JP2023120622A - 成膜方法および成膜装置 - Google Patents
成膜方法および成膜装置 Download PDFInfo
- Publication number
- JP2023120622A JP2023120622A JP2022023572A JP2022023572A JP2023120622A JP 2023120622 A JP2023120622 A JP 2023120622A JP 2022023572 A JP2022023572 A JP 2022023572A JP 2022023572 A JP2022023572 A JP 2022023572A JP 2023120622 A JP2023120622 A JP 2023120622A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- applying
- mounting table
- substrate mounting
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02115—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/503—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using DC or AC discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
- C23C16/509—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/515—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/56—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32091—Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32174—Circuits specially adapted for controlling the RF discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32798—Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
- H01J37/32816—Pressure
- H01J37/32834—Exhausting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/20—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
- H01L21/2003—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
- H01L21/2015—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/332—Coating
- H01J2237/3321—CVD [Chemical Vapor Deposition]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Drying Of Semiconductors (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
本開示は、成膜方法および成膜装置に関する。
特許文献1には、ハードマスク用のアモルファスカーボン層の堆積方法が記載されている。その方法は、RF電源と整合回路網をシャワーヘッドに、あるいはシャワーヘッドとウエハペデスタルの両方に結合し、シャワーヘッドとウエハペデスタルの間に電界を発生させ、プラズマを形成することで、炭化水素化合物のプラズマ熱分解を生じさせてアモルファスカーボン層を堆積させるものである。
本開示は、低ストレスのカーボン膜を成膜することができる成膜方法および成膜装置を提供する。
本開示の一態様に係る成膜方法は、処理容器内に設けられた基板載置台上に基板を載置する工程と、前記処理容器内を排気して減圧する工程と、減圧された前記処理容器内に炭素含有ガスを含む処理ガスを供給しつつ、前記基板載置台に、プラズマ生成用の高周波電力を印加してプラズマを生成し、前記基板上にカーボン膜を成膜する工程と、前記基板載置台に、プラズマ生成用の高周波電力を印加するとともに、前記基板載置台と対向する対向電極に負の直流電圧を印加してプラズマ処理を行う工程と、を有する。
本開示によれば、低ストレスのカーボン膜を成膜することができる成膜方法および成膜装置が提供される。
以下、添付図面を参照して実施形態について説明する。
<第1の実施形態>
まず、第1の実施形態について説明する。
まず、第1の実施形態について説明する。
[成膜装置の一例]
図1は第1の実施形態に係る成膜方法を実施する成膜装置の一例を概略的に示す断面図である。
図1は第1の実施形態に係る成膜方法を実施する成膜装置の一例を概略的に示す断面図である。
本例の成膜装置100は、基板W上にハードマスクに適したカーボン膜を成膜するものであり、容量結合プラズマ処理装置として構成されている。基板Wとしては、例えば半導体ウエハを挙げることができるが、これに限定されない。
この成膜装置100は、略円筒状をなし、金属、例えば表面が陽極酸化処理されたアルミニウムで構成された処理容器(チャンバー)10を有している。この処理容器10は保安接地されている。
処理容器10の底部には、セラミックス等からなる絶縁板12を介して円柱状の金属製の支持台14が配置され、この支持台14の上に金属例えばアルミニウムで構成された基板載置台16が設けられている。基板載置台16は下部電極を構成する。基板載置台16は上面に基板Wを静電力で吸着保持する静電チャック18を有している。この静電チャック18は、絶縁体の内部に電極20が設けられた構造を有するものであり、電極20に吸着用直流電源22から直流電圧を印加することにより、クーロン力等の静電力により基板Wが吸着保持される。
静電チャック18の周囲部分には、プラズマ処理の均一性を向上させるための、例えばシリコンからなる導電性のフォーカスリング24が配置されている。基板載置台16および支持台14の側面には、例えば石英からなる円筒状の内壁部材26が設けられている。
支持台14の内部には冷媒室28が設けられている。この冷媒室28には、外部に設けられた図示しないチラーユニットより配管30a,30bを介して冷媒、例えば冷却水が循環供給され、冷媒によって基板載置台16上の基板Wの処理温度が制御される。
さらに、図示しない伝熱ガス供給機構からの伝熱ガス、例えばHeガスがガス供給ライン32を介して静電チャック18の上面と基板Wの裏面との間に供給される。
下部電極である基板載置台16には、プラズマ生成用の第1の高周波電源88およびバイアス印加用の第2の高周波電源91が電気的に接続されている。第1の高周波電源88から基板載置台16に給電する給電線89には整合器87が介装されている。第2の高周波電源91からの給電線92は、給電線89に接続されており、給電線92には整合器90が介装されている。第1の高周波電源88は第2の高周波電源91よりも周波数が高い。第1の高周波電源88から供給される高周波電力の周波数は40MHz以上が好ましい。また、第2の高周波電源91から供給される高周波電力の周波数は3.2MHz以下が好ましい。一例として、第1の高周波電源88が40MHz、第2の高周波電源91が3.2MHzの組み合わせを挙げることができる。また、第1の高周波電源88から供給される高周波電力のパワーは100W~1kWの範囲が好ましく、第2の高周波電源91から供給される高周波電力のパワーは500W~5kWの範囲が好ましい。
整合器87,90は、それぞれ第1および第2の高周波電源88,91側のインピーダンスに負荷(プラズマ)インピーダンスを整合させるためのものである。すなわち、整合器87,90は、処理容器10内にプラズマが生成されている時に第1および第2の高周波電源88、91の内部インピーダンスと負荷インピーダンスが見かけ上一致するように機能する。
基板載置台(下部電極)16の上方には、基板載置台16と対向するように上部電極34が設けられている。そして、上部電極34および基板載置台(下部電極)16の間の空間がプラズマ生成空間となる。
上部電極34は、絶縁性遮蔽部材43を介して、処理容器10の上部に支持されている。上部電極34は、基板載置台16との対向面を構成しかつ多数のガス吐出孔37を有する電極板36と、この電極板36を着脱自在に支持する電極支持体38とによって構成されている。電極板36は導電体で構成され、例えば、一般的に用いられるシリコンで構成することができるが、後述するようにカーボンで構成してもよい。電極支持体38の内部には、ガス拡散室40が設けられ、このガス拡散室40からはガス吐出孔37に連通する多数のガス通流孔41が下方に延びている。電極支持体38にはガス拡散室40へ処理ガスを導くガス導入口42が形成されており、このガス導入口42には後述するガス供給部50に接続されたガス配管51が接続されている。そして、ガス供給部50から供給された処理ガスがガス拡散室40に供給され、ガス通流孔41およびガス吐出孔37を介して処理容器10内に下部電極である基板載置台16に向けて供給される。すなわち、上部電極34はシャワーヘッドとして構成される。
上部電極34には、給電線95を介して負の直流電圧を印加するための直流電源94が電気的に接続されている。給電線95には、直流電源94の下流側にローパスフィルタ93が接続されている。ローパスフィルタ93は、高周波電源88,91からの高周波電力が直流電源94に供給されないようにするためのものである。直流電源94からの直流電圧の絶対値は300V以上が好ましい。
ガス供給部50は、炭素含有ガス(CxHy)、希ガス、例えばArガスやHeガス、水素ガス(H2ガス)といったガスを供給する複数のガス供給源と、これら複数のガス供給源から各ガスを供給するための複数のガス供給配管とを有している。各ガス供給配管には、開閉バルブと、マスフローコントローラのような流量制御器とが設けられており(いずれも図示せず)、これらにより、上記ガスの供給・停止および各ガスの流量制御を行うことができるようになっている。なお、本例では希ガスとしてHeガスおよびArガスを供給するようになっているが、それに限定されず、例えばArガスのみであってもよく、他の希ガスであってもよい。また、炭素含有ガスのみであってもよい。
処理容器10の底部には排気口60が設けられ、この排気口60に排気管62を介して排気装置64が接続されている。排気装置64は、自動圧力制御バルブおよび真空ポンプを有し、この排気装置64により、処理容器10内を排気するとともに、処理容器10内を所望の真空度に保持することが可能となっている。処理容器10の側壁には、処理容器10に対して基板Wを搬入出するための搬入出口65が設けられており、この搬入出口65はゲートバルブ66で開閉するように構成されている。なお、処理容器10の内壁に沿って、処理容器10にエッチング副生物(デポ)が付着することを防止するための着脱自在のデポシールド(図示せず)が設けられている。
成膜装置100の構成部であるガス供給部50のバルブ類や流量制御器、高周波電源88、91、直流電源94等は、制御部80により制御される。制御部80は、CPUを有する主制御部と、入力装置、出力装置、表示装置、および記憶装置とを有している。そして、記憶装置の記憶媒体に記憶された処理レシピに基づいて成膜装置100の処理が制御される。
[成膜方法]
次に、図1の成膜装置により実施される第1の実施形態に係る成膜方法について説明する。
次に、図1の成膜装置により実施される第1の実施形態に係る成膜方法について説明する。
図2は第1の実施形態に係る成膜方法のフローの一例を示すフローチャートである。
図2に示すように、本実施形態では、ステップST1~ステップST4を実施する。
図2に示すように、本実施形態では、ステップST1~ステップST4を実施する。
ステップST1は、基板Wを処理容器10内に搬入し、基板載置台16上に載置する。このとき、基板載置台16の温度は、載置された基板Wの温度が150℃以下になるような温度とすることが好ましい。基板Wとしては、例えば半導体ウエハを用いることができる。基板Wである半導体ウエハとしては、図3に示すように、Si基体101上に下地膜102が形成されたものが例示される。下地膜102としては、SiO2膜(例えば熱酸化膜)やSiNx膜等のSi含有膜が例示される。
ステップST2は、処理容器10内を排気して減圧する。このとき、不活性ガス、例えば希ガスであるArガスやHeガスを供給しつつ、処理容器10内を排気する。処理容器10内の圧力は20mTorr(2.66Pa)以下が好ましい。
ステップST3は、減圧された処理容器10に炭素含有ガスを含む処理ガスを供給しつつ、下部電極である基板載置台16に、第1の高周波電源88からのプラズマ生成用高周波電力を印加することによりプラズマを生成し、基板上にカーボン膜を成膜する。具体例としては、図4に示すように、図3の基板Wの下地膜102上にカーボン膜103を成膜する。ステップST3の期間に、第2の高周波電源91から基板載置台16にバイアスを印加するステップを行うことが好ましい。第2の高周波電源91から基板載置台16にバイアスを印加することによりカーボン膜のストレスを低減することができる。
プラズマ生成に用いる炭素含有ガスとしては、例えばアセチレン(C2H2)ガスを用いることができる。炭素含有ガスとしては、アセチレン(C2H2)ガスの他、メタン(CH4)ガス、エチレン(C2H4)ガス、エタン(C2H6)ガス、プロピレン(C3H6)ガス、プロピン(C3H4)ガス、プロパン(C3H8)ガス、ブタン(C4H10)ガス、ブチレン(C4H8)ガス、ブタジエン(C4H6)ガス、フェニルアセチレン(C8H6)ガスを用いることができる。また、これらのガスから選択される複数のガスを含む混合ガスであってもよい。また、炭素含有ガスの他に希ガスを添加してもよい。希ガスとしてはArガスやHeガスを用いることができる。
ステップST4は、下部電極である基板載置台16に、高周波電源88からの高周波電力を印加するとともに、基板載置台16と対向する対向電極である上部電極34に、直流電源94から負の直流電圧を印加してプラズマ処理を行う。ステップST4のプラズマ処理の際には、処理容器10内に例えばArガス等の希ガスを導入してプラズマを生成する。この際に、希ガスとともに水素ガス(H2ガス)を添加してもよい。このH2ガスを添加の効果については、以下のようなモデルが考えられる。
まず、Arガス等の希ガスのみでプラズマ処理した場合を考える。希ガスにより、基板載置台16と対向する対向電極である上部電極34からスパッタされたカーボン原子は、他の原子と結合することなしに基板に供給される。その際に、カーボン原子のイオンエネルギーにもよるが、基板表面に数原子層の深さをもって打ち込まれる。打ち込まれた後、カーボン原子は近傍のカーボン結合を再構成させ、それにより膜の構造変化が起こることになる。ところがカーボン原子が打ち込まれる前の膜の状態は構造として安定になるように構成されているところに、カーボン原子が突如として打ち込まれた場合、カーボン原子のダングリングボンドがすべて近傍のカーボン原子と安定な結合を作るような再構成が起こり得ず、不安定な構造のままで打ち込まれた位置に存在することがありうる。その場合、不安定なダングリングボンドは、局所的な膜ストレスの要因となったり、成膜後大気開放する際の大気中の水分との反応サイトとなったりしうる。一方、水素を希ガスに添加した場合は、基板載置台と対向する対向電極である上部電極34からスパッタされたカーボン原子は、解離した水素と結合してCHxとなる。この場合、ダングリングボンドのいくつかは基板に侵入する前より水素で終端されているため、基板表面に打ち込まれた際に膜の再構成が起こりやすく、結果として膜のストレスが低減する場合がある。
なお、通常のプラズマCVD成膜でも同様な現象は起こりうる。例えば、CH4などのガスを炭素含有ガスとしてプラズマCVDで成膜した場合、CH4分子から水素が様々な衝突過程によって解離し、CHxが基板に対して供給されることが起こりうる。しかしながら、本実施形態と従来手法の違いは下記の点にあると思われる。すなわち、本実施形態では、電極間距離が、数cmのオーダーであること、圧力帯が数10mTorrの低圧域であることなどから、対向電極からスパッタされたカーボン原子に適切な量の水素が付着し、その際に、従来の水素を多く含む炭素含有ガスから出発してプラズマ中で解離されるよりも、より炭素リッチなCHxが生成し、これが基板に打ち込まれた際に、効果的に膜ストレスを緩和すると考えられる。
ステップST4においては、対向電極である上部電極34に直流電圧を印加することにより、基板W上に成膜されたカーボン膜のストレスを緩和することができる。
以下、具体的に説明する。
炭素含有ガスをプラズマ化することにより成膜されたカーボン膜は、アモルファスカーボン膜であり、sp3結合比が大きいダイアモンドライクカーボンとして構成され、高密度かつ高エッチング耐性を有する膜である。このため、次世代のハードマスクとして適している。
炭素含有ガスをプラズマ化することにより成膜されたカーボン膜は、アモルファスカーボン膜であり、sp3結合比が大きいダイアモンドライクカーボンとして構成され、高密度かつ高エッチング耐性を有する膜である。このため、次世代のハードマスクとして適している。
一方、ハードマスクは、高密度であることに加え、膜ストレスが低いことが要求される。すなわち、一般に、同じストレスの膜でも膜厚が厚くなると膜のストレスに起因する基板の反りが大きくなり、ハードマスクに要求される膜厚が1μm以上の場合には、搬送やリソグラフィーを行うための基板の許容反り量(例えば200μm)を超えて成膜後の後工程処理を行うことが困難となるおそれがある。しかし、従来の炭素含有ガスのプラズマにより成膜されたカーボン膜は、膜密度の上昇と同時に膜ストレスが高いものとなってしまう。つまり、膜密度と膜ストレスとはトレードオフの関係であり、膜密度が高密度になるほど膜ストレスが上昇し、高密度で低ストレスのカーボン膜を得ることは困難であった。
本実施形態では、ステップST3で、炭素含有ガスをプラズマ化してプラズマCVDによりカーボン膜を成膜する際には、図5に示すように、基板Wにカーボン膜201が成膜されると同時に、基板Wと対向する対向電極である上部電極34の表面にもカーボン膜(CxHy膜)202が堆積される。その成膜量は、表面の電位状態にもよるが、基板への成膜量と同程度と考えてよい。例えば、基板W上に成膜量5nmのカーボン膜201を成膜した場合、上部電極34に堆積されるカーボン膜202も5nm程度となる。この状態で、ステップST4で上部電極34に負の直流電圧を印加すると、図6に示すように、上部電極34から2次電子203が放出されるとともに、プラズマ中のイオン(例えばアルゴンイオン)204が上部電極34に引き込まれてその表面のカーボン膜202をスパッタすることによりカーボン粒子(CxHy)205が放出される。そして、図7に示すように、よりエネルギーが大きいカーボン粒子205が基板W上に成膜されたカーボン膜201に打ち込まれることにより、カーボン膜201の応力が緩和されるものと考えられる。
このことを検証した実験について説明する。上部電極34の電極板36をシリコン製とし、高周波プラズマを生成させつつ上部電極34に直流電圧を印加して成膜し、成膜時間と膜の応力の関係を調査した。ここでは、図8に示すように、ステップST3のカーボン膜の成膜(Depo)の時間を5secとし、ステップST4の直流電圧印加プラズマ処理(DCPlasma)の時間を変化させ、これらを8回繰り返した。Depoの条件は、圧力:20mTorr、40MHzの高周波電力(HF)のパワー:400W、3.2MHzの高周波電力(LF)のパワー:500W、直流電圧(DC):-75V、炭素含有ガス:C2H2ガス、C2H2ガス/Arガスの流量:50/100sccmとした。また、DCPlasmaの条件は、圧力100mTorr、HFのパワー:400W、DC:-900V、H2ガス/Arガスの流量:200/500sccmとした。
その結果を図9に示す。図9の(a)はDCPlasma時間とカーボン膜厚との関係を示す図であり、(b)はDCPlasma時間と膜ストレス(コンプレッシブ)との関係を示す図である。図9の(a)に示すように、DCPlasma時間が長くなるに従い、膜厚が厚くなる傾向が見られた。また、図9の(b)に示すように、DCPlasma時間が20secまでの膜サンプルは応力低減効果が大きかったが、30secになると応力低減効果が飽和する結果が得られた。また、直流電圧印加時間が20secまでのサンプルは、基板上に成膜された膜はカーボン膜であったのに対し、印加時間が30secのサンプルでは膜中にシリコンが検出された。
このことは、対向電極である上部電極34(電極板36)に堆積されたカーボン膜がプラズマ処理中にスパッタされて基板上の膜にカーボン粒子が打ち込まれることにより膜応力が低減し、カーボン膜がすべてスパッタされてシリコンがスパッタされると応力低減が生じないことを示している。
また、この実験結果から、電極板36をカーボンで構成すれば、電極板36に堆積されたカーボン膜が全てスパッタされても膜応力を緩和する効果が維持されることが導かれる。
ステップST4の直流電圧を印加してプラズマ処理を行う工程においては、直流電源94から上部電極34へ印加される直流電圧の絶対値は300V以上が好ましい。
このことを検証した実験結果を図10に示す。ここでは、Depoの条件については図8と同じ条件とし、DCPlasmaの条件については時間を5secに固定し、DC電圧を-300~-900Vで変化させた以外は図8と同じ条件とした。
図10に示すように、DC電圧の絶対値が300Vから増加するに従い、膜厚が厚くなり、かつ膜のストレスの低減効果が大きくなることがわかる。DC電圧の絶対値は、高いほど上部天板からのカーボンスパッタ量が増加すると考えられるため、高ければ高いほどよい。ただし、装置によってはDC電源の仕様の制約があり、図10で示した実験では、DC電圧の絶対値を最大900Vとした。
図9の実験結果にも示すように、ステップST3のカーボン膜を成膜する工程と、ステップST4の直流電圧を印加する工程とは、交互に繰り返すことが好ましい。これにより基板W上にカーボン膜を薄く成膜した後に、カーボン粒子がカーボン膜に打ち込まれるので、カーボン粒子打ち込みによる応力緩和効果を大きくすることができる。このとき、1回のカーボン膜の膜厚を10nm以下にすることが好ましい。
このことを検証した実験結果を図11に示す。ここでは、DCPlasmaを行わずに図8と同じ条件のDepoを40sec行ったものをRef.とし、DCPlasmaを20secに固定して、Depoの時間およびステップST3とステップST4のサイクル数を変えたものをケース1~3とした。Depoの条件およびDCPlasmaの条件を時間以外は図8と同じ条件とした。具体的には、表1に示すように、ケース1ではDepo時間:5sec、サイクル数:8とし、ケース2ではDepo時間:10sec、サイクル数:4、ケース3ではDepo時間:20sec、サイクル数:2とした。この際の1サイクル当りの膜厚は、ケース1で10nm、ケース2で20nm、ケース3で40nmであった。
図11に示すように、ケース1~3はいずれも、Ref.よりも膜ストレスが低下しており、特に、ケース1で最も膜ストレスが低かった。このことから、Depoによる膜厚10nm以下ごとにDCPlasmaを行うシーケンスが、ストレス低減効果が高いことが確認された。
ステップST4の直流電圧を印加する工程では、その際の圧力が高圧になるほどストレス低減効果を高めることができ、その際の圧力は30mTorr(4Pa)以上であることが好ましい。
このことを検証した実験結果を図12に示す。ここでは、DCPlasmaの際の圧力を30~100mTorrの間で変化させ、DepoとDCPlasmaを5secずつ8サイクル繰り返し行った。このときのDepoの条件は図8と同じ条件とし、DCPlasmaの条件は、時間および圧力以外、図8の条件と同じ条件とした。
図12の(a)はDCPlasmaの圧力とカーボン膜厚との関係を示す図であり、(b)はDCPlasmaの圧力と膜ストレス(コンプレッシブ)との関係を示す図である。図12の(a)に示すように、DCPlasmaの圧力が高くなるに従い、膜厚が厚くなる傾向が見られた。また、図12の(b)に示すように、DCPlasmaの圧力が高くなるに従い、膜ストレスが低下する傾向が見られ、ステップST4の圧力が高圧になるほどストレス低減効果が大きくなることが確認された。
ステップST4の直流電圧を印加する工程においては、その際のプラズマ生成用の第1の高周波電源88からの高周波パワー(HFパワー)が高いほど膜ストレス低減効果を高めることができ、その際のパワーは200W以上であることが好ましい。
このことを検証した実験結果を図13に示す。ここでは、DCPlasmaの際のHFパワーを200W、400W、800Wと変化させ、DepoとDCPlasmaを5secずつ8サイクル繰り返し行った。このときのDepoの条件は図8と同じ条件とし、DCPlasmaの条件は、時間およびHFパワー以外、図8の条件と同じ条件とした。
図13の(a)はDCPlasmaのHFパワーとカーボン膜厚との関係を示す図であり、(b)はDCPlasmaのHFパワーと膜ストレス(コンプレッシブ)との関係を示す図である。図13の(a)に示すように、DCPlasmaのHFパワーが高くなるに従い、膜厚が厚くなる傾向が見られた。また、図13の(b)に示すように、DCPlasmaのHFパワーが高くなるに従い、膜ストレスが低下する傾向が見られ、ステップST4のHFパワーが高いほどストレス低減効果が大きくなることが確認された。
図1の成膜装置100では、バイアス印加用として第2の高周波電源91からプラズマ生成用の高周波電力より低い周波数(例えば3.2MHz)の高周波電力を印加したが、直流のバイアスを印加してもよい。
図14は、直流バイアスを印加する成膜装置の一例を示す断面図である。図14の成膜装置100´は、下部電極である基板載置台16にバイアス印加用の直流電源97が電気的に接続されている。バイアス印加用の直流電源97からの給電線98は、第1の高周波電源88の給電線89に接続されており、バイアス印加用の直流電源97からの直流電圧は給電線98および給電線89を介して基板載置台16に印加される。直流電源97に接続される給電線98には、第1の高周波電源88からの高周波電力が直流電源97に供給されないようにローパスフィルタ96が介装されている。基板載置台16には直流電源97の負極が接続される。
図14の成膜装置100´の他の構成は、図1の成膜装置100と同じであるため、同じ符号を付して説明を省略する。
<第2の実施形態>
次に、第2の実施形態に係る成膜方法について説明する。
図15は第2の実施形態に係る成膜方法のフローの一例を示すフローチャートである。本実施形態は、上述した図14に示す成膜装置100´を用いて行うことができる。
図15に示すように、本実施形態では、ステップST11~ステップST15を実施する。
次に、第2の実施形態に係る成膜方法について説明する。
図15は第2の実施形態に係る成膜方法のフローの一例を示すフローチャートである。本実施形態は、上述した図14に示す成膜装置100´を用いて行うことができる。
図15に示すように、本実施形態では、ステップST11~ステップST15を実施する。
ステップST11は、基板Wを処理容器10内に搬入し、基板載置台16上に載置する。このステップST11は第1の実施形態のステップST1と同様に行われる。
ステップST12は、処理容器10内を排気して減圧する。このステップST12は第1の実施形態のステップST2と同様に行われる。
ステップST13は、減圧された処理容器10に炭素含有ガスを含む処理ガスを供給しつつ、下部電極である基板載置台16に、第1の高周波電源88からのプラズマ生成用高周波電力を印加することによりプラズマを生成し、基板上にカーボン膜を成膜する。このステップST13は第1の実施形態のステップST3と同様に行われる。
ステップST14およびステップST15は、ステップST13のカーボン膜を成膜している期間に交互に実施される。すなわち、ステップST13の基板載置台16への高周波電源88からの高周波電力印加と、処理容器10内へのカーボン含有ガスを含むガスの供給を継続的に行っている状態で、ステップST14およびステップST15が交互に実施される。
ステップST14は、基板載置台16に直流電源97からバイアス用の直流電圧を印加する。このような直流バイアスは、第1の実施形態における高周波バイアスと同様、成膜されるカーボン膜のストレスを低減する効果を有する。基板載置台16に印加されるバイアス用の直流電圧は負の直流電圧であり、500~3kVが好ましい。なお、ステップST14は、図1の成膜装置100を用いて、第2の高周波電源91から基板載置台16に高周波バイアスを印加して行ってもよい。
ステップST15は、第1の実施形態のステップST4と同様、対向電極である上部電極34に直流電源94から負の直流電圧を印加してプラズマ処理を行う。
このように、ステップST14で基板載置台16への直流バイアスの印加により、成膜するカーボン膜のストレスを低減することができ、ステップST15の上部電極34への直流電圧印加により、成膜されたカーボン膜にカーボン粒子を打ち込んで膜ストレスを低減することができる。そして、ステップST13のカーボン膜の成膜中に、ステップST14による成膜するカーボン膜自体のストレス低減と、ステップST15による成膜された後のカーボン膜のストレス緩和とが交互に繰り返し実施されることにより、ストレスの低いカーボン膜を得ることができる。
ステップST14とステップST15は、下部電極である基板載置台16と上部電極34への直流電圧印加の切換えで実現できるので、高速で行うことができ、ステップST15のカーボン膜のストレス緩和作用を高めることができる。
本実施形態では、ステップST14とステップST15を、下部電極である基板載置台16と上部電極34への直流電圧印加の切換えで実現できるので、一つの直流電源により基板載置台16と上部電極34へ直流電圧を切り替えるようにしてもよい。そのような成膜装置の一例を図16に示す。図16はそのような成膜装置の要部を概略的に示す模式図である。本例の成膜装置100″は、一つの直流電源110を有しており、直流電源110の負極がスイッチ111に接続されている。スイッチ111は、給電線112により上部電極34に接続され、給電線113により下部電極である基板載置台16に接続されている。給電線112および113には、第1の高周波電源88からの高周波電力が直流電源110に供給されないように、それぞれローパスフィルタ114および115が介装されている。
このような構成により、スイッチ111の切換えにより、一つの直流電源110から基板載置台16と上部電極34とで直流電圧の印加を切換えてステップST14とステップST15を行うことができ、より簡易な構造の成膜装置を実現できる。
<他の適用>
以上、実施形態について説明したが、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の特許請求の範囲およびその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
以上、実施形態について説明したが、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の特許請求の範囲およびその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
例えば、上記実施形態の成膜装置は例示に過ぎず、種々の構成の装置を用いることができる。また、基板として半導体ウエハを用いた場合について示したが、基板は半導体ウエハに限らず、LCD(液晶ディスプレイ)用基板に代表されるFPD(フラットパネルディスプレイ)基板や、セラミックス基板等の他の基板であってもよい。
10;処理容器
16;基板載置台(下部電極)
34;上部電極
50;ガス供給部
64;排気装置
80;制御部
88;第1の高周波電源
91;第2の高周波電源
94、97、110;直流電源
100、100´、100″;成膜装置
101;Si基体
102;下地膜
103;カーボン膜
111;スイッチ
201;基板上のカーボン膜
202;上部電極に堆積されたカーボン膜(CxHy膜)
203;2次電子
204;イオン
205;カーボン粒子(CxHy)
W;基板
16;基板載置台(下部電極)
34;上部電極
50;ガス供給部
64;排気装置
80;制御部
88;第1の高周波電源
91;第2の高周波電源
94、97、110;直流電源
100、100´、100″;成膜装置
101;Si基体
102;下地膜
103;カーボン膜
111;スイッチ
201;基板上のカーボン膜
202;上部電極に堆積されたカーボン膜(CxHy膜)
203;2次電子
204;イオン
205;カーボン粒子(CxHy)
W;基板
Claims (18)
- 処理容器内に設けられた基板載置台上に基板を載置する工程と、
前記処理容器内を排気して減圧する工程と、
減圧された前記処理容器内に炭素含有ガスを含む処理ガスを供給しつつ、前記基板載置台に、プラズマ生成用の高周波電力を印加してプラズマを生成し、前記基板上にカーボン膜を成膜する工程と、
前記基板載置台に、プラズマ生成用の高周波電力を印加するとともに、前記基板載置台と対向する対向電極に負の直流電圧を印加してプラズマ処理を行う工程と、
を有する、成膜方法。 - 前記カーボン膜を成膜する工程を実施する期間に、前記基板載置台にバイアス用の高周波電力または直流電圧を印加する工程をさらに有する、請求項1に記載の成膜方法。
- 前記対向電極に負の直流電圧を印加して前記プラズマ処理を行う工程は、前記炭素含有ガスを含むガスを供給しない状態で実施される、請求項1または請求項2に記載の成膜方法。
- 前記カーボン膜を成膜する工程と、前記対向電極に負の直流電圧を印加して前記プラズマ処理を行う工程と、を交互に繰り返す、請求項1から請求項3のいずれか一項に記載の成膜方法。
- 前記カーボン膜を成膜する工程は、1回あたり10nm以下のカーボン膜を成膜する、請求項4に記載の成膜方法。
- 前記対向電極に負の直流電圧を印加して前記プラズマ処理を行う工程の期間、前記基板載置台にバイアス用の高周波電力または直流電圧を印加する工程を実施しない、請求項4または請求項5に記載の成膜方法。
- 前記対向電極に負の直流電圧を印加して前記プラズマ処理を行う工程は、圧力が4Pa以上で実施される、請求項4から請求項6のいずれか一項に記載の成膜方法。
- 前記対向電極に負の直流電圧を印加して前記プラズマ処理を行う工程の際に前記対向電極に印加される直流電圧は、絶対値が300V以上である、請求項2から請求項7のいずれか一項に記載の成膜方法。
- 前記対向電極に負の直流電圧を印加して前記プラズマ処理を行う工程の際に印加される前記プラズマ生成用の高周波電力のパワーは200W以上である、請求項1から請求項8のいずれか一項に記載の成膜方法。
- 前記基板載置台にバイアス用の直流電圧を印加する工程をさらに有し、
前記カーボン膜を成膜する工程を実施する期間に、前記基板載置台にバイアス用の直流電圧を印加する工程と、前記対向電極に負の直流電圧を印加してプラズマ処理を行う工程とを交互に繰り返す、請求項1に記載の成膜方法。 - 前記対向電極に負の直流電圧を印加してプラズマ処理を行う工程と、前記基板載置台にバイアス用の直流電圧を印加する工程とは、一つの直流電源からの直流電圧を切り替えて行う、請求項10に記載の成膜方法。
- 基板を収容する処理容器と、
前記処理容器内に基板を載置する基板載置台と、
前記基板載置台に対向して設けられた対向電極と、
前記処理容器内に、処理に使用するガスを供給するガス供給部と、
前記処理容器内を排気して前記処理容器内を減圧する排気部と、
前記基板載置台にプラズマ生成用の高周波電力を供給する高周波電源と、
前記対向電極に負の直流電圧を印加する直流電源と、
制御部と、
を有し、
前記制御部は、
前記基板載置台に基板を載置した状態で、前記排気部を前記処理容器内が所望の圧力に減圧されるように制御し、
減圧された前記処理容器内に炭素含有ガスを含む処理ガスを供給しつつ、前記基板載置台に、プラズマ生成用の高周波電力を印加してプラズマを生成し、前記基板上にカーボン膜を成膜する工程と、
前記基板載置台に、プラズマ生成用の高周波電力を印加するとともに、前記基板載置台と対向する対向電極に負の直流電圧を印加してプラズマ処理を行う工程と、
が実行されるように、前記ガス供給部、前記排気部、前記高周波電源、および前記直流電源を制御する、成膜装置。 - 前記成膜装置は、前記基板載置台にバイアス用の高周波電力または直流電圧を印加するバイアス用電源をさらに有し、
前記制御部は、前記カーボン膜を成膜する工程の期間に、前記基板載置台にバイアス用の高周波電力または直流電圧を印加する工程をさらに実行させるように制御する、請求項12に記載の成膜装置。 - 前記制御部は、前記カーボン膜を成膜する工程と、前記対向電極に負の直流電圧を印加して前記プラズマ処理を行う工程と、を交互に繰り返すように制御する、請求項12または請求項13に記載の成膜装置。
- 前記制御部は、前記対向電極に負の直流電圧を印加して前記プラズマ処理を行う工程が、前記炭素含有ガスを含むガスを供給しない状態で実施されるように制御する、請求項14に記載の成膜装置。
- 前記制御部は、前記対向電極に直流電圧を印加する工程の期間、前記基板載置台にバイアス用の高周波電力または直流電圧を印加する工程を実施しないように制御する、請求項14または請求項15に記載の成膜装置。
- 前記成膜装置は、前記基板載置台にバイアス用の直流電圧を印加するバイアス用電源をさらに有し、
前記制御部は、前記基板載置台にバイアス用の直流電圧を印加する工程をさらに実施するように制御し、
前記カーボン膜を成膜する工程を実施する期間に、前記対向電極に負の直流電圧を印加してプラズマ処理を行う工程と、前記基板載置台にバイアス用の直流電圧を印加する工程とを交互に繰り返すように制御する、請求項12に記載の成膜装置。 - 前記直流電源と前記バイアス用電源は、共通の直流電源であり、
前記制御部は、前記対向電極に負の直流電圧を印加してプラズマ処理を行う工程と、前記基板載置台にバイアス用の直流電圧を印加する工程とが、前記共通の直流電源からの直流電圧を切り替えて行われるように制御する、請求項17に記載の成膜装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022023572A JP2023120622A (ja) | 2022-02-18 | 2022-02-18 | 成膜方法および成膜装置 |
US18/838,661 US20250154645A1 (en) | 2022-02-18 | 2023-02-06 | Film forming method and film forming apparatus |
KR1020247030031A KR20240142552A (ko) | 2022-02-18 | 2023-02-06 | 성막 방법 및 성막 장치 |
PCT/JP2023/003733 WO2023157690A1 (ja) | 2022-02-18 | 2023-02-06 | 成膜方法および成膜装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022023572A JP2023120622A (ja) | 2022-02-18 | 2022-02-18 | 成膜方法および成膜装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023120622A true JP2023120622A (ja) | 2023-08-30 |
Family
ID=87578588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022023572A Pending JP2023120622A (ja) | 2022-02-18 | 2022-02-18 | 成膜方法および成膜装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20250154645A1 (ja) |
JP (1) | JP2023120622A (ja) |
KR (1) | KR20240142552A (ja) |
WO (1) | WO2023157690A1 (ja) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5121090B2 (ja) | 2000-02-17 | 2013-01-16 | アプライド マテリアルズ インコーポレイテッド | アモルファスカーボン層の堆積方法 |
US6914014B2 (en) * | 2003-01-13 | 2005-07-05 | Applied Materials, Inc. | Method for curing low dielectric constant film using direct current bias |
JP5332362B2 (ja) * | 2008-07-11 | 2013-11-06 | 東京エレクトロン株式会社 | プラズマ処理装置、プラズマ処理方法及び記憶媒体 |
JP7008474B2 (ja) * | 2016-11-30 | 2022-01-25 | 東京エレクトロン株式会社 | プラズマエッチング方法 |
US11158507B2 (en) * | 2018-06-22 | 2021-10-26 | Applied Materials, Inc. | In-situ high power implant to relieve stress of a thin film |
JP7557969B2 (ja) * | 2020-01-29 | 2024-09-30 | 東京エレクトロン株式会社 | エッチング方法、基板処理装置、及び基板処理システム |
-
2022
- 2022-02-18 JP JP2022023572A patent/JP2023120622A/ja active Pending
-
2023
- 2023-02-06 WO PCT/JP2023/003733 patent/WO2023157690A1/ja active Application Filing
- 2023-02-06 US US18/838,661 patent/US20250154645A1/en active Pending
- 2023-02-06 KR KR1020247030031A patent/KR20240142552A/ko active Pending
Also Published As
Publication number | Publication date |
---|---|
US20250154645A1 (en) | 2025-05-15 |
KR20240142552A (ko) | 2024-09-30 |
WO2023157690A1 (ja) | 2023-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI764008B (zh) | 高品質間隙填充的高偏壓沉積 | |
KR102165733B1 (ko) | 전자 빔 플라즈마 프로세스에 의해 형성된 다이아몬드상 탄소 층 | |
WO2020022318A1 (ja) | 成膜方法及び成膜装置 | |
US11043375B2 (en) | Plasma deposition of carbon hardmask | |
JP6431557B2 (ja) | プラズマ処理装置及びプラズマ処理方法 | |
WO2004107825A9 (ja) | プラズマ源及びプラズマ処理装置 | |
JP2023543450A (ja) | 処理チャンバにおけるデュアル周波数rf電力の使用方法 | |
JP6410592B2 (ja) | プラズマエッチング方法 | |
US20220319841A1 (en) | Deposition of low-stress carbon-containing layers | |
JP7049883B2 (ja) | ボロン系膜の成膜方法および成膜装置 | |
US20230399739A1 (en) | Hard mask deposition using direct current superimposed radio frequency plasma | |
WO2022259861A1 (ja) | 成膜方法および成膜装置 | |
JP2023120622A (ja) | 成膜方法および成膜装置 | |
US20240044006A1 (en) | Substrate processing method and substrate processing apparatus | |
TW202032662A (zh) | 電漿處理方法及電漿處理裝置 | |
KR20240034244A (ko) | 미리 결정된 모듈러스 범위 내에서 막 모듈러스를 유지하기 위한 방법들, 장치, 및 시스템들 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20241118 |