[go: up one dir, main page]

JP2023095160A - Gear and cutting tool - Google Patents

Gear and cutting tool Download PDF

Info

Publication number
JP2023095160A
JP2023095160A JP2021210889A JP2021210889A JP2023095160A JP 2023095160 A JP2023095160 A JP 2023095160A JP 2021210889 A JP2021210889 A JP 2021210889A JP 2021210889 A JP2021210889 A JP 2021210889A JP 2023095160 A JP2023095160 A JP 2023095160A
Authority
JP
Japan
Prior art keywords
gear
teeth
tooth
pitch
tooth profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021210889A
Other languages
Japanese (ja)
Other versions
JP7428690B2 (en
Inventor
雅博 齊藤
Masahiro Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASANO GEAR CO Ltd
Original Assignee
ASANO GEAR CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASANO GEAR CO Ltd filed Critical ASANO GEAR CO Ltd
Priority to JP2021210889A priority Critical patent/JP7428690B2/en
Publication of JP2023095160A publication Critical patent/JP2023095160A/en
Application granted granted Critical
Publication of JP7428690B2 publication Critical patent/JP7428690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gear Processing (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Gears, Cams (AREA)

Abstract

To provide a gear that are difficult for humans to perceive as noise during engagement rotation.SOLUTION: A gear comprising a plurality of teeth, where the plurality of teeth 11, 11, ... arranged in succession form a set G, has an intentional difference in the shape of the teeth 11 when comparing adjacent tooth 111 and tooth 112 in the set G, and/or has an intentional difference between a pitch of the teeth 111 and a pitch of the teeth 112. The gear has one set or multiple sets of such sets G.SELECTED DRAWING: Figure 2

Description

本発明は、歯車に関し、特に歯の形状および歯のピッチに関する。 The present invention relates to gears, and more particularly to tooth shape and tooth pitch.

歯車同士が噛合する際の騒音を低減する技術として、例えば、特許文献1が知られている。特許文献1では、歯面精度を向上させることで、静粛性を満足するというものである。 For example, Patent Document 1 is known as a technique for reducing noise when gears mesh with each other. In Patent Literature 1, quietness is satisfied by improving tooth flank precision.

特開2012-096251号公報JP 2012-096251 A

ところで従来、特許文献1の他、歯の形状に関する寸法の仕上げ精度を向上させることが、噛合時の騒音および振動を低減するために良いと考えられている。この点につき概略説明すると、図10は、従来の歯車の噛合音(ギヤノイズ)を模式的に示すグラフであり、横軸が周波数を、縦軸が音振(振動および振動音)の大きさを表す。図10を参照して、一定間隔の周波数で音振が大きくなることが理解される。これは各歯が順番にかみ合う時間差に均一性があるためであり、この周波数は歯車のかみ合い周波数fと呼ばれ、歯車の歯数zに依存し、次式で求められる。この周波数の整数倍の周波数の音振を整数次ノイズといい、非整数倍の周波数の音振を非整数次ノイズという。
[式1] f =N/60×z
f:歯車のかみ合い周波数[Hz] N:歯車の回転数[rpm] z:歯車の歯数[枚]
By the way, conventionally, in addition to Patent Document 1, it is believed that improving the finishing accuracy of the dimensions related to the shape of the teeth is good for reducing noise and vibration during meshing. To briefly explain this point, FIG. 10 is a graph schematically showing conventional gear meshing noise (gear noise), where the horizontal axis represents frequency and the vertical axis represents sound vibration (vibration and vibration sound). show. With reference to FIG. 10, it can be understood that sound vibration increases at frequencies at regular intervals. This is because there is uniformity in the time difference between the teeth in order, and this frequency is called the gear meshing frequency f, which depends on the number of teeth z of the gear, and is obtained by the following equation. Sound vibrations with frequencies that are integral multiples of this frequency are called integer-order noises, and sound vibrations with frequencies that are non-integer multiples are called non-integer-order noises.
[Formula 1] f = N/60 x z
f: gear meshing frequency [Hz] N: gear rotation speed [rpm] z: number of gear teeth [sheets]

図10に示すギヤノイズが人の耳に入力される場合において、その人がギヤノイズを不快な騒音として知覚するか否かは、環境ないし個人差等、複雑な要因があるため一概には言えないものの、少なくとも図10に示す整数次音は、人の脳に知覚されて、騒音と認識され易いものと思われる。この理由として整数次ノイズのノイズピークと、非整数次ノイズのノイズボトムのギャップが大きいためと考えられる。 When the gear noise shown in FIG. 10 is input to a person's ear, it cannot be said unconditionally whether or not the person perceives the gear noise as unpleasant noise due to complex factors such as environment and individual differences. , at least the integer-order tones shown in FIG. 10 are likely to be perceived by the human brain and easily recognized as noise. The reason for this is thought to be that the gap between the noise peak of integer-order noise and the noise bottom of non-integer-order noise is large.

本発明者は、人が知覚しにくいギヤノイズを目指し、整数次ノイズのノイズピークと、非整数次音のノイズボトムのギャップ(以下、ノイズギャップともいう)に着目して、ノイズギャップを小さくするために本発明をするに至った。 Aiming for gear noise that is difficult for humans to perceive, the present inventors focused on the gap between the noise peak of integer-order noise and the noise bottom of non-integer-order sound (hereinafter also referred to as the noise gap), and made the noise gap smaller. and came to the present invention.

この目的のため本発明は、複数の歯を備える歯車であって、連続して配列される複数の歯を1セットとし、かかるセットは隣り合う歯の形状および/またはピッチに差異を有し、かかるセットを1または複数繰り返し有する。 To this end, the present invention provides a multi-toothed gear comprising a set of teeth arranged in succession, such sets having differences in shape and/or pitch of adjacent teeth, We have one or more repetitions of such a set.

かかる本発明によれば、複数の歯が従来のように均一形状、均一ピッチではなく、セットを構成する歯同士に有意差があるので、相手歯車とかみ合わせて回転させたときに各歯が順番にかみ合う時間差に不均一性が生じる。これにより図9に示すように非整数次ノイズが大きくなり、ノイズギャップが小さくなる。そして、本発明の歯車が相手歯車と噛み合いながら回転する際に生じる噛合音は、人間の耳に入っても従来のように騒音として知覚され難くなる。本発明の歯車に関し、セットを構成する複数の歯のパターンは特に限定されない。当該セットは歯車の周方向に繰り返される。 According to the present invention, the plurality of teeth does not have a uniform shape and a uniform pitch as in the prior art, but there is a significant difference between the teeth that constitute the set. Non-uniformity occurs in the time difference between meshing. As a result, as shown in FIG. 9, the non-integer order noise becomes larger and the noise gap becomes smaller. Further, the meshing sound generated when the gear of the present invention rotates while meshing with the mating gear is less likely to be perceived as noise even if it enters human ears. Regarding the gear of the present invention, the pattern of the plurality of teeth forming the set is not particularly limited. The set is repeated in the circumferential direction of the gear.

セットを構成する複数の歯同士の差異は、様々な管理項目のうちの少なくとも1つである。例えば、セットを構成する複数の歯同士は、歯面の歯形の差異を有してもよいし、あるいは、歯すじ形状の差異を有してもよい。具体的には例えば、歯面の歯形における歯形勾配、歯形凹凸、あるいは他の形状のうち少なくとも1つで差異を有してもよい。あるいは例えば、歯すじ形状における歯すじ傾斜、クラウニング中心位置、クラウニング量、あるいは他の形状のうち少なくとも1つで差異を有してもよい。またセットを構成する歯と歯のピッチに差異を有してもよく、具体的には例えば、単一ピッチ、隣接ピッチ、累積ピッチのいずれかの管理項目で差異を有していてもよい。なお歯面の歯形における歯形凹凸とは、歯車の軸線方向に歯をみて、例えば丸みを帯びるように歯面を形成することをいい、歯形丸み、あるいは歯形クラウニングともいう。歯すじ形状におけるクラウニングとは、歯車の軸線方向一端から他端へ延びる歯すじにおいて、歯すじ中央領域が歯すじの両端からみて膨らみ形状にされることをいう。本発明による歯車は、1セットを構成する複数の歯が、互いに差異を有するため、1セット内で差異がパターン化され、このパターン化された差異が再現性を有する。本発明によれば、歯車の製造工程において、当該セットを繰り返すことで、セット同士が同一の規則性を持つように再現性を有することから、歯車を効率的に生産することができる。 The difference between a plurality of teeth forming a set is at least one of various control items. For example, a plurality of teeth forming a set may have different tooth flank profiles or tooth trace shapes. Specifically, for example, at least one of the tooth profile gradient, tooth profile unevenness, and other shapes in the tooth profile of the tooth surface may have a difference. Alternatively, for example, there may be a difference in at least one of the tooth trace inclination in the tooth trace shape, the crowning center position, the amount of crowning, or other shapes. Further, the teeth forming the set may have different pitches, and more specifically, they may have different control items such as single pitch, adjacent pitch, or cumulative pitch. In addition, the uneven tooth profile in the tooth profile of the tooth flank refers to forming the tooth flank so as to be rounded, for example, when the tooth is viewed in the axial direction of the gear, and is also called tooth profile rounding or tooth profile crowning. The crowning in the tooth trace shape means that in the tooth trace extending from one axial end to the other in the axial direction of the gear, the center region of the tooth trace bulges when viewed from both ends of the tooth trace. In the gear according to the present invention, since a plurality of teeth constituting one set have differences from each other, the differences are patterned within one set, and the patterned differences have reproducibility. According to the present invention, by repeating the set in the manufacturing process of the gear, the sets have reproducibility such that the sets have the same regularity, so that the gear can be produced efficiently.

また本発明は、複数の切削歯を備える歯車形状の切削工具であって、連続して配列される複数の切削歯を1セットとし、かかるセットは隣り合う切削歯の形状および/またはピッチに差異を有し、かかるセットを1または複数繰り返し有する。 The present invention also provides a gear-shaped cutting tool having a plurality of cutting teeth, wherein the plurality of cutting teeth arranged in succession constitutes a set, and the adjacent cutting teeth of the set differ in shape and/or pitch. and one or more iterations of such a set.

切削工具におけるセットを構成する複数の切削歯の各形状や各ピッチは、上述した歯車と同様の管理項目で管理される。 Each shape and each pitch of a plurality of cutting teeth forming a set in the cutting tool are managed by the same management items as the gears described above.

本発明の切削工具によれば、周方向に配列される歯同士が差異を有する歯車を、ホーニング加工、スカイビング加工、ギヤシェーパー加工、またはシェービング加工によって、効率良く製造することができる。 According to the cutting tool of the present invention, a gear having teeth arranged in the circumferential direction with different teeth can be efficiently manufactured by honing, skiving, gear shaping, or shaving.

このように本発明によれば、整数次ノイズのノイズピークと、非整数次ノイズのノイズボトムとのギャップが、従来よりも小さくなり、整数次ノイズのノイズピークがマスキングされて、回転する歯車対の噛合音が人間の耳に入っても騒音および振動として知覚し難くされる。またかかる本発明の切削工具により、本発明の歯車の大量生産が可能になる。本発明の歯車は、電気自動車のように静粛性能の高い乗用車に好適に使用される。 Thus, according to the present invention, the gap between the noise peak of the integer-order noise and the noise bottom of the non-integer-order noise is smaller than in the conventional art, and the noise peak of the integer-order noise is masked, resulting in a rotating gear pair. Even if the meshing sound enters the human ear, it is difficult to perceive it as noise and vibration. Moreover, the cutting tool of the present invention enables mass production of the gear of the present invention. The gear of the present invention is suitably used for passenger cars with high quietness performance such as electric cars.

本発明の第1実施形態になる歯車を示す正面図である。It is a front view showing a gear which becomes a 1st embodiment of the present invention. 同実施形態の歯のセットを取り出して示す拡大図である。It is an enlarged view extracting and showing the set of teeth of the same embodiment. 同実施形態の累積ピッチ有意差を示すグラフである。It is a graph which shows the accumulation pitch significant difference of the same embodiment. 同実施形態の歯のセットを取り出して示す拡大図である。It is an enlarged view extracting and showing the set of teeth of the same embodiment. 実施例1および対比例1につき、音振の大きさの試験結果を示すグラフである。4 is a graph showing test results of the magnitude of sound and vibration for Example 1 and Comparative Example 1. FIG. 本発明の第2実施形態に関し、歯ひとつ分の輪郭形状および管理寸法を取り出して示す拡大図である。FIG. 10 is an enlarged view showing the contour shape and control dimensions for one tooth in relation to the second embodiment of the present invention. 実施例2および対比例2につき、音振の大きさの試験結果を示すグラフである。10 is a graph showing test results of the magnitude of sound and vibration for Example 2 and Comparative Example 2. FIG. 本発明の一実施形態になる切削工具を示す正面図である。1 is a front view showing a cutting tool according to one embodiment of the present invention; FIG. 本発明の音振の大きさを示すグラフである。4 is a graph showing the magnitude of sound vibration according to the present invention; 従来技術の音振の大きさを示すグラフである。2 is a graph showing the magnitude of sound vibration in the prior art;

以下、本発明の実施の形態を、図面に基づき詳細に説明する。図1は、本発明の一実施形態になる歯車を示す正面図である。本発明の歯車10は外周に複数の歯11を備える、外歯歯車である。歯11の歯数は40であり、歯数の約数として8を含む。そして当該約数に対応して、連続する8個の歯が1セットを構成する。かかる1セットを、歯車10は周方向に5セット繰り返す。なお図示しない変形例として、本発明の歯車は内歯歯車であってもよい。また、セットを構成する歯数と歯車を構成するセット数は任意に変更されてもよい。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail based on the drawings. FIG. 1 is a front view showing a gear that is one embodiment of the present invention. The gear 10 of the present invention is an external gear with a plurality of teeth 11 on its outer circumference. The number of teeth 11 is 40, including 8 as a divisor of the number of teeth. Eight consecutive teeth form one set corresponding to the divisor. Such one set is repeated five times in the circumferential direction of the gear 10 . As a modification not shown, the gear of the present invention may be an internal gear. Also, the number of teeth forming a set and the number of sets forming a gear may be changed arbitrarily.

ここで附言すると、一般的な歯車では、互いに噛合する一方の歯車の歯と他方の歯車の歯が総当たりとなるよう歯数は互いの歯車の歯数について1以外の公約数を持たないことが好ましく、歯数に素数を用いられることが多い。本発明は歯車の歯数に1セットを構成する歯数を約数としてもち、加えて、歯車を構成するセット数を歯車の歯数の約数としてもつ。 To add here, in general gears, the number of teeth of each gear does not have a common divisor other than 1 so that the teeth of one gear and the teeth of the other gear mesh with each other in a round-robin manner. is preferred, and prime numbers are often used for the number of teeth. In the present invention, the number of teeth constituting one set is used as a divisor for the number of teeth of the gear, and in addition, the number of sets constituting the gear is used as a divisor of the number of teeth of the gear.

図2は、図1に示す歯車に含まれる歯のセットを取り出して示す拡大図である。上述したように約数である8と同じ8個分の歯が1つのセットGを構成する。1セットG中の歯のピッチは、全て均一にされるのではなく、肉眼で認識できない程度の寸法差で僅かに異なるよう、製造公差を超える意図的な差異(有意差)を含む。発明の理解を容易にするため、図2と、後述する他の実施形態(図4および図6)で有意差が誇張して描かれる。なお図2には、従来の歯車のピッチの歯を破線で描く。従来の歯車の歯のピッチは所定の公差内で全て等しくされる。 2 is an enlarged view of a set of teeth extracted from the gear shown in FIG. 1; FIG. As described above, one set G is composed of 8 teeth, which is the same as 8, which is a divisor. The pitches of the teeth in one set G are not all made uniform, but contain intentional variations (significant differences) that exceed manufacturing tolerances such that they differ slightly with dimensional differences that are imperceptible to the naked eye. In order to facilitate understanding of the invention, significant differences are exaggerated in FIG. 2 and other embodiments (FIGS. 4 and 6) described below. It should be noted that in FIG. 2 the teeth of the conventional gear pitch are drawn in dashed lines. The tooth pitches of conventional gears are all made equal within a given tolerance.

図2に示すように、1つのセットGを構成する歯11、11・・・内で、歯11同士を比べると、全て歯11が均一ではなく、意図的な差異を有する。具体的には歯11のピッチに有意差がある。図2を参照して、周方向に隣り合う歯111,112,113のピッチ同士を対比すると、両者には寸法上の有意差があることがわかる。本実施形態では累積ピッチで管理される。本実施形態の累積ピッチ有意差は、累積ピッチ有意差が0となる1つの歯を基準とし、累積ピッチ有意差Pa、Pb、Pc、Pz、Py、Px、Pwで表される。図2を参照して、累積ピッチは、ピッチ測定円Csの円周上において、基準となる1つの歯11の周方向一方の歯面とピッチ測定円Csの交差点から各歯11の周方向一方の歯面とピッチ測定円Csの交差点までの円弧距離であり、累積ピッチ有意差は標準累積ピッチからどれだけ異なるかを示す数値である。標準累積ピッチとは、隣り合う歯のピッチが全て等しい場合の累積ピッチである。ピッチ測定円Csとは、歯先円よりも小径かつ歯底円よりも大径であって、歯11の配列と同軸の円である。なお破線で表される従来の歯は、標準累積ピッチで配列される。なお図示しない変形例として、累積ピッチ有意差の基準となる1歯は他の歯でもよい。 As shown in FIG. 2, when the teeth 11 among the teeth 11 constituting one set G are compared, all the teeth 11 are not uniform but have intentional differences. Specifically, there is a significant difference in the pitch of the teeth 11 . Referring to FIG. 2, comparing the pitches of the circumferentially adjacent teeth 111, 112, 113, it can be seen that there is a significant dimensional difference between the two. In this embodiment, it is managed by the cumulative pitch. The cumulative pitch significance difference in this embodiment is represented by cumulative pitch significance differences Pa, Pb, Pc, Pz, Py, Px, and Pw, with one tooth having a cumulative pitch significance difference of 0 as a reference. Referring to FIG. 2, the cumulative pitch is obtained from the intersection of one tooth flank of one tooth 11 serving as a reference and the pitch measurement circle Cs on the circumference of the pitch measurement circle Cs. is the arc distance to the intersection of the tooth surface and the pitch measurement circle Cs, and the cumulative pitch significant difference is a numerical value indicating how much it differs from the standard cumulative pitch. The standard cumulative pitch is the cumulative pitch when all adjacent tooth pitches are equal. The pitch measurement circle Cs is a circle having a smaller diameter than the addendum circle and a larger diameter than the root circle, and coaxial with the arrangement of the teeth 11 . Conventional teeth, still represented by dashed lines, are arranged at a standard cumulative pitch. As a modified example (not shown), the one tooth used as the reference for the cumulative pitch significant difference may be another tooth.

本実施形態において累積ピッチ有意差は、意図的に調整された規則性を有する。具体的に説明すると図3のグラフに示すように、周方向に連続して配列される歯11,11・・・の累積ピッチ有意差Pc、Pb、Pa、0、Pz、Py、Px、Pwが任意の関数に則ってパターン化される。そして歯車10の全ての歯11は、このパターンを1セットとして、複数セット(例えば5セット)を繰り返すよう配列される。本実施形態の累積ピッチ有意差は、図3のグラフに示すように正弦波に基づく規則的なものである。パターン化の形態は自由に設定される。Pc、Pb、Pa、0、Pz、Py、Px、Pwの大小関係は最大値と最小値の間で自由に決定される。例えばPc、Pb、Pa、0、Pz、Py、Px、Pwの中の幾つかの数値は等しくてもよい。例えばPc=Pa、Pw=0、Pz=Pxであってもよい。パターン化された差異の当該パターンは、図3に図示される正弦波に限らず、図示しない三角波、四角波、多角形波、その他の規則波、あるいは1セット内の複数のピッチ有意差が不規則でランダムな差異を有し、あるいは他のパターンであってもよい。 In this embodiment, the cumulative pitch significance difference has intentionally adjusted regularity. Specifically, as shown in the graph of FIG. 3, the cumulative pitch significant differences Pc, Pb, Pa, 0, Pz, Py, Px, Pw of the teeth 11, 11, . is patterned according to an arbitrary function. All the teeth 11 of the gear 10 are arranged to repeat a plurality of sets (for example, 5 sets) with this pattern as one set. The cumulative pitch significance of this embodiment is regular based on a sine wave as shown in the graph of FIG. The form of patterning is freely set. The magnitude relationship of Pc, Pb, Pa, 0, Pz, Py, Px, and Pw is freely determined between the maximum and minimum values. For example, some numbers among Pc, Pb, Pa, 0, Pz, Py, Px, Pw may be equal. For example, Pc=Pa, Pw=0, and Pz=Px. The pattern of patterned differences is not limited to the sine wave illustrated in FIG. It may have regular, random variations, or other patterns.

本発明の歯車10は、上述した図3に示す累積ピッチで管理されてもよい他、図4に示す単一ピッチ、あるいは図示しない隣接ピッチで管理されてもよい。図4は、1つのセットGを構成する歯11、11・・・の単一ピッチPe、Pf、Pg、Ph、Pi、Pj、Pk、Plを表す図であって、図2に対応する。図4を参照して、単一ピッチは、ピッチ測定円Csの円周上において、周方向に隣り合う歯11の周方向一方の歯面とピッチ測定円Csの交差点同士の円弧距離であり、単一ピッチ有意差は均一な標準単一ピッチPsからどれだけ異なるかを示す数値である。均一な標準単一ピッチとは、ピッチ測定円Csの全周距離を歯数で除算した数値をいう。なお破線で表される従来の歯車の歯は、均一な標準単一ピッチで配列される。 The gear 10 of the present invention may be managed by the cumulative pitch shown in FIG. 3 described above, or may be managed by a single pitch shown in FIG. 4 or adjacent pitches (not shown). FIG. 4 is a diagram showing single pitches Pe, Pf, Pg, Ph, Pi, Pj, Pk, Pl of teeth 11, 11 . . . forming one set G, and corresponds to FIG. Referring to FIG. 4, the single pitch is the arc distance between the intersections of the pitch measurement circle Cs and one of the circumferentially adjacent tooth flanks of the teeth 11 adjacent in the circumferential direction on the circumference of the pitch measurement circle Cs. The single pitch significant difference is a numerical value indicating how much it differs from the uniform standard single pitch Ps. A uniform standard single pitch refers to a numerical value obtained by dividing the total circumferential distance of the pitch measurement circle Cs by the number of teeth. Conventional gear teeth, still represented by dashed lines, are arranged at a uniform standard single pitch.

単一ピッチPe、Pf、Pg、Ph、Pi、Pj、Pk、Plも、意図的に調整された規則性を有する。例えば図3に示すように正弦波とされ、隣り合う単一ピッチ同士を比べると差異を有する。図4を参照して、本実形態の歯11には従来の歯車とは異なり、均一な標準単一ピッチとは寸法上の有意差があることがわかる。 The single pitches Pe, Pf, Pg, Ph, Pi, Pj, Pk, Pl also have deliberately adjusted regularities. For example, as shown in FIG. 3, it is a sine wave, and there is a difference when comparing adjacent single pitches. Referring to FIG. 4, it can be seen that the teeth 11 of this embodiment, unlike conventional gears, have significant dimensional differences from a uniform standard single pitch.

図4に示す実施形態において、最大値と最小値の差は5~100μmの範囲に含まれる所定値である。かかる差は、歯車10の製作上許容される公差よりも大きいこと勿論である。図2および後述する図6に示す実施形態における最大値と最小値の差も、同様である。なお最大値と最小値の差が100μmを超える場合、摩耗等の耐久性の問題から好ましくない。また最大値と最小値の差が5μmを下回る場合、ノイズギャップが大きくなってしまう、つまり従来と略同じになってしまうので好ましくない。 In the embodiment shown in FIG. 4, the difference between the maximum and minimum values is a predetermined value within the range of 5-100 μm. Such a difference is, of course, larger than the manufacturing tolerance of the gear 10 . The same applies to the difference between the maximum value and the minimum value in the embodiment shown in FIG. 2 and FIG. 6, which will be described later. If the difference between the maximum value and the minimum value exceeds 100 μm, it is not preferable because of durability problems such as abrasion. Also, if the difference between the maximum value and the minimum value is less than 5 μm, the noise gap becomes large, that is, it becomes almost the same as the conventional one, which is not preferable.

図2に実線で示す本発明の実施形態を試作した(実施例1)。また図2に破線で示す均一なピッチの歯車を準備した(対比例1)。そして実施例1および対比例1の音振レベルの対比試験を行った。実施例1の歯の累積ピッチに関し、最大値と最小値の差は30μmである。対比例1の歯の累積ピッチに関し、全ての歯の累積ピッチは全て標準累積ピッチである。実施例1および対比例1の共通事項として、歯車の歯先円の直径は85mm、歯底円の直径は73mm、歯幅は20mm、製作上の目標値になる累積ピッチと実物の累積ピッチとの誤差量(公差)は10μm以下である。実施例1が噛み合う相手歯車と、対比例1が噛み合う相手歯車は、共通する歯車であり、従来の一般的な標準累積ピッチの歯車である。相手歯車に噛み合わせた状態で、回転数を500rpmで回転させ、噛合音振を計測した。また同時に、人間の耳で噛合音を確認した。 A prototype of the embodiment of the present invention indicated by the solid line in FIG. 2 was made (Example 1). Also, a gear with a uniform pitch was prepared as indicated by the dashed line in FIG. 2 (Comparison 1). Then, a comparative test of the sound and vibration levels of Example 1 and Comparative Example 1 was carried out. For the cumulative tooth pitch of Example 1, the difference between the maximum and minimum values is 30 μm. With respect to the tooth cumulative pitch of contrast 1, all tooth cumulative pitches are standard cumulative pitches. Common items of Example 1 and Comparative Example 1 are that the diameter of the addendum circle of the gear is 85 mm, the diameter of the root circle is 73 mm, the face width is 20 mm, and the cumulative pitch that is the target value for manufacturing and the actual cumulative pitch. is 10 μm or less. The mating gear meshed with Example 1 and the mating gear meshed with Contrast 1 are common gears, and are gears with a conventional general standard cumulative pitch. While meshing with the mating gear, it was rotated at a rotational speed of 500 rpm, and the meshing noise and vibration was measured. At the same time, the meshing sound was confirmed by human ears.

図5は噛合音振の測定結果を表すグラフであり、実線が実施例1、破線が対比例1を表す。グラフ中、横軸が周波数[Hz]を、縦軸が噛合音振の大きさ[dB]を表す。実施例1(実線)では対比例1よりも非整数次ノイズが大きくなっており、ノイズギャップが小さくなっていることが理解される。人間の耳で確認したところ、実施例1よりも対比例1の方が騒々しく聞こえた。 FIG. 5 is a graph showing the measurement results of meshing noise and vibration. In the graph, the horizontal axis represents frequency [Hz], and the vertical axis represents the magnitude of meshing noise vibration [dB]. It can be seen that Example 1 (solid line) has larger non-integer-order noise than Comparative Example 1 and has a smaller noise gap. When confirmed by human ears, contrast 1 sounded louder than example 1.

次に本発明の第2実施形態を説明する。図6は第2実施形態を示す正面図であって、1セットを構成する歯を取り出して示す拡大図である。図6中、(A)は一揃えの歯11を表し、(B)は各歯11の差異を対比して表す。第2実施形態では、歯車10を構成する複数の歯11に関し、各歯11の歯形形状に僅かなばらつき、つまりは有意差を持たせる。 Next, a second embodiment of the invention will be described. FIG. 6 is a front view showing the second embodiment, and is an enlarged view showing teeth that make up one set. In FIG. 6, (A) represents a set of teeth 11, and (B) represents the difference of each tooth 11 in comparison. In the second embodiment, regarding the plurality of teeth 11 forming the gear 10, the tooth profile shape of each tooth 11 is slightly varied, that is, given a significant difference.

具体的な例示として、歯形形状に差異をもたせる管理項目は、歯11の歯面の歯形12の歯形勾配を互いに異ならせるものであって、理論的歯形曲線において計算される無修正の形状、または理論的歯形曲線に基づき設計者が設定する修正量が加えられた形状である基準歯形12sに対して、実物の歯形12を有意差Sb、Sc、あるいはSaだけ歯形勾配を急傾斜にしたり、有意差Sb、Sz、あるいはSyだけ歯形勾配を緩傾斜にしたりというような設計歯形形状である。そして各歯11の歯形12の差異を、1つのセットGにおいてパターン化する。 As a specific example, the control item that makes the tooth profile shape different is to make the tooth profile gradient of the tooth profile 12 on the tooth flank of the tooth 11 different from each other, and the uncorrected shape calculated in the theoretical tooth profile curve, or With respect to the reference tooth profile 12s, which is a shape to which the amount of modification set by the designer based on the theoretical tooth profile curve is added, the tooth profile gradient of the actual tooth profile 12 is made steeper by a significant difference Sb, Sc, or Sa, or It is a design tooth profile that makes the tooth profile slope gentler by the difference Sb, Sz, or Sy. Then, the difference in tooth profile 12 of each tooth 11 is patterned in one set G.

歯面の歯形勾配の有意差は、意図的に調整された規則性を有する。図6(A)を参照して、周方向に連続して配列される歯11,11・・・の歯面の歯形における歯形勾配の有意差Sc、Sb、Sa、0、Sz、Sy、Sx、Swが任意の関数に則ってパターン化される。そして歯車10の全ての歯11は、このパターンを1セットとして、複数セット(例えば5セット)を繰り返すよう配列される。本実施形態の歯面の歯形における歯形勾配の有意差は、図3のグラフに示すように正弦波に基づく規則的なものであってもよい。図3中、Pc、Pb、Pa、0、Pz、Py、Px、Pwはそれぞれ、Sc、Sb、Sa、0、Sz、Sy、Sx、Swと読替えられる。なおSc、Sb、Sa、0、Sz、Sy、Sx、Swの中の幾つかの数値は等しくてもよい。例えばSc=Sa、Sw=0、Sz=Sxであってもよい。パターン化された差異の当該パターンは図3に図示される正弦波に限らず、図示しない三角波、四角波、多角形波、その他の規則波、あるいは1セット内の複数の歯形形状有意差がランダムな差異を有するランダム歯形形状、あるいは他のパターンであってもよい。 The significant differences in the tooth profile gradients of the tooth flanks have intentionally adjusted regularity. Referring to FIG. 6A, significant differences Sc, Sb, Sa, 0, Sz, Sy, Sx in tooth profile gradients of tooth flanks of teeth 11, 11 . . . , Sw are patterned according to an arbitrary function. All the teeth 11 of the gear 10 are arranged to repeat a plurality of sets (for example, 5 sets) with this pattern as one set. The significant difference in tooth profile gradient in the tooth profile of the tooth flank of the present embodiment may be regular based on a sine wave as shown in the graph of FIG. In FIG. 3, Pc, Pb, Pa, 0, Pz, Py, Px, and Pw can be read as Sc, Sb, Sa, 0, Sz, Sy, Sx, and Sw, respectively. Note that some of Sc, Sb, Sa, 0, Sz, Sy, Sx, and Sw may be equal. For example, Sc=Sa, Sw=0, and Sz=Sx. The pattern of patterned differences is not limited to the sine wave illustrated in FIG. It may be a random tooth profile shape with significant differences, or other patterns.

管理上、有意差Sc、Sb、Sa、0、Sz、Sy、Sx、Swは、歯先円Ctおよび歯形管理円Cdの中間にある測定円Crにおける周方向寸法(直線長さあるいは円弧長)である。測定円Crは例えば、歯先円Ctと歯形管理円Cdの半径差を100%とし、歯形管理円Cdより外径側50~95%の範囲に含まれる所定値を半径とする円である。1つのセットGにおける有意差Sb,Sa,Sz,Syのパターンは、図3に準じる。なお発明の理解を容易にするため図6では、歯形形状の有意差が誇張して描かれ、測定円Crを100%とする。 From a control point of view, the significant differences Sc, Sb, Sa, 0, Sz, Sy, Sx, and Sw are the circumferential dimensions (linear length or arc length) in the measurement circle Cr between the tip circle Ct and the tooth profile control circle Cd. is. For example, the measurement circle Cr is a circle whose radius is a predetermined value within the range of 50 to 95% of the outer diameter side of the tooth profile control circle Cd, with the difference in radius between the addendum circle Ct and the tooth profile control circle Cd being 100%. The pattern of significant differences Sb, Sa, Sz, and Sy in one set G conforms to FIG. In order to facilitate understanding of the invention, FIG. 6 exaggerates the significant difference in tooth profile shape, and assumes that the measurement circle Cr is 100%.

ここで附言すると、下限値50%を下回る場合、管理範囲が小さすぎて、本発明の課題になるノイズギャップが十分に減少しない。また上限値95%を上回る場合、管理が現物に反映されず、本発明の課題になるノイズギャップが十分に減少しない。 In addition, when the lower limit value is less than 50%, the control range is too small and the noise gap, which is the subject of the present invention, is not sufficiently reduced. Moreover, when the upper limit value of 95% is exceeded, the management is not reflected in the actual product, and the noise gap, which is the subject of the present invention, is not sufficiently reduced.

有意差Sb,Sa,Sc,Sz, Sx,Syは2~40μmの範囲に含まれる所定値である。かかる差は、歯車10の製作上許容される公差よりも大きいこと勿論である。なお有意差Sb,Sa,Sz,Syが所定の範囲を上回る場合、摩耗等の耐久性の問題から好ましくなく、所定の範囲を下回る場合、ノイズギャップが大きくなってしまう、つまり従来の歯車と略同じになってしまうので好ましくない。 The significant differences Sb, Sa, Sc, Sz, Sx, Sy are predetermined values within the range of 2 to 40 μm. Such a difference is, of course, larger than the manufacturing tolerance of the gear 10 . If the significant differences Sb, Sa, Sz, and Sy exceed a predetermined range, it is not preferable due to durability problems such as wear. I don't like it because it will end up being the same.

なお図示しない変形例として、歯形形状に差異をもたせる管理項目は、歯11の歯形勾配や、JISB1702「歯形誤差」に分類されるその他もろもろの歯形に関する管理項目であってもよい。あるいは図示しない他の変形例として、歯11の歯すじ形状に差異をもたせてもよい。歯すじ形状に差異をもたせる管理項目は例えば、クラウニング中心位置であったり、あるいは歯すじ傾斜であったり、あるいは他のクラウニング、あるいはJISB1702「歯すじ誤差」に分類されるその他もろもろの歯すじに関する管理項目であってもよい。 As a modified example (not shown), the management items that make the tooth profile different may be the tooth profile gradient of the tooth 11 or various other tooth profile management items classified under JISB1702 "tooth profile error". Alternatively, as another modified example (not shown), the tooth trace shape of the tooth 11 may be made different. Management items that make the tooth trace shape different are, for example, the crowning center position, the tooth trace inclination, other crowning, and other various tooth trace managements classified under JISB1702 "tooth trace error". It can be an item.

図6(A)に実線で示す本発明の実施形態を試作した(実施例2)。また図6(A)に破線で示す均一歯形の歯車を準備した(対比例2)。そして実施例2および対比例2の音振レベルの対比試験を行った。実施例2および対比例2の共通事項として、歯車の歯先円の直径は85mm、歯底円の直径は73mm、歯幅は20mm、製作上の目標値になる歯形と実物の歯形との誤差量(公差)は10μm以下である。実施例2が噛み合う相手歯車と、対比例2が噛み合う相手歯車は、共通する歯車であり、従来の一般的な均一歯形の歯車である。相手歯車に噛み合わせた状態で、回転数を500rpmで回転させ、噛合音振を計測した。また同時に、人間の耳で噛合音を確認した。 An embodiment of the present invention indicated by a solid line in FIG. 6(A) was experimentally produced (Example 2). Also, a gear with a uniform tooth profile was prepared as indicated by the dashed line in FIG. 6(A) (Comparison 2). Then, a comparative test of the sound and vibration levels of Example 2 and Comparative Example 2 was conducted. Common items of Example 2 and Comparative Example 2 are that the diameter of the addendum circle of the gear is 85 mm, the diameter of the root circle is 73 mm, the face width is 20 mm, and the error between the tooth profile that is the target value for manufacturing and the actual tooth profile. The amount (tolerance) is 10 μm or less. The mating gear meshed with the second embodiment and the mating gear meshed with the comparative gear 2 are common gears, and are conventional general gears with a uniform tooth profile. While meshing with the mating gear, it was rotated at a rotational speed of 500 rpm, and the meshing noise and vibration was measured. At the same time, the meshing sound was confirmed by human ears.

図7は噛合音振の測定結果を表すグラフであり、実線が実施例2、破線が対比例2を表す。グラフ中、横軸が周波数[Hz]を、縦軸が噛合音振の大きさ[dB]を表す。実施例2(実線)では対比例2よりも非整数次ノイズが大きくなっており、ノイズギャップが小さくなっていることが理解される。人間の耳で確認したところ、実施例2よりも対比例2の方が騒々しく聞こえた。 FIG. 7 is a graph showing the measurement results of meshing noise and vibration. In the graph, the horizontal axis represents frequency [Hz], and the vertical axis represents the magnitude of meshing noise vibration [dB]. It is understood that the non-integer-order noise is larger in Example 2 (solid line) than in Comparative Example 2, and the noise gap is smaller. When confirmed by human ears, comparison 2 sounded louder than example 2.

次に、本実施形態の歯車を作成するための切削工具につき説明する。 Next, a cutting tool for producing the gear of this embodiment will be described.

図8は、図1に示す歯車10を切削する切削工具60である。切削工具60は、外歯車形状をしており、歯車の歯と同等の形状である切削歯61を有する。なお図示しない変形例として、本発明の切削工具は内歯歯車形状であってもよい。 FIG. 8 shows a cutting tool 60 for cutting the gear 10 shown in FIG. The cutting tool 60 has the shape of an external gear and has cutting teeth 61 having a shape similar to that of a gear. As a modified example (not shown), the cutting tool of the present invention may have an internal gear shape.

図8に示す切削工具60も、前述した歯車10と同様、図2、図4、または図6に示すように所定個数の切削歯を1セットとし、1セットないし複数セットの歯を周方向に繰り返す。図8に示す実施形態では、歯数は総数40であり、1セットの歯数は8であり、5セット繰り返す。歯車10の製造において、仕上げ段階の高精度の切削・研削において使用される切削工具60は、歯車10が有するセット内の歯数と同一の数量の切削歯61のセットを有し、1セットないし複数セットの切削部を周方向に繰り返す。 A cutting tool 60 shown in FIG. 8, like the gear 10 described above, has a set of a predetermined number of cutting teeth as shown in FIGS. repeat. In the embodiment shown in FIG. 8, the total number of teeth is 40, the number of teeth in one set is 8, and 5 sets are repeated. In manufacturing the gear 10, the cutting tool 60 used in the finishing stage of high-precision cutting and grinding has a set of cutting teeth 61 of the same number as the number of teeth in the set of the gear 10. Multiple sets of cuts are repeated circumferentially.

切削歯61の輪郭形状は、上述した歯11に対応する。つまり互いに噛合する歯車対のように切削歯61は、切削歯61が歯車を加工する際に描く軌跡の輪郭形状が歯11と一致するように作られた歯車の歯の形状をしている。そして全ての切削歯61が、図3に示す規則的な差異にパターン化され、隣り合う切削歯61,61同士が少しずつ異なる形状にされる。 The contour shape of the cutting teeth 61 corresponds to the teeth 11 described above. That is, the cutting teeth 61 have the shape of gear teeth made so that the contour shape of the trajectory drawn by the cutting teeth 61 when machining the gear matches the tooth 11, like a pair of gears meshing with each other. All cutting teeth 61 are patterned with regular differences as shown in FIG. 3, and adjacent cutting teeth 61, 61 are made to have slightly different shapes.

切削工具60は、被加工歯車に圧接されながら被加工歯車とともに回転する。かかる際に、切削工具60は被加工歯車の表面から余分な肉を除去し、具体的には仕上げ切削・研削・研磨・ドレスすることにより、セットGの歯11を成形する。切削工具60は、歯車のホーニング加工、スカイビング加工、ギヤシェーパー加工またはシェービング加工に使用されることから、ドレッサー、砥石、ピニオンカッターまたはシェービングカッターともいう。 The cutting tool 60 rotates together with the gear to be machined while being pressed against the gear to be machined. At this time, the cutting tool 60 forms the teeth 11 of the set G by removing excess material from the surface of the gear to be machined, and more specifically by finish cutting, grinding, polishing and dressing. The cutting tool 60 is also called a dresser, grindstone, pinion cutter, or shaving cutter because it is used for gear honing, skiving, gear shaping, or shaving.

以上、図面を参照して本発明の実施の形態を説明したが、本発明は、図示した実施の形態のものに限定されない。図示した実施の形態に対して、本発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。例えば上述した1の実施形態から一部の構成を抜き出し、上述した他の実施形態から他の一部の構成を抜き出し、これら抜き出された構成を組み合わせてもよい。 Although the embodiments of the present invention have been described above with reference to the drawings, the present invention is not limited to the illustrated embodiments. Various modifications and variations can be made to the illustrated embodiment within the same scope as the present invention or within an equivalent scope. For example, a part of configuration may be extracted from one embodiment described above, another part of configuration may be extracted from another embodiment described above, and these extracted configurations may be combined.

本発明は、機械要素において有利に利用される。 INDUSTRIAL APPLICABILITY The present invention is advantageously used in mechanical elements.

10 歯車、 12 歯面の実際の歯形(歯形勾配)、 12s 基準歯形、 60 切削工具、 61 切削歯、 Cs 中間円、 G 歯の1セット。 10 gearwheel, 12 actual tooth profile of tooth flank (tooth profile gradient), 12s reference tooth profile, 60 cutting tool, 61 cutting tooth, Cs intermediate circle, G one set of teeth.

Claims (4)

複数の歯を備える歯車であって、
連続して配列される複数の前記歯を1セットとし、
前記セットは、隣り合う前記歯の形状および/またはピッチに差異を有し、
前記セットを1または複数繰り返し有する歯車。
A gear comprising a plurality of teeth,
A plurality of teeth arranged in succession is regarded as one set,
said sets having differences in the shape and/or pitch of said adjacent teeth;
A gear having one or more repetitions of said set.
前記差異は、
前記形状にあっては、歯面の歯形における歯形勾配、歯形凹凸、歯すじ形状における歯すじ傾斜、クラウニング中心位置、クラウニング量、
前記ピッチにあっては、単一ピッチ、隣接ピッチ、累積ピッチ、
の中から選択される少なくとも1つにおける差異である、請求項1に記載の歯車。
Said difference is
In the above shape, the tooth profile gradient in the tooth profile of the tooth surface, the tooth profile unevenness, the tooth trace inclination in the tooth trace shape, the crowning center position, the amount of crowning,
In the pitch, single pitch, adjacent pitch, cumulative pitch,
2. The gear of claim 1, wherein the difference is in at least one selected from:
複数の切削歯を備える歯車形状の切削工具であって、
連続して配列される複数の前記切削歯を1セットとし、
前記セットは、隣り合う前記切削歯の形状および/またはピッチに差異を有し、
前記セットを1または複数繰り返し有する切削工具。
A gear-shaped cutting tool comprising a plurality of cutting teeth,
A plurality of the cutting teeth arranged in succession are regarded as one set,
the sets have a difference in shape and/or pitch of the adjacent cutting teeth;
A cutting tool having one or more repetitions of said set.
前記差異は、
前記形状にあっては、歯面の歯形における歯形勾配、歯形凹凸、歯すじ形状における歯すじ傾斜、クラウニング中心位置、クラウニング量、
前記ピッチにあっては、単一ピッチ、隣接ピッチ、累積ピッチ、
の中から選択される少なくとも1つにおける差異である、請求項3に記載の切削工具。
Said difference is
In the above shape, the tooth profile gradient in the tooth profile of the tooth surface, the tooth profile unevenness, the tooth trace inclination in the tooth trace shape, the crowning center position, the amount of crowning,
In the pitch, single pitch, adjacent pitch, cumulative pitch,
4. The cutting tool of claim 3, wherein the difference is in at least one selected from:
JP2021210889A 2021-12-24 2021-12-24 gear Active JP7428690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021210889A JP7428690B2 (en) 2021-12-24 2021-12-24 gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021210889A JP7428690B2 (en) 2021-12-24 2021-12-24 gear

Publications (2)

Publication Number Publication Date
JP2023095160A true JP2023095160A (en) 2023-07-06
JP7428690B2 JP7428690B2 (en) 2024-02-06

Family

ID=87002113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021210889A Active JP7428690B2 (en) 2021-12-24 2021-12-24 gear

Country Status (1)

Country Link
JP (1) JP7428690B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735218A (en) * 1993-07-20 1995-02-07 Nissan Motor Co Ltd Discontinuous mesh gear and manufacture thereof
JPH0942385A (en) * 1995-07-31 1997-02-10 Tsubakimoto Chain Co Compound organized chain and compound tooth profile sprocket for high speed transmission
JP2004125054A (en) * 2002-10-02 2004-04-22 Toyota Motor Corp FORGED GEAR, ITS MANUFACTURING METHOD, AND GEAR FORGING DIE
JP2018001340A (en) * 2016-07-01 2018-01-11 トヨタ自動車株式会社 Method of manufacturing gear
JP2021091061A (en) * 2019-12-12 2021-06-17 株式会社不二越 Skiving cutter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735218A (en) * 1993-07-20 1995-02-07 Nissan Motor Co Ltd Discontinuous mesh gear and manufacture thereof
JPH0942385A (en) * 1995-07-31 1997-02-10 Tsubakimoto Chain Co Compound organized chain and compound tooth profile sprocket for high speed transmission
JP2004125054A (en) * 2002-10-02 2004-04-22 Toyota Motor Corp FORGED GEAR, ITS MANUFACTURING METHOD, AND GEAR FORGING DIE
JP2018001340A (en) * 2016-07-01 2018-01-11 トヨタ自動車株式会社 Method of manufacturing gear
JP2021091061A (en) * 2019-12-12 2021-06-17 株式会社不二越 Skiving cutter

Also Published As

Publication number Publication date
JP7428690B2 (en) 2024-02-06

Similar Documents

Publication Publication Date Title
JP6466523B2 (en) Workpiece manufacturing method, and tool, gear cutting device and computer program for executing the manufacturing method
JP4986409B2 (en) Grinding worm, profiling gear for profiling grinding worm and profiling method
US9091338B2 (en) Free-form surface gear
KR100634061B1 (en) How to trim gears and gears
US11980958B2 (en) Power skiving tool
WO2016197905A1 (en) Gear-cutting hob and designing method therefor, and non-fully-symmetric involute gear and machining method therefor
CN101870009A (en) Be used to remove the method and apparatus of the secondary burr on the workpiece gear of end face cutting
WO1994016245A1 (en) Gear tooth topological modification
US6939093B2 (en) Chamfer hob and method of use thereof
JP6936103B2 (en) Gear manufacturing method
CN107229836A (en) Cycloid tooth profile correction method and Cycloidal Wheel, RV decelerators
JP2018516180A (en) Bevel gear flank structure shift
JP2013193203A (en) Machining method for workpiece using spiral machining tool
US20250229350A1 (en) Skiving tool and method for machining tooth flanks of teeth
Kimme et al. Simulation of error-prone continuous generating production processes of helical gears and the influence on the vibration excitation in gear mesh
CN112989523A (en) Involute gear design method and device, electronic device and storage medium
JP7428690B2 (en) gear
JP2018058208A (en) Spur gear or helical gear
JP2013018083A (en) Method for manufacturing screw-shaped tool
CN114173975A (en) Method for producing a flank profile on the toothing of a workpiece and a tool for implementing the method
CN114423555B (en) Method for grinding a gear by grinding a worm in a grinding machine
US1538328A (en) Tooth formation of internal gears
JP6284453B2 (en) Manufacturing method of spur gear or helical gear
GB2224554A (en) A pair of silenced gears
JPH0631533A (en) Method for creating a gear-shaped finishing tool and gear-shaped tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230120

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240125

R150 Certificate of patent or registration of utility model

Ref document number: 7428690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150