[go: up one dir, main page]

JP2023090295A - high pressure fuel supply pump - Google Patents

high pressure fuel supply pump Download PDF

Info

Publication number
JP2023090295A
JP2023090295A JP2021205200A JP2021205200A JP2023090295A JP 2023090295 A JP2023090295 A JP 2023090295A JP 2021205200 A JP2021205200 A JP 2021205200A JP 2021205200 A JP2021205200 A JP 2021205200A JP 2023090295 A JP2023090295 A JP 2023090295A
Authority
JP
Japan
Prior art keywords
support member
press
lower support
pressure fuel
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021205200A
Other languages
Japanese (ja)
Inventor
琢將 古山
Takumasa Furuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Priority to JP2021205200A priority Critical patent/JP2023090295A/en
Publication of JP2023090295A publication Critical patent/JP2023090295A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

To provide a high pressure fuel supply pump capable of improving bonding force of a body, a damper cover and a lower support member.SOLUTION: A high pressure fuel supply pump 100 includes: a damper 9 for reducing pressure pulsation; a lower support member 22 supporting the damper 9; a damper cover 20 covering the damper 9 and the lower support member 22; a body 1; and a welding mark (welding part W) formed by a laser on a contact surface (abutment surface BU) between the damper cover 20 and the body 1. The welding mark has a penetration shape 41 branched into two portions with respect to the thickness direction of the lower support member 22.SELECTED DRAWING: Figure 5C

Description

本発明は、高圧燃料供給ポンプに関する。 The present invention relates to high pressure fuel supply pumps.

本発明の背景技術として、WO2020/195222(特許文献1)に記載された高圧ポンプが知られている。 As a background art of the present invention, a high-pressure pump described in WO2020/195222 (Patent Document 1) is known.

特許文献1の燃料ポンプは、ボディと、ボディを覆うダンパカバー(カバー部)と、ダンパ(被収容部)を支持する下部支持部材(支持部材)と、下部支持部材とダンパカバーとの間に形成され下部支持部材をダンパカバーに固定する圧入部(第1圧入部)と、下部支持部材とボディとの間に形成され下部支持部材の圧入部が形成される面と同一面(側面部の外周面部)に形成され、下部支持部材をボディに固定する圧入部(第2圧入部)と、を備えている(段落0047)。 The fuel pump of Patent Document 1 includes a body, a damper cover (cover portion) that covers the body, a lower support member (support member) that supports the damper (accommodated portion), and between the lower support member and the damper cover. A press-fitting portion (first press-fitting portion) is formed to fix the lower support member to the damper cover, and a surface that is the same as the surface on which the press-fitting portion of the lower support member is formed and is formed between the lower support member and the body (the and a press-fitting portion (second press-fitting portion) formed in the outer peripheral surface portion) for fixing the lower support member to the body (paragraph 0047).

また、ダンパカバー(カバー部)とボディは接触するように配置されて突き当て部(接触面)が構成され(段落0049)、突き当て部の位置でダンパカバー及びボディの径方向外側から溶接部にレーザを照射して溶接される(段落0050)。さらに、溶接部の溶融部は、下部支持部材の側面部に達し、側面部の厚み方向の一部(外周側)を溶融させる深さとなるようにしている(段落0051)。 In addition, the damper cover (cover portion) and the body are arranged so as to be in contact with each other to form an abutting portion (contact surface) (paragraph 0049). are welded by irradiating a laser on (paragraph 0050). Furthermore, the melted portion of the welded portion reaches the side portion of the lower support member, and is so deep that a part of the side portion in the thickness direction (peripheral side) is melted (Paragraph 0051).

国際公開2020/195222号WO2020/195222

特許文献1においては、溶接部で筒部材(下部支持部材)の側面部の一部のみが溶接されると記載されており、近年の高燃圧化に対して十分な結合力が確保できない可能性がある。 In Patent Document 1, it is described that only a part of the side surface of the cylindrical member (lower support member) is welded at the welded portion, and there is a possibility that sufficient bonding force cannot be secured against the recent increase in fuel pressure. There is

本発明の目的は、ボディ、ダンパカバー及び下部支持部材の結合力を向上することができる高圧燃料供給ポンプを提供することにある。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a high-pressure fuel supply pump capable of improving the coupling force between a body, a damper cover and a lower support member.

上記目的を達成するために、本発明の高圧燃料供給ポンプは、圧力脈動を低減するダンパと、前記ダンパを支持する下部支持部材と、前記ダンパ及び前記下部支持部材を覆うダンパカバーと、ボディと、前記ダンパカバーと前記ボディとの接触面に形成されるレーザによる溶接痕と、を備える。前記溶接痕は、前記下部支持部材の厚み方向に対して2分岐する溶込み形状を有する。 In order to achieve the above object, the high-pressure fuel supply pump of the present invention includes a damper that reduces pressure pulsation, a lower support member that supports the damper, a damper cover that covers the damper and the lower support member, and a body. and laser welding marks formed on contact surfaces between the damper cover and the body. The weld mark has a penetration shape bifurcated in the thickness direction of the lower support member.

本発明によれば、ボディ、ダンパカバー及び下部支持部材の結合力を向上することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, it is possible to improve the coupling force between the body, the damper cover and the lower support member. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.

本発明の一実施例に係る高圧燃料供給ポンプが適用されたエンジンシステムの構成を示す概念図である。1 is a conceptual diagram showing the configuration of an engine system to which a high-pressure fuel supply pump according to one embodiment of the present invention is applied; FIG. 本発明の一実施例に係る高圧燃料供給ポンプのプランジャの軸方向に平行な断面を示す断面図である。FIG. 4 is a cross-sectional view showing a cross-section parallel to the axial direction of the plunger of the high-pressure fuel supply pump according to one embodiment of the present invention; 図2の高圧燃料供給ポンプの上方から見たプランジャの軸方向に垂直な断面を示す断面図である。FIG. 3 is a cross-sectional view showing a cross-section perpendicular to the axial direction of the plunger seen from above the high-pressure fuel supply pump of FIG. 2 ; 図2のダンパカバー周辺の断面を示す断面図である。FIG. 3 is a sectional view showing a section around the damper cover of FIG. 2; 溶接前の突き当て部の断面図である。It is sectional drawing of the abutment part before welding. 1周目の溶接後の溶込み形状を示す断面図である。It is a sectional view showing penetration shape after welding of the 1st round. 2周目の溶接後の溶込み形状を示す断面図である。It is a sectional view showing penetration shape after welding of the 2nd round.

以下、本発明の実施例について図面を参照して詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

まず、本発明の一実施例に係る高圧燃料供給ポンプ100について、図面を用いて詳細に説明する。 First, a high-pressure fuel supply pump 100 according to one embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施例に係る高圧燃料供給ポンプが適用されたエンジンシステムの構成を示す概念図である。以下の説明で上下方向を指定して説明する場合があるが、この上下方向は図1の上下方向に基づいており、高圧燃料供給ポンプ100の実装状態における上下方向とは必ずしも一致しない。 FIG. 1 is a conceptual diagram showing the configuration of an engine system to which a high-pressure fuel supply pump according to one embodiment of the invention is applied. In the following description, the vertical direction may be specified, but this vertical direction is based on the vertical direction in FIG. 1 and does not necessarily match the vertical direction when the high-pressure fuel supply pump 100 is mounted.

破線で囲まれた部分は高圧燃料供給ポンプ(以下、燃料ポンプと呼ぶ)100の本体を示し、この破線の中に示されている機構及び部品はボディ1(ポンプボディと呼んでも良い)に一体に組み込まれている。 A portion surrounded by a dashed line indicates the main body of a high-pressure fuel supply pump (hereinafter referred to as a fuel pump) 100, and the mechanisms and parts indicated within the dashed line are integrated with a body 1 (which may be referred to as a pump body). built in.

燃料タンク103の燃料は、エンジンコントロールユニット101(以下ECUと称す)からの信号に基づきフィードポンプ102によって燃料タンク103から汲み上げられる。この燃料は適切なフィード圧力に加圧されて燃料配管104を通して燃料ポンプの低圧燃料吸入口10aに送られる。低圧燃料吸入口10aは吸入配管5(図2参照)に設けられる。 Fuel in a fuel tank 103 is pumped up from the fuel tank 103 by a feed pump 102 based on a signal from an engine control unit 101 (hereinafter referred to as ECU). This fuel is pressurized to a suitable feed pressure and sent through a fuel line 104 to the low pressure fuel inlet 10a of the fuel pump. The low-pressure fuel intake port 10a is provided in the intake pipe 5 (see FIG. 2).

低圧燃料吸入口10aから流入した燃料は圧力脈動低減機構であるダンパ(ダンパ機構)9、吸入通路10dを介して容量可変機構である電磁吸入弁機構3の吸入ポート3kに至る。 The fuel flowing from the low-pressure fuel intake port 10a reaches the intake port 3k of the electromagnetic intake valve mechanism 3, which is a variable displacement mechanism, through a damper (damper mechanism) 9, which is a pressure pulsation reduction mechanism, and an intake passage 10d.

電磁吸入弁機構3に流入した燃料は、吸入弁3bを通過し、ボディ1に形成された吸入通路1zを流れた後に加圧室11に流入する。エンジンのカム91(図2参照)によりプランジャ2に往復運動する動力が与えられる。プランジャ2の往復運動により、プランジャ2の下降行程には吸入弁3bから燃料を吸入し、上昇行程には燃料が加圧される。 The fuel that has flowed into the electromagnetic intake valve mechanism 3 passes through the intake valve 3b, flows through the intake passage 1z formed in the body 1, and then flows into the pressurization chamber 11. As shown in FIG. A cam 91 (see FIG. 2) of the engine powers the plunger 2 to reciprocate. Due to the reciprocating motion of the plunger 2, fuel is sucked from the intake valve 3b during the downward stroke of the plunger 2, and the fuel is pressurized during the upward stroke.

加圧室11の圧力が設定値を超えると、吐出弁機構8が開弁し、吐出ジョイント12(図2参照)に設けられた燃料吐出口12aを通じて、圧力センサ105が装着されているコモンレール106へ高圧燃料が圧送される。そしてECU101からの信号に基づきインジェクタ107がエンジンへ燃料を噴射する。本実施例の燃料ポンプ100は、インジェクタ107がエンジンのシリンダ筒内に直接、燃料を噴射する、いわゆる直噴エンジンシステムに適用される燃料ポンプである。燃料ポンプ100は、ECU101から電磁吸入弁機構3への信号により、所望の流量の燃料を吐出する。 When the pressure in the pressurizing chamber 11 exceeds a set value, the discharge valve mechanism 8 opens, and the common rail 106 with the pressure sensor 105 is fed through the fuel discharge port 12a provided in the discharge joint 12 (see FIG. 2). High pressure fuel is pumped to Based on a signal from the ECU 101, the injector 107 injects fuel into the engine. The fuel pump 100 of this embodiment is a fuel pump applied to a so-called direct injection engine system in which an injector 107 directly injects fuel into a cylinder of an engine. The fuel pump 100 discharges a desired flow rate of fuel in response to a signal from the ECU 101 to the electromagnetic intake valve mechanism 3 .

図2は、本発明の一実施例に係る高圧燃料供給ポンプのプランジャ2の軸方向に平行な断面を示す断面図である。図3は、図2の高圧燃料供給ポンプの上方から見たプランジャ2の軸方向に垂直な断面を示す断面図である。 FIG. 2 is a cross-sectional view showing a cross-section parallel to the axial direction of the plunger 2 of the high-pressure fuel supply pump according to one embodiment of the present invention. FIG. 3 is a cross-sectional view showing a cross-section perpendicular to the axial direction of the plunger 2 as seen from above the high-pressure fuel supply pump of FIG.

燃料ポンプ100はボディ1に設けられた取付けフランジ1e(図3参照)を用い、エンジン(内燃機関)の燃料ポンプ取付け部に複数のボルトで固定される。 The fuel pump 100 is fixed to a fuel pump mounting portion of the engine (internal combustion engine) with a plurality of bolts using a mounting flange 1e (see FIG. 3) provided on the body 1. As shown in FIG.

図2に示すように、ボディ1にはプランジャ2の往復運動をガイドし、ボディ1と共に加圧室11を形成するシリンダ6が取り付けられている。またボディ1には、燃料を加圧室11に供給するための電磁吸入弁機構3と、加圧室11から吐出通路に燃料を吐出するための吐出弁機構8(図3参照)が設けられている。 As shown in FIG. 2, the body 1 is attached with a cylinder 6 that guides the reciprocating motion of the plunger 2 and forms a pressure chamber 11 together with the body 1 . The body 1 is also provided with an electromagnetic intake valve mechanism 3 for supplying fuel to the pressurizing chamber 11 and a discharge valve mechanism 8 (see FIG. 3) for discharging fuel from the pressurizing chamber 11 to the discharge passage. ing.

シリンダ6はその外周側においてボディ1に圧入される。加圧室11は、ボディ1、電磁吸入弁機構3、プランジャ2、シリンダ6、及び吐出弁機構8にて構成される。 The cylinder 6 is press-fitted into the body 1 on its outer peripheral side. The pressurization chamber 11 is composed of a body 1 , an electromagnetic suction valve mechanism 3 , a plunger 2 , a cylinder 6 and a discharge valve mechanism 8 .

プランジャ2の下端には、エンジンのカムシャフトに取り付けられたカム91の回転運動を上下運動に変換し、プランジャ2に伝達するタペット92が設けられている。プランジャ2はリテーナ15を介してばね18にてタペット92に圧着されている。これによりカム91の回転運動に伴い、プランジャ2を上下に往復運動させることができる。 A tappet 92 is provided at the lower end of the plunger 2 to convert the rotary motion of a cam 91 attached to the camshaft of the engine into vertical motion and transmit the vertical motion to the plunger 2 . The plunger 2 is pressed against the tappet 92 by the spring 18 via the retainer 15 . As a result, the plunger 2 can be reciprocated up and down as the cam 91 rotates.

また、シールホルダ7の内周下端部に保持されたプランジャシール13がシリンダ6の図中下方部においてプランジャ2の外周に摺動可能に接触する状態で設置されている。これにより、プランジャ2が摺動したとき、副室7aの燃料をシールしエンジン内部へ流入するのを防ぐ。同時にエンジン内の摺動部を潤滑する潤滑油(エンジンオイルも含む)がボディ1の内部に流入するのを防止する。 A plunger seal 13 held at the lower end portion of the inner periphery of the seal holder 7 is installed in a state of slidably contacting the outer periphery of the plunger 2 at the lower portion of the cylinder 6 in the drawing. As a result, when the plunger 2 slides, the fuel in the auxiliary chamber 7a is sealed and prevented from flowing into the engine. At the same time, it prevents lubricating oil (including engine oil) for lubricating sliding parts in the engine from flowing into the interior of the body 1 .

図2、3に示すリリーフ弁機構4は、シート部材4e、リリーフ弁4d、リリーフ弁ホルダ4c、リリーフばね4b、及びばね支持部材4aで構成される。リリーフ弁4dは、リリーフばね4bの付勢力がリリーフ弁ホルダ4cを介して作用してシート部材4eに押圧されることで燃料を遮断する。リリーフ弁機構4は、リリーフ弁4dの上流側と下流側との差圧が設定圧力を超えた場合に、リリーフばね4bの付勢力に抗してリリーフ弁4dが開弁するように構成される。 The relief valve mechanism 4 shown in FIGS. 2 and 3 is composed of a seat member 4e, a relief valve 4d, a relief valve holder 4c, a relief spring 4b, and a spring support member 4a. The relief valve 4d cuts off the fuel when the biasing force of the relief spring 4b acts via the relief valve holder 4c and is pressed against the seat member 4e. The relief valve mechanism 4 is configured to open the relief valve 4d against the biasing force of the relief spring 4b when the differential pressure between the upstream side and the downstream side of the relief valve 4d exceeds a set pressure. .

本実施例ではリリーフ弁機構4は、リリーフ通路を介して加圧室11に連通しているが、これに限定されるわけではなく、低圧通路(低圧燃料室10又は吸入通路10d等)に連通するようにしても良い。リリーフ弁機構4は、コモンレール106やその先の部材に何らかの問題が生じ、コモンレール106が異常に高圧になった場合に作動するよう構成された弁である。 In this embodiment, the relief valve mechanism 4 communicates with the pressure chamber 11 via the relief passage, but is not limited to this, and communicates with the low pressure passage (low pressure fuel chamber 10, intake passage 10d, etc.). You can make it work. The relief valve mechanism 4 is a valve configured to operate when some problem occurs in the common rail 106 or a member therebehind and the common rail 106 becomes abnormally high pressure.

吸入配管5は、車両の燃料タンク103からの燃料を供給する燃料配管104(低圧配管)に接続されており、燃料は吸入配管5の低圧燃料吸入口10aから燃料ポンプ100の内部に供給される。吸入配管5を通過した燃料は、圧力脈動低減機構であるダンパ9及び吸入通路10d(低圧燃料流路)を介して電磁吸入弁機構3の吸入ポート3kに至る。 The suction pipe 5 is connected to a fuel pipe 104 (low-pressure pipe) that supplies fuel from a fuel tank 103 of the vehicle. . The fuel that has passed through the suction pipe 5 reaches the suction port 3k of the electromagnetic suction valve mechanism 3 via a damper 9, which is a pressure pulsation reduction mechanism, and a suction passage 10d (low-pressure fuel passage).

プランジャ2がカム91の方向(下方向)に移動して吸入行程にあるときは、加圧室11の容積は増加し、加圧室11内の燃料圧力が低下する。この行程で加圧室11内の燃料圧力が吸入ポート3kの圧力よりも低くなると、吸入弁3bは吸入弁シート部3aから離れ開口状態になる。燃料は吸入弁3bの開口部を通り、加圧室11に流入する。 When the plunger 2 moves in the direction of the cam 91 (downward) and is in the intake stroke, the volume of the pressurization chamber 11 increases and the fuel pressure in the pressurization chamber 11 decreases. In this stroke, when the fuel pressure in the pressurizing chamber 11 becomes lower than the pressure in the intake port 3k, the intake valve 3b is separated from the intake valve seat portion 3a and becomes an open state. Fuel flows into the pressure chamber 11 through the opening of the intake valve 3b.

プランジャ2が吸入行程を終了した後、プランジャ2が上昇運動に転じ上昇行程に移る。ここで電磁コイル3gは無通電状態を維持したままであり、磁気コア3eとアンカ3hとの間に磁気付勢力は作用しない。ロッド付勢ばね3mは、無通電状態において吸入弁3bを開弁維持するのに必要十分な付勢力を有するよう設定されている。加圧室11の容積は、プランジャ2の圧縮運動に伴い減少するが、この状態では、一度、加圧室11に吸入された燃料が、再び開弁状態の吸入弁3bの開口部を通して吸入通路10dへと戻されるので、加圧室の圧力が上昇することは無い。この行程を戻し行程と称する。 After the plunger 2 completes the suction stroke, the plunger 2 turns to ascending motion and shifts to the ascending stroke. Here, the electromagnetic coil 3g remains in a non-energized state, and no magnetic biasing force acts between the magnetic core 3e and the anchor 3h. The rod biasing spring 3m is set to have a necessary and sufficient biasing force to keep the intake valve 3b open in a non-energized state. The volume of the pressurization chamber 11 decreases as the plunger 2 compresses. In this state, the fuel that has once been sucked into the pressurization chamber 11 flows through the opening of the intake valve 3b in the open state again into the intake passage. Since the pressure is returned to 10d, the pressure in the pressurizing chamber does not rise. This stroke is called a return stroke.

この状態で、ECU101からの制御電流が電磁吸入弁機構3に供給されると、電磁コイル3gには端子16を介して電流が流れる。電磁コイル3gに電流が流れると磁気コア3eとアンカ3hとの間に磁気吸引力が作用し、磁気吸引力がロッド付勢ばね3mの付勢力(とその他の合力)よりも強ければ、磁気コア3eとアンカ3hとが磁気吸引面で衝突する。このとき、アンカ3hはロッド鍔部3jを介して、ロッド3iを吸入弁3bから離れる方向に移動させる。 In this state, when a control current is supplied from the ECU 101 to the electromagnetic suction valve mechanism 3, current flows through the terminal 16 to the electromagnetic coil 3g. When a current flows through the electromagnetic coil 3g, a magnetic attractive force acts between the magnetic core 3e and the anchor 3h. 3e and anchor 3h collide with each other on the magnetic attraction surface. At this time, the anchor 3h moves the rod 3i away from the intake valve 3b via the rod collar 3j.

その後、吸入弁付勢ばね3lによる付勢力と燃料が吸入通路10dに流れ込むことによる流体力により吸入弁3bが閉弁する。閉弁後、加圧室11の燃料圧力はプランジャ2の上昇運動と共に上昇し、燃料吐出口12aの圧力以上になると、吐出弁機構8を介して高圧燃料の吐出が行われ、高圧燃料がコモンレール106へと供給される。この行程を吐出行程と称する。 After that, the intake valve 3b is closed by the urging force of the intake valve urging spring 3l and the fluid force due to the fuel flowing into the intake passage 10d. After the valve is closed, the fuel pressure in the pressurizing chamber 11 rises with the upward motion of the plunger 2, and when it exceeds the pressure at the fuel discharge port 12a, the high pressure fuel is discharged through the discharge valve mechanism 8, and the high pressure fuel is discharged to the common rail. 106. This stroke is called a discharge stroke.

プランジャ2の下始点から上始点までの間の上昇行程は、戻し行程と吐出行程からなる。そして、電磁吸入弁機構3の電磁コイル3gへの通電タイミングを制御することで、吐出される高圧燃料の量を制御することができる。電磁コイル3gへ通電するタイミングを早くすれば、上昇行程中の、戻し行程の割合が小さく、吐出行程の割合が大きくなる。すなわち、吸入通路10dに戻される燃料が少なく、高圧吐出される燃料は多くなる。一方、通電するタイミングを遅くすれば上昇行程中の、戻し行程の割合が大きく吐出行程の割合が小さくなる。すなわち、吸入通路10dに戻される燃料が多く、高圧吐出される燃料は少なくなる。電磁コイル3gへの通電タイミングは、ECU101からの指令によって制御される。 The upward stroke from the lower starting point to the upper starting point of the plunger 2 consists of a return stroke and a discharge stroke. By controlling the timing of energization of the electromagnetic coil 3g of the electromagnetic intake valve mechanism 3, the amount of high pressure fuel to be discharged can be controlled. If the timing of energizing the electromagnetic coil 3g is advanced, the proportion of the return stroke in the upward stroke becomes small and the proportion of the discharge stroke becomes large. That is, less fuel is returned to the intake passage 10d, and more fuel is discharged at high pressure. On the other hand, if the energization timing is delayed, the proportion of the return stroke in the ascending stroke is increased and the proportion of the discharge stroke is decreased. That is, more fuel is returned to the intake passage 10d, and less fuel is discharged at high pressure. The timing of energization of the electromagnetic coil 3g is controlled by a command from the ECU 101. FIG.

本実施例では、電磁吸入弁機構3の一例としてノーマルオープン式ソレノイド弁の構成を説明したが、電磁式に開閉可能なソレノイド弁の構造であれば、低圧部への影響は同じであり、後述するダンパカバー構造を適用することができる。 In this embodiment, the configuration of a normally open solenoid valve has been described as an example of the electromagnetic suction valve mechanism 3. However, any solenoid valve structure that can be opened and closed electromagnetically will have the same effect on the low pressure section, which will be described later. It is possible to apply a damper cover structure that

図3に示す吐出弁機構8は、吐出弁シート8a、吐出弁シート8aと接離する吐出弁8b、吐出弁8bを吐出弁シート8aに向かって付勢する吐出弁ばね8c、吐出弁8bのストローク(移動距離)を決める吐出弁ストッパ8d、及び燃料の外部への漏洩を遮断するプラグ8eから構成されている。吐出弁8bの二次側(加圧室11と反対側)には吐出弁室8gが形成され、この吐出弁室8gがボディ1に水平方向に形成される横孔14を介して燃料吐出口12aと連通する。 The discharge valve mechanism 8 shown in FIG. 3 includes a discharge valve seat 8a, a discharge valve 8b that contacts and separates from the discharge valve seat 8a, a discharge valve spring 8c that biases the discharge valve 8b toward the discharge valve seat 8a, and a discharge valve 8b. It is composed of a discharge valve stopper 8d that determines the stroke (movement distance) and a plug 8e that blocks leakage of fuel to the outside. A discharge valve chamber 8g is formed on the secondary side of the discharge valve 8b (opposite side to the pressurizing chamber 11). 12a.

加圧室11と吐出弁室8gの間に燃料差圧が無い状態では、吐出弁8bは吐出弁ばね8cの付勢力により吐出弁シート8aに圧着され閉弁状態となっている。加圧室11の燃料圧力が吐出弁室8gの燃料圧力よりも大きくなった時に初めて、吐出弁8bは吐出弁ばね8cの付勢力に逆らって開弁する。吐出弁8bが開弁すると、加圧室11内の高圧の燃料は、吐出弁室8g、燃料吐出口12aを経てコモンレール106(図1参照)へ吐出される。以上のような構成により、吐出弁機構8は、燃料の流通方向を制限する逆止弁として機能する。 When there is no fuel differential pressure between the pressure chamber 11 and the discharge valve chamber 8g, the discharge valve 8b is pressed against the discharge valve seat 8a by the biasing force of the discharge valve spring 8c and closed. Only when the fuel pressure in the pressure chamber 11 becomes higher than the fuel pressure in the discharge valve chamber 8g does the discharge valve 8b open against the biasing force of the discharge valve spring 8c. When the discharge valve 8b is opened, the high-pressure fuel in the pressure chamber 11 is discharged to the common rail 106 (see FIG. 1) through the discharge valve chamber 8g and the fuel discharge port 12a. With the configuration described above, the discharge valve mechanism 8 functions as a check valve that restricts the flow direction of the fuel.

図2に示す低圧燃料室10には、燃料ポンプ100内で発生した圧力脈動が燃料配管104へ波及するのを低減させるダンパ9が設置されている。一度、加圧室11に流入した燃料が、容量制御のために、再び開弁状態の吸入弁3bを通して吸入通路10dへと戻される場合、吸入通路10dへ戻される燃料により低圧燃料室10には圧力脈動が発生する。しかし、低圧燃料室10に設けたダンパ9は、波板状の円盤型金属板2枚をその外周で張り合わせ、内部にアルゴンのような不活性ガスを注入した金属ダイアフラムダンパで形成されており、圧力脈動はこの金属ダンパが膨張・収縮することで吸収低減される。 A damper 9 is installed in the low-pressure fuel chamber 10 shown in FIG. When the fuel once flowing into the pressurization chamber 11 is returned to the intake passage 10d through the intake valve 3b in the open state again for capacity control, the fuel returned to the intake passage 10d causes the low-pressure fuel chamber 10 to Pressure pulsation occurs. However, the damper 9 provided in the low-pressure fuel chamber 10 is formed of a metal diaphragm damper in which two corrugated disc-shaped metal plates are pasted together on the outer periphery thereof and an inert gas such as argon is injected into the interior. Pressure pulsation is absorbed and reduced by expansion and contraction of this metal damper.

プランジャ2は、大径部2aと小径部2bを有し、プランジャの往復運動によって副室7aの体積は増減する。副室7aは連通路10e(図3)により低圧燃料室10と連通している。プランジャ2の下降時は、副室7aから低圧燃料室10へ、上昇時は、低圧燃料室10から副室7aへと燃料の流れが発生する。 The plunger 2 has a large diameter portion 2a and a small diameter portion 2b, and the volume of the pre-chamber 7a increases and decreases as the plunger reciprocates. The auxiliary chamber 7a communicates with the low-pressure fuel chamber 10 through a communication passage 10e (FIG. 3). Fuel flows from the auxiliary chamber 7a to the low-pressure fuel chamber 10 when the plunger 2 is lowered, and from the low-pressure fuel chamber 10 to the auxiliary chamber 7a when the plunger 2 is raised.

このことにより、燃料ポンプ100の吸入行程もしくは、戻し行程における燃料ポンプ100内外への燃料流量を低減することができ、燃料ポンプ100内部で発生する圧力脈動を低減する機能を有している。 As a result, the flow rate of fuel into and out of the fuel pump 100 during the intake stroke or return stroke of the fuel pump 100 can be reduced, and the pressure pulsation generated inside the fuel pump 100 can be reduced.

図4を用いてダンパカバー周辺の詳細を説明する。図4は、図2のダンパカバー周辺の断面を示す断面図である。 Details around the damper cover will be described with reference to FIG. 4 is a sectional view showing a section around the damper cover of FIG. 2. FIG.

ボディ1は、上端部に環状の凸部1bを有し、凸部1bの径方向内側に凹部1cが形成されており、凹部1cは低圧燃料室10の下端部を構成する。ダンパ9は、上下を上部支持部材21と下部支持部材22とに挟まれて、ダンパカバー20の内部に固定されている。 The body 1 has an annular protrusion 1b at its upper end, and a recess 1c is formed radially inside the protrusion 1b. The damper 9 is sandwiched between an upper support member 21 and a lower support member 22 and fixed inside the damper cover 20 .

ダンパカバー20は、天面部20Tと、天面部20Tの外周縁部から下方に向かって延伸する側面部20Sと、を有する。天面部20Tは、上下方向(プランジャ2の軸方向)に段差を有する段付き面(上段部20T1、中段部20T2及び下段部20T3)で構成される。 The damper cover 20 has a top surface portion 20T and side surface portions 20S extending downward from the outer peripheral edge portion of the top surface portion 20T. The top surface portion 20T is composed of a stepped surface (an upper step portion 20T1, a middle step portion 20T2, and a lower step portion 20T3) having steps in the vertical direction (the axial direction of the plunger 2).

上部支持部材21はダンパカバー20の押圧部20bにより下方に押圧されている。押圧部20bは、ダンパカバー20の下段部20T3におけるボディ1側を向く面(下方を向く面)によって構成される。このため、ダンパカバー20は、上部支持部材21と当接する部位が天面部20Tの一部の範囲に限定され、上部支持部材21の周囲における燃料通路の確保が容易になる。また上部支持部材21は、最外周縁21aがダンパカバー20の側面部20Sの内周面に当接することで、低圧燃料室10内における径方向(水平方向)における位置が決められる。 The upper support member 21 is pressed downward by the pressing portion 20 b of the damper cover 20 . The pressing portion 20b is configured by a surface of the lower portion 20T3 of the damper cover 20 facing the body 1 (a surface facing downward). Therefore, the portion of the damper cover 20 that abuts on the upper support member 21 is limited to a partial range of the top surface portion 20T, and the fuel passage around the upper support member 21 can be easily secured. Further, the upper support member 21 is positioned in the radial direction (horizontal direction) in the low-pressure fuel chamber 10 by contacting the inner peripheral surface of the side surface portion 20S of the damper cover 20 with the outermost peripheral edge 21a.

下部支持部材22は、ダンパカバー20の側面部20Sの内周面及びボディ1の環状の凸部1bの内周面に沿って延伸する側面部22Sと、側面部22Sの上端部から径方向内側に折り曲げられて形成された円環部22Cと、を有する。下部支持部材22の側面部22Sの外周面は、ダンパカバー20の側面部20Sの内周面に圧入固定されており、且つ、ボディ1の凸部1bの内周面にも圧入固定されている。 The lower support member 22 includes a side surface portion 22S extending along the inner peripheral surface of the side surface portion 20S of the damper cover 20 and the inner peripheral surface of the annular convex portion 1b of the body 1, and radially inward from the upper end portion of the side surface portion 22S. and a circular ring portion 22C formed by bending the . The outer peripheral surface of the side surface portion 22S of the lower support member 22 is press-fitted and fixed to the inner peripheral surface of the side surface portion 20S of the damper cover 20, and is also press-fitted and fixed to the inner peripheral surface of the convex portion 1b of the body 1. .

上部支持部材21及び下部支持部材22は、それぞれ第2支持部材及び第1支持部材であり、相互にダンパ9を挟持することから第2挟持部材及び第1挟持部材でもある。ダンパ9は下部支持部材22上に支持され、上部支持部材21からの押圧力を受けて下部支持部材22と上部支持部材21との間に挟持されることから、下部支持部材22は支持部材と呼ばれ、上部支持部材21は押圧部材と呼ばれることもある。 The upper support member 21 and the lower support member 22 are respectively a second support member and a first support member, and since they sandwich the damper 9 between them, they also serve as a second clamping member and a first clamping member. The damper 9 is supported on the lower support member 22, and is sandwiched between the lower support member 22 and the upper support member 21 by receiving the pressing force from the upper support member 21. Therefore, the lower support member 22 functions as a support member. , and the upper support member 21 is sometimes called a pressing member.

下部支持部材22におけるダンパカバー20との圧入位置(圧入範囲)を20a、凸部1bとの圧入位置(圧入範囲)を1aとする。圧入部(第1圧入部)20aと圧入部(第2圧入部)1aとは、下部支持部材22の側面部22Sの外周面とダンパカバー20の側面部20Sの内周面及び凸部1bの内周面との間に構成されるため、同一円筒面上に構成される。 The press-fitting position (press-fitting range) of the lower support member 22 with respect to the damper cover 20 is 20a, and the press-fitting position (press-fitting range) of the lower support member 22 with the projection 1b is 1a. The press-fitting portion (first press-fitting portion) 20a and the press-fitting portion (second press-fitting portion) 1a are formed between the outer peripheral surface of the side surface portion 22S of the lower support member 22, the inner peripheral surface of the side surface portion 20S of the damper cover 20, and the convex portion 1b. Since it is configured between the inner peripheral surface, it is configured on the same cylindrical surface.

この場合、圧入部(第1圧入部)20aと圧入部(第2圧入部)1aとは、下部支持部材(支持部材)22とボディ1及びダンパカバー(カバー部)20との圧入方向(上下方向)において、異なる位置に配置される。上部支持部材21及び下部支持部材22の少なくとも一方は弾性変形させることにより、ダンパカバー20、上部支持部材21及びダンパ9の間に付勢力を与えて保持することが望ましい。 In this case, the press-fitting portion (first press-fitting portion) 20a and the press-fitting portion (second press-fitting portion) 1a correspond to the press-fitting direction (vertical direction) between the lower support member (support member) 22, the body 1, and the damper cover (cover portion) 20. direction). It is preferable that at least one of the upper support member 21 and the lower support member 22 is elastically deformed to apply an urging force between the damper cover 20, the upper support member 21 and the damper 9 to hold them.

具体的には、圧入部(第1圧入部)20aは、下部支持部材(支持部材)22の外周面とダンパカバー(カバー部)20の内周面との間に形成される。圧入部(第2圧入部)1aは、下部支持部材22の外周面とボディ1の内周面との間に形成される。 Specifically, the press-fit portion (first press-fit portion) 20 a is formed between the outer peripheral surface of the lower support member (support member) 22 and the inner peripheral surface of the damper cover (cover portion) 20 . A press-fit portion (second press-fit portion) 1 a is formed between the outer peripheral surface of the lower support member 22 and the inner peripheral surface of the body 1 .

さらに具体的には、ボディ1は、ダンパカバー20によって覆われる端部(部位)に環状の凸部1bを有する。ダンパカバー20は、天面部20Tと、天面部20Tの外周縁部から下方(ボディ1側)に向かって延伸する側面部20Sと、を有する。下部支持部材22は、ダンパカバー20の側面部20Sの内周面及びボディ1の凸部1bの内周面に沿って延伸する側面部22Sと、下部支持部材22の側面部22Sにおいて天面部20Tの側の端部から径方向内側に折り曲げられて形成された円環部20Cと、を有する。 More specifically, the body 1 has an annular projection 1b at the end (part) covered by the damper cover 20. As shown in FIG. The damper cover 20 has a top surface portion 20T and side surface portions 20S extending downward (toward the body 1) from the outer peripheral edge portion of the top surface portion 20T. The lower support member 22 includes a side surface portion 22S extending along the inner peripheral surface of the side surface portion 20S of the damper cover 20 and the inner peripheral surface of the convex portion 1b of the body 1, and a top surface portion 20T at the side surface portion 22S of the lower support member 22. and an annular portion 20</b>C formed by bending radially inward from the end on the side of the .

圧入部20aは、下部支持部材22の側面部22Sの外周面とダンパカバー20の側面部20Sの内周面との間に形成される。圧入部1aは、下部支持部材22の側面部22Sの外周面と環状の凸部1bの内周面との間に形成される。 The press-fit portion 20 a is formed between the outer peripheral surface of the side surface portion 22</b>S of the lower support member 22 and the inner peripheral surface of the side surface portion 20</b>S of the damper cover 20 . The press-fit portion 1a is formed between the outer peripheral surface of the side surface portion 22S of the lower support member 22 and the inner peripheral surface of the annular convex portion 1b.

すなわち、本実施例の燃料ポンプ100は、ボディ1と、ボディ1を覆うダンパカバー(カバー部)20と、ダンパ(被収容部)9を支持する下部支持部材(支持部材)22と、下部支持部材22とダンパカバー20との間に形成され下部支持部材22をダンパカバー20に固定する圧入部(第1圧入部)20aと、下部支持部材22とボディ1との間に形成され下部支持部材22の圧入部20aが形成される面と同一面(側面部22Sの外周面部)に形成され、下部支持部材22をボディ1に固定する圧入部(第2圧入部)1aと、を備える。 That is, the fuel pump 100 of this embodiment includes a body 1, a damper cover (cover portion) 20 that covers the body 1, a lower support member (support member) 22 that supports the damper (accommodated portion) 9, and a lower support member. A press-fit portion (first press-fit portion) 20a formed between the member 22 and the damper cover 20 to fix the lower support member 22 to the damper cover 20, and a lower support member formed between the lower support member 22 and the body 1. A press-fitting portion (second press-fitting portion) 1a for fixing the lower support member 22 to the body 1 is formed on the same surface (the outer peripheral surface portion of the side surface portion 22S) as the surface on which the press-fitting portion 20a of 22 is formed.

さらに、ダンパカバー(カバー部)20の内周側にはダンパ(ダンパ機構)9が配置され、下部支持部材(支持部材)22は圧入部(第1圧入部)20aにより、ダンパ9をダンパカバー20の下面(天面部20Tの裏面)に接触させた状態で保持される。 Further, a damper (damper mechanism) 9 is disposed on the inner peripheral side of the damper cover (cover portion) 20, and the lower support member (support member) 22 is press-fitted (first press-fit portion) 20a to move the damper 9 to the damper cover. 20 (the back surface of the top surface portion 20T).

ダンパカバー(カバー部)20の側面部20Sの下端部(側面部20Sの下端部)とボディ1の凸部1bの上端部(凸部1bの上端部)とは、接触するように配置されて突き当て部(接触面)BUが構成され、突き当て部BUの位置で溶接される。この場合、圧入部(第1圧入部)20a及び圧入部(第2圧入部)1aは、下部支持部材(支持部材)22とボディ1及びダンパカバー20との圧入方向(上下方向)において、ダンパカバー20とボディ1との突き当て部(接触面)BUからほぼ同じ距離の範囲まで形成される。 The lower end portion of the side surface portion 20S of the damper cover (cover portion) 20 (the lower end portion of the side surface portion 20S) and the upper end portion of the convex portion 1b of the body 1 (the upper end portion of the convex portion 1b) are arranged so as to be in contact with each other. Abutting portion (contact surface) BU is formed and welded at the location of the abutting portion BU. In this case, the press-fitting portion (first press-fitting portion) 20a and the press-fitting portion (second press-fitting portion) 1a are arranged in the press-fitting direction (vertical direction) between the lower support member (support member) 22 and the body 1 and the damper cover 20. It is formed up to a range approximately the same distance from the abutting portion (contact surface) BU between the cover 20 and the body 1 .

本実施例では、圧入部20aはl20に示す範囲であり、圧入部1aはl1に示す範囲であり、l20とl1とは等しい(l20=l1)。これにより、下部支持部材22の圧入部20aにおけるダンパカバー20に対する固定力と圧入部1aにおけるボディ1に対する固定力とを同等にすることができ、ダンパカバー20とボディ1とを安定した状態で固定することができる。 In this embodiment, the press-fit portion 20a is in the range indicated by l20, the press-fit portion 1a is in the range indicated by l1, and l20 and l1 are equal (l20=l1). As a result, the fixing force of the press-fit portion 20a of the lower support member 22 to the damper cover 20 and the fixing force of the press-fit portion 1a to the body 1 can be made equal, and the damper cover 20 and the body 1 are stably fixed. can do.

図4に溶接部Wの溶融部のイメージを破線で示す。溶接部Wの大きさは溶接条件により異なるため、本図のイメージは一例として示す。ダンパカバー(カバー部)20とボディ1とを固定する溶接部Wは、下部支持部材(支持部材)22の径方向外側に設けられる。すなわち、ダンパカバー20及びボディ1の径方向外側から溶接部Wにレーザを照射して溶接を行う。この溶接部Wは、ダンパカバー20の下端部(側面部20Sの下端部)とボディ1の上端部(凸部1bの上端部)との接触面に、ダンパカバー20側とボディ1側とに跨るように設けられる。 FIG. 4 shows an image of the melted portion of the welded portion W by a dashed line. Since the size of the welded portion W varies depending on the welding conditions, the image in this figure is shown as an example. A welded portion W for fixing the damper cover (cover portion) 20 and the body 1 is provided radially outward of the lower support member (support member) 22 . That is, welding is performed by irradiating the welding portion W with a laser from the radially outer side of the damper cover 20 and the body 1 . This welded portion W is formed on the contact surface between the lower end of the damper cover 20 (the lower end of the side surface portion 20S) and the upper end of the body 1 (the upper end of the convex portion 1b). It is provided so as to straddle.

図5Aは溶接前の突き当て部BUの断面図であり、図5B、5Cはそれぞれ1周目と2周目の溶接後の溶込み形状を示す断面図である。 FIG. 5A is a cross-sectional view of the abutting portion BU before welding, and FIGS. 5B and 5C are cross-sectional views showing the penetration shapes after the first and second rounds of welding, respectively.

溶接前の突き当て部BUにおいて、ボディ1の凸部1bと接触する、ダンパカバー20の側面部20Sの下端部の内周面には、全周に亘って面取り30aが構成されている。また、ダンパカバー20の側面部20Sの下端部と接触する、ボディ1の凸部1bの内周面には面取り30bが構成されている。これにより、突き当て部BUの内周面には、ボディ1とダンパカバー20の接触面にある面取り30a、30bから形成される空隙BG1が形成される。 A chamfer 30a is formed along the entire circumference of the inner peripheral surface of the lower end portion of the side surface portion 20S of the damper cover 20, which contacts the convex portion 1b of the body 1 at the abutting portion BU before welding. A chamfer 30b is formed on the inner peripheral surface of the convex portion 1b of the body 1, which contacts the lower end portion of the side surface portion 20S of the damper cover 20. As shown in FIG. As a result, a gap BG1 formed by the chamfers 30a and 30b at the contact surfaces of the body 1 and the damper cover 20 is formed on the inner peripheral surface of the abutting portion BU.

また、突き当て部BUをレーザ溶接する際、1周溶接後連続して2周溶接するプログラムを使用している。溶接1周目時、融点に達し液体となった金属は図5Aに示す空隙BG1に流れ込み、空隙BG1を埋めるように凝固し、図5Bに示す溶込み形状40を形成する。1周目の溶接終了後、2周目溶接時は、溶接1周目で残存した空隙BG2に液体が流れ込み、再び冷えて凝固点に達し凝固する。これにより、図5Cに示す溶接2周目終了後の溶込み形状41は上下二股に分かれた形状となり、ボディ1とダンパカバー20及び下部支持部材22の結合面積を1周溶接よりも多く確保することが可能になり、結合力が増すことでダンパカバーのボディ1に対する固定を確実にすることができる。 Also, when laser welding the butted portion BU, a program is used in which two rounds are welded continuously after one round of welding. During the first round of welding, the metal that reaches the melting point and becomes liquid flows into the gap BG1 shown in FIG. 5A, solidifies to fill the gap BG1, and forms a penetration shape 40 shown in FIG. 5B. After the first round of welding is completed, the liquid flows into the gap BG2 remaining in the first round of welding, and then cools again, reaches the freezing point, and solidifies during the second round of welding. As a result, the penetration shape 41 after the second round of welding shown in FIG. 5C is divided into upper and lower bifurcations, and a larger bonding area between the body 1, the damper cover 20, and the lower support member 22 is ensured compared to the one-round welding. As a result, the damper cover can be securely fixed to the body 1 by increasing the coupling force.

また、空隙BG1及びBG2は溶接時に発生するスパッタを燃料通路に届かないよう封じ込める役割も備えており、スパッタが燃料ポンプ内部に飛散するのを防止することができる。 In addition, the gaps BG1 and BG2 also serve to confine spatter generated during welding so that it does not reach the fuel passage, thereby preventing the spatter from scattering inside the fuel pump.

図4に示すように、本実施例では下部支持部材22の下端面とボディ1との間には隙間gを設ける。すなわち、ダンパカバー(カバー部)20の側面部20Sの下端部(反天面側の端部)がボディ1の環状の凸部1bの上端部(ダンパカバー20側の端部)と接触した状態において、下部支持部材(支持部材)22の側面部22Sの下端部は、環状の凸部1bの内側に形成される凹部の底面1dと非接触となるように配置されている。この隙間gにより、ダンパカバー20の組立時に下部支持部材22がボディ1の凸部1bによって形成される凹部1cの底面1dに接触した状態で押し込まれることを防ぎ、上部支持部材21と下部支持部材22とに過度な応力が発生しないようにできる。しかし、もし上部支持部材21または下部支持部材22が十分な弾性変形をできるなら、下部支持部材22の下端面とボディ1の間には隙間を設けない設計をすることも実現的である。 As shown in FIG. 4, a gap g is provided between the lower end surface of the lower support member 22 and the body 1 in this embodiment. That is, the lower end portion (the end portion on the side opposite to the top surface) of the side surface portion 20S of the damper cover (cover portion) 20 is in contact with the upper end portion (the end portion on the damper cover 20 side) of the annular convex portion 1b of the body 1. , the lower end portion of the side surface portion 22S of the lower support member (support member) 22 is arranged so as to be out of contact with the bottom surface 1d of the recess formed inside the annular protrusion 1b. This gap g prevents the lower support member 22 from being pushed in while being in contact with the bottom surface 1d of the recess 1c formed by the protrusion 1b of the body 1 when the damper cover 20 is assembled. 22 can be prevented from generating excessive stress. However, if the upper support member 21 or the lower support member 22 can be sufficiently elastically deformed, it is practical to design without providing a gap between the lower end surface of the lower support member 22 and the body 1 .

本実施例では、ダンパカバー20をボディ1に固定する例を説明しているが、本実施例はその他のカバーをボディ1に固定する場合にも適用可能である。ダンパカバー20に限定することなくその他のカバーを含む部材を、カバー部と呼ぶこととする。またボディ1に収容されカバー部で覆われる部品は、被収容部(本実施例のダンパ9に相当する部品)と呼ぶこととする。 In this embodiment, an example in which the damper cover 20 is fixed to the body 1 is described, but this embodiment can also be applied to the case of fixing other covers to the body 1 . A member including other covers, without being limited to the damper cover 20, is called a cover portion. A part that is housed in the body 1 and covered with the cover part is called a housed part (a part corresponding to the damper 9 in this embodiment).

本実施例の主な特徴は、次のようにまとめることもできる。 The main features of this embodiment can also be summarized as follows.

図4に示すように、高圧燃料供給ポンプ100は、圧力脈動を低減するダンパ9と、ダンパ9を支持する下部支持部材22と、ダンパ9及び下部支持部材22を覆うダンパカバー20と、ボディ1と、ダンパカバー20とボディ1との接触面(突き当て部BU)に形成されるレーザによる溶接痕(溶接部W)を備える。 As shown in FIG. 4, the high-pressure fuel supply pump 100 includes a damper 9 that reduces pressure pulsation, a lower support member 22 that supports the damper 9, a damper cover 20 that covers the damper 9 and the lower support member 22, a body 1 and laser welding marks (welded portion W) formed on the contact surface (butting portion BU) between the damper cover 20 and the body 1 .

図5Cに示すように、溶接痕は、下部支持部材22の厚み方向に対して2分岐する溶込み形状41を有する。これにより、ボディ1、ダンパカバー20及び下部支持部材22の結合力を向上することができる。その結果、高燃圧化に対して高圧燃料供給ポンプ100の堅牢性が向上する。 As shown in FIG. 5C , the weld trace has a penetration shape 41 bifurcated in the thickness direction of the lower support member 22 . Thereby, the coupling force between the body 1, the damper cover 20 and the lower support member 22 can be improved. As a result, the robustness of the high-pressure fuel supply pump 100 is improved against an increase in fuel pressure.

図5B、5Cに示すように、溶接痕は、周方向360°全周レーザ溶接による第1溶接部W1と、周方向の一部又は全部の2周溶接による第2溶接部W2と、から構成される。これにより、周方向の一部を2周溶接とする場合には、製造コストを低減することができ、周方向の全部を2周溶接とする場合には、結合力をさらに向上することができる。 As shown in FIGS. 5B and 5C, the weld marks consist of a first welded portion W1 by 360° circumferential laser welding and a second welded portion W2 by two-circumference welding in a part or all of the circumferential direction. be done. As a result, when a part of the circumferential direction is welded twice, the manufacturing cost can be reduced, and when the entire circumferential direction is welded twice, the bonding force can be further improved. .

図4に示すように、第1圧入部(圧入部20a)は、下部支持部材22とダンパカバー20との間に形成され、下部支持部材22をダンパカバー20に固定する。第2圧入部(圧入部1a)は、下部支持部材22とボディ1との間に形成され、第1圧入部(圧入部20a)が形成される面と同一面に形成され、下部支持部材22をボディ1に固定する。第1圧入部(圧入部20a)と第2圧入部(圧入部1a)は、圧入方向において異なる位置に配置される。これにより、圧入固定を容易に行うことができる。 As shown in FIG. 4 , the first press-fit portion (press-fit portion 20 a ) is formed between the lower support member 22 and the damper cover 20 to fix the lower support member 22 to the damper cover 20 . The second press-fitting portion (press-fitting portion 1a) is formed between the lower support member 22 and the body 1, and is formed on the same surface as the first press-fitting portion (press-fitting portion 20a). is fixed to body 1. The first press-fitting portion (press-fitting portion 20a) and the second press-fitting portion (press-fitting portion 1a) are arranged at different positions in the press-fitting direction. This makes it possible to easily press-fit and fix.

図4に示すように、第1圧入部(圧入部20a)及び第2圧入部(圧入部1a)は、ダンパカバー20とボディ1との接触面(突き当て部BU)から圧入方向のほぼ同じ距離の範囲(l20、l1)で形成される。これにより、第1圧入部(圧入部20a)及び第2圧入部(圧入部1a)による固定力を均等にすることができる。 As shown in FIG. 4, the first press-fitting portion (press-fitting portion 20a) and the second press-fitting portion (press-fitting portion 1a) are substantially in the same press-fitting direction from the contact surface (butting portion BU) between the damper cover 20 and the body 1. Formed by the range of distances (l20, l1). Thereby, the fixing force by the first press-fitting portion (press-fitting portion 20a) and the second press-fitting portion (press-fitting portion 1a) can be made uniform.

図5Aに示すように、ボディ1は、環状の凸部1bを有する。ダンパカバー20は、凸部1bに接する側面部20Sを有する。下部支持部材22は、凸部1b及び側面部20Sの内周面に接する。溶接痕は、図5Aに示す側面部20Sと凸部1bとの接触面(突き当て部BU)に形成され、下部支持部材22の内部で2分岐する(図5C)。これにより、凸部1b、側面部20S及び下部支持部材22の結合力を向上することができる。 As shown in FIG. 5A, the body 1 has an annular projection 1b. The damper cover 20 has a side portion 20S in contact with the convex portion 1b. The lower support member 22 contacts the inner peripheral surfaces of the convex portion 1b and the side portion 20S. The welding mark is formed on the contact surface (butting portion BU) between the side surface portion 20S and the convex portion 1b shown in FIG. 5A, and is bifurcated inside the lower support member 22 (FIG. 5C). As a result, the bonding force between the convex portion 1b, the side portion 20S and the lower support member 22 can be improved.

図5Aに示すように、側面部20Sの内周側かつ接触面(突き当て部BU)側に第1の面取り30aを有し、凸部1bの内周側かつ接触面側に第2の面取り30bを有する。第1の面取り30aと接触面と下部支持部材22とによって囲まれる第1空間SP1は、第2の面取り30bと接触面と下部支持部材22とによって囲まれる第2空間SP2より広い。これにより、溶接痕は、1周目のレーザ溶接で第1空間SP1に延伸するように形成され、2周目のレーザ溶接で第2空間SP2に延伸するように形成される。本実施例では、第1の面取り30aと第2の面取り30bは、その断面が曲線状(R状)であるが、直線状であってもよい。 As shown in FIG. 5A, a first chamfer 30a is provided on the inner peripheral side and the contact surface (butting portion BU) side of the side surface portion 20S, and a second chamfer is provided on the inner peripheral side and the contact surface side of the convex portion 1b. 30b. A first space SP1 surrounded by the first chamfer 30a, the contact surface and the lower support member 22 is wider than a second space SP2 surrounded by the second chamfer 30b, the contact surface and the lower support member 22. FIG. As a result, the weld marks are formed so as to extend to the first space SP1 in the first round of laser welding, and are formed to extend to the second space SP2 in the second round of laser welding. In this embodiment, the cross sections of the first chamfer 30a and the second chamfer 30b are curved (R-shaped), but they may be straight.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部を他の構成に置き換えることが可能であり、実施例の構成に他の構成を追加することが可能である
なお、本発明の実施例は、以下の態様であってもよい。
In addition, the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments are detailed descriptions for easy understanding of the present invention, and are not necessarily limited to those having all the configurations. In addition, it is possible to replace a part of the configuration of the embodiment with another configuration, and it is possible to add another configuration to the configuration of the embodiment. There may be.

(1).ボディとダンパカバー及び前記ダンパカバー部の内周側にダンパ機構が配置された高圧燃料ポンプにおいて、前記ボディの上端部と前記ダンパカバーの下端部との接触面をレーザによって溶接した溶接痕を備え、前記ボディに対して軸方向に断面にした際に、前記溶接痕の溶込み形状が、前記ダンパ機構を支持する下部支持部材の厚み方向内で2分岐している形状を備える高圧燃料ポンプ。 (1). A high-pressure fuel pump in which a damper mechanism is arranged on an inner peripheral side of a body, a damper cover, and the damper cover portion, wherein the contact surface between the upper end portion of the body and the lower end portion of the damper cover is provided with a welding mark obtained by welding with a laser. 2. A high-pressure fuel pump, wherein, when the body is axially cross-sectioned, the penetration shape of the weld marks is bifurcated in the thickness direction of the lower support member that supports the damper mechanism.

(2).(1)の燃料ポンプにおいて、前記ボディと前記ダンパカバー部の溶接部が周方向360°全周レーザ溶接されており、一部が2周溶接となっている高圧燃料ポンプ。 (2). The high-pressure fuel pump according to (1), wherein the welding portion between the body and the damper cover portion is laser-welded all around in a circumferential direction of 360°, and a part is welded twice.

(3).(2)の燃料ポンプにおいて、前記支持部材と前記カバー部との間に形成され、前記支持部材を前記カバー部に固定する第1圧入部と、前記支持部材と前記ボディとの間に形成され、前記支持部材の前記第1圧入部が形成される面と同一面に形成され、前記支持部材を前記ボディに固定する第2圧入部と、を備えた燃料ポンプ。 (3). In the fuel pump of (2), a first press-fit portion is formed between the support member and the cover portion to fix the support member to the cover portion, and a first press-fit portion is formed between the support member and the body. and a second press-fit portion formed on the same surface of the support member on which the first press-fit portion is formed, for fixing the support member to the body.

(4).(3)の燃料ポンプにおいて、前記第1圧入部と前記第2圧入部とは、前記支持部材と前記ボディ及び前記カバー部との圧入方向において、異なる位置に配置される燃料ポンプ。 (4). In the fuel pump of (3), the first press-fitting portion and the second press-fitting portion are arranged at different positions in the press-fitting direction of the support member and the body and the cover portion.

(5).(4)の燃料ポンプにおいて、前記第1圧入部及び前記第2圧入部は、前記カバー部と前記ボディとの前記圧入方向における接触面から、前記圧入方向のほぼ同じ距離の範囲まで形成される燃料ポンプ。 (5). In the fuel pump of (4), the first press-fitting portion and the second press-fitting portion are formed to a range of approximately the same distance in the press-fitting direction from the contact surface between the cover portion and the body in the press-fitting direction. Fuel pump.

本実施例では、ダンパカバー及びボディ2部品の溶接部端面に面取りを設けることで、溶接時の溶込み形状を2分岐化することを実現した。 In the present embodiment, by chamfering the end face of the welded portion of the damper cover and the two parts of the body, it is possible to bifurcate the penetration shape during welding.

(1)-(5)によれば、筒部材とダンパカバー及びボディとの結合部は、溶込み形状が2分岐化することで、結合面積が増加し筒部材とダンパカバー及びボディの結合強度が高まることから、ダンパカバーのボディに対しての位置ずれを防止し、低騒音化を実現した高圧燃料供給ポンプ及びその製造方法を提供することができる。 According to (1) to (5), the joint between the cylindrical member, the damper cover, and the body has a two-branched penetration shape, thereby increasing the joint area and the joint strength of the tubular member, the damper cover, and the body. Therefore, it is possible to provide a high-pressure fuel supply pump that prevents the damper cover from being displaced with respect to the body and that achieves low noise, and a method of manufacturing the same.

1…ボディ、1a…第2圧入部、2…プランジャ、3…電磁吸入弁機構、3h…アンカ、3i…ロッド、4…リリーフ弁機構、5…吸入配管、6…シリンダ、7…シールホルダ、8…吐出弁機構、9…ダンパ、10a…低圧燃料吸入口、11…加圧室、12…吐出ジョイント、13…プランジャシール、20…ダンパカバー、20a…第1圧入部、21…上部支持部材、22…下部支持部材、30a…ダンパカバーの下端面の面取り、30b…ボディの上端面の面取り、40…1周目溶込み形状、41…溶接2周目の溶込み形状、BG1…1周目溶接時の溶接部空隙、BG2…2周目溶接時の溶接部空隙、W…溶接部、BU…突き当て部(接触面) Reference Signs List 1 Body 1a Second press-fit portion 2 Plunger 3 Electromagnetic intake valve mechanism 3h Anchor 3i Rod 4 Relief valve mechanism 5 Intake pipe 6 Cylinder 7 Seal holder 8... Discharge valve mechanism, 9... Damper, 10a... Low-pressure fuel suction port, 11... Pressure chamber, 12... Discharge joint, 13... Plunger seal, 20... Damper cover, 20a... First press-fit portion, 21... Upper support member , 22... Lower support member 30a... Chamfering of the lower end surface of the damper cover 30b... Chamfering of the upper end surface of the body 40... Penetration shape of the first round 41... Penetration shape of the second round of welding BG1... First round BG2: weld gap during second round welding, W: welded part, BU: abutting part (contact surface)

Claims (7)

圧力脈動を低減するダンパと、
前記ダンパを支持する下部支持部材と、
前記ダンパ及び前記下部支持部材を覆うダンパカバーと、
ボディと、
前記ダンパカバーと前記ボディとの接触面に形成されるレーザによる溶接痕と、を備え、
前記溶接痕は、前記下部支持部材の厚み方向に対して2分岐する溶込み形状を有する高圧燃料供給ポンプ。
a damper for reducing pressure pulsations;
a lower support member that supports the damper;
a damper cover that covers the damper and the lower support member;
body and
laser welding marks formed on the contact surface between the damper cover and the body,
The high-pressure fuel supply pump, wherein the weld mark has a penetration shape bifurcating in the thickness direction of the lower support member.
請求項1に記載の高圧燃料供給ポンプであって、
前記溶接痕は、
周方向360°全周レーザ溶接による第1溶接部と、
周方向の一部又は全部の2周溶接による第2溶接部と、から構成される
ことを特徴とする高圧燃料供給ポンプ。
A high-pressure fuel supply pump according to claim 1,
The weld marks are
A first welded portion by circumferential 360° all-around laser welding;
and a second welded portion formed by welding a part or all of the circumference in two circumferences.
請求項2に記載の高圧燃料供給ポンプであって、
前記下部支持部材と前記ダンパカバーとの間に形成され、前記下部支持部材を前記ダンパカバーに固定する第1圧入部と、
前記下部支持部材と前記ボディとの間に形成され、前記第1圧入部が形成される面と同一面に形成され、前記下部支持部材を前記ボディに固定する第2圧入部と、を備える
ことを特徴とする高圧燃料供給ポンプ。
A high-pressure fuel supply pump according to claim 2,
a first press-fit portion formed between the lower support member and the damper cover for fixing the lower support member to the damper cover;
a second press-fit portion formed between the lower support member and the body, formed on the same surface as the first press-fit portion, and fixing the lower support member to the body; A high pressure fuel supply pump characterized by:
請求項3に記載の高圧燃料供給ポンプであって、
前記第1圧入部と前記第2圧入部は、
圧入方向において異なる位置に配置される
ことを特徴とする高圧燃料供給ポンプ。
A high-pressure fuel supply pump according to claim 3,
The first press-fit portion and the second press-fit portion are
A high-pressure fuel supply pump, characterized by being arranged at different positions in a press-fitting direction.
請求項4に記載の高圧燃料供給ポンプであって、
前記第1圧入部及び前記第2圧入部は、
前記ダンパカバーと前記ボディとの前記接触面から前記圧入方向のほぼ同じ距離の範囲で形成される
ことを特徴とする高圧燃料供給ポンプ。
A high-pressure fuel supply pump according to claim 4,
The first press-fitting portion and the second press-fitting portion are
A high-pressure fuel supply pump, wherein the high-pressure fuel supply pump is formed within a range of substantially the same distance in the press-fitting direction from the contact surfaces of the damper cover and the body.
請求項1に記載の高圧燃料供給ポンプであって、
前記ボディは、環状の凸部を有し、
前記ダンパカバーは、前記凸部に接する側面部を有し、
前記下部支持部材は、前記凸部及び前記側面部の内周面に接し、
前記溶接痕は、
前記側面部と前記凸部との接触面に形成され、
前記下部支持部材の内部で2分岐する
ことを特徴とする高圧燃料供給ポンプ。
A high-pressure fuel supply pump according to claim 1,
The body has an annular projection,
The damper cover has a side surface portion in contact with the convex portion,
the lower support member is in contact with inner peripheral surfaces of the convex portion and the side portion;
The weld marks are
formed on the contact surface between the side surface portion and the convex portion,
A high-pressure fuel supply pump, characterized in that it branches into two inside the lower support member.
請求項6に記載の高圧燃料供給ポンプであって、
前記側面部の内周側かつ前記接触面側に第1の面取りを有し、
前記凸部の内周側かつ前記接触面側に第2の面取りを有し、
前記第1の面取りと前記接触面と前記下部支持部材とによって囲まれる第1空間は、前記第2の面取りと前記接触面と前記下部支持部材とによって囲まれる第2空間より広い
ことを特徴とする高圧燃料供給ポンプ。
A high-pressure fuel supply pump according to claim 6,
Having a first chamfer on the inner peripheral side of the side surface portion and on the contact surface side,
Having a second chamfer on the inner peripheral side of the convex portion and on the contact surface side,
A first space surrounded by the first chamfer, the contact surface, and the lower support member is wider than a second space surrounded by the second chamfer, the contact surface, and the lower support member. high pressure fuel supply pump.
JP2021205200A 2021-12-17 2021-12-17 high pressure fuel supply pump Pending JP2023090295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021205200A JP2023090295A (en) 2021-12-17 2021-12-17 high pressure fuel supply pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021205200A JP2023090295A (en) 2021-12-17 2021-12-17 high pressure fuel supply pump

Publications (1)

Publication Number Publication Date
JP2023090295A true JP2023090295A (en) 2023-06-29

Family

ID=86937194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021205200A Pending JP2023090295A (en) 2021-12-17 2021-12-17 high pressure fuel supply pump

Country Status (1)

Country Link
JP (1) JP2023090295A (en)

Similar Documents

Publication Publication Date Title
JP5382551B2 (en) High pressure pump
JP6430354B2 (en) High pressure fuel supply pump
EP3467297B1 (en) High-pressure fuel feeding pump
JP6940569B2 (en) High pressure fuel pump
WO2018142930A1 (en) High-pressure fuel supply pump
EP3889482A1 (en) Fuel pump
US11713741B2 (en) Fuel supply pump
JP7118183B2 (en) Metal diaphragm, metal damper, and fuel pump with these
CN110832188A (en) High-pressure fuel pump
JP2019143562A (en) Discharge valve mechanism and fuel supply pump having the same
JPWO2018092538A1 (en) High pressure fuel supply pump
JP2023090295A (en) high pressure fuel supply pump
JP7284348B2 (en) high pressure fuel supply pump
JP7055933B2 (en) Fuel pump
JP6952191B2 (en) Fuel pump
JP7249411B2 (en) JOINT STRUCTURE AND HIGH PRESSURE FUEL SUPPLY PUMP USING THE SAME
JP7265644B2 (en) metal diaphragm, metal damper, and fuel pump
JP6938101B2 (en) Manufacturing method of high-pressure fuel supply pump and high-pressure fuel supply pump
JP2019218896A (en) Vehicle component and fuel pump having the same
JP2018178969A (en) High-pressure fuel supply pump
JP7077212B2 (en) High pressure fuel pump
JP7110384B2 (en) Fuel pump
JP2023169731A (en) Fuel pump
WO2019193836A1 (en) High-pressure fuel supply pump
WO2024201699A1 (en) Valve mechanism and fuel pump