one of these or two or more of them.

本組成物における発酵性炭水化物は上述のとおりである。
本組成物において、発酵性炭水化物の含有量は、カテキン類の含有量100質量部に対して333~1667質量部であるのが好ましく、中でも1000質量部以上であるのがさらに好ましい。
The fermentable carbohydrate in this composition is as described above.
In the present composition, the content of fermentable carbohydrates is preferably 333 to 1,667 parts by mass, and more preferably 1,000 parts by mass or more, based on 100 parts by mass of catechins.

本組成物におけるカテキン類は、C、CG、GC、GCG、EC、ECG、EGC又はEGCGの純品であってもよいし、また、これらのうちの2種類以上の混合物であってもよいし、また、カテキン類を含む組成物であってもよい。
カテキン類を含む組成物としては、例えば、緑茶の抽出物やその精製物などを挙げることができる。具体的な一例としては、緑茶を熱水抽出処理して得た抽出物を、水と低・高濃度アルコールを使って吸着カラムにて分離し乾燥させ、茶ポリフェノール濃度を約85~99.5%に調製してなる緑茶抽出物を例示することができる。例えば、「テアフラン90S(商品名;伊藤園社製)」などは好ましい例である。このテアフラン90Sは、カテキン類の総量に対するエステル型カテキン類の量が50~90質量%であり、EGCGの量がカテキン総量の40~90質量%であり、カフェイン含有量が同じくカテキン総量に対して0~2質量%である。
The catechins in the present composition may be pure C, CG, GC, GCG, EC, ECG, EGC, or EGCG, or may be a mixture of two or more of these. , and may also be a composition containing catechins.
Examples of compositions containing catechins include green tea extracts and purified products thereof. As a specific example, an extract obtained by hot water extraction of green tea is separated and dried using an adsorption column using water and low and high concentration alcohol, and the tea polyphenol concentration is approximately 85 to 99.5. An example of this is a green tea extract prepared in a concentration of For example, "Tearflan 90S (trade name; manufactured by ITO EN Co., Ltd.)" is a preferable example. This Theafuran 90S has an amount of ester type catechins of 50 to 90% by mass based on the total amount of catechins, an amount of EGCG of 40 to 90% by mass of the total amount of catechins, and a caffeine content also based on the total amount of catechins. It is 0 to 2% by mass.

(形態)
本カテキン類バイオアベイラビリティ向上組成物及び本組成物は、例えば、経口投与剤としての医薬品、医薬部外品、栄養補助食品(サプリメント)、飲食物などとして提供することができる。
この際、形態としては、例えば液剤、錠剤、散剤、顆粒、糖衣錠、カプセル、懸濁液、乳剤、丸剤などの形態を挙げることができる。
(form)
The present catechin bioavailability improving composition and the present composition can be provided as, for example, a drug as an orally administered agent, a quasi-drug, a nutritional supplement, a food or drink, and the like.
In this case, examples of the form include liquid preparations, tablets, powders, granules, sugar-coated tablets, capsules, suspensions, emulsions, and pills.

本カテキン類バイオアベイラビリティ向上組成物及び本組成物は、医薬品、医薬部外品、栄養補助食品に通常用いられている添加剤、例えば賦形剤、増量剤、結合剤、湿潤化剤、崩壊剤、表面活性剤、潤滑剤、分散剤、緩衝剤、保存剤、溶解補助剤、防腐剤、矯味矯臭剤、無痛化剤、安定化剤などを含有することが可能である。また、例えばでん粉、ゼラチン、炭酸マグネシウム、合成ケイ酸マグネシウム、タルク、ステアリン酸マグネシウム、メチルセルロース、カルボキシメチルセルロースまたはその塩、アラビアゴム、ポリエチレングリコール、シロップ、ワセリン、グリセリン、エタノール、プロピレングリコール、クエン酸、塩化ナトリウム、亜硫酸ソーダ、リン酸ナトリウムなどの無毒性の添加剤を配合することも可能である。
なお、医薬部外品として調製する場合には、例えば瓶ドリンク飲料等の飲用形態、或いはタブレット、カプセル、顆粒等の形態とすることにより、より一層摂取し易くすることができる。
The catechin bioavailability improving composition and the present composition contain additives commonly used in pharmaceuticals, quasi-drugs, and nutritional supplements, such as excipients, fillers, binders, wetting agents, and disintegrants. , a surfactant, a lubricant, a dispersant, a buffer, a preservative, a solubilizing agent, a preservative, a flavoring agent, a soothing agent, a stabilizer, and the like. Also, for example, starch, gelatin, magnesium carbonate, synthetic magnesium silicate, talc, magnesium stearate, methylcellulose, carboxymethylcellulose or its salts, gum arabic, polyethylene glycol, syrup, vaseline, glycerin, ethanol, propylene glycol, citric acid, chloride. It is also possible to incorporate non-toxic additives such as sodium, sodium sulfite and sodium phosphate.
In addition, when preparing it as a quasi-drug, it can be made easier to ingest by making it into a drinking form such as a bottled drink, or a form such as a tablet, capsule, or granule.

本カテキン類バイオアベイラビリティ向上組成物及び本組成物を、飲食物として提供する場合、特定保健用食品、栄養機能食品、機能性表示食品,いわゆる健康食品(機能性食品、健康補助食品)、清涼飲料水などとして提供することができる。但し、これらに限定するものではない。
この際、カテキン類が有する薬理作用を有する旨の表示を付した飲食物とすることも可能である。
When providing this catechin bioavailability improving composition and this composition as food or drink, foods for specified health uses, foods with nutritional function claims, foods with functional claims, so-called health foods (functional foods, health supplements), soft drinks, etc. It can be provided as water. However, it is not limited to these.
In this case, it is also possible to label the food and drink as having the pharmacological effects of catechins.

飲食物として好ましい形態は、例えば飴、ゼリー、錠菓、飲料、スープ、麺、煎餅、和菓子、冷菓、焼き菓子等を挙げることができる。好ましくは、果汁飲料、野菜ジュース、果物野菜ジュース、茶飲料(緑茶飲料を含む)、コーヒー飲料、スポーツドリンク等の容器詰飲料である。 Preferred forms of food and drink include, for example, candies, jellies, tablets, drinks, soups, noodles, rice crackers, Japanese sweets, frozen desserts, and baked sweets. Preferred are packaged beverages such as fruit juice drinks, vegetable juices, fruit and vegetable juices, tea drinks (including green tea drinks), coffee drinks, and sports drinks.

<語句の説明>
本発明において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
<Explanation of words>
In the present invention, when expressed as "X to Y" (X, Y are arbitrary numbers), unless otherwise specified, it means "more than or equal to X and less than or equal to Y", and also means "preferably greater than It also includes the meaning of "small".
In addition, when expressed as "more than or equal to X" (X is any number) or "less than or equal to Y" (Y is any number), the expression "preferably greater than X" or "preferably less than Y" should be used. It also includes intent.

以下に本発明を実施例によってさらに具体的に説明する。ただし、本発明は実施例に限定されるものではない。
下記実施例において「%」は、特に言及しなければ「質量%」を示す。
The present invention will be explained in more detail below using Examples. However, the present invention is not limited to the examples.
In the following examples, "%" indicates "% by mass" unless otherwise specified.

<動物試験>
飼料中のフラクトオリゴ糖の添加が動物モデルにおけるEGCGの胃腸管での安定化に寄与し、結果的にEGCGの血漿濃度に影響するかどうかを検討した。
<Animal test>
We investigated whether the addition of fructooligosaccharides in the feed contributes to the stabilization of EGCG in the gastrointestinal tract in an animal model and consequently affects the plasma concentration of EGCG.

(原料)
下記実施例及び比較例には、次の原料を使用した。
・EGCGの高純度抽出物(EGCG濃度94質量%以上、DSMニュートリション・ジャパン株式会社製「Teavigo」)
・フラクトオリゴ糖(1-kestose39.7%,nystose51.5%,1F-βfructofuranosyl-nystose4.9%、富士フイルム和光純薬株式会社製)
・Helix pomatia由来のβ-グルクロニダーゼおよびアワビ内臓由来のスルファターゼ(シグマ・アルドリッチ社製)
(material)
The following raw materials were used in the following examples and comparative examples.
・High purity extract of EGCG (EGCG concentration 94% by mass or more, "Teavigo" manufactured by DSM Nutrition Japan Co., Ltd.)
・Fructooligosaccharides (1-kestose 39.7%, nystose 51.5%, 1 F -βfructofuranosyl-nystose 4.9%, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
・β-glucuronidase from Helix pomatia and sulfatase from abalone internal organs (manufactured by Sigma-Aldrich)

(動物と食餌)
Wistar系雄性ラット(4週齢)25匹を、12時間の照明サイクルで自動制御された室内において、22℃のステンレスケージ内で2日間順応させた。馴化期間中、ラットにはAIN93G配合飼料を与えた。
その後、25匹を4つのグループに分け、飼料100%に対してEGCGを0.3%添加した「0.3%EGCG飼料」、飼料100%に対して0.3%のEGCG及び1%のフラクトオリゴ糖を添加した「0.3%EGCG+1%フラクトオリゴ糖飼料」、飼料100%に対して0.3%のEGCG及び3%のフラクトオリゴ糖を添加した「0.3%EGCG+3%フラクトオリゴ糖飼料」、飼料100%に対して0.3%のEGCG及び5%のフラクトオリゴ糖を添加した「0.3%EGCG+5%フラクトオリゴ糖飼料」を、実験食としてそれぞれ与えた(表S1)。それぞれの実験食と水道水を2週間自由に摂取させた。糞は1週間ごとに回収した。
実験最終日に,高濃度の二酸化炭素を吸入させてラットを人道的に殺し,直ちに腹腔静脈から血液を採取した。2,000×gで10分間遠心分離して血漿を得た後、プラスチックチューブに10mgのL-アスコルビン酸を入れて-40℃で保存した。盲腸を摘出し、盲腸内容物も採取し、使用するまで-40℃で保存した。
(animals and diet)
Twenty-five male Wistar rats (4 weeks old) were acclimatized for 2 days in stainless steel cages at 22°C in an automatically controlled room with a 12 hour light cycle. During the acclimatization period, rats were fed AIN93G-containing diet.
After that, the 25 animals were divided into four groups. "0.3% EGCG + 1% fructooligosaccharide feed" with addition of fructooligosaccharide, "0.3% EGCG + 3% fructooligosaccharide feed" with addition of 0.3% EGCG and 3% fructooligosaccharide to 100% feed, "0.3% EGCG + 5% fructooligosaccharide feed" in which 0.3% EGCG and 5% fructooligosaccharide were added to 100% feed was given as an experimental diet (Table S1). Each animal was given free access to the experimental food and tap water for two weeks. Feces were collected every week.
On the final day of the experiment, rats were humanely killed by inhalation of high concentrations of carbon dioxide, and blood was immediately collected from the peritoneal vein. After centrifuging at 2,000 xg for 10 minutes to obtain plasma, 10 mg of L-ascorbic acid was placed in a plastic tube and stored at -40°C. The cecum was removed and the cecal contents were also collected and stored at -40°C until use.

(血漿中のEGCGの分析)
血漿中のEGCG濃度の分析を次のように行った。
解凍した血漿0.1mLに、100mM酢酸緩衝液(pH5.0)0.9mL、β-グルクロニダーゼ溶液10μLおよびスルファターゼ溶液10μLを加えて混合し,37℃で45分間インキュベートした。内部標準物質として20μMの没食子酸エチル溶液10μLを加えた後、反応混合物をポリマー系固相抽出カートリッジ(Strata-X,粒径33μm,Phenomenex,Inc.,CA)に直接供した。カートリッジは,水1mL、0.1%(v/v)リン酸を含む70%(v/v)水性ジメチルホルムアミド(DMF)1mL、水1mLで事前に洗浄しておいた。カートリッジを水1mL、20%(v/v)メタノール1mLで洗浄した後、0.1%(v/v)リン酸を含む70%(v/v)DMF0.7mLでEGCGを溶出させた。
0.45μmのシリンジフィルター(TORAST disk,Shimadzu GLC,Ltd.)で濾過した後、得られた濾液10μLを、電気化学検出器(Coulochem III,ESA,Inc.,MA)を備えたHPLCシステムに注入した。分析カラム(Capcell Pak 3C18type AQ,長さ150mm×内径4.6mm,株式会社資生堂)は、毎分0.8mLの流速で、0.5mMエチレンジアミン-N,N,N',N'-四酢酸(EDTA)/アセトニトリル(85/15,v/v)を含む50mMリン酸二水素ナトリウム(リン酸でpH3.5に調整)の溶媒で溶出した。
カラムの温度は40℃に保った。分析セルの印加電圧は、電極1が-200mV、電極2が+200mV、ガードセルが+250mVとした。
(Analysis of EGCG in plasma)
Analysis of EGCG concentration in plasma was performed as follows.
0.9 mL of 100 mM acetate buffer (pH 5.0), 10 μL of β-glucuronidase solution, and 10 μL of sulfatase solution were added to 0.1 mL of thawed plasma, mixed, and incubated at 37° C. for 45 minutes. After adding 10 μL of a 20 μM ethyl gallate solution as an internal standard, the reaction mixture was directly applied to a polymer-based solid phase extraction cartridge (Strata-X, 33 μm particle size, Phenomenex, Inc., CA). The cartridge was pre-cleaned with 1 mL of water, 1 mL of 70% (v/v) aqueous dimethylformamide (DMF) containing 0.1% (v/v) phosphoric acid, and 1 mL of water. After washing the cartridge with 1 mL of water and 1 mL of 20% (v/v) methanol, EGCG was eluted with 0.7 mL of 70% (v/v) DMF containing 0.1% (v/v) phosphoric acid.
After filtration with a 0.45 μm syringe filter (TORAST disk, Shimadzu GLC, Ltd.), 10 μL of the obtained filtrate was injected into an HPLC system equipped with an electrochemical detector (Coulochem III, ESA, Inc., MA). did. The analytical column (Capcell Pak 3C 18 type AQ, length 150 mm x inner diameter 4.6 mm, Shiseido Co., Ltd.) was used with 0.5 mM ethylenediamine-N,N,N',N'-tetraacetic acid at a flow rate of 0.8 mL/min. Elution was performed with a solvent of 50 mM sodium dihydrogen phosphate (adjusted to pH 3.5 with phosphoric acid) containing (EDTA)/acetonitrile (85/15, v/v).
The column temperature was kept at 40°C. The voltages applied to the analysis cells were −200 mV for electrode 1, +200 mV for electrode 2, and +250 mV for the guard cell.

(糞便及び盲腸内容物中のEGCGの分析)
凍結乾燥した糞をグラインダーミルで粉砕し、得られた粉末状の糞50mgをマイクロチューブに入れ、0.1%(v/v)リン酸を含む50%(v/v)アセトニトリル1mLと混合した。チューブにステンレスビーズを入れた後、ビーズビーター(セルデストロイヤーPS1000、バイオメディカルサイエンス社)で3分間攪拌してEGCGを抽出し、抽出液を10mLフラスコに回収した。この抽出操作を3回繰り返した。
シリンジフィルターで濾過した後、濾液をHPLCシステムに注入した。Unison UK-C18カラム(長さ100mm×内径4.6mm,Imtakt Co.,Kyoto,Japan)を用いて0.1%(v/v)のリン酸を含む15%(v/v)のアセトニトリルによってEGCGを分離し,230nmにセットした紫外部検出器で検出した。
他方、盲腸内容物中の測定では,0.1%(v/v)のリン酸を含む0.2mLのアセトニトリルに、5倍に希釈した糞便消化物(0.2mL)を加え,2000×gで5分間遠心分離した後、得られた上澄み液をろ過し、HPLCシステムに注入した。
(Analysis of EGCG in feces and cecal contents)
Freeze-dried feces were ground with a grinder mill, and 50 mg of the resulting powdered feces was placed in a microtube and mixed with 1 mL of 50% (v/v) acetonitrile containing 0.1% (v/v) phosphoric acid. . After putting stainless steel beads into the tube, EGCG was extracted by stirring for 3 minutes with a bead beater (Cell Destroyer PS1000, Biomedical Science Co., Ltd.), and the extract was collected in a 10 mL flask. This extraction operation was repeated three times.
After filtration with a syringe filter, the filtrate was injected into the HPLC system. EGCG was purified with 15% (v/v) acetonitrile containing 0.1% (v/v) phosphoric acid using a Unison UK-C 18 column (100 mm length x 4.6 mm inner diameter, Imtakt Co., Kyoto, Japan). It was separated and detected with an ultraviolet detector set at 230 nm.
On the other hand, for measurement of cecal contents, fecal digest (0.2 mL) diluted 5 times was added to 0.2 mL of acetonitrile containing 0.1% (v/v) phosphoric acid, and the mixture was heated at 2000 × g After centrifugation for 5 minutes at , the resulting supernatant was filtered and injected into the HPLC system.

(盲腸内容物のpH、乳酸およびSCFAの分析)
解凍した盲腸内容物のpH値は、ポータブルpHメーターを用いて直接測定した。
盲腸内容物中の乳酸およびSCFAを測定するために、盲腸内容物の一部を蒸留水で5倍に希釈した。サンプル中の乳酸濃度は,市販のキット(Lactate Assay Kit-WST,Dojindo Laboratories)を用いて測定した。試料中のSCFA(酢酸,プロピオン酸,酪酸)濃度は、市販のキット(YMC Co.Ltd.,Kyoto,Japan)を用いて、1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochlorideの存在下で、2-nitrophenylhydrazine hydrochlorideで誘導体化した後、HPLCで測定した。
(Analysis of pH, lactic acid and SCFA of cecal contents)
The pH value of the thawed cecal contents was directly measured using a portable pH meter.
To measure lactate and SCFA in the cecal contents, a portion of the cecal contents was diluted 5 times with distilled water. The lactic acid concentration in the sample was measured using a commercially available kit (Lactate Assay Kit-WST, Dojindo Laboratories). SCFA (acetic acid, propionic acid, butyric acid) concentration in the sample was determined using a commercially available kit (YMC Co. Ltd., Kyoto, Japan) in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride. , derivatized with 2-nitrophenylhydrazine hydrochloride, and then measured by HPLC.

(微生物の分析)
製造元のプロトコルに従い、糞便DNA分離・精製キット(Norgen Biotec Co.,ON,Canada)を用いて、細菌DNAを抽出した。その後、トリス-EDTA緩衝液(pH8.5)で希釈して、DNA(5ng/μL)を調製した。
16Sメタゲノムシークエンスライブラリープロトコル(イルミナ株式会社、東京、日本)に基づいて、16S rRNA遺伝子のV3-V4領域を増幅して、アンプリコンライブラリーを調製した。1回目のPCR(PCR1)では、マスターミックスは2.5μLのDNAテンプレート、5μLのフォワードプライマー(1μm),5μLのリバースプライマー(1μm)、12.5のKAPA HiFi HotStart ReadyMix(2X)(Kapa Biosystems,Wil/minngtonmA),および滅菌したPCR用の水で構成され,最終容量は25μLとした。
PCR産物は、AMPure XP磁気ビーズベースの精製技術(Beckman Coulter)を用いてクリーンアップした。2回目のPCR(PCR2)反応は、PCR1産物5μL、KAPA HiFi HotStart ReadyMix(2X)25μL、フォワードおよびリバースデュアルインデキシングプライマー(Nextera XT index Kit v2 Set A,Illu/minna K.K.,Tokyo,Japan)各5μL、およびPCR用の滅菌水5μLで構成された。
サンプルは、AMPureビーズ(Beckman Coulter)を用いて再度精製し,Agilent Bioanalyzerで実行して品質を確認した後,シーケンスを行った。
PCR2産物は、Qubit Fluorometer付きQubit dsDNA HS Assay Kitを用いて定量し、5ng/μLの濃度でプールした。
サンプルプールを0.2M水酸化ナトリウムで変性させた後、MiSeq Reagent Kit v3を用いて、Illu/minna MiSeqシーケンシングシステムで600サイクルのシーケンシングを行った。
バイオインフォマティクスによる配列解析は、イルミナ社が提供する16S rRNAフローラ解析パイプライン(16S Metagenomics version 1.1.0)を用いて行った。簡単に言うと、FASTQファイルをインポートすることで、ペアエンド配列を簡単に組み立てることができた。配列の品質をチェックし、合格した配列を運用上の分類単位にクラスター化した。このワークフローのアルゴリズムは、Wang Q.et al.に記載されているRibosamal Database Project Classifierを使用した。
分類学上のランクは、参照データベース(greengenes version13_5)のBLASTによって割り当てられ、同定された種のリードカウントに基づいてシャノンインデックスが計算された。
(Analysis of microorganisms)
Bacterial DNA was extracted using a fecal DNA isolation and purification kit (Norgen Biotec Co., ON, Canada) according to the manufacturer's protocol. Thereafter, DNA (5 ng/μL) was prepared by diluting with Tris-EDTA buffer (pH 8.5).
An amplicon library was prepared by amplifying the V3-V4 region of the 16S rRNA gene based on the 16S metagenomic sequencing library protocol (Illumina Corporation, Tokyo, Japan). For the first PCR (PCR1), the master mix was 2.5 μL of DNA template, 5 μL of forward primer (1 μm), 5 μL of reverse primer (1 μm), and 12.5 KAPA HiFi HotStart ReadyMix (2X) (Kapa Biosystems, Wil/mingtonmA) and sterile water for PCR, and the final volume was 25 μL.
PCR products were cleaned up using AMPure XP magnetic bead-based purification technology (Beckman Coulter). For the second PCR (PCR2) reaction, 5 μL of PCR1 product, 25 μL of KAPA HiFi HotStart ReadyMix (2X), 5 μL each of forward and reverse dual indexing primers (Nextera XT index Kit v2 Set A, Illu/minna KK, Tokyo, Japan), and 5 μL of sterile water for PCR.
Samples were purified again using AMPure beads (Beckman Coulter), run on an Agilent Bioanalyzer to confirm quality, and then sequenced.
PCR2 products were quantified using the Qubit dsDNA HS Assay Kit with Qubit Fluorometer and pooled at a concentration of 5 ng/μL.
After denaturing the sample pool with 0.2M sodium hydroxide, it was sequenced for 600 cycles on the Illu/minna MiSeq sequencing system using MiSeq Reagent Kit v3.
Bioinformatics sequence analysis was performed using the 16S rRNA flora analysis pipeline (16S Metagenomics version 1.1.0) provided by Illumina. Simply put, we were able to easily assemble paired-end sequences by importing FASTQ files. Sequence quality was checked and passing sequences were clustered into operational taxonomic units. The algorithm for this workflow was the Ribozamal Database Project Classifier described in Wang Q. et al.
Taxonomic ranks were assigned by BLAST of the reference database (greengenes version13_5) and Shannon index was calculated based on read counts of identified species.

(統計解析)
データは平均値±SDで示した。0.05未満のP値を有意とした。
すべての統計解析は、GraphPad Prism version7(GraphPad Software,San Diego,CA)を用いて行った。
データの正規性は,Shapiro-Wilk検定で確認した。EGCG+フラクトオリゴ糖投与群とEGCG単独投与群を比較するために、Dunnett検定またはDunn検定により、群間の差の有意性を判定した。
(Statistical analysis)
Data are shown as mean ± SD. A P value of less than 0.05 was considered significant.
All statistical analyzes were performed using GraphPad Prism version 7 (GraphPad Software, San Diego, CA).
Normality of data was confirmed using the Shapiro-Wilk test. In order to compare the EGCG + fructooligosaccharide administration group and the EGCG alone administration group, the significance of the difference between the groups was determined by Dunnett's test or Dunn's test.

<結果>
(EGCGの血漿濃度)
血漿中のEGCGは、β-グルクロニダーゼおよびスルファターゼで脱抱合した後に測定した。0.3%EGCG飼料(EGCG単独)を与えたラットのEGCGの平均血漿濃度は0.21±0.05μMであった(図1)。フラクトオリゴ糖を添加することで、用量依存的にEGCGの血漿濃度を高める効果が得られた。5%(w/w)のフラクトオリゴ糖を食餌に添加すると、血漿中のEGCG濃度が0.65±0.12μMと有意に上昇した(p<0.0001)。
<Results>
(EGCG plasma concentration)
EGCG in plasma was measured after deconjugation with β-glucuronidase and sulfatase. The mean plasma concentration of EGCG in rats fed 0.3% EGCG diet (EGCG alone) was 0.21±0.05 μM (Figure 1). Addition of fructooligosaccharide had the effect of increasing the plasma concentration of EGCG in a dose-dependent manner. Addition of 5% (w/w) fructooligosaccharides to the diet significantly increased plasma EGCG concentration to 0.65±0.12 μM (p<0.0001).

(盲腸内容物および糞便中のEGCGレベル)
盲腸内容物におけるEGCGの量は、フラクトオリゴ糖(FOS)を食餌に投与することにより、用量依存的に有意に上昇した(表1)。EGCG+5%フラクトオリゴ糖(FOS)飼料を与えたラットの盲腸消化管中のEGCG濃度は、EGCG単独飼料群に比べて有意に上昇した(p<0.0001)。
1匹当たりのラット盲腸内容物中のEGCG量は、EGCG濃度(盲腸内容物1g当たりのEGCG量(μmol/g)に個々の盲腸内容物の湿重量を乗じて算出した。その結果、糞便内容物の量に応じて、糞便中のEGCG量が劇的に増加することがわかった。
EGCG+5%フラクトオリゴ糖(FOS)群の2週間累積採取した糞の平均乾燥重量は、EGCG単独食群に比べて有意に増加した(p<0.05)(表1)。
盲腸消化物量の増加とは対照的に、1%および3%のフラクトオリゴ糖(FOS)を食餌に添加しても顕著な増加は見られなかったが、EGCG+5%フラクトオリゴ糖(FOS)食を摂取したラットの糞中に排泄されたEGCGの累積量は、EGCG単独食に比べて有意に増加した(p<0.0001)(表1)。
糞中に未変化体で排泄されるEGCGの量と食餌から摂取したEGCGの量の比として計算されるEGCGの糞中排泄率は、EGCG単独飼料では平均3.86%と推定されたが、EGCG+5%フラクトオリゴ糖飼料では21.83%と有意に増加した。
(EGCG levels in cecal contents and feces)
The amount of EGCG in the cecal contents was significantly increased by dietary administration of fructooligosaccharides (FOS) in a dose-dependent manner (Table 1). The EGCG concentration in the caecal gastrointestinal tract of rats fed the EGCG + 5% fructooligosaccharide (FOS) diet was significantly increased compared to the EGCG alone diet group (p<0.0001).
The amount of EGCG in the cecal contents of each rat per rat was calculated by multiplying the EGCG concentration (the amount of EGCG per 1 g of cecal contents (μmol/g) by the wet weight of each individual cecal contents.As a result, the fecal content It was found that the amount of EGCG in feces increases dramatically depending on the amount of food.
The average dry weight of feces collected over two weeks in the EGCG + 5% fructooligosaccharide (FOS) group was significantly increased compared to the EGCG alone diet group (p<0.05) (Table 1).
In contrast to the increase in cecal digesta volume, no significant increase was observed when 1% and 3% fructooligosaccharides (FOS) were added to the diet, but EGCG + 5% fructooligosaccharides (FOS) diet was not significantly increased. The cumulative amount of EGCG excreted in rat feces was significantly increased compared to the EGCG alone diet (p<0.0001) (Table 1).
The fecal excretion rate of EGCG, which is calculated as the ratio of the amount of unchanged EGCG excreted in the feces to the amount of EGCG ingested from the diet, was estimated to be 3.86% on average when fed with EGCG alone; In the case of the EGCG + 5% fructooligosaccharide diet, it significantly increased to 21.83%.

(盲腸内容物のpH、乳酸およびSCFAレベル)
すべてのフラクトオリゴ糖投与群の盲腸内容物のpHは、EGCG単独投与群に比べて有意に低下し、1%、3%、5%のフラクトオリゴ糖(FOS)投与群では、それぞれp値が0.01未満、0.0001未満、0.0001未満となった(図2(a))。逆に、フラクトオリゴ糖を食餌に添加すると、用量依存的に盲腸の乳酸値が上昇した(図2(b))。
EGCG+5%フラクトオリゴ糖(FOS)群の盲腸内容物は、EGCG単独群と比較して、ラット1匹あたりの乳酸量が約10倍に増加した(p<0.0001)。
一方、フラクトオリゴ糖による食餌療法は、SCFAの盲腸内容物レベルとほとんど関係がなかった。酢酸、プロピオン酸、酪酸の糞便中の濃度には、各群間で統計的に有意な差はなかった(図2(c))。
(pH, lactic acid and SCFA levels of cecal contents)
The pH of the cecal contents in all fructooligosaccharide administration groups was significantly lower than that in the EGCG alone administration group, and the p-values were 0.0 and 1%, respectively, in the 1%, 3%, and 5% fructooligosaccharide (FOS) administration groups. 01, less than 0.0001, and less than 0.0001 (FIG. 2(a)). Conversely, when fructooligosaccharides were added to the diet, cecal lactic acid levels increased in a dose-dependent manner (Figure 2(b)).
The cecal contents of the EGCG + 5% fructooligosaccharide (FOS) group had an approximately 10-fold increase in the amount of lactic acid per rat compared to the EGCG alone group (p<0.0001).
On the other hand, dietary treatment with fructooligosaccharides had little relationship with cecal content levels of SCFA. There was no statistically significant difference in the fecal concentrations of acetic acid, propionic acid, and butyric acid between the groups (Figure 2(c)).

(糞便の微生物叢の組成)
ラットの糞便の微生物組成は、Illumina MiSeqを用いた16S rRNA遺伝子のアンプリコンシークエンスにより決定した。属レベルでは、グループ間の糞便微生物叢の分類学的組成の違いを図3(a)に表示した。上位20属のうち、EGCG単独投与群ではLactobacillusが最も多く含まれていた。
フラクトオリゴ糖を添加すると、Lactobacillusの相対的な存在量が増加する傾向が見られた。Collinsellaは、フラクトオリゴ糖の投与により劇的に増加し、EGCG+5%フラクトオリゴ糖(FOS)群では全存在量の約40%を占めた。
EGCG+5%フラクトオリゴ糖(FOS)群では、Lactobacillus、Collinsella、Bacteroidesの3属のみで全体の90%を占めていた(図3(b))。
各個人の糞便マイクロバイオームの多様性を計算すると、EGCGのみの場合と比較して、フラクトオリゴ糖の添加により有意に減少した。また、フラクトオリゴ糖の添加濃度に反比例して、シャノン指数の低下が観察された(図3(c))。
(Composition of fecal microflora)
The microbial composition of rat feces was determined by 16S rRNA gene amplicon sequencing using Illumina MiSeq. At the genus level, the differences in the taxonomic composition of the fecal microbiota between groups are displayed in Figure 3(a). Among the top 20 genera, Lactobacillus was included most frequently in the EGCG alone administration group.
Addition of fructooligosaccharides tended to increase the relative abundance of Lactobacillus. Collinsella increased dramatically upon administration of fructooligosaccharide, accounting for approximately 40% of the total abundance in the EGCG+5% fructooligosaccharide (FOS) group.
In the EGCG+5% fructooligosaccharide (FOS) group, only three genera, Lactobacillus, Collinsella, and Bacteroides, accounted for 90% of the total (Figure 3(b)).
When calculating the diversity of the fecal microbiome of each individual, it was significantly reduced with the addition of fructooligosaccharides compared to EGCG alone. Furthermore, a decrease in the Shannon index was observed in inverse proportion to the concentration of fructooligosaccharide added (FIG. 3(c)).

Figure 2023140745000001
Figure 2023140745000001

<考察>
カテキン類、中でもEGCGは、バイオアベイラビリティ(生物学的利用率)が低いことが知られている。カテキン類、例えばEGCGのバイオアベイラビリティが低い要因として、例えば、EGCGは自動酸化を受けて重合すること、金属イオンや乳タンパク質との相互作用により不活性化すること、肝臓の酵素によるメチル化とグルクロン酸および硫酸との抱合を受けること、腸内細菌によるフェノール酸へ分解されることなどを挙げることができる。実際、自動酸化によってEGCGの二量体となったテアシネンシンAの腸管吸収率は、EGCGの10分の1と推定されている。その意味で、消化管内でのEGCGの自動酸化を防ぐことは、EGCGのバイオアベイラビリティ向上の要因であると推定できる。自動酸化がpHの高い状態で起こることを考えると、管腔内のpHを下げることで、EGCGをある程度安定させることができると考えられる。
<Consideration>
It is known that catechins, especially EGCG, have low bioavailability. Factors contributing to the low bioavailability of catechins, such as EGCG, include EGCG undergoing autoxidation and polymerization, inactivation due to interaction with metal ions and milk proteins, methylation by liver enzymes and glucuronin. Examples include conjugation with acids and sulfuric acid, and decomposition into phenolic acids by intestinal bacteria. In fact, the intestinal absorption rate of theasinensin A, which has become a dimer of EGCG through autooxidation, is estimated to be one-tenth that of EGCG. In this sense, it can be assumed that preventing autoxidation of EGCG in the gastrointestinal tract is a factor in improving the bioavailability of EGCG. Considering that autoxidation occurs at high pH, it is thought that EGCG can be stabilized to some extent by lowering the pH within the lumen.

本試験では、ラットにおけるEGCGの腸管吸収率を高めるために、管腔内のpHを低下させることができる食品因子の複合効果を調べた。
発酵性炭水化物が管腔内pHを酸性化することに着目し、EGCGの血漿中濃度を高める候補としてフラクトオリゴ糖を選んだ。フラクトオリゴ糖は、宿主の腸内環境に有益な影響を与えるプレバイオティクスとしてよく知られている。ラットでは、フラクトオリゴ糖の摂取により、微生物による乳酸やSCFAの産生が促進され、管腔内pH値が低下したことが明らかにされている。本試験では、フラクトオリゴ糖を投与したラットにおいて、用量依存的にpH値が低下することを明らかにし,腸内細菌によるフラクトオリゴ糖の発酵的利用と乳酸の産生が、管腔腔のpH値を下げることに非常に寄与したと考えられる。
In this study, we investigated the combined effect of food factors that can lower intraluminal pH to increase the intestinal absorption rate of EGCG in rats.
Focusing on the fact that fermentable carbohydrates acidify the intraluminal pH, we selected fructooligosaccharides as a candidate for increasing the plasma concentration of EGCG. Fructooligosaccharides are well known as prebiotics that have beneficial effects on the host's intestinal environment. In rats, it has been revealed that ingestion of fructooligosaccharides promoted the production of lactic acid and SCFA by microorganisms, and lowered the intraluminal pH value. In this study, we revealed that in rats administered fructooligosaccharide, the pH value decreased in a dose-dependent manner, and the fermentative use of fructooligosaccharide by intestinal bacteria and the production of lactic acid lowered the pH value of the luminal lumen. This is considered to have made a significant contribution.

また、糞便中の微生物組成を分析した結果、フラクトオリゴ糖とEGCGを併用した処理では、Lactobacillus属とCollinsella属の存在量が増加することが分かった。この2つの属は、乳酸を産生すると考えられている。両属の細菌による乳酸生成量の増加が、ラットの盲腸消化管のpH値の低下と関連していることが理解できる。また、フラクトオリゴ糖は乳酸だけでなく、SCFAにも発酵変換することが知られている。しかし、本試験では、フラクトオリゴ糖の添加量にかかわらず、SCFAの総量(酢酸、プロピオン酸、酪酸の合計)に有意な差は見られなかった。これは、EGCGが微生物のSCFA産生に関与しているためと推定される。 Furthermore, as a result of analyzing the microbial composition in feces, it was found that treatment using fructooligosaccharide and EGCG in combination increased the abundance of Lactobacillus and Collinsella genera. These two genera are thought to produce lactic acid. It can be seen that the increased production of lactic acid by bacteria of both genera is associated with a decrease in the pH value of the rat caecal gastrointestinal tract. Furthermore, it is known that fructooligosaccharide is fermented and converted not only to lactic acid but also to SCFA. However, in this test, no significant difference was observed in the total amount of SCFA (the sum of acetic acid, propionic acid, and butyric acid) regardless of the amount of fructooligosaccharide added. This is presumed to be because EGCG is involved in SCFA production by microorganisms.

フラクトオリゴ糖の添加は、用量依存的に糞便微生物叢のα-多様性を減少させた。これは、フラクトオリゴ糖を利用する能力の高い細菌種が優先的に増殖したためと考えられる。特にCollinsellaとLactobacillusの存在感が爆発的に高まったことで、腸内の他の微生物群集が減少した。15%(w/w)のフラクトオリゴ糖を12週間摂取させても、ラットのα-diversity indexは減少しないという過去の知見を考慮すると、EGCGとフラクトオリゴ糖の同時摂取がα-diversityの大幅な減少を引き起こした可能性がある。 Addition of fructooligosaccharides reduced the α-diversity of the fecal microbiota in a dose-dependent manner. This is thought to be because bacterial species with a high ability to utilize fructooligosaccharides preferentially proliferated. In particular, the explosive presence of Collinsella and Lactobacillus led to a decline in other microbial communities in the gut. Considering the past findings that the α-diversity index of rats did not decrease even after 12 weeks of ingestion of 15% (w/w) fructooligosaccharides, simultaneous intake of EGCG and fructooligosaccharides significantly reduced α-diversity. may have caused.

また、本試験では、フラクトオリゴ糖を食餌に添加すると、盲腸内容物中のEGCG量が増加することも明らかにした。これは、食餌性フラクトオリゴ糖がEGCGの消化管内での自動酸化を防ぎ、より多くのEGCGがそのまま盲腸に到達できたことを意味していると考えられる。微生物がフラクトオリゴ糖から乳酸を生成して管腔内を酸性化することが、EGCGの安定性に役立っている可能性がある。このようなフラクトオリゴ糖のpH低下作用は、大腸だけでなく小腸でも認められている。マウスでは、下部小腸の微生物群は、主にLactobacillaceae科が占めている。このことから、細菌が発酵利用したフラクトオリゴ糖の一部は、EGCGの腸管吸収の活性部位である小腸にも生息していたと推測される。EGCGの腸内量はEGCGの血漿濃度と高い相関があることから、酸性化でEGCGが安定化し、腸管吸収が高まることは十分に考えられる。 This study also revealed that adding fructooligosaccharides to the diet increased the amount of EGCG in the cecal contents. This is considered to mean that dietary fructooligosaccharides prevented autoxidation of EGCG in the gastrointestinal tract, and more EGCG was able to reach the cecum intact. It is possible that microorganisms produce lactic acid from fructooligosaccharides and acidify the lumen, which helps stabilize EGCG. Such a pH-lowering effect of fructooligosaccharides has been observed not only in the large intestine but also in the small intestine. In mice, the microbial community of the lower small intestine is dominated by the Lactobacillaceae family. From this, it is inferred that some of the fructooligosaccharides fermented and utilized by the bacteria also lived in the small intestine, which is the active site of intestinal absorption of EGCG. Since the amount of EGCG in the intestine is highly correlated with the plasma concentration of EGCG, it is highly conceivable that acidification stabilizes EGCG and increases intestinal absorption.

本試験では、酸性化した腸内環境下でEGCGの安定性を高めることが、バイオアベイラビリティを向上させる要因であることが分かった。上記試験では、管腔内のpH値を下げる効果のある物質の例としてフラクトオリゴ糖を用いたが、他の発酵性炭水化物が同様の機能を果たすと考えることができる。
EGCGの上皮細胞への取り込みは、受動的な拡散によるものと考えられていたが、近年,回腸上皮細胞の表面にEGCGの腸管吸収を担う特定のトランスポーターが活発に発現していることが判明した。EGCGを回腸上皮細胞に送達することは、EGCGの血漿中濃度を高めることで期待される有益な健康効果の理解を深めるために有用であると考えられる。
In this study, it was found that increasing the stability of EGCG in an acidified intestinal environment is a factor that improves bioavailability. In the above test, fructooligosaccharide was used as an example of a substance that has the effect of lowering the intraluminal pH value, but other fermentable carbohydrates can be considered to perform a similar function.
The uptake of EGCG into epithelial cells was thought to be through passive diffusion, but in recent years it has been discovered that a specific transporter responsible for intestinal absorption of EGCG is actively expressed on the surface of ileal epithelial cells. did. Delivery of EGCG to ileal epithelial cells is believed to be useful for increasing the understanding of the beneficial health effects expected from increasing plasma concentrations of EGCG.

以下は、上記考察の総括である。
カテキン類の中でも、(-)-エピガロカテキンガレート(EGCG)は、生理的pHで自動酸化を受けるため、腸ではほとんど吸収されない可能性がある。フラクトオリゴ糖(フラクトオリゴ糖)は腸内細菌により発酵され、主に乳酸に変換される。この研究は、食餌フラクトオリゴ糖が自己酸化を防止することにより、ラットにおけるEGCGの血漿濃度を増加させるのに役立つかどうかを明らかにするために行なわれた。ラットは、0.3%(w/w)のEGCG食、またはさらに1%、3%または5%(w/w)のフラクトオリゴ糖を加えたEGCG食のいずれかの割り当てられた食餌を2週間摂取した。その結果、EGCGの血漿中濃度は、EGCG単独群では0.21±0.05μMであり、EGCG+5%フラクトオリゴ糖群では0.65±0.12μMと有意に高かった。フラクトオリゴ糖処理は、盲腸内容物中の乳酸レベルを用量依存的に増加させ、盲腸内容物のpHを低下させ、LactobacillusとCollinsellaの存在量を変化させた。フラクトオリゴ糖含有飼料を給餌したラットの盲腸内容物中のEGCG濃度は比較的高いレベルを維持したことから、フラクトオリゴ糖はEGCGを自己酸化から保護することに寄与した可能性が高い。結論として、フラクトオリゴ糖は腸管の内腔のpHを低下させ、EGCGをある程度損なわず、その結果、EGCGを腸から血液循環に取り込むことを可能にしたと考えられる。
なお、上記試験はEGCGを対象としているが、他のカテキン類もEGCGと同様のpH安定性であることが知られているから、他のカテキン類についてもEGCGと同様の効果が得られるものと推察される。
The following is a summary of the above considerations.
Among catechins, (-)-epigallocatechin gallate (EGCG) undergoes autooxidation at physiological pH, and therefore may be hardly absorbed in the intestine. Fructooligosaccharides (fructooligosaccharides) are fermented by intestinal bacteria and mainly converted into lactic acid. This study was conducted to determine whether dietary fructooligosaccharides help increase plasma concentrations of EGCG in rats by preventing autooxidation. Rats were placed on their assigned diet for two weeks on either a 0.3% (w/w) EGCG diet or an EGCG diet supplemented with 1%, 3% or 5% (w/w) fructooligosaccharides. Ingested. As a result, the plasma concentration of EGCG was 0.21±0.05 μM in the EGCG alone group, and was significantly higher at 0.65±0.12 μM in the EGCG+5% fructooligosaccharide group. Fructooligosaccharide treatment dose-dependently increased lactic acid levels in the cecal contents, decreased the pH of the cecal contents, and altered the abundance of Lactobacillus and Collinsella. Since the EGCG concentration in the cecal contents of rats fed the fructooligosaccharide-containing diet remained at a relatively high level, it is likely that fructooligosaccharides contributed to protecting EGCG from autooxidation. In conclusion, it appears that fructooligosaccharides lowered the pH of the lumen of the intestinal tract, leaving EGCG intact to some extent, thereby allowing EGCG to be taken up from the intestine into the blood circulation.
Although the above test targeted EGCG, it is known that other catechins have the same pH stability as EGCG, so it is assumed that the same effects as EGCG can be obtained with other catechins as well. It is inferred.

Claims (14)

発酵性炭水化物を有効成分として含有する、カテキン類のバイオアベイラビリティ向上組成物。 A composition for improving the bioavailability of catechins, which contains fermentable carbohydrates as an active ingredient. 発酵性炭水化物がフラクトオリゴ糖である、請求項1に記載のカテキン類のバイオアベイラビリティ向上組成物。 The composition for improving bioavailability of catechins according to claim 1, wherein the fermentable carbohydrate is a fructooligosaccharide. カテキン類がエピガロカテキンガレートである、請求項1又は2に記載のカテキン類のバイオアベイラビリティ向上組成物。 The composition for improving the bioavailability of catechins according to claim 1 or 2, wherein the catechins are epigallocatechin gallate. カテキン類の自動酸化を抑制する作用を併せ持つ、請求項1~3の何れか1項に記載のカテキン類のバイオアベイラビリティ向上組成物。 The composition for improving the bioavailability of catechins according to any one of claims 1 to 3, which also has the effect of suppressing autoxidation of catechins. 管腔を低pH状態に保持する作用を併せ持つ、請求項1~4の何れか1項に記載のカテキン類のバイオアベイラビリティ向上組成物。 The composition for improving the bioavailability of catechins according to any one of claims 1 to 4, which also has the effect of maintaining the lumen in a low pH state. 乳酸産生量を高める作用を併せ持つ、請求項1~5の何れか1項に記載のカテキン類のバイオアベイラビリティ向上組成物。 The composition for improving bioavailability of catechins according to any one of claims 1 to 5, which also has the effect of increasing lactic acid production. 乳酸産生菌を活性化させる作用を併せ持つ、請求項1~6の何れか1項に記載のカテキン類のバイオアベイラビリティ向上組成物。 The composition for improving the bioavailability of catechins according to any one of claims 1 to 6, which also has the effect of activating lactic acid-producing bacteria. 乳酸産生菌がLactobacillus属又はCollinsella属である、請求項7に記載のカテキン類のバイオアベイラビリティ向上組成物。 The composition for improving bioavailability of catechins according to claim 7, wherein the lactic acid-producing bacterium belongs to the genus Lactobacillus or the genus Collinsella. カテキン類と発酵性炭水化物を含有する組成物。 A composition containing catechins and fermentable carbohydrates. カテキン類の含有量100質量部に対し、発酵性炭水化物の含有量が333~1667質量部である請求項9に記載の組成物。 The composition according to claim 9, wherein the content of fermentable carbohydrate is 333 to 1667 parts by mass per 100 parts by mass of catechins. 発酵性炭水化物がフラクトオリゴ糖である、請求項9又は10に記載の組成物。 The composition according to claim 9 or 10, wherein the fermentable carbohydrate is a fructooligosaccharide. カテキン類がエピガロカテキンガレートである、請求項9~11の何れか1項に記載の組成物。 The composition according to any one of claims 9 to 11, wherein the catechins are epigallocatechin gallate. 発酵性炭水化物を経口摂取することを特徴とする、カテキン類のバイオアベイラビリティ向上方法。 A method for improving the bioavailability of catechins, which comprises orally ingesting fermentable carbohydrates. 発酵性炭水化物がフラクトオリゴ糖である、請求項13に記載のカテキン類のバイオアベイラビリティ向上方法。
The method for improving the bioavailability of catechins according to claim 13, wherein the fermentable carbohydrate is a fructooligosaccharide.
JP2022046739A 2022-03-23 2022-03-23 Composition for improving bioavailability of catechins Pending JP2023140745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022046739A JP2023140745A (en) 2022-03-23 2022-03-23 Composition for improving bioavailability of catechins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022046739A JP2023140745A (en) 2022-03-23 2022-03-23 Composition for improving bioavailability of catechins

Publications (1)

Publication Number Publication Date
JP2023140745A true JP2023140745A (en) 2023-10-05

Family

ID=88205322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022046739A Pending JP2023140745A (en) 2022-03-23 2022-03-23 Composition for improving bioavailability of catechins

Country Status (1)

Country Link
JP (1) JP2023140745A (en)

Similar Documents

Publication Publication Date Title
US11696921B2 (en) Synthetic composition for microbiota modulation
US11529365B2 (en) Synthetic composition for microbiota modulation
CN107427528B (en) Glycan therapeutics and related methods
US11998558B2 (en) Synthetic composition for treating antibiotic associated complications
AU2016372446A1 (en) Mixture of HMOs
CA3200468A1 (en) Gold kiwifruit compositions and methods of preparation and use therefor
US20080175899A1 (en) Formulation for promoting sinus health in nasal cavities
JP6573639B2 (en) Intestinal bacterial count inhibitors, foods, and pharmaceuticals
JP2009137899A (en) Intestinal harmful bacteria reducing agent, food or medicine containing the same
TWI610680B (en) Olive extract containing Des Rhamnosyl Acteoside
EP2901868B1 (en) Composition for food and fat absorption inhibitor
JP6810610B2 (en) Organic acid production promoters and preventive and / or ameliorating agents for inflammatory bowel disease
JPH11180888A (en) Antimicrobial, infection preventive and food product against helicobacter pylori bacteria
JP2023140745A (en) Composition for improving bioavailability of catechins
EP4494483A1 (en) Composition for controlling proliferation of bacterium in intestine, and use thereof
JP4644834B2 (en) Α-amylase inhibitor, α-glucosidase inhibitor, glucose absorption inhibitor and use thereof
JP4789453B2 (en) Anthocyanin absorption promoter
JP2010077065A (en) Composition for oral administration containing plant of genus salacia
JP2024085583A (en) P-cresol production inhibitor, food and drink, and method for producing the same
JP2019043952A (en) AGENTS FOR IMPROVING INTESTINAL ENVIRONMENT AND INHIBITORS OF β-GLUCURONIDASE
TW200522973A (en) Neutralization agent of vacuolization toxin
Molan et al. Blueberries: Genotype-dependent variation in antioxidant, free-radical scavenging, and prebiotic activities
JP2006206474A (en) Functional food and medicine
KR101305984B1 (en) Food for use of inhibition of alcohol uptake or suppression of liver damage due to alcohol comprising green tea extract containing catechin gallate, and gamma-polyglutamic acid
KR101321744B1 (en) Composition and food for use of inhibition of alcohol uptake or suppression of liver damage due to alcohol comprising green tea extract containing catechin gallate, and gamma-polyglutamic acid

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20220323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20250130