[go: up one dir, main page]

JP2023053302A - Respiratory gas supply device and control method of the same - Google Patents

Respiratory gas supply device and control method of the same Download PDF

Info

Publication number
JP2023053302A
JP2023053302A JP2023020795A JP2023020795A JP2023053302A JP 2023053302 A JP2023053302 A JP 2023053302A JP 2023020795 A JP2023020795 A JP 2023020795A JP 2023020795 A JP2023020795 A JP 2023020795A JP 2023053302 A JP2023053302 A JP 2023053302A
Authority
JP
Japan
Prior art keywords
determination threshold
intake
threshold
inhalation
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023020795A
Other languages
Japanese (ja)
Other versions
JP7509936B2 (en
Inventor
理人 佐々木
Masato Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Pharma Ltd
Original Assignee
Teijin Pharma Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Pharma Ltd filed Critical Teijin Pharma Ltd
Priority to JP2023020795A priority Critical patent/JP7509936B2/en
Publication of JP2023053302A publication Critical patent/JP2023053302A/en
Application granted granted Critical
Publication of JP7509936B2 publication Critical patent/JP7509936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/2013Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • A61M16/026Control means therefor including calculation means, e.g. using a processor specially adapted for predicting, e.g. for determining an information representative of a flow limitation during a ventilation cycle by using a root square technique or a regression analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Measuring devices for evaluating the respiratory organs
    • A61B5/087Measuring breath flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0666Nasal cannulas or tubing
    • A61M16/0672Nasal cannula assemblies for oxygen therapy
    • A61M16/0677Gas-saving devices therefor
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0015Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
    • A61M2016/0018Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
    • A61M2016/0021Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical with a proportional output signal, e.g. from a thermistor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/18General characteristics of the apparatus with alarm

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pulmonology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Emergency Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Medical Informatics (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Fluid Mechanics (AREA)
  • Surgery (AREA)
  • Otolaryngology (AREA)
  • Biophysics (AREA)
  • General Business, Economics & Management (AREA)
  • Physiology (AREA)
  • Business, Economics & Management (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce misdetection of the start of an inspiratory phase due to an influence of continuous non-detection of inspiration or erroneous detection caused by disturbance or the like, in a respiratory gas supply device of a respiration tuning type which supplies respiratory gas in accordance with a respiration cycle.
SOLUTION: A pressure sensor and a control unit are provided. The control unit starts supplying a respiratory gas by considering a point where the value of pressure data calculated from a signal of the pressure sensor becomes smaller than an inspiration determination threshold as an inspiration detection point, speedily determines the occurrence of non-detection and erroneous detection of inspiration based on a change in an inspiration detection cycle, and automatically optimizes a determination condition of inspiration detection corresponding to the present respiration pattern of a user.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2023,JPO&INPIT

Description

本発明は使用者の呼吸サイクルに応じて、濃縮酸素などの呼吸用気体を供給する、呼吸同調式の呼吸用気体供給装置及びその制御方法に関する。 TECHNICAL FIELD The present invention relates to a breathing synchronized breathing gas supply device for supplying breathing gas such as concentrated oxygen according to a user's breathing cycle, and a control method thereof.

喘息、肺気腫、慢性気管支炎などの呼吸器系疾患の治療法として、患者に高濃度の酸素ガスを吸入させ、不足している酸素を補う酸素吸入療法が行われている。在宅酸素吸入療法は、医師の処方に従って、酸素濃縮装置や酸素ボンベなどの呼吸用気体供給装置を、患者である使用者が操作し、自宅で酸素吸入療法を行うものである。最近では、バッテリーで駆動する携帯式の酸素濃縮装置なども開発され、呼吸用気体供給装置の用途が拡大している。 Oxygen inhalation therapy, in which patients are made to inhale high-concentration oxygen gas to compensate for insufficient oxygen, is used as a treatment for respiratory diseases such as asthma, emphysema, and chronic bronchitis. In home oxygen inhalation therapy, a user, who is a patient, operates a respiratory gas supply device such as an oxygen concentrator or an oxygen cylinder according to a doctor's prescription to perform oxygen inhalation therapy at home. Recently, portable oxygen concentrators driven by batteries have been developed, and the applications of respiratory gas supply devices are expanding.

携帯型の呼吸用気体供給装置では、装置の小型軽量化と長時間の稼働を可能にするため、デマンドレギュレータ機能を備えた呼吸同調式のものが多い(特許文献1、2)。デマンドレギュレータ機能は、圧力センサなどで使用者の吸気開始を検知し、呼吸サイクルに同調して吸気相でのみ酸素ガスなどの呼吸用気体を供給し、呼気相では供給を停止する。呼吸用気体を連続して供給するのではなく、使用者の呼吸サイクルに応じてパルス的に供給することで、呼吸用気体の節減、消費電力の削減が図れる。 Many of the portable respiratory gas supply devices are breath-synchronized with a demand regulator function in order to reduce the size and weight of the device and enable long-time operation (Patent Documents 1 and 2). The demand regulator function detects the user's start of inspiration with a pressure sensor or the like, supplies respiratory gas such as oxygen gas only in the inspiratory phase in synchronization with the respiratory cycle, and stops the supply in the expiratory phase. By supplying the breathing gas in pulses according to the breathing cycle of the user instead of supplying it continuously, it is possible to save the breathing gas and reduce power consumption.

デマンドレギュレータ機能で吸気開始を検知する手段は、カニューラに気体を供給する気体供給経路に圧力センサを設け、吸気開始に伴う圧力変化を検出する方法などが考案されており、例えば圧力センサで検出した圧力値が、予め定めた圧力値閾値より低下した場合、又は呼気相から吸気相側に向かう圧力値の時間変化率(圧力勾配)が、予め定めた圧力勾配閾値を超えた場合に、吸気開始と判断する方法等がある。特許文献3には、安静、労作、及び睡眠といった活動状態によって異なる呼吸位相を検知し、各呼吸サイクルに同調して吸入用気体を供給するデマンドレギュレータ機能について記載されている。 As a means for detecting the start of inspiration with the demand regulator function, a method has been devised in which a pressure sensor is installed in the gas supply path that supplies gas to the cannula and the pressure change associated with the start of inspiration is detected. When the pressure value falls below a predetermined pressure value threshold, or when the time rate of change (pressure gradient) of the pressure value from the expiratory phase to the inspiratory phase exceeds a predetermined pressure gradient threshold, inhalation starts. There are methods for determining Patent Document 3 describes a demand regulator function that detects different respiratory phases according to activity states such as rest, exertion, and sleep, and supplies inhalation gas in synchronization with each respiratory cycle.

また、呼吸状態によらず安定した吸気検知を行うことを意図した技術も考案されている。当該技術は、吸気検知の周期に乱れがなくほぼ一定となっている期間を対象に呼吸数等を判定し、吸気検知数がある閾値回数を下回った場合には呼吸が浅く吸気開始を正しく検知していないことが予想されるため吸気開始の判定条件を緩くし、吸気検知数がある閾値回数を上回った場合には呼吸以外の外乱を過剰に検知していることが予想されるため吸気開始の判定条件を厳しくする(特許文献4)。 Techniques have also been devised that aim to perform stable inhalation detection regardless of the respiratory state. This technology judges the number of breaths, etc. for the period when the period of inhalation detection is almost constant without disturbance, and when the number of inhalation detections falls below a certain threshold number of times, the breathing is shallow and the start of inspiration is detected correctly. Since it is expected that the intake is not detected, the criteria for starting inspiration are loosened, and if the number of intake detections exceeds a certain threshold number of times, it is expected that external disturbances other than breathing are detected excessively. Strict determination conditions for (Patent Document 4).

特許第2656530号公報Japanese Patent No. 2656530 特開2004-105230号公報Japanese Patent Application Laid-Open No. 2004-105230 WO2018/180848号WO2018/180848 特表2015-531308号公報Japanese Patent Publication No. 2015-531308

酸素吸入療法を受けている呼吸器系疾患患者は、酸素吸入を数秒間断たれることで血中酸素飽和度が低下し息切れや呼吸困難感といった症状が表れやすいこと、吸気と関係のないタイミングで呼吸用気体のパルスを供給され続けることで不快感を生じることが一般的に知られている。そのため、吸気が継続的に検知されないことにより吸気検知の周期が過
度に長くなった状態、あるいは外乱を継続的に検知し続けることにより吸気検知の周期が異常に短くなった状態をもとに吸気判定条件を最適化する方法を採用しても、適正な吸気検知の再開までに長い時間を要し、上記の呼吸困難感や不快感を使用者に引き起こす場合がある。
Patients with respiratory diseases who are receiving oxygen inhalation therapy are likely to experience symptoms such as shortness of breath and dyspnea due to a decrease in blood oxygen saturation when oxygen inhalation is cut off for a few seconds. It is generally known that the continuous supply of pulses of breathing gas causes discomfort. Therefore, the intake detection period is excessively long due to continuous detection of intake air, or the intake detection period is abnormally shortened due to continuous detection of external disturbances. Even if a method of optimizing the determination condition is adopted, it may take a long time to restart proper intake detection, causing the above-described dyspnea and discomfort to the user.

本発明はこのような事情に鑑みてなされたものであり、吸気検知周期の変化をもとに、吸気の未検知および誤検知の発生を迅速に判定し、使用者の現在の呼吸パターンに応じた吸気検知の判定条件に自動で最適化するデマンドレギュレータ機能を備えた、呼吸用気体供給装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and based on changes in the intake detection cycle, quickly determines the occurrence of non-detection and erroneous detection of inspiration, and responds to the current breathing pattern of the user. It is an object of the present invention to provide a respiratory gas supply device having a demand regulator function that automatically optimizes the determination conditions for detection of inspiratory gas.

本発明は以下の(1)~(24)の態様を含む。
(1)本発明の第1の呼吸用気体供給用装置は、使用者の呼吸サイクルに応じて呼吸用気体を供給する、呼吸同調式の呼吸用気体供給装置であって、前記呼吸用気体供給装置は、
気体供給経路の圧力を測定する圧力センサと、
所定の複数の吸気判定閾値から、1つの吸気判定閾値を選択する制御部とを備え、
前記制御部は、前記圧力センサの信号から算出した圧力データの値が、選択した吸気判定閾値より小さくなった点を吸気検知点と判断するとともに、前記吸気検知点から一定時間前記呼吸用気体を供給し、
前記制御部は、(直近n1回分の吸気検知点の間の時間間隔の平均値)÷(直近n2回分の吸気検知点の間の時間間隔の平均値)の値が、X%より大きい場合、吸気判定閾値を、選択された吸気判定閾値より大きい吸気判定閾値に切り替え、
前記制御部は、(直近n1回分の吸気検知点の間の時間間隔の平均値)÷(直近n2回分の吸気検知点の間の時間間隔の平均値)の値が、Y%未満である場合、吸気判定閾値を、選択された吸気判定閾値より小さい吸気判定閾値に切り替えることを特徴とする。
(2)(1)の呼吸用気体供給用装置において、前記n1回は、2回以上であることを特徴とする。
(3)(1)の呼吸用気体供給用装置において、前記n2回は、3回以上であることを特徴とする。
(4)(1)~(3)のいずれかの呼吸用気体供給装置において、前記X%は、600%より大きく1000%より小さい値であることを特徴とする。
(5)(1)~(4)のいずれかの呼吸用気体供給装置において、前記Y%は、10%より大きく17%より小さい値であることを特徴とする。
(6)(1)~(5)のいずれかの呼吸用気体供給装置において、前記所定の複数の吸気判定閾値のうち最も大きい吸気判定閾値を選択しているとき、(直近n1回分の吸気検知点の間の時間間隔の平均値)÷(直近n2回分の吸気検知点の間の時間間隔の平均値)の値が、X%より大きい場合、前記制御部は、前記呼吸用気体の供給を一定時間の連続供給又は一定周期のパルス供給に切り替えることを特徴とする。
(7)本発明の第2の呼吸用気体供給用装置は、使用者の呼吸サイクルに応じて呼吸用気体を供給する、呼吸同調式の呼吸用気体供給装置であって、前記呼吸用気体供給装置は、
気体供給経路の圧力を測定する圧力センサと、
所定の複数の吸気判定閾値から、1つの吸気判定閾値を選択する制御部とを備え、
前記制御部は、前記圧力センサの信号から算出した圧力データの値が、選択した吸気判定閾値より小さくなった点を吸気検知点と判断するとともに、前記吸気検知点から一定時
間前記呼吸用気体を供給し、
前記制御部は、直近n3回分の吸気検知点の間の時間間隔の合計値が、第1の時間より長い場合、吸気判定閾値を、選択された吸気判定閾値より大きい吸気判定閾値に切り替え、
前記制御部は、直近n3回分の吸気検知点の間の時間間隔の合計値が、第2の時間より短い場合、吸気判定閾値を、選択された吸気判定閾値より小さい吸気判定閾値に切り替えることを特徴とする。
(8)(7)の呼吸用気体供給装置において、前記n3回は、2回以上であることを特徴とする。
(9)(7)または(8)の呼吸用気体供給装置において、前記第1の時間は、前記n3×7.5秒よりも長い時間であることを特徴とする。
(10)(7)~(9)のいずれかの呼吸用気体供給装置において、前記第2の時間は、前記n3×1.2秒未満の時間であることを特徴とする。
(11)(7)~(10)のいずれかの呼吸用気体供給装置において、前記所定の複数の吸気判定閾値のうち最も大きい吸気判定閾値を選択しているとき、直近n3回分の吸気検知点の間の時間間隔の合計値が、第1の時間より長い場合、前記制御部は、前記呼吸用気体の供給を一定時間の連続供給又は一定周期のパルス供給に切り替えることを特徴とする。
(12)(1)~(11)のいずれかの呼吸用気体供給装置において、前記圧力データの値は、圧力値あるいは圧力勾配値であることを特徴とする。
(13)(1)~(12)のいずれかの呼吸用気体供給装置において、前記吸気判定閾値は、圧力閾値あるいは圧力勾配閾値であることを特徴とする。
(14)(1)~(13)のいずれかの呼吸用気体供給装置において、前記吸気判定閾値として、少なくとも第1圧力勾配閾値と、第1圧力勾配閾値よりも大きい第2圧力勾配閾値を含み、
前記第1圧力勾配閾値は、-4.0Pa/20ms以上-1.0Pa/20ms以下であり、
前記第2圧力勾配閾値は、-0.8Pa/20ms以上-0.1Pa/20ms以下であることを特徴とする。
(15)(1)~(13)のいずれかの呼吸用気体供給装置において、前記吸気判定閾値として、少なくとも第1圧力閾値と、第1圧力閾値よりも大きい第2圧力閾値を含み、
前記第1圧力閾値は、-10.0Pa以上-5.0Pa以下であり、
前記第2圧力閾値は、-3.0Pa以上-1.0Pa以下であることを特徴とする。
(16)本発明の第3の呼吸用気体供給用装置は、使用者の呼吸サイクルに応じて呼吸用気体を供給する、呼吸同調式の呼吸用気体供給装置であって、前記呼吸用気体供給装置は、
気体供給経路の圧力を測定する圧力センサと、
所定の複数の吸気判定閾値から、1つの吸気判定閾値を選択する制御部とを備え、
前記制御部は、前記圧力センサの信号から算出した圧力データの値が、選択した吸気判定閾値より小さくなった点を吸気検知点と判断するとともに、前記吸気検知点から一定時間前記呼吸用気体を供給し、
直近7.5秒間の圧力値の最小値に基づいて、吸気判定閾値を切り替えることを特徴とする。
(17)(16)の呼吸用気体供給装置において、前記制御部は、前記直近7.5秒間の圧力値の最小値が第1圧力判定閾値より大きい場合、吸気判定閾値を、選択された吸気判定閾値より大きい吸気判定閾値に切り替え、
前記制御部は、前記直近7.5秒間の圧力値の最小値が第2圧力判定閾値より小さい場合、吸気判定閾値を前記選択された吸気判定閾値より小さい吸気判定閾値に切り替えることを特徴とする。
(18)(16)または(17)の呼吸用気体供給装置において、前記第1圧力判定閾値は、-10Pa以上-5Pa以下であり、前記第2圧力判定閾値は-100Pa以上-50Pa以下であることを特徴とする。
(19)(1)~(18)のいずれかの呼吸用気体供給装置において、前記呼吸用気体は濃縮酸素であり、前記呼吸用気体供給装置は酸素濃縮装置であることを特徴とする。
(20)本発明の第1の呼吸用気体供給装置の制御方法は、使用者の呼吸サイクルに応じて呼吸用気体を供給する、呼吸同調式の呼吸用気体供給装置の制御方法であって、
所定の複数の吸気判定閾値の中から、1つの吸気判定閾値を選択する吸気判定閾値選択ステップと、
前記呼吸サイクルを検知する圧力センサの信号から算出した圧力データの値が、前記吸気判定閾値選択ステップで選択した吸気判定閾値より小さくなる吸気検知点を検出する吸気検知点検出ステップと、
直近n1回分の前記吸気検知点の間の時間間隔に基づいて、前記複数の吸気判定閾値の中のいずれかに前記1つの吸気判定閾値を切り替える吸気判定閾値切り替えステップとを有し、
前記吸気判定閾値切り替えステップは、(直近n1回分の吸気検知点の間の時間間隔の平均値)÷(直近n2回分の吸気検知点の間の時間間隔の平均値)の値が、X%より大きい場合、吸気判定閾値を、選択された吸気判定閾値より大きい吸気判定閾値に切り替え、(直近n1回分の吸気検知点の間の時間間隔の平均値)÷(直近n2回分の吸気検知点の間の時間間隔の平均値)の値が、Y%未満である場合、吸気判定閾値を、選択された吸気判定閾値より小さい吸気判定閾値に切り替えることを特徴とする。
(21)本発明の第2の呼吸用気体供給装置の制御方法は、使用者の呼吸サイクルに応じて呼吸用気体を供給する、呼吸同調式の呼吸用気体供給装置の制御方法であって、
所定の複数の吸気判定閾値の中から、1つの吸気判定閾値を選択する吸気判定閾値選択ステップと、
前記呼吸サイクルを検知する圧力センサの信号から算出した圧力データの値が、前記吸気判定閾値選択ステップで選択した吸気判定閾値より小さくなる吸気検知点を検出する吸気検知点検出ステップと、
直近n3回分の前記吸気検知点の間の時間間隔に基づいて、前記複数の吸気判定閾値の中のいずれかに前記1つの吸気判定閾値を切り替える吸気判定閾値切り替えステップとを有し、
前記吸気判定閾値切り替えステップは、直近n3回分の吸気検知点の間の時間間隔の合計値が、第1の時間より長い場合、吸気判定閾値を、選択された吸気判定閾値より大きい吸気判定閾値に切り替え、直近n3回分の前記時間間隔の合計値が第2の時間より短い場合、吸気判定閾値を、選択された吸気判定閾値より小さい吸気判定閾値に切り替えることを特徴とする。
(22)本発明の第3の呼吸用気体供給装置の制御方法は、使用者の呼吸サイクルに応じて呼吸用気体を供給する、呼吸同調式の呼吸用気体供給装置の制御方法であって、
所定の複数の吸気判定閾値の中から、1つの吸気判定閾値を選択する吸気判定閾値選択ステップと、
前記呼吸サイクルを検知する圧力センサの信号から算出した圧力データの値が、前記吸気判定閾値選択ステップで選択した吸気判定閾値より小さくなる吸気検知点を検出する吸気検知点検出ステップと、
設定された複数の吸気判定閾値の中から、1つの吸気判定閾値を選択する吸気判定閾値選択ステップと、
直近7.5秒間の圧力値の最小値に基づいて、前記複数の吸気判定閾値の中のいずれかに前記1つの吸気判定閾値を切り替える吸気判定閾値切り替えステップとを有することを特徴とする。
(23)(22)の呼吸用気体供給装置の制御方法において、前記吸気判定閾値切り替えステップは、前記直近7.5秒間の圧力値の最小値が第1圧力判定閾値より大きい場合、吸気判定閾値を、選択された吸気判定閾値より大きい吸気判定閾値に切り替え、前記直近7.5秒間の圧力値の最小値が第2圧力閾値より小さい場合、吸気判定閾値を、選択された吸気判定閾値より小さい吸気判定閾値に切り替えることを特徴とする。
(24)(20)~(23)のいずれかの呼吸用気体供給装置の制御方法において、前記吸気検知点検出ステップにおいて吸気検知点を検出すると、前記呼吸用気体を一定時間パルス供給するステップをさらに有することを特徴とする。
The present invention includes the following aspects (1) to (24).
(1) A first respiratory gas supply apparatus of the present invention is a respiratory synchronous respiratory gas supply apparatus for supplying respiratory gas according to a user's breathing cycle, wherein the respiratory gas supply is The device
a pressure sensor that measures the pressure of the gas supply path;
A control unit that selects one intake determination threshold from a plurality of predetermined intake determination thresholds,
The control unit determines a point at which the value of the pressure data calculated from the signal of the pressure sensor becomes smaller than a selected threshold value for determination of inhalation as an inhalation detection point, and releases the respiratory gas for a predetermined time from the inhalation detection point. supply and
When the value of (average value of time intervals between the most recent n1 times of inhalation detection points)/(average value of time intervals between the most recent n2 times of inhalation detection points) is greater than X%, Switching the intake determination threshold to an intake determination threshold greater than the selected intake determination threshold,
When the value of (average value of time intervals between the most recent n1 times of inhalation detection points)/(average value of time intervals between the most recent n2 times of inhalation detection points) is less than Y% , the intake determination threshold is switched to an intake determination threshold smaller than the selected intake determination threshold.
(2) In the apparatus for supplying respiratory gas of (1), the n1 times is two or more times.
(3) In the apparatus for supplying respiratory gas of (1), the n2 times is 3 times or more.
(4) In the respiratory gas supply device according to any one of (1) to (3), the X% is a value greater than 600% and less than 1000%.
(5) In the respiratory gas supply device according to any one of (1) to (4), the Y% is a value larger than 10% and smaller than 17%.
(6) In the respiratory gas supply device of any one of (1) to (5), when the largest inhalation determination threshold among the plurality of predetermined inhalation determination thresholds is selected, (inhalation detection for the last n1 times If the value of (average value of the time interval between points)/(average value of the time interval between the last n2 inspiration detection points) is greater than X%, the control unit stops supplying the respiratory gas. It is characterized by switching to continuous supply for a certain period of time or pulse supply of a certain period.
(7) A second respiratory gas supply apparatus of the present invention is a respiratory synchronous respiratory gas supply apparatus that supplies respiratory gas according to a user's breathing cycle, wherein the respiratory gas supply The device
a pressure sensor that measures the pressure of the gas supply path;
A control unit that selects one intake determination threshold from a plurality of predetermined intake determination thresholds,
The control unit determines a point at which the value of the pressure data calculated from the signal of the pressure sensor becomes smaller than a selected threshold value for determination of inhalation as an inhalation detection point, and releases the respiratory gas for a predetermined time from the inhalation detection point. supply and
When the total value of the time intervals between the latest n3 intake detection points is longer than a first time, the control unit switches the intake determination threshold to a selected intake determination threshold larger than the intake determination threshold,
When the total value of the time intervals between the inhalation detection points for the last n3 times is shorter than a second time, the control unit switches the inhalation determination threshold to the inhalation determination threshold smaller than the selected inhalation determination threshold. Characterized by
(8) In the respiratory gas supply device of (7), the n3 times is two or more times.
(9) In the respiratory gas supply device of (7) or (8), the first time is longer than n3×7.5 seconds.
(10) The respiratory gas supply device according to any one of (7) to (9), wherein the second time is less than n3×1.2 seconds.
(11) In the respiratory gas supply device of any one of (7) to (10), when the largest inhalation determination threshold among the plurality of predetermined inhalation determination thresholds is selected, the last n3 inhalation detection points is longer than a first time, the control unit switches the supply of the respiratory gas to continuous supply for a certain period of time or pulse supply for a certain period.
(12) The respiratory gas supply device according to any one of (1) to (11), wherein the pressure data value is a pressure value or a pressure gradient value.
(13) In the respiratory gas supply device according to any one of (1) to (12), the threshold for determining inspiration is a pressure threshold or a pressure gradient threshold.
(14) In the respiratory gas supply device according to any one of (1) to (13), the inspiratory determination threshold includes at least a first pressure gradient threshold and a second pressure gradient threshold greater than the first pressure gradient threshold. ,
The first pressure gradient threshold is −4.0 Pa/20 ms or more and −1.0 Pa/20 ms or less,
The second pressure gradient threshold is -0.8 Pa/20 ms or more and -0.1 Pa/20 ms or less.
(15) In the respiratory gas supply device according to any one of (1) to (13), the inspiratory determination threshold includes at least a first pressure threshold and a second pressure threshold greater than the first pressure threshold,
The first pressure threshold is -10.0 Pa or more and -5.0 Pa or less,
The second pressure threshold is -3.0 Pa or more and -1.0 Pa or less.
(16) A third respiratory gas supply apparatus of the present invention is a respiratory synchronous respiratory gas supply apparatus for supplying respiratory gas according to a user's breathing cycle, wherein the respiratory gas supply The device
a pressure sensor that measures the pressure of the gas supply path;
A control unit that selects one intake determination threshold from a plurality of predetermined intake determination thresholds,
The control unit determines a point at which the value of the pressure data calculated from the signal of the pressure sensor becomes smaller than a selected threshold value for determination of inhalation as an inhalation detection point, and releases the respiratory gas for a predetermined time from the inhalation detection point. supply and
It is characterized by switching the intake determination threshold value based on the minimum value of the pressure values for the most recent 7.5 seconds.
(17) In the respiratory gas supply device of (16), if the minimum value of the pressure values in the most recent 7.5 seconds is greater than a first pressure determination threshold, the intake determination threshold is set to the selected intake Switch to an intake determination threshold that is greater than the determination threshold,
The control unit switches the intake determination threshold value to an intake determination threshold value smaller than the selected intake determination threshold value when the minimum value of the pressure values in the most recent 7.5 seconds is smaller than a second pressure determination threshold value. .
(18) In the respiratory gas supply device of (16) or (17), the first pressure determination threshold is -10 Pa or more and -5 Pa or less, and the second pressure determination threshold is -100 Pa or more and -50 Pa or less. It is characterized by
(19) The respiratory gas supply device according to any one of (1) to (18), wherein the respiratory gas is concentrated oxygen, and the respiratory gas supply device is an oxygen concentrator.
(20) A first method for controlling a respiratory gas supply apparatus of the present invention is a method for controlling a respiratory synchronized type respiratory gas supply apparatus for supplying respiratory gas according to a user's breathing cycle, comprising:
an intake determination threshold selection step of selecting one intake determination threshold from among a plurality of predetermined intake determination thresholds;
an inspiratory detection point detection step of detecting an inspiratory detection point at which the value of pressure data calculated from the signal of the pressure sensor that detects the respiratory cycle is smaller than the inspiratory determination threshold selected in the inspiratory determination threshold selection step;
an intake determination threshold switching step of switching the one intake determination threshold to one of the plurality of intake determination thresholds based on the time interval between the intake detection points for the last n1 times;
In the inhalation determination threshold switching step, the value of (average value of time intervals between inhalation detection points for the most recent n1 times) ÷ (average value of time intervals between the inhalation detection points for the most recent n2 times) is more than X%. If it is larger, the inhalation determination threshold is switched to an inhalation determination threshold that is greater than the selected inhalation determination threshold, and (the average value of the time intervals between the most recent n1 inhalation detection points) ÷ (between the most recent n2 inhalation detection points is less than Y%, the intake determination threshold is switched to an intake determination threshold smaller than the selected intake determination threshold.
(21) A second method for controlling a respiratory gas supply apparatus of the present invention is a method for controlling a respiratory synchronous type respiratory gas supply apparatus that supplies respiratory gas according to a user's breathing cycle, comprising:
an intake determination threshold selection step of selecting one intake determination threshold from among a plurality of predetermined intake determination thresholds;
an inspiratory detection point detection step of detecting an inspiratory detection point at which the value of pressure data calculated from the signal of the pressure sensor that detects the respiratory cycle is smaller than the inspiratory determination threshold selected in the inspiratory determination threshold selection step;
an intake determination threshold switching step of switching the one intake determination threshold to one of the plurality of intake determination thresholds based on the time interval between the intake detection points for the last n3 times;
The inhalation determination threshold switching step sets the inhalation determination threshold to a greater inhalation determination threshold than the selected inhalation determination threshold when the total value of the time intervals between the inhalation detection points for the last n3 times is longer than a first time. When the total value of the time intervals for the last n3 times of switching is shorter than a second time, the intake determination threshold is switched to an intake determination threshold smaller than the selected intake determination threshold.
(22) A third method for controlling a respiratory gas supply device of the present invention is a method for controlling a respiratory synchronous respiratory gas supply device for supplying respiratory gas according to a user's breathing cycle, comprising:
an intake determination threshold selection step of selecting one intake determination threshold from among a plurality of predetermined intake determination thresholds;
an inspiratory detection point detection step of detecting an inspiratory detection point at which the value of pressure data calculated from the signal of the pressure sensor that detects the respiratory cycle is smaller than the inspiratory determination threshold selected in the inspiratory determination threshold selection step;
an intake determination threshold selection step of selecting one intake determination threshold from among a plurality of set intake determination thresholds;
and an inhalation determination threshold switching step of switching the one inhalation determination threshold to one of the plurality of inhalation determination thresholds based on the minimum value of the pressure values in the most recent 7.5 seconds.
(23) In the method for controlling a respiratory gas supply device of (22), the inspiratory determination threshold switching step includes, when the minimum value of the pressure values in the most recent 7.5 seconds is greater than the first pressure determination threshold, the inspiratory determination threshold is switched to an inspiratory determination threshold that is greater than the selected inspiratory determination threshold, and if the minimum value of the pressure values in the last 7.5 seconds is less than the second pressure threshold, the inspiratory determination threshold is less than the selected inspiratory determination threshold. It is characterized by switching to the intake determination threshold.
(24) In the method for controlling a respiratory gas supply device according to any one of (20) to (23), when an inhalation detection point is detected in the inhalation detection point detection step, the step of supplying a pulse of the respiratory gas for a predetermined period of time is provided. It is characterized by further comprising:

本発明によれば、呼吸位相を正確に検知し、吸気検知周期の変化に基づき、吸気の未検知及び誤検知の発生を迅速に判定し、使用者の現在の呼吸パターンに応じた吸気検知の判定条件に自動で最適化するデマンドレギュレータ機能を備えた、呼吸用気体供給装置を提供することができる。 According to the present invention, the respiratory phase is accurately detected, the occurrence of non-detection and erroneous detection of inspiration is quickly determined based on changes in the inspiration detection cycle, and the detection of inspiration according to the current breathing pattern of the user is performed. It is possible to provide a respiratory gas supply device with a demand regulator function that automatically optimizes to the criteria.

呼吸用気体供給装置のデマンドレギュレータ機能に関連する主な構成を示す図である。FIG. 4 is a diagram showing the main configuration related to the demand regulator function of the respiratory gas supply device; 吸気検知点の間の時間間隔の最新値と、直近複数回分の吸気検知点Gの間の時間間隔の平均値データに基づいて吸気判定閾値を切り替えるフロー図である。FIG. 10 is a flowchart for switching the intake determination threshold value based on the latest value of the time interval between the intake detection points and the average value data of the time intervals between the intake detection points G for the most recent multiple times. 直近7.5秒間の圧力値の最小値に基づいて吸気判定閾値を切り替えるフロー図である。FIG. 10 is a flowchart for switching the intake determination threshold value based on the minimum value of the pressure values for the most recent 7.5 seconds; マニュアル切り替えを含む吸気判定閾値切り替えのフロー図である。FIG. 4 is a flow chart of switching the intake determination threshold including manual switching. 呼吸用気体の自動連続供給への切り替えを含む吸気判定閾値切り替えのフロー図である。FIG. 10 is a flow diagram of switching the inspiration determination threshold including switching to automatic continuous supply of breathing gas. 呼吸用気体の自動パルス供給への切り替えを含む吸気判定閾値切り替えのフロー図である。FIG. 10 is a flow diagram of inspiration determination threshold switching including switching to automatic pulsed delivery of breathing gas. 覚醒時の呼吸パターンと睡眠時の呼吸パターンを対象に圧力勾配閾値を用いて吸気判定する様子を模式的に示す図である。FIG. 10 is a diagram schematically showing how inhalation is determined using a pressure gradient threshold for a breathing pattern during wakefulness and a breathing pattern during sleep. 覚醒時の呼吸パターンと睡眠時の呼吸パターンを対象に圧力閾値を用いて吸気判定する様子を模式的に示す図である。FIG. 10 is a diagram schematically showing how to determine inhalation using a pressure threshold for a breathing pattern during wakefulness and a breathing pattern during sleep.

以下、本発明の一実施形態について、図面を参照しながら詳細に説明する。
図7は人における覚醒時の呼吸パターンと、睡眠時の呼吸パターンとを模式的に示した
ものである。通常、睡眠時の呼吸は浅くなるため、睡眠時の呼吸パターン(図7(b))では、覚醒時の呼吸パターン(図7(a))に比べて圧力振幅が小さく、呼気相から吸気相側に向かう0Paにおける圧力勾配も小さい。本発明において、圧力勾配値は、圧力センサの信号から算出した圧力値を用い、(現在の圧力値)-(20ms前の圧力値)として算出されたものである。なお、本発明において、圧力センサの信号から算出した、圧力値および圧力勾配値を、総じて圧力データと称することがある。また、図7および8から理解される通り、呼吸パターンの呼気相から吸気相側に向かう圧力勾配値および吸気相の圧力値は常にゼロ以下である。
An embodiment of the present invention will be described in detail below with reference to the drawings.
FIG. 7 schematically shows a breathing pattern in wakefulness and a breathing pattern in sleep of a person. Normally, breathing during sleep becomes shallow, so in the breathing pattern during sleep (Fig. 7(b)), the pressure amplitude is smaller than in the breathing pattern during wakefulness (Fig. 7(a)). The pressure gradient at 0 Pa towards the side is also small. In the present invention, the pressure gradient value is calculated as (current pressure value)-(pressure value 20 ms ago) using the pressure value calculated from the signal of the pressure sensor. In addition, in the present invention, the pressure value and the pressure gradient value calculated from the signal of the pressure sensor may be collectively referred to as pressure data. Also, as can be seen from FIGS. 7 and 8, the pressure gradient value from the expiratory phase to the inspiratory phase of the breathing pattern and the pressure value in the inspiratory phase are always below zero.

例えば、図7の呼吸パターンについて、圧力勾配閾値(以下、「閾値A」ということもある。)を-2.0Pa/20msと設定し、圧力センサで測定された圧力勾配値が、閾値Aより小さくなる点(傾きとしては大きくなる点)を吸気検知点Gとし、この吸気検知点Gを吸気相の開始と判断する。覚醒時の呼吸パターンである図7(a)では、呼気相から吸気相に移った直後に圧力勾配値は-4.0Pa/20msの最大勾配となり閾値Aより小さくなるので、吸気相の開始を吸気検知点Gとして検知できる。 For example, for the breathing pattern in FIG. The point where the gradient becomes smaller (the point where the gradient becomes larger) is defined as the intake detection point G, and this intake detection point G is determined as the start of the intake phase. In FIG. 7A, which is the breathing pattern during wakefulness, the pressure gradient value becomes the maximum gradient of -4.0 Pa / 20 ms immediately after the change from the expiratory phase to the inspiratory phase and becomes smaller than the threshold value A, so the start of the inspiratory phase is indicated. It can be detected as an intake detection point G.

一方、睡眠時の呼吸パターンである図7(b)では、覚醒時に比べ呼吸が浅く緩やかなため、圧力勾配値は最大でも-1.0Pa/20msと閾値Aより小さくなることが少ない。このため、吸気検知点Gが検出されず、吸気相開始の検知エラーとなりやすい。このとき、例えば閾値Aを-0.2Pa/20msに設定しなおせば、感度が上がり最大圧力勾配値が-1.0Pa/20msであっても吸気検知点Gを検出できる。しかし、睡眠時に合わせた閾値Aを覚醒時に設定すると、感度が高すぎて、呼吸用気体供給装置の携帯中に生じる振動や僅かな体動などによって生じる圧力センサのノイズまで呼吸による圧力変化として検知し、吸気検知点Gの誤検知が多発する。 On the other hand, in FIG. 7B, which is the breathing pattern during sleep, the breathing is shallower and slower than during wakefulness, so the pressure gradient value is -1.0 Pa/20 ms at maximum, which is less than the threshold value A. For this reason, the intake detection point G is not detected, and an intake phase start detection error is likely to occur. At this time, for example, if the threshold value A is reset to −0.2 Pa/20 ms, the sensitivity increases and the intake detection point G can be detected even if the maximum pressure gradient value is −1.0 Pa/20 ms. However, if the threshold A is set to match sleep, the sensitivity is too high, and noise from the pressure sensor caused by vibrations and slight body movements that occur while carrying the respiratory gas supply device is detected as pressure changes due to respiration. However, erroneous detection of the intake detection point G occurs frequently.

実施形態の呼吸同調式の呼吸用気体供給装置は、複数の吸気判定閾値が記憶されており、吸気判定閾値Aとして、前述の圧力勾配閾値の他、圧力閾値が利用できる。圧力閾値とは、例えば、図8の呼吸パターンについて、圧力閾値(以下、「閾値A」ということもある。)を-10Paと設定し、圧力センサで測定された圧力値が、閾値Aより小さくなる点を吸気検知点Gとし、この吸気検知点Gを吸気相の開始と判断する。覚醒時の呼吸パターンである図8(a)では、呼気相から吸気相に移った直後に圧力値は閾値Aより小さくなるので、吸気相の開始を吸気検知点Gとして検知できる。 In the breath-synchronized respiratory gas supply apparatus of the embodiment, a plurality of threshold values for determining inspiration are stored, and as the threshold value for determining inspiration A, in addition to the aforementioned pressure gradient threshold value, a pressure threshold value can be used. The pressure threshold is, for example, the pressure threshold (hereinafter also referred to as "threshold A") for the breathing pattern of FIG. is defined as the intake detection point G, and this intake detection point G is determined to be the start of the intake phase. In FIG. 8(a), which is the breathing pattern during wakefulness, the pressure value becomes smaller than the threshold value A immediately after the expiration phase shifts to the inspiration phase, so the start of the inspiration phase can be detected as the inspiration detection point G.

一方、睡眠時の呼吸パターンである図8(b)では、覚醒時に比べ呼吸が浅く緩やかなため圧力値は最大でも-5.0Paと閾値Aより小さくなることが少ない。このため、吸気検知点Gが検出されず、吸気相開始の検知エラーとなりやすい。このとき、例えば閾値Aを-1.0Paに設定しなおせば、感度が上がり最大圧力値が-5.0Paであっても吸気検知点Gを検出できる。しかし、睡眠時に合わせた閾値Aを覚醒時に設定すると、感度が高すぎて、呼吸用気体供給装置の携帯中に生じる振動や僅かな体動などによって生じる圧力センサのノイズまで呼吸による圧力変化として検知し、吸気検知点Gの誤検知が多発する。 On the other hand, in FIG. 8B, which is the breathing pattern during sleep, the breathing is shallower and more moderate than during wakefulness, so the pressure value is -5.0 Pa at maximum, which is less than the threshold value A. For this reason, the intake detection point G is not detected, and an intake phase start detection error is likely to occur. At this time, if the threshold value A is reset to −1.0 Pa, for example, the sensitivity increases and the intake detection point G can be detected even if the maximum pressure value is −5.0 Pa. However, if the threshold A is set to match sleep, the sensitivity is too high, and noise from the pressure sensor caused by vibrations and slight body movements that occur while carrying the respiratory gas supply device is detected as pressure changes due to respiration. However, erroneous detection of the intake detection point G occurs frequently.

図1は、呼吸用気体供給装置のデマンドレギュレータ機能に関連する主な構成を示す図である。図1中、実線は気体の流路を示し、点線は電気的な信号の経路を示す。呼吸用気体供給源1は、例えば酸素濃縮装置、または酸素ボンベなどであり、濃縮酸素である吸入用気体を所定の圧力と濃度で供給する。コントロールバルブ6は電磁バルブなどであり、制御部5からの信号により開閉される。呼吸用気体供給源1から供給された気体は、制御部5に制御されたコントロールバルブ6の開閉により、カニューラ2から使用者に供給される。コントロールバルブ6とカニューラ2をつなぐ気体供給経路3には、圧力センサ4が設けられている。 FIG. 1 is a diagram showing the main configuration related to the demand regulator function of the respiratory gas supply device. In FIG. 1, solid lines indicate gas flow paths, and dotted lines indicate electrical signal paths. The respiratory gas supply source 1 is, for example, an oxygen concentrator or an oxygen cylinder, and supplies an inhalation gas, which is concentrated oxygen, at a predetermined pressure and concentration. The control valve 6 is an electromagnetic valve or the like, and is opened and closed by a signal from the control section 5 . The gas supplied from the respiratory gas supply source 1 is supplied to the user from the cannula 2 by opening and closing the control valve 6 controlled by the controller 5 . A pressure sensor 4 is provided in the gas supply path 3 connecting the control valve 6 and the cannula 2 .

デマンドレギュレータ機能の概略を説明する。まず、圧力センサ4が、使用者の呼吸によって変動する気体供給経路3の圧力を、常時測定し制御部5に送信する。制御部5は、圧力センサ4によって得られたリアルタイムの呼吸パターンから吸気検知点Gを検出し、吸気検知点Gを吸気相の開始と判断してコントロールバルブ6を開き、カニューラ2へ一定流量の呼吸用気体を一定時間だけ供給した後コントロールバルブ6を閉じる。なお、供給酸素量のほぼ全てを確実に肺胞での酸素交換に充てるために、一般的に、吸気の前半60%以降に投与された酸素は死腔に留まり肺胞でのガス交換に関与しないこと、および患者の呼吸数は一般的に8~48bpm程度であることを踏まえ、吸気検知点Gが検知されてから約0.24~1.2秒以内に酸素供給が完了していることが望ましい。 An outline of the demand regulator function will be explained. First, the pressure sensor 4 constantly measures the pressure of the gas supply path 3 that fluctuates according to the breathing of the user, and transmits the result to the controller 5 . The control unit 5 detects the inspiratory detection point G from the real-time respiratory pattern obtained by the pressure sensor 4, determines that the inspiratory detection point G is the start of the inspiratory phase, opens the control valve 6, and supplies a constant flow rate to the cannula 2. After supplying breathing gas for a certain period of time, the control valve 6 is closed. In order to ensure that almost all of the supplied oxygen is used for oxygen exchange in the alveoli, generally, oxygen administered after the first 60% of inspiration stays in the dead space and participates in gas exchange in the alveoli. and that the patient's respiratory rate is generally about 8 to 48 bpm, oxygen supply should be completed within about 0.24 to 1.2 seconds after the inspiratory detection point G is detected. is desirable.

また、制御部5はコントロールバルブ6の制御と並行して、複数回分の吸気検知点Gの間の時間間隔の平均値から、吸気検知点Gの検出に使用している閾値Aの切り替えが必要か判断する。より具体的には、直近複数回分の前記吸気検知点Gの間の時間間隔の平均値を基準に、覚醒時に適した吸気判定閾値(閾値A1、閾値A2、閾値A3)又は睡眠時に適した吸気判定閾値(閾値A4)のいずれかを選択して閾値Aを切り替える。 In addition, in parallel with the control of the control valve 6, the control unit 5 needs to switch the threshold value A used for detecting the intake detection point G from the average value of the time intervals between the intake detection points G for multiple times. or judge. More specifically, based on the average value of the time intervals between the inhalation detection points G for the most recent multiple times, the inhalation determination thresholds (threshold A1, threshold A2, threshold A3) suitable for wakefulness or inhalation suitable for sleep are determined. Threshold A is switched by selecting one of the determination thresholds (threshold A4).

実施形態の呼吸用気体供給装置は、複数の吸気判定閾値が記憶されており、制御部5が閾値Aの切り替えの要否を判断し、閾値Aを、閾値A1、閾値A2、閾値A3、又は閾値A4に切り替えるフローを図2に示す。 In the respiratory gas supply device of the embodiment, a plurality of inhalation determination thresholds are stored, and the control unit 5 determines whether or not the threshold A needs to be switched, and the threshold A is set to a threshold A1, a threshold A2, a threshold A3, or FIG. 2 shows a flow for switching to the threshold value A4.

装置が起動されデマンドレギュレータ機能が作動すると、制御部5は、閾値Aを覚醒時に適した閾値のうち最も低い感度である吸気判定閾値(閾値A1)に設定する(ステップS1)。吸気判定閾値として圧力勾配閾値を採用する場合は、覚醒時における複数のHOT患者の呼吸パターンを測定し検討した結果、第1圧力勾配閾値として、-4.0Pa/20ms~-1.0Pa/20msの範囲とすることが好ましく、閾値A1は-4.0±1.0Pa/20msの範囲内、閾値A2は-2.0±1.0Pa/20msの範囲内、閾値A3は-1.0±0.5Pa/20msの範囲内が更に好ましいとわかった。また、吸気判定閾値として圧力閾値を採用する場合は、覚醒時における複数のHOT患者の呼吸パターンを測定し検討した結果、第1圧力閾値として、-10.0Pa~-5.0Paの範囲とすることが好ましく、閾値A1は-10.0±2.0Paの範囲内、閾値A2は-5.0±2.0Paの範囲内、閾値A3は-3.0±1.0Paの範囲内が更に好ましいとわかった。閾値A4について睡眠時における複数のHOT患者の呼吸パターンを測定し検討した結果、実際の呼吸回数に対する吸気検知点Gの回数の比率(検知率)を75%以上に保つためには、吸気判定閾値として圧力勾配閾値を採用する場合は、第2圧力勾配閾値として、閾値A4は、-0.8Pa/20ms~-0.1Pa/20msであることが好ましく、-0.2±0.05Pa/20msの範囲内が更に好ましいとわかった。また、吸気判定閾値として圧力閾値を採用する場合は、第2圧力閾値として、閾値A4は、-3.0Pa~-1.0Paであることが好ましく、-1.0±0.5Paの範囲内が更に好ましいとわかった。 When the device is activated and the demand regulator function is activated, the control unit 5 sets the threshold A to the intake determination threshold (threshold A1), which is the lowest sensitivity among the thresholds suitable for wakefulness (step S1). When adopting the pressure gradient threshold as the inspiratory determination threshold, as a result of measuring and examining the breathing patterns of a plurality of HOT patients during wakefulness, the first pressure gradient threshold is -4.0 Pa / 20 ms to -1.0 Pa / 20 ms. Threshold A1 is within the range of -4.0 ± 1.0 Pa / 20 ms, threshold A2 is within the range of -2.0 ± 1.0 Pa / 20 ms, threshold A3 is -1.0 ± A range of 0.5 Pa/20 ms was found to be more preferable. Further, when adopting the pressure threshold as the inspiratory determination threshold, as a result of measuring and examining the breathing patterns of a plurality of HOT patients during wakefulness, the first pressure threshold is in the range of -10.0 Pa to -5.0 Pa. Preferably, the threshold A1 is in the range of -10.0 ± 2.0 Pa, the threshold A2 is in the range of -5.0 ± 2.0 Pa, and the threshold A3 is in the range of -3.0 ± 1.0 Pa. found to be preferable. As a result of measuring and examining the breathing patterns of a plurality of HOT patients during sleep with respect to the threshold value A4, in order to keep the ratio (detection rate) of the number of times of the inhalation detection point G to the actual number of respirations at 75% or more, the inhalation judgment threshold value When the pressure gradient threshold is adopted as the second pressure gradient threshold, the threshold A4 is preferably -0.8 Pa / 20 ms to -0.1 Pa / 20 ms, and -0.2 ± 0.05 Pa / 20 ms was found to be more preferable. Further, when the pressure threshold is adopted as the intake determination threshold, the threshold A4 as the second pressure threshold is preferably -3.0 Pa to -1.0 Pa, and is in the range of -1.0 ± 0.5 Pa. was found to be even more preferable.

第1圧力勾配閾値(閾値A1、閾値A2、閾値A3)が-4.0Pa/20msより小さい場合、第1圧力閾値(閾値A1、閾値A2、閾値A3)が-10.0Paより小さい場合、第2圧力勾配閾値(閾値A4)が-0.8Pa/20msより小さい場合、または第2圧力閾値(閾値A4)が-3.0Paより小さい場合、それぞれ覚醒時、睡眠時の患者呼吸パターンに対して感度が不足するため実際の呼吸回数に対する吸気検知点Gの検知率が75%未満となり、使用者の血中酸素飽和度(SpO2)を一般的な適正値とされる90%以上に保つために十分な呼吸用気体が供給できない。 If the first pressure gradient threshold (threshold A1, threshold A2, threshold A3) is less than -4.0Pa / 20ms, if the first pressure threshold (threshold A1, threshold A2, threshold A3) is less than -10.0Pa, the If the second pressure gradient threshold (threshold A4) is less than −0.8 Pa/20 ms, or if the second pressure threshold (threshold A4) is less than −3.0 Pa, for the patient breathing pattern during wakefulness and sleep, respectively In order to keep the user's blood oxygen saturation (SpO2) at 90% or more, which is considered to be a general appropriate value, the detection rate of the inhalation detection point G is less than 75% due to the lack of sensitivity. Insufficient supply of breathing gas.

また、第1圧力勾配閾値(閾値A1、閾値A2、閾値A3)が-1.0Pa/20ms
より大きい場合、第1圧力閾値(閾値A1、閾値A2、閾値A3)が-5.0Paより大きい場合、第2圧力勾配閾値(閾値A4)が-0.1Pa/20msより大きい場合、または第2圧力閾値(閾値A4)が-1.0Paより大きい場合は、実際の呼吸回数に対する吸気検知点Gの検知率が130%以上となる。圧力センサ4のノイズを誤って吸気検知点Gと検知する割合が大きくなり、吸気相の開始と同調した呼吸用気体の供給がされないため、使用者は不快を感じ、また呼吸用気体の消費も多くなる。
Also, the first pressure gradient threshold (threshold A1, threshold A2, threshold A3) is -1.0 Pa / 20 ms
If greater, if the first pressure threshold (threshold A1, threshold A2, threshold A3) is greater than -5.0 Pa, if the second pressure gradient threshold (threshold A4) is greater than -0.1 Pa / 20 ms, or the second When the pressure threshold (threshold A4) is greater than -1.0 Pa, the detection rate of the inspiratory detection point G with respect to the actual number of breaths is 130% or more. The ratio of erroneous detection of the inspiratory detection point G due to the noise of the pressure sensor 4 increases, and respiratory gas is not supplied in synchronism with the start of the inspiratory phase, so that the user feels uncomfortable and consumes respiratory gas. become more.

制御部5は、ステップS1で設定された閾値A1と、圧力センサ4の信号から算出された圧力勾配値もしくは圧力値から、吸気検知点Gを検出し吸気相の開始と同調した呼吸用気体のパルス供給を開始する。 The control unit 5 detects the inspiratory detection point G from the threshold value A1 set in step S1 and the pressure gradient value or pressure value calculated from the signal of the pressure sensor 4, and determines the amount of respiratory gas synchronized with the start of the inspiratory phase. Start pulsing.

次に、制御部5は、直近の吸気検知点Gの間の時間間隔の最新値データと、直近複数回分の吸気検知点Gの間の時間間隔の平均値データを用いて、閾値A1から閾値A2、閾値A2から閾値A3、閾値A3から閾値A4への切り替えの要否を判断する(ステップS2、S5、およびS8)。より具体的には、(測定時から直近n1回分の吸気検知点Gの間の時間間隔の平均値)÷(直近n2回分の吸気検知点Gの間の時間間隔の平均値)がX%より大きい場合、呼吸が正確に検知されていないと判断し、吸気判定閾値をより感度の高い閾値に切り替える。このとき、n1は、最新に検知された吸気検知点Gを含み2回以上の任意の値の吸気検知点Gの検知回数とすることが可能であり、例えば、「直近2回分の吸気検知点Gの間の時間間隔」の場合、最新2回分の吸気検知点Gの間の時間間隔を意味する。n2は、最新に検知された吸気検知点Gを含み3回以上の任意の値の吸気検知点Gの検知回数とすることが可能であり、n1<n2とする。また、より早期に感度を最適化するためにn1は2回、n2は5回以上、10回以下の値とすることが望ましい。 Next, the control unit 5 uses the latest value data of the time intervals between the latest intake detection points G and the average value data of the time intervals between the latest intake detection points G to convert the threshold A1 to the threshold A2, the necessity of switching from the threshold A2 to the threshold A3, and from the threshold A3 to the threshold A4 is determined (steps S2, S5, and S8). More specifically, (the average value of the time intervals between the inhalation detection points G for the last n1 times from the time of measurement) ÷ (the average value of the time intervals between the inhalation detection points G for the most recent n2 times) is more than X%. If it is large, it is determined that respiration is not accurately detected, and the threshold for determination of inspiration is switched to a threshold with higher sensitivity. At this time, n1 can be the number of detections of the intake detection point G with an arbitrary value of 2 or more, including the latest detected intake detection point G. In the case of "time interval between G", it means the time interval between the latest two inspiratory detection points G. n2 can be the number of detections of the intake detection point G of an arbitrary value of 3 or more including the most recently detected intake detection point G, where n1<n2. In order to optimize the sensitivity more quickly, it is desirable to set n1 to 2 times and n2 to a value of 5 times or more and 10 times or less.

吸気判定閾値の切替要否の判断に関して、ヒトの呼吸数は一般的に8~48bpm程度であり、労作状態(最大で48bpm)から安静状態(最小で8bpm)への推移によってヒトの呼吸周期は最大で600%程度変化することが分かっているため、正しく呼吸検知できているにもかかわらず、より感度の高い閾値への不要な切り替えが行われることを避けるために、Xは600%より大きい値とすることが望ましい。また、より早期に感度を最適化するために、Xは1000%未満とすることが望ましい。(直近n1回分の吸気検知点Gの間の時間間隔の平均値)÷(直近n2回分の吸気検知点Gの間の時間間隔の平均値)がX%より大きい場合には、現在の閾値A(閾値A1、閾値A2又は閾値A3)では、吸気検知点Gを正確に検知できていない可能性が高い。そこで、制御部5は、(直近n1回分の吸気検知点Gの間の時間間隔の平均値)÷(直近n2回分の吸気検知点Gの間の時間間隔の平均値)がX%よりも大きくなったとき、閾値Aを一段階感度の高い吸気判定閾値に切り替える(ステップS3,S6,S9)。 Regarding the determination of whether to switch the inspiratory determination threshold, the human respiratory rate is generally about 8 to 48 bpm, and the transition from the exerted state (maximum 48 bpm) to the resting state (minimum 8 bpm) changes the human respiratory cycle. X is greater than 600% in order to avoid unnecessary switching to a more sensitive threshold despite correct breath detection, as it is known to vary by up to 600%. value. Also, X should be less than 1000% to optimize sensitivity earlier. (Average value of the time intervals between the inhalation detection points G for the most recent n1 times) ÷ (Average value of the time intervals between the inhalation detection points G for the most recent n2 times) is greater than X%, the current threshold value A With (threshold A1, threshold A2, or threshold A3), there is a high possibility that the intake detection point G cannot be detected accurately. Therefore, the control unit 5 determines that (the average value of the time intervals between the intake detection points G for the most recent n1 times)/(the average value of the time intervals between the intake detection points G for the most recent n2 times) is greater than X%. When it becomes, the threshold value A is switched to an intake determination threshold value with one step higher sensitivity (steps S3, S6, S9).

吸気判定閾値Aがより感度の高い吸気判定閾値に切り替えられると、制御部5は圧力センサ4で測定される呼吸パターンから、切換えられた感度の高い圧力勾配値もしくは圧力値が吸気判定閾値より小さくなった点を吸気検知点Gとして検出し、呼吸用気体をパルス供給する。例えば、吸気判定閾値Aがより感度の高い吸気判定閾値A4に切り替えられたことにより、閾値A1~A3では検知不能となりやすかった睡眠時における吸気相の開始点も吸気検知点Gとして検出可能となる。 When the inspiratory determination threshold value A is switched to a more sensitive inspiratory determination threshold value, the control unit 5 determines from the respiratory pattern measured by the pressure sensor 4 that the switched high-sensitivity pressure gradient value or pressure value is smaller than the inspiratory determination threshold value. This point is detected as the inspiratory detection point G, and breathing gas is pulse-supplied. For example, by switching the intake determination threshold A to the intake determination threshold A4, which has a higher sensitivity, the start point of the intake phase during sleep, which was likely to be undetectable with the thresholds A1 to A3, can be detected as the intake detection point G. .

閾値A2、閾値A3、又は閾値A4が選択されているとき、直近の吸気検知点Gの間の時間間隔の最新値データと、直近複数回分の吸気検知点Gの間の時間間隔の平均値データを用いて、閾値A4から閾値A3、又は閾値A3から閾値A2、又は閾値A2から閾値A1への切り替えの要否を判断する(ステップS4、S7、およびS10)。より具体的には、(測定時から直近n1回分の吸気検知点Gの間の時間間隔の平均値)÷(直近n2回分の吸気検知点Gの間の時間間隔の平均値)がY%より小さい場合、体動等の外乱を誤検
知していると判断し、吸気判定閾値をより感度の低い閾値に切り替える。このとき、前述の通り、n1は最新に検知された吸気検知点Gを含み2回以上の任意の値の吸気検知点Gの検知回数とすることが可能であり、n2は、最新に検知された吸気検知点Gを含み3回以上の任意の値の吸気検知点Gの検知回数とすることが可能であり、n1<n2とする。また、より早期に感度を最適化するためにn1は2回、n2は5回以上、10回以下の値とすることが望ましい。上述の通り、ヒトの呼吸数は8~48bpm程度であるため、安静状態(最小で8bpm)から労作状態(最大で48bpm)への推移によってヒトの呼吸周期は最大で17%程度に変化することが分かっているため、正しく呼吸検知できているにもかかわらず、より感度の低い閾値Aへの不要な切り替えが行われることを避けるために、Yは17%より小さい値とすることが望ましい。また、より早期に感度を最適化するためにXは10%より大きい値とすることが望ましい。(直近n1回分の吸気検知点Gの間の時間間隔の平均値)÷(直近n2回分の吸気検知点Gの間の時間間隔の平均値)がY%未満となった場合には、現在の閾値A(閾値A2、閾値A3又は閾値A4)で吸気検知点Gを検出する条件では、感度が高すぎてノイズを吸気検知点Gと誤検知している可能性が高い。そこで、制御部5は、(直近n1分の吸気検知点Gの間の時間間隔の平均値)÷(直近n2回分の吸気検知点Gの間の時間間隔の平均値)がY%未満となったとき、閾値Aを一段階感度の低い吸気判定閾値に切り替える(ステップS1、S3、およびS6)。
When the threshold A2, the threshold A3, or the threshold A4 is selected, the latest value data of the time interval between the latest intake detection points G and the average value data of the time intervals between the latest multiple times of the intake detection points G is used to determine whether it is necessary to switch from the threshold A4 to the threshold A3, from the threshold A3 to the threshold A2, or from the threshold A2 to the threshold A1 (steps S4, S7, and S10). More specifically, (average value of time intervals between intake detection points G for the most recent n1 times from the time of measurement)/(average value of time intervals between intake detection points G for the most recent n2 times) is more than Y%. If it is smaller, it is determined that a disturbance such as body movement is being erroneously detected, and the intake determination threshold is switched to a threshold with lower sensitivity. At this time, as described above, n1 can be the number of detections of the intake detection point G including the latest detected intake detection point G and any value of two or more, and n2 is the latest detected intake detection point G. It is possible to set the number of detections of the intake detection point G to an arbitrary value of 3 or more including the intake detection point G, where n1<n2. In order to optimize the sensitivity more quickly, it is desirable to set n1 to 2 times and n2 to a value of 5 times or more and 10 times or less. As mentioned above, the human respiratory rate is about 8 to 48 bpm, so the transition from the resting state (minimum 8 bpm) to the exerted state (maximum 48 bpm) changes the human respiratory cycle by up to about 17%. is known, it is desirable to set Y to a value smaller than 17% in order to avoid unnecessary switching to threshold A, which has lower sensitivity, even though respiration can be detected correctly. It is also desirable that X be greater than 10% in order to optimize sensitivity earlier. (Average value of the time intervals between the intake detection points G for the most recent n1 times) ÷ (Average value of the time intervals between the intake detection points G for the most recent n2 times) is less than Y%, the current Under the condition that the intake detection point G is detected with the threshold A (threshold A2, threshold A3, or threshold A4), there is a high possibility that noise is erroneously detected as the intake detection point G due to excessive sensitivity. Therefore, the control unit 5 determines that (the average value of the time intervals between the intake detection points G for the most recent n1 minutes)/(the average value of the time intervals between the intake detection points G for the most recent n2 times) becomes less than Y%. Then, the threshold A is switched to an inhalation determination threshold with one step lower sensitivity (steps S1, S3, and S6).

このように、制御部5は、直近の吸気検知点Gの間の時間間隔の最新値データと、直近複数回分の吸気検知点Gの間の時間間隔の平均値データに基づいて吸気判定閾値を切り替え、使用者の状態に応じたデマンドレギュレータ機能の制御を行うため、吸気相の開始を正確に検知し、呼吸サイクルに同調した呼吸用気体を供給することができる。 In this way, the control unit 5 sets the intake determination threshold value based on the latest value data of the time interval between the latest intake detection points G and the average value data of the time intervals between the latest intake detection points G. It switches and controls the demand regulator function according to the user's condition, so that the start of the inspiratory phase can be accurately detected and respiratory gas can be supplied in synchronism with the respiratory cycle.

また、吸気判定閾値は、直近複数回分の吸気検知点Gの間の時間間隔の合計値データを用いて切り替えることも可能である。より具体的には、直近n3回分の吸気検知点Gの間の時間間隔の合計値が、第1の時間(tsumup)より長い場合、呼吸が正確に検知されていないと判断し、吸気判定閾値をより感度の高い閾値に切り替える。逆に、直近n3回分の吸気検知点Gの間の時間間隔の合計値が、第2の時間(tsumdown)より短い場合、体動等の外乱を誤検知していると判断し、吸気判定閾値をより感度の低い閾値に切り替える。このとき、n3は、最新に検知された吸気検知点Gを含み2回以上の任意の値の吸気検知点Gの検知回数とすることが可能である。また、より早期に感度を最適化するためにn3は、5回以上、10回以下の値とすることが望ましい。また、ヒトの呼吸数は一般的に8~48bpm程度であることを考慮すると、正しく呼吸検知できているにもかかわらず不要な吸気判定閾値の切り替えが行われることを避けるために、tsumupはn3×7.5秒よりも長い時間、tsumdownはn3×1.2秒よりも短い時間とすることが望ましい。なお、7.5秒は、8bpmの際の呼吸間隔に相当し、1.2秒は48bpmの際の呼吸間隔に相当する。 In addition, the intake determination threshold can be switched using the total value data of the time intervals between the intake detection points G for the most recent multiple times. More specifically, when the total value of the time intervals between the last n3 intake detection points G is longer than the first time (tsumup), it is determined that breathing is not accurately detected, and the intake determination threshold to a more sensitive threshold. Conversely, when the total value of the time intervals between the intake detection points G for the last n3 times is shorter than the second time (tsumdown), it is determined that a disturbance such as body movement is erroneously detected, and the intake determination threshold to a less sensitive threshold. At this time, n3 can be the number of detections of the intake detection point G of an arbitrary value of 2 or more including the latest detected intake detection point G. In order to optimize the sensitivity at an early stage, it is desirable to set n3 to a value of 5 times or more and 10 times or less. Considering that the respiratory rate of humans is generally about 8 to 48 bpm, tsumup is set to n3 It is desirable that tsumdown is shorter than n3×1.2 seconds. Note that 7.5 seconds corresponds to a breath interval at 8 bpm, and 1.2 seconds corresponds to a breath interval at 48 bpm.

また、吸気判定閾値は、直近7.5秒間の圧力値の最小値を基準に切り替えることも可能である(図3;ステップS12、S15、およびS18)。より具体的には、直近7.5秒間の圧力値の最小値が第1圧力判定閾値P1よりも大きい場合、呼吸圧が極端に弱く正確な吸気検知をしづらくなっていると判断し、吸気判定閾値をより感度の高い閾値に切り替える(ステップS13、S16、およびS19)。逆に、直近7.5秒間の圧力値の最小値が第2圧力判定閾値P2よりも小さい場合、呼吸圧が過剰なため労作状態など体動等による誤検知が発生しやすい状況であると判断し、吸気判定閾値をより感度の低い閾値に切り替える(ステップS11、S13、およびS16)。このとき、覚醒時・睡眠時における複数のHOT患者の呼吸パターンを測定し検討した結果、第1圧力判定閾値P1は-10Pa以上-5Pa以下であり、第2圧力判定閾値P2は-100Pa以上-50Pa以下であることが望ましい。 In addition, the intake determination threshold can be switched based on the minimum value of the pressure values for the last 7.5 seconds (FIG. 3; steps S12, S15, and S18). More specifically, when the minimum value of the pressure values in the most recent 7.5 seconds is greater than the first pressure determination threshold value P1, it is determined that the respiratory pressure is extremely weak and it is difficult to accurately detect inspiration. The determination threshold is switched to a more sensitive threshold (steps S13, S16, and S19). Conversely, if the minimum value of the pressure values in the most recent 7.5 seconds is smaller than the second pressure determination threshold P2, it is determined that the breathing pressure is excessive and that erroneous detection due to body movements such as exertion is likely to occur. Then, the intake determination threshold is switched to a threshold with lower sensitivity (steps S11, S13, and S16). At this time, as a result of measuring and examining the breathing patterns of a plurality of HOT patients during wakefulness and sleep, the first pressure determination threshold P1 is −10 Pa or more and −5 Pa or less, and the second pressure determination threshold P2 is −100 Pa or more. It is desirable to be 50 Pa or less.

実施形態の呼吸用気体供給装置では、使用者はユーザーインターフェース7から、感度切り替え信号を制御部5に送信し、閾値の切り替えを手動で行うこともできる。図4は使用者のマニュアル操作によって感度切り替え可能なフローの一例である。 In the respiratory gas supply apparatus of the embodiment, the user can also manually switch the threshold by sending a sensitivity switching signal to the control unit 5 from the user interface 7 . FIG. 4 is an example of a flow in which the sensitivity can be switched by a user's manual operation.

装置が起動されデマンドレギュレータ機能が作動すると、制御部5は閾値Aを閾値A1に設定する(ステップS21)。使用者がユーザーインターフェース7の感度上昇ボタンを押すと(ステップS22)、ステップ24に進み閾値A1が閾値A2に切り替えられる。閾値AがA2、A3に設定されている場合(ステップS24、S29)も同様に、感度上昇ボタンを押すと(ステップS25、S30)、ステップS29、ステップS34に進み、閾値Aは、それぞれ、A3、A4に切替えられる。また、呼吸用気体供給装置が閾値A2で制御されているとき、使用者が感度低下ボタンを押すと(ステップS26)、ステップS21に進み閾値A1に切り替えられる。閾値AがA3、A4に設定されている場合(ステップS29、S34)も同様に、感度低下ボタンを押すと(ステップS31、S35)、ステップS24、ステップS29に進み、閾値Aは、それぞれ、A2、A3に切替えられる。図4の例では、使用者による感度切り替えボタンの操作が、制御部5による(直近n1回分の吸気検知点Gの間の時間間隔の平均値)÷(直近n2回分の吸気検知点Gの間の時間間隔の平均値)がX%よりも大きくなったかを基準とする判断に優先して、圧力勾配閾値が切り替えられる。 When the device is activated and the demand regulator function is activated, the controller 5 sets the threshold A to the threshold A1 (step S21). When the user presses the sensitivity increase button of the user interface 7 (step S22), the process proceeds to step S24 and the threshold A1 is switched to the threshold A2. Similarly, when the threshold A is set to A2, A3 (steps S24, S29), when the sensitivity increase button is pressed (steps S25, S30), the process proceeds to steps S29, S34, and the threshold A is set to A3 , A4. Also, when the respiratory gas supply apparatus is controlled with the threshold A2, when the user presses the sensitivity reduction button (step S26), the process proceeds to step S21 to switch to the threshold A1. Similarly, when the threshold A is set to A3, A4 (steps S29, S34), pressing the sensitivity reduction button (steps S31, S35) proceeds to steps S24, S29, and the threshold A is set to A2 , A3. In the example of FIG. 4, the operation of the sensitivity switching button by the user is (average value of the time interval between the last n1 intake detection points G) ÷ (between the last n2 intake detection points G The pressure gradient threshold is switched prior to the determination based on whether the average value of the time intervals of ) has become greater than X%.

図5は呼吸位相に同調した呼吸用気体のパルス供給に加え、呼吸位相とは関係なく約90秒間だけ呼吸用気体を連続供給する安全機能を備えた例である。ステップS50までの流れは、図2のステップS1~10と同じである。ステップS50で、(直近n1回分の吸気検知点Gの間の時間間隔の平均値)÷(直近n2回分の吸気検知点Gの間の時間間隔の平均値)がY%より大きい場合、ステップS51で、(直近n1回分の吸気検知点Gの間の時間間隔の平均値)÷(直近n2回分の吸気検知点Gの間の時間間隔の平均値)がX%よりも大きくなったか否かをチェックし、最低限の呼吸回数が検知できているか確認する。 FIG. 5 shows an example in which, in addition to the pulsed supply of respiratory gas synchronized with the respiratory phase, a safety function of continuously supplying respiratory gas for about 90 seconds regardless of the respiratory phase is provided. The flow up to step S50 is the same as steps S1 to 10 in FIG. In step S50, if (average value of time intervals between intake detection points G for the most recent n1 times)/(average value of time intervals between intake detection points G for the most recent n2 times) is greater than Y%, step S51 Then, (the average value of the time intervals between the intake detection points G for the most recent n1 times) ÷ (the average value of the time intervals between the intake detection points G for the most recent n2 times) is greater than X%. Check to see if the minimum number of breaths can be detected.

上述の通り、ヒトの呼吸数は一般的に8~48bpm程度であるため、例えば、(直近n1回分の吸気検知点Gの間の時間間隔の平均値)÷(直近n2回分の吸気検知点Gの間の時間間隔の平均値)が600%よりも大きくなった場合(8bpm相当)には、感度の高い閾値A4で制御しているにもかかわらず、吸気検知点Gの間隔が長く呼吸用気体が十分に供給されていない可能性が高い。そこで、制御部5は呼吸用気体の供給方法を連続供給(オート連続流)するように切り替える(ステップS52)。図1によると、呼吸用気体の連続供給中はコントロールバルブ6が開放状態を継続し、圧力センサ4は呼吸用気体の圧力を検知圧として出力するため、この間は呼吸に伴う圧力変動を検知することができない。したがって、定期的に呼吸用気体の連続供給を止めて、使用者の呼吸が十分に検知可能な強さに戻ったかを確認する必要があるため、オート連続流の供給開始から一定時間が経過すると制御部5は閾値AをA4に戻して吸気検知点Gの検出を再開する(ステップS55)。発明者らの検討によれば、オート連続流の供給時間は、睡眠時における複数のHOT患者の呼吸パターンを測定し検討した結果、10秒~120秒とすることで呼吸時間全体の75%以上の時間で呼吸用気体を吸える可能性が高く、90秒程度がさらに好ましい。 As described above, since the respiratory rate of humans is generally about 8 to 48 bpm, If the average value of the time interval between the points G becomes greater than 600% (equivalent to 8 bpm), the interval between the inspiratory detection points G becomes long and the respiratory There is a high possibility that the gas is not sufficiently supplied. Therefore, the control unit 5 switches the supply method of the respiratory gas to continuous supply (automatic continuous flow) (step S52). According to FIG. 1, during continuous supply of breathing gas, the control valve 6 continues to be in an open state, and the pressure sensor 4 outputs the pressure of the breathing gas as the detection pressure. I can't. Therefore, it is necessary to periodically stop the continuous supply of breathing gas and check whether the user's breathing has returned to a sufficiently detectable level. The controller 5 resets the threshold A to A4 and restarts the detection of the intake detection point G (step S55). According to the study of the inventors, as a result of measuring and examining the breathing patterns of multiple HOT patients during sleep, the supply time of the auto continuous flow is 10 seconds to 120 seconds. It is highly likely that the breathing gas can be inhaled in the time of , and about 90 seconds is more preferable.

図6は呼吸位相に同調した呼吸用気体のパルス供給に加え、呼吸位相とは関係なく一定周期で呼吸用気体をパルス供給する安全機能を備えた例である。ステップS61~S71までの流れは、図5のステップS41~51と同じである。 FIG. 6 shows an example in which, in addition to the respiratory gas pulse supply synchronized with the respiratory phase, a safety function is provided to supply the respiratory gas pulse at a constant cycle regardless of the respiratory phase. The flow from steps S61 to S71 is the same as steps S41 to S51 in FIG.

制御部5は、オート連続流を供給する(図5のステップS52)ことに代えて、呼吸用
気体の供給方法を一定周期(例えば50bpm)でパルス供給(オートパルス)するように切り替える(ステップS72)。このオートパルス動作の期間も閾値A4による吸気検知点Gの検出は継続されており、吸気検知点Gが再検出されると制御部5はオートパルス供給を解除する(ステップS75)。
Instead of supplying an automatic continuous flow (step S52 in FIG. 5), the control unit 5 switches the respiratory gas supply method to pulse supply (auto pulse) at a constant cycle (eg, 50 bpm) (step S72). ). Detection of the intake detection point G by the threshold value A4 is continued during the period of this auto-pulse operation, and when the intake detection point G is re-detected, the control unit 5 cancels the auto-pulse supply (step S75).

また、ステップS51又はステップS71において(直近n1回分の吸気検知点Gの間の時間間隔の平均値)÷(直近n2回分の吸気検知点Gの間の時間間隔の平均値)を1000%以上とすると吸気検知点Gがほとんど検出できておらずオート連続流もしくはオートパルスの供給が遅れ、睡眠中の使用者に十分な呼吸用気体が供給できず、呼吸用気体供給装置による治療の効果が低下するため、Xは、600%よりも大きく1000%未満の値とすることが望ましい。そして、オート連続流もしくはオートパルスへの切り替え条件(ステップS51又はステップS71)を30分間で5回満たしたとき(ステップS53又はステップS73)は、使用者又は呼吸用気体供給装置に、何らかの異常が起きている可能性が高いと判断して警報を鳴らす(ステップS54又はステップS74)。 In step S51 or step S71, (average value of time intervals between intake detection points G for the most recent n1 times)/(average value of time intervals between intake detection points G for the most recent n2 times) is set to 1000% or more. Then, the inhalation detection point G is hardly detected, and the supply of auto continuous flow or auto pulse is delayed, and sufficient respiratory gas cannot be supplied to the sleeping user, and the effect of treatment by the respiratory gas supply device is reduced. Therefore, it is desirable that X be a value greater than 600% and less than 1000%. Then, when the condition for switching to auto continuous flow or auto pulse (step S51 or step S71) is satisfied five times in 30 minutes (step S53 or step S73), there is some abnormality in the user or the respiratory gas supply device. It is determined that there is a high possibility of occurrence, and an alarm is sounded (step S54 or step S74).

図5、図6のフローでは、吸気検知点Gがほとんど検出できず、デマンドレギュレータ機能では呼吸用気体を十分に供給できない状態になっても、呼吸用気体がオート連続流もしくはオートパルスの供給により自動供給されるので、使用者が息苦しさを感じるリスクが低下する。 In the flow of FIGS. 5 and 6, even if the inspiratory detection point G is hardly detected and the respiratory gas cannot be sufficiently supplied by the demand regulator function, the respiratory gas is supplied by auto continuous flow or auto pulse. Automatic supply reduces the risk of the user feeling suffocated.

また、上記では実施形態の一例として、切り替え可能な吸気判定閾値の段階数を4段階としたが、吸気判定閾値は上記の切り替え方法の範囲内において、任意の段階数に設定することも可能である。 In the above description, as an example of the embodiment, the switchable intake determination threshold has four stages, but the intake determination threshold can be set to any number of stages within the range of the switching method described above. be.

以上、本発明の好ましい実施形態について詳述したが、本発明は上述した実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。 Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications, Change is possible.

本発明によれば、吸気相の開始を検知する吸気判定閾値を、呼吸用気体供給装置の制御部が使用者の状態に応じて切り替えるので、呼吸位相を正確に検知し、吸気検知周期の変化に基づき、吸気の未検知及び誤検知の発生を迅速に判定し、使用者の現在の呼吸パターンに応じた吸気検知の判定条件に自動で最適化するデマンドレギュレータ機能を備えた、呼吸用気体供給装置を提供することができる。 According to the present invention, the control unit of the respiratory gas supply device switches the threshold value for detecting the start of the inspiratory phase according to the state of the user. Based on this, the breathing gas supply equipped with a demand regulator function that quickly determines the occurrence of non-detection and false detection of inspiration and automatically optimizes the judgment conditions for detection of inspiration according to the user's current breathing pattern. Equipment can be provided.

1 呼吸用気体供給源
2 カニューラ
3 気体供給経路
4 圧力センサ
5 制御部
6 コントロールバルブ
7 ユーザーインターフェース
8 ブザー
1 respiratory gas supply 2 cannula 3 gas supply path 4 pressure sensor 5 controller 6 control valve 7 user interface 8 buzzer

本発明は以下の(1)~()の態様を含む。
)本発明の呼吸用気体供給用装置は、使用者の呼吸サイクルに応じて呼吸用気体を供給する、呼吸同調式の呼吸用気体供給装置であって、前記呼吸用気体供給装置は、
気体供給経路の圧力を測定する圧力センサと、
所定の複数の吸気判定閾値から、1つの吸気判定閾値を選択する制御部とを備え、
前記制御部は、前記圧力センサの信号から算出した圧力データの値が、選択した吸気判定閾値より小さくなった点を吸気検知点と判断するとともに、前記吸気検知点から一定時間前記呼吸用気体を供給し、
直近7.5秒間の圧力値の最小値に基づいて、吸気判定閾値を切り替えることを特徴とする。
)()の呼吸用気体供給装置において、前記制御部は、前記直近7.5秒間の圧力値の最小値が第1圧力判定閾値より大きい場合、吸気判定閾値を、選択された吸気判定閾値より大きい吸気判定閾値に切り替え、
前記制御部は、前記直近7.5秒間の圧力値の最小値が第2圧力判定閾値より小さい場合、吸気判定閾値を前記選択された吸気判定閾値より小さい吸気判定閾値に切り替えることを特徴とする。
)()または()の呼吸用気体供給装置において、前記第1圧力判定閾値は、-10Pa以上-5Pa以下であり、前記第2圧力判定閾値は-100Pa以上-50Pa以下であることを特徴とする。
)(1)~()のいずれかの呼吸用気体供給装置において、前記呼吸用気体は濃縮酸素であり、前記呼吸用気体供給装置は酸素濃縮装置であることを特徴とする。
)本発明の呼吸用気体供給装置の制御方法は、使用者の呼吸サイクルに応じて呼吸用気体を供給する、呼吸同調式の呼吸用気体供給装置の制御方法であって、
所定の複数の吸気判定閾値の中から、1つの吸気判定閾値を選択する吸気判定閾値選択ステップと、
前記呼吸サイクルを検知する圧力センサの信号から算出した圧力データの値が、前記吸気判定閾値選択ステップで選択した吸気判定閾値より小さくなる吸気検知点を検出する吸気検知点検出ステップと
直近7.5秒間の圧力値の最小値に基づいて、前記複数の吸気判定閾値の中のいずれかに前記1つの吸気判定閾値を切り替える吸気判定閾値切り替えステップとを有することを特徴とする。
)()の呼吸用気体供給装置の制御方法において、前記吸気判定閾値切り替えステップは、前記直近7.5秒間の圧力値の最小値が第1圧力判定閾値より大きい場合、吸気判定閾値を、選択された吸気判定閾値より大きい吸気判定閾値に切り替え、前記直近7.5秒間の圧力値の最小値が第2圧力閾値より小さい場合、吸気判定閾値を、選択された吸気判定閾値より小さい吸気判定閾値に切り替えることを特徴とする。
)()または()の呼吸用気体供給装置の制御方法において、前記吸気検知点検出ステップにおいて吸気検知点を検出すると、前記呼吸用気体を一定時間パルス供給するステップをさらに有することを特徴とする。
The present invention includes the following aspects (1) to ( 7 ).
( 1 ) The respiratory gas supply device of the present invention is a respiratory synchronized type respiratory gas supply device that supplies respiratory gas in accordance with a user's breathing cycle, wherein the respiratory gas supply device comprises: ,
a pressure sensor that measures the pressure of the gas supply path;
A control unit that selects one intake determination threshold from a plurality of predetermined intake determination thresholds,
The control unit determines a point at which the value of the pressure data calculated from the signal of the pressure sensor becomes smaller than a selected threshold value for determination of inhalation as an inhalation detection point, and releases the respiratory gas for a predetermined time from the inhalation detection point. supply and
It is characterized by switching the intake determination threshold value based on the minimum value of the pressure values for the most recent 7.5 seconds.
( 2 ) In the respiratory gas supply device of ( 1 ), if the minimum value of the pressure values in the most recent 7.5 seconds is greater than a first pressure determination threshold, the inhalation determination threshold is set to the selected inhalation. Switch to an intake determination threshold that is greater than the determination threshold,
The control unit switches the intake determination threshold value to an intake determination threshold value smaller than the selected intake determination threshold value when the minimum value of the pressure values in the most recent 7.5 seconds is smaller than a second pressure determination threshold value. .
( 3 ) In the respiratory gas supply device of ( 1 ) or ( 2 ), the first pressure determination threshold is -10 Pa or more and -5 Pa or less, and the second pressure determination threshold is -100 Pa or more and -50 Pa or less. It is characterized by
( 4 ) The respiratory gas supply device according to any one of (1) to ( 3 ), wherein the respiratory gas is concentrated oxygen, and the respiratory gas supply device is an oxygen concentrator.
( 5 ) A control method for a respiratory gas supply device of the present invention is a control method for a respiratory synchronized type respiratory gas supply device that supplies respiratory gas in accordance with a user's breathing cycle,
an intake determination threshold selection step of selecting one intake determination threshold from among a plurality of predetermined intake determination thresholds;
an inspiratory detection point detection step of detecting an inspiratory detection point at which the value of pressure data calculated from the signal of the pressure sensor that detects the respiratory cycle is smaller than the inspiratory determination threshold selected in the inspiratory determination threshold selection step ;
and an inhalation determination threshold switching step of switching the one inhalation determination threshold to one of the plurality of inhalation determination thresholds based on the minimum value of the pressure values in the most recent 7.5 seconds.
( 6 ) In the method for controlling a respiratory gas supply device of ( 5 ), the inspiratory determination threshold switching step, if the minimum value of the pressure values in the most recent 7.5 seconds is greater than a first pressure determination threshold, is switched to an inspiratory determination threshold that is greater than the selected inspiratory determination threshold, and if the minimum value of the pressure values in the last 7.5 seconds is less than the second pressure threshold, the inspiratory determination threshold is less than the selected inspiratory determination threshold. It is characterized by switching to the intake determination threshold.
( 7 ) The method of controlling a respiratory gas supply device according to ( 5 ) or ( 6 ), further comprising the step of supplying a pulse of the respiratory gas for a predetermined period of time when the inhalation detection point is detected in the inhalation detection point detection step. characterized by

一方、睡眠時の呼吸パターンである図7(b)では、覚醒時に比べ呼吸が浅く緩やかなため、圧力勾配値は最小でも-1.0Pa/20msと閾値Aより小さくなることが少ない。このため、吸気検知点Gが検出されず、吸気相開始の検知エラーとなりやすい。このとき、例えば閾値Aを-0.2Pa/20msに設定しなおせば、感度が上がり最小圧力勾配値が-1.0Pa/20msであっても吸気検知点Gを検出できる。しかし、睡眠時に合わせた閾値Aを覚醒時に設定すると、感度が高すぎて、呼吸用気体供給装置の携帯中に生じる振動や僅かな体動などによって生じる圧力センサのノイズまで呼吸による圧力変化として検知し、吸気検知点Gの誤検知が多発する。 On the other hand, in FIG. 7B, which is the breathing pattern during sleep, the breathing is shallower and gentler than during wakefulness, so the pressure gradient value is -1.0 Pa/20 ms at the minimum , which is less than the threshold A. For this reason, the intake detection point G is not detected, and an intake phase start detection error is likely to occur. At this time, if the threshold value A is reset to −0.2 Pa/20 ms, for example, the sensitivity increases and the intake detection point G can be detected even if the minimum pressure gradient value is −1.0 Pa/20 ms. However, if the threshold A is set to match sleep, the sensitivity is too high, and noise from the pressure sensor caused by vibrations and slight body movements that occur while carrying the respiratory gas supply device is detected as pressure changes due to respiration. However, erroneous detection of the intake detection point G occurs frequently.

一方、睡眠時の呼吸パターンである図8(b)では、覚醒時に比べ呼吸が浅く緩やかなため圧力値は最小でも-5.0Paと閾値Aより小さくなることが少ない。このため、吸気検知点Gが検出されず、吸気相開始の検知エラーとなりやすい。このとき、例えば閾値Aを-1.0Paに設定しなおせば、感度が上がり最小圧力値が-5.0Paであっても吸気検知点Gを検出できる。しかし、睡眠時に合わせた閾値Aを覚醒時に設定すると、感度が高すぎて、呼吸用気体供給装置の携帯中に生じる振動や僅かな体動などによって生じる圧力センサのノイズまで呼吸による圧力変化として検知し、吸気検知点Gの誤検知が多発する。 On the other hand, in FIG. 8B, which is the breathing pattern during sleep, the breathing is shallower and more moderate than during wakefulness, so the pressure value is -5.0 Pa at the minimum , which is less than the threshold A. For this reason, the intake detection point G is not detected, and an intake phase start detection error is likely to occur. At this time, if the threshold value A is reset to −1.0 Pa, for example, the sensitivity increases and the intake detection point G can be detected even if the minimum pressure value is −5.0 Pa. However, if the threshold A is set to match sleep, the sensitivity is too high, and noise from the pressure sensor caused by vibrations and slight body movements that occur while carrying the respiratory gas supply device is detected as pressure changes due to respiration. However, erroneous detection of the intake detection point G occurs frequently.

吸気判定閾値の切替要否の判断に関して、ヒトの呼吸数は一般的に8~48bpm程度であり、労作状態(最大で48bpm)から安静状態(最小で8bpm)への推移によってヒトの呼吸周期は最大で600%程度変化することが分かっているため、正しく呼吸検知できているにもかかわらず、より感度の高い閾値への不要な切り替えが行われることを避けるために、Xは600%より大きい値とすることが望ましい。また、より早期に感度を最適化するために、Xは1000%未満とすることが望ましい。(直近n1回分の吸気検知点Gの間の時間間隔の平均値)÷(直近n2回分の吸気検知点Gの間の時間間隔の平均値)がX%より大きい場合には、現在の閾値A(閾値A1、閾値A2又は閾値A3)では、吸気検知点Gを正確に検知できていない可能性が高い。そこで、制御部5は、(直近n1回分の吸気検知点Gの間の時間間隔の平均値)÷(直近n2回分の吸気検知点Gの間の時間間隔の平均値)がX%よりも大きくなったとき、閾値Aを一段階感度の高い吸気判定閾値に切り替える(ステップS3,S6,S9)。 Regarding the determination of whether to switch the inspiratory determination threshold, the human respiratory rate is generally about 8 to 48 bpm, and the transition from the exerted state (maximum 48 bpm) to the resting state (minimum 8 bpm) changes the human respiratory cycle. Since it is known that the maximum change is about 600%, X % is set to 600% in order to avoid unnecessary switching to a more sensitive threshold even though respiration can be detected correctly. A larger value is desirable. It is also desirable that X % be less than 1000% in order to optimize sensitivity earlier. (Average value of the time intervals between the inhalation detection points G for the most recent n1 times) ÷ (Average value of the time intervals between the inhalation detection points G for the most recent n2 times) is greater than X%, the current threshold value A With (threshold A1, threshold A2, or threshold A3), there is a high possibility that the intake detection point G cannot be detected accurately. Therefore, the control unit 5 determines that (the average value of the time intervals between the intake detection points G for the most recent n1 times)/(the average value of the time intervals between the intake detection points G for the most recent n2 times) is greater than X%. When it becomes, the threshold value A is switched to an intake determination threshold value with one step higher sensitivity (steps S3, S6, S9).

閾値A2、閾値A3、又は閾値A4が選択されているとき、直近の吸気検知点Gの間の時間間隔の最新値データと、直近複数回分の吸気検知点Gの間の時間間隔の平均値データを用いて、閾値A4から閾値A3、又は閾値A3から閾値A2、又は閾値A2から閾値A1への切り替えの要否を判断する(ステップS4、S7、およびS10)。より具体的には、(測定時から直近n1回分の吸気検知点Gの間の時間間隔の平均値)÷(直近n2回分の吸気検知点Gの間の時間間隔の平均値)がY%より小さい場合、体動等の外乱を誤検知していると判断し、吸気判定閾値をより感度の低い閾値に切り替える。このとき、前述の通り、n1は最新に検知された吸気検知点Gを含み2回以上の任意の値の吸気検知点Gの検知回数とすることが可能であり、n2は、最新に検知された吸気検知点Gを含み3回以上の任意の値の吸気検知点Gの検知回数とすることが可能であり、n1<n2とする。また、より早期に感度を最適化するためにn1は2回、n2は5回以上、10回以下の値とすることが望ましい。上述の通り、ヒトの呼吸数は8~48bpm程度であるため、安静状態(最小で8bpm)から労作状態(最大で48bpm)への推移によってヒトの呼吸周期は最大で17%程度に変化することが分かっているため、正しく呼吸検知できているにもかかわらず、より感度の低い閾値Aへの不要な切り替えが行われることを避けるために、Yは17%より小さい値とすることが望ましい。また、より早期に感度を最適化するためにY%は10%より大きい値とすることが望ましい。(直近n1回分の吸気検知点Gの間の時間間隔の平均値)÷(直近n2回分の吸気検知点Gの間の時間間隔の平均値)がY%未満となった場合には、現在の閾値A(閾値A2、閾値A3又は閾値A4)で吸気検知点Gを検出する条件では、感度が高すぎてノイズを吸気検知点Gと誤検知している可能性が高い。そこで、制御部5は、(直近n1分の吸気検知点Gの間の時間間隔の平均値)÷(直近n2回分の吸気検知点Gの間の時間間隔の平均値)がY%未満となったとき、閾値Aを一段階感度の低い吸気判定閾値に切り替える(ステップS1、S3、およびS6)。 When the threshold A2, the threshold A3, or the threshold A4 is selected, the latest value data of the time interval between the latest intake detection points G and the average value data of the time intervals between the latest multiple times of the intake detection points G is used to determine whether it is necessary to switch from the threshold A4 to the threshold A3, from the threshold A3 to the threshold A2, or from the threshold A2 to the threshold A1 (steps S4, S7, and S10). More specifically, (average value of time intervals between intake detection points G for the most recent n1 times from the time of measurement)/(average value of time intervals between intake detection points G for the most recent n2 times) is more than Y%. If it is smaller, it is determined that a disturbance such as body movement is being erroneously detected, and the intake determination threshold is switched to a threshold with lower sensitivity. At this time, as described above, n1 can be the number of detections of the intake detection point G including the latest detected intake detection point G and any value of two or more, and n2 is the latest detected intake detection point G. It is possible to set the number of detections of the intake detection point G to an arbitrary value of 3 or more including the intake detection point G, where n1<n2. In order to optimize the sensitivity more quickly, it is desirable to set n1 to 2 times and n2 to a value of 5 times or more and 10 times or less. As mentioned above, the human respiratory rate is about 8 to 48 bpm, so the transition from the resting state (minimum 8 bpm) to the exerted state (maximum 48 bpm) changes the human respiratory cycle by up to about 17%. is known, it is desirable to set Y % to a value smaller than 17% in order to avoid unnecessary switching to threshold A, which has lower sensitivity, despite correct respiration detection. . Also, it is desirable to set Y% to a value greater than 10% in order to optimize sensitivity earlier. (Average value of the time intervals between the intake detection points G for the most recent n1 times) ÷ (Average value of the time intervals between the intake detection points G for the most recent n2 times) is less than Y%, the current Under the condition that the intake detection point G is detected with the threshold A (threshold A2, threshold A3, or threshold A4), there is a high possibility that noise is erroneously detected as the intake detection point G due to excessive sensitivity. Therefore, the control unit 5 determines that (the average value of the time intervals between the intake detection points G for the most recent n1 minutes)/(the average value of the time intervals between the intake detection points G for the most recent n2 times) becomes less than Y%. Then, the threshold A is switched to an inhalation determination threshold with one step lower sensitivity (steps S1, S3, and S6).

また、ステップS51又はステップS71において(直近n1回分の吸気検知点Gの間の時間間隔の平均値)÷(直近n2回分の吸気検知点Gの間の時間間隔の平均値)を1000%以上とすると吸気検知点Gがほとんど検出できておらずオート連続流もしくはオートパルスの供給が遅れ、睡眠中の使用者に十分な呼吸用気体が供給できず、呼吸用気体供給装置による治療の効果が低下するため、Xは、600%よりも大きく1000%未満の値とすることが望ましい。そして、オート連続流もしくはオートパルスへの切り替え条件(ステップS51又はステップS71)を30分間で5回満たしたとき(ステップS53又はステップS73)は、使用者又は呼吸用気体供給装置に、何らかの異常が起きている可能性が高いと判断して警報を鳴らす(ステップS54又はステップS74)。 In step S51 or step S71, (average value of time intervals between intake detection points G for the most recent n1 times)/(average value of time intervals between intake detection points G for the most recent n2 times) is set to 1000% or more. Then, the inhalation detection point G is hardly detected, and the supply of auto continuous flow or auto pulse is delayed, and sufficient respiratory gas cannot be supplied to the sleeping user, and the effect of treatment by the respiratory gas supply device is reduced. Therefore, it is desirable that X % be a value greater than 600% and less than 1000%. Then, when the condition for switching to auto continuous flow or auto pulse (step S51 or step S71) is satisfied five times in 30 minutes (step S53 or step S73), there is some abnormality in the user or the respiratory gas supply device. It is determined that there is a high possibility of occurrence, and an alarm is sounded (step S54 or step S74).

Claims (24)

使用者の呼吸サイクルに応じて呼吸用気体を供給する、呼吸同調式の呼吸用気体供給装置であって、前記呼吸用気体供給装置は、
気体供給経路の圧力を測定する圧力センサと、
所定の複数の吸気判定閾値から、1つの吸気判定閾値を選択する制御部とを備え、
前記制御部は、前記圧力センサの信号から算出した圧力データの値が、選択した吸気判定閾値より小さくなった点を吸気検知点と判断するとともに、前記吸気検知点から一定時間前記呼吸用気体を供給し、
前記制御部は、(直近n1回分の吸気検知点の間の時間間隔の平均値)÷(直近n2回分の吸気検知点の間の時間間隔の平均値)の値が、X%より大きい場合、吸気判定閾値を、選択された吸気判定閾値より大きい吸気判定閾値に切り替え、
前記制御部は、(直近n1回分の吸気検知点の間の時間間隔の平均値)÷(直近n2回分の吸気検知点の間の時間間隔の平均値)の値が、Y%未満である場合、吸気判定閾値を、選択された吸気判定閾値より小さい吸気判定閾値に切り替えることを特徴とする呼吸用気体供給装置。
A breath-coordinated breathing gas delivery device for delivering breathing gas in response to a user's breathing cycle, the breathing gas delivery device comprising:
a pressure sensor that measures the pressure of the gas supply path;
A control unit that selects one intake determination threshold from a plurality of predetermined intake determination thresholds,
The control unit determines a point at which the value of the pressure data calculated from the signal of the pressure sensor becomes smaller than a selected threshold value for determination of inhalation as an inhalation detection point, and releases the respiratory gas for a predetermined time from the inhalation detection point. supply and
When the value of (average value of time intervals between the most recent n1 times of inhalation detection points)/(average value of time intervals between the most recent n2 times of inhalation detection points) is greater than X%, Switching the intake determination threshold to an intake determination threshold greater than the selected intake determination threshold,
When the value of (average value of time intervals between the most recent n1 times of inhalation detection points)/(average value of time intervals between the most recent n2 times of inhalation detection points) is less than Y% 1. A respiratory gas supply apparatus, characterized in that an inhalation determination threshold is switched to an inhalation determination threshold smaller than a selected inhalation determination threshold.
前記n1回は、2回以上であることを特徴とする請求項1に記載の呼吸用気体供給装置。 2. The respiratory gas supply apparatus according to claim 1, wherein said n1 times is two times or more. 前記n2回は、3回以上であることを特徴とする請求項1または2に記載の呼吸用気体供給装置。 3. The respiratory gas supply apparatus according to claim 1, wherein said n2 times is 3 times or more. 前記X%は、600%より大きく1000%より小さい値であることを特徴とする請求項1~3のいずれかに記載の呼吸用気体供給装置。 The respiratory gas supply device according to any one of claims 1 to 3, wherein said X% is a value larger than 600% and smaller than 1000%. 前記Y%は、10%より大きく17%より小さい値であることを特徴とする請求項1~4のいずれかに記載の呼吸用気体供給装置。 The respiratory gas supply device according to any one of claims 1 to 4, wherein said Y% is a value larger than 10% and smaller than 17%. 前記所定の複数の吸気判定閾値のうち最も大きい吸気判定閾値を選択しているとき、(直近n1回分の吸気検知点の間の時間間隔の平均値)÷(直近n2回分の吸気検知点の間の時間間隔の平均値)の値が、X%より大きい場合、前記制御部は、前記呼吸用気体の供給を一定時間の連続供給又は一定周期のパルス供給に切り替えることを特徴とする請求項1~5のいずれかに記載の呼吸用気体供給装置。 When the largest inhalation determination threshold is selected from among the plurality of predetermined inhalation determination thresholds, (average value of the time intervals between the inhalation detection points for the most recent n1 times) ÷ (between the inhalation detection points for the most recent n2 times is greater than X%, the control unit switches the supply of the respiratory gas to continuous supply for a certain period of time or pulse supply for a certain period. 6. The respiratory gas supply device according to any one of -5. 使用者の呼吸サイクルに応じて呼吸用気体を供給する、呼吸同調式の呼吸用気体供給装置であって、前記呼吸用気体供給装置は、
気体供給経路の圧力を測定する圧力センサと、
所定の複数の吸気判定閾値から、1つの吸気判定閾値を選択する制御部とを備え、
前記制御部は、前記圧力センサの信号から算出した圧力データの値が、選択した吸気判定閾値より小さくなった点を吸気検知点と判断するとともに、前記吸気検知点から一定時間前記呼吸用気体を供給し、
前記制御部は、直近n3回分の吸気検知点の間の時間間隔の合計値が、第1の時間より長い場合、吸気判定閾値を、選択された吸気判定閾値より大きい吸気判定閾値に切り替え、
前記制御部は、直近n3回分の吸気検知点の間の時間間隔の合計値が、第2の時間より短い場合、吸気判定閾値を、選択された吸気判定閾値より小さい吸気判定閾値に切り替えることを特徴とする呼吸用気体供給装置。
A breath-coordinated breathing gas delivery device for delivering breathing gas in response to a user's breathing cycle, the breathing gas delivery device comprising:
a pressure sensor that measures the pressure of the gas supply path;
A control unit that selects one intake determination threshold from a plurality of predetermined intake determination thresholds,
The control unit determines a point at which the value of the pressure data calculated from the signal of the pressure sensor becomes smaller than a selected threshold value for determination of inhalation as an inhalation detection point, and releases the respiratory gas for a predetermined time from the inhalation detection point. supply and
When the total value of the time intervals between the latest n3 intake detection points is longer than a first time, the control unit switches the intake determination threshold to a selected intake determination threshold larger than the intake determination threshold,
When the total value of the time intervals between the inhalation detection points for the last n3 times is shorter than a second time, the control unit switches the inhalation determination threshold to the inhalation determination threshold smaller than the selected inhalation determination threshold. A respiratory gas delivery device characterized by:
前記n3回は、2回以上であることを特徴とする請求項7に記載の呼吸用気体供給装置
8. The respiratory gas supply apparatus according to claim 7, wherein said n3 times is two times or more.
前記第1の時間は、前記n3×7.5秒よりも長い時間であることを特徴とする請求項7または8に記載の呼吸用気体供給装置。 9. The respiratory gas supply apparatus according to claim 7 or 8, wherein said first period of time is longer than said n3*7.5 seconds. 前記第2の時間は、前記n3×1.2秒未満の時間であることを特徴とする請求項7~9のいずれかに記載の呼吸用気体供給装置。 The respiratory gas supply apparatus according to any one of claims 7 to 9, wherein said second time is less than said n3 x 1.2 seconds. 前記所定の複数の吸気判定閾値のうち最も大きい吸気判定閾値を選択しているとき、直近n3回分の吸気検知点の間の時間間隔の合計値が、第1の時間より長い場合、前記制御部は、前記呼吸用気体の供給を一定時間の連続供給又は一定周期のパルス供給に切り替えることを特徴とする請求項7~10のいずれかに記載の呼吸用気体供給装置。 When the largest intake determination threshold value among the plurality of predetermined intake determination threshold values is selected, if the total value of the time intervals between the intake detection points for the last n3 times is longer than a first time, the control unit 11. The respiratory gas supply device according to any one of claims 7 to 10, wherein the supply of the respiratory gas is switched between continuous supply for a certain period of time and pulse supply for a certain period. 前記圧力データの値は、圧力値あるいは圧力勾配値であることを特徴とする請求項1~11のいずれかに記載の呼吸用気体供給装置。 The respiratory gas supply device according to any one of claims 1 to 11, wherein the pressure data values are pressure values or pressure gradient values. 前記吸気判定閾値は、圧力閾値あるいは圧力勾配閾値であることを特徴とする請求項1~12のいずれかに記載の呼吸用気体供給装置。 13. The respiratory gas supply apparatus according to any one of claims 1 to 12, wherein the inspiratory determination threshold is a pressure threshold or a pressure gradient threshold. 前記吸気判定閾値として、少なくとも第1圧力勾配閾値と、第1圧力勾配閾値よりも大きい第2圧力勾配閾値を含み、
前記第1圧力勾配閾値は、-4.0Pa/20ms以上-1.0Pa/20ms以下であり、
前記第2圧力勾配閾値は、-0.8Pa/20ms以上-0.1Pa/20ms以下であることを特徴とする請求項1~13のいずれかに記載の呼吸用気体供給装置。
The intake determination threshold includes at least a first pressure gradient threshold and a second pressure gradient threshold greater than the first pressure gradient threshold,
The first pressure gradient threshold is −4.0 Pa/20 ms or more and −1.0 Pa/20 ms or less,
The respiratory gas supply device according to any one of claims 1 to 13, wherein the second pressure gradient threshold is -0.8 Pa/20 ms or more and -0.1 Pa/20 ms or less.
前記吸気判定閾値として、少なくとも第1圧力閾値と、第1圧力閾値よりも大きい第2圧力閾値を含み、
前記第1圧力閾値は、-10.0Pa以上-5.0Pa以下であり、
前記第2圧力閾値は、-3.0Pa以上-1.0Pa以下であることを特徴とする請求項1~13のいずれかに記載の呼吸用気体供給装置。
The intake determination threshold includes at least a first pressure threshold and a second pressure threshold greater than the first pressure threshold,
The first pressure threshold is -10.0 Pa or more and -5.0 Pa or less,
The respiratory gas supply device according to any one of claims 1 to 13, wherein the second pressure threshold is -3.0 Pa or more and -1.0 Pa or less.
使用者の呼吸サイクルに応じて呼吸用気体を供給する、呼吸同調式の呼吸用気体供給装置であって、前記呼吸用気体供給装置は、
気体供給経路の圧力を測定する圧力センサと、
所定の複数の吸気判定閾値から、1つの吸気判定閾値を選択する制御部とを備え、
前記制御部は、前記圧力センサの信号から算出した圧力データの値が、選択した吸気判定閾値より小さくなった点を吸気検知点と判断するとともに、前記吸気検知点から一定時間前記呼吸用気体を供給し、
直近7.5秒間の圧力値の最小値に基づいて、吸気判定閾値を切り替えることを特徴とする呼吸用気体供給装置。
A breath-coordinated breathing gas delivery device for delivering breathing gas in response to a user's breathing cycle, the breathing gas delivery device comprising:
a pressure sensor that measures the pressure of the gas supply path;
A control unit that selects one intake determination threshold from a plurality of predetermined intake determination thresholds,
The control unit determines a point at which the value of the pressure data calculated from the signal of the pressure sensor becomes smaller than a selected threshold value for determination of inhalation as an inhalation detection point, and releases the respiratory gas for a predetermined time from the inhalation detection point. supply and
A respiratory gas supply apparatus characterized by switching an inspiratory determination threshold value based on the minimum value of pressure values in the most recent 7.5 seconds.
前記制御部は、前記直近7.5秒間の圧力値の最小値が第1圧力判定閾値より大きい場合、吸気判定閾値を、選択された吸気判定閾値より大きい吸気判定閾値に切り替え、
前記制御部は、前記直近7.5秒間の圧力値の最小値が第2圧力判定閾値より小さい場合、吸気判定閾値を前記選択された吸気判定閾値より小さい吸気判定閾値に切り替えることを特徴とする請求項16に記載の呼吸用気体供給装置。
When the minimum value of the pressure values in the most recent 7.5 seconds is greater than a first pressure determination threshold, the control unit switches the intake determination threshold to a selected intake determination threshold larger than the intake determination threshold,
The control unit switches the intake determination threshold value to an intake determination threshold value smaller than the selected intake determination threshold value when the minimum value of the pressure values in the most recent 7.5 seconds is smaller than a second pressure determination threshold value. 17. The respiratory gas delivery apparatus of claim 16.
前記第1圧力判定閾値は、-10Pa以上-5Pa以下であり、前記第2圧力判定閾値は-100Pa以上-50Pa以下であることを特徴とする請求項16または17に記載
の呼吸用気体供給装置。
The respiratory gas supply device according to claim 16 or 17, wherein the first pressure determination threshold is -10 Pa or more and -5 Pa or less, and the second pressure determination threshold is -100 Pa or more and -50 Pa or less. .
前記呼吸用気体は濃縮酸素であり、前記呼吸用気体供給装置は酸素濃縮装置であることを特徴とする、請求項1~18のいずれかに記載の呼吸用気体供給装置。 The respiratory gas supply device according to any of claims 1 to 18, characterized in that said respiratory gas is enriched oxygen and said respiratory gas supply device is an oxygen concentrator. 使用者の呼吸サイクルに応じて呼吸用気体を供給する、呼吸同調式の呼吸用気体供給装置の制御方法であって、
所定の複数の吸気判定閾値の中から、1つの吸気判定閾値を選択する吸気判定閾値選択ステップと、
前記呼吸サイクルを検知する圧力センサの信号から算出した圧力データの値が、前記吸気判定閾値選択ステップで選択した吸気判定閾値より小さくなる吸気検知点を検出する吸気検知点検出ステップと、
直近n1回分の前記吸気検知点の間の時間間隔に基づいて、前記複数の吸気判定閾値の中のいずれかに前記1つの吸気判定閾値を切り替える吸気判定閾値切り替えステップとを有し、
前記吸気判定閾値切り替えステップは、(直近n1回分の吸気検知点の間の時間間隔の平均値)÷(直近n2回分の吸気検知点の間の時間間隔の平均値)の値が、X%より大きい場合、吸気判定閾値を、選択された吸気判定閾値より大きい吸気判定閾値に切り替え、(直近n1回分の吸気検知点の間の時間間隔の平均値)÷(直近n2回分の吸気検知点の間の時間間隔の平均値)の値が、Y%未満である場合、吸気判定閾値を、選択された吸気判定閾値より小さい吸気判定閾値に切り替えることを特徴とする呼吸用気体供給装置の制御方法。
A control method for a breathing-coordinated breathing gas supply device for supplying breathing gas according to a user's breathing cycle, comprising:
an intake determination threshold selection step of selecting one intake determination threshold from among a plurality of predetermined intake determination thresholds;
an inspiratory detection point detection step of detecting an inspiratory detection point at which the value of pressure data calculated from the signal of the pressure sensor that detects the respiratory cycle is smaller than the inspiratory determination threshold selected in the inspiratory determination threshold selection step;
an intake determination threshold switching step of switching the one intake determination threshold to one of the plurality of intake determination thresholds based on the time interval between the intake detection points for the last n1 times;
In the inhalation determination threshold switching step, the value of (average value of time intervals between inhalation detection points for the most recent n1 times) ÷ (average value of time intervals between the inhalation detection points for the most recent n2 times) is more than X%. If it is larger, the inhalation determination threshold is switched to an inhalation determination threshold that is greater than the selected inhalation determination threshold, and (the average value of the time intervals between the most recent n1 inhalation detection points) ÷ (between the most recent n2 inhalation detection points is less than Y%, switching the inspiration determination threshold to an inspiration determination threshold smaller than the selected inspiration determination threshold.
使用者の呼吸サイクルに応じて呼吸用気体を供給する、呼吸同調式の呼吸用気体供給装置の制御方法であって、
所定の複数の吸気判定閾値の中から、1つの吸気判定閾値を選択する吸気判定閾値選択ステップと、
前記呼吸サイクルを検知する圧力センサの信号から算出した圧力データの値が、前記吸気判定閾値選択ステップで選択した吸気判定閾値より小さくなる吸気検知点を検出する吸気検知点検出ステップと、
直近n3回分の前記吸気検知点の間の時間間隔に基づいて、前記複数の吸気判定閾値の中のいずれかに前記1つの吸気判定閾値を切り替える吸気判定閾値切り替えステップとを有し、
前記吸気判定閾値切り替えステップは、直近n3回分の吸気検知点の間の時間間隔の合計値が、第1の時間より長い場合、吸気判定閾値を、選択された吸気判定閾値より大きい吸気判定閾値に切り替え、直近n3回分の前記時間間隔の合計値が第2の時間より短い場合、吸気判定閾値を、選択された吸気判定閾値より小さい吸気判定閾値に切り替えることを特徴とする、呼吸用気体供給装置の制御方法。
A control method for a breathing-coordinated breathing gas supply device for supplying breathing gas according to a user's breathing cycle, comprising:
an intake determination threshold selection step of selecting one intake determination threshold from among a plurality of predetermined intake determination thresholds;
an inspiratory detection point detection step of detecting an inspiratory detection point at which the value of pressure data calculated from the signal of the pressure sensor that detects the respiratory cycle is smaller than the inspiratory determination threshold selected in the inspiratory determination threshold selection step;
an intake determination threshold switching step of switching the one intake determination threshold to one of the plurality of intake determination thresholds based on the time interval between the intake detection points for the last n3 times;
The inhalation determination threshold switching step sets the inhalation determination threshold to a greater inhalation determination threshold than the selected inhalation determination threshold when the total value of the time intervals between the inhalation detection points for the last n3 times is longer than a first time. Switching: when the total value of the time intervals for the last n3 times is shorter than a second time, the respiratory gas supply apparatus switches the inhalation determination threshold to an inhalation determination threshold smaller than the selected inhalation determination threshold. control method.
使用者の呼吸サイクルに応じて呼吸用気体を供給する、呼吸同調式の呼吸用気体供給装置の制御方法であって、
所定の複数の吸気判定閾値の中から、1つの吸気判定閾値を選択する吸気判定閾値選択ステップと、
前記呼吸サイクルを検知する圧力センサの信号から算出した圧力データの値が、前記吸気判定閾値選択ステップで選択した吸気判定閾値より小さくなる吸気検知点を検出する吸気検知点検出ステップと、
設定された複数の吸気判定閾値の中から、1つの吸気判定閾値を選択する吸気判定閾値選択ステップと、
直近7.5秒間の圧力値の最小値に基づいて、前記複数の吸気判定閾値の中のいずれかに前記1つの吸気判定閾値を切り替える吸気判定閾値切り替えステップとを有することを
特徴とする、呼吸用気体供給装置の制御方法。
A control method for a breathing-coordinated breathing gas supply device for supplying breathing gas according to a user's breathing cycle, comprising:
an intake determination threshold selection step of selecting one intake determination threshold from among a plurality of predetermined intake determination thresholds;
an inspiratory detection point detection step of detecting an inspiratory detection point at which the value of pressure data calculated from the signal of the pressure sensor that detects the respiratory cycle is smaller than the inspiratory determination threshold selected in the inspiratory determination threshold selection step;
an intake determination threshold selection step of selecting one intake determination threshold from among a plurality of set intake determination thresholds;
and an inspiratory determination threshold switching step of switching the one inspiratory determination threshold to one of the plurality of inspiratory determination thresholds based on the minimum value of the pressure value in the most recent 7.5 seconds. method of controlling a gas supply device for gas.
前記吸気判定閾値切り替えステップは、前記直近7.5秒間の圧力値の最小値が第1圧力判定閾値より大きい場合、吸気判定閾値を、選択された吸気判定閾値より大きい吸気判定閾値に切り替え、前記直近7.5秒間の圧力値の最小値が第2圧力閾値より小さい場合、吸気判定閾値を、選択された吸気判定閾値より小さい吸気判定閾値に切り替えることを特徴とする、請求項22に記載の呼吸用気体供給装置の制御方法。 The inhalation determination threshold switching step switches the inhalation determination threshold to a greater inhalation determination threshold than the selected inhalation determination threshold when the minimum value of the pressure values in the most recent 7.5 seconds is greater than a first pressure determination threshold, 23. The method according to claim 22, characterized in that the intake determination threshold is switched to an intake determination threshold smaller than the selected intake determination threshold when the minimum value of the pressure values in the most recent 7.5 seconds is less than the second pressure threshold. A method of controlling a respiratory gas delivery device. 前記吸気検知点検出ステップにおいて吸気検知点を検出すると、前記呼吸用気体を一定時間パルス供給するステップをさらに有することを特徴とする、請求項20~23のいずれかに記載の呼吸用気体供給装置の制御方法。 24. The respiratory gas supply device according to any one of claims 20 to 23, further comprising the step of supplying the respiratory gas in pulses for a predetermined period of time when the inhalation detection point is detected in the inhalation detection point detection step. control method.
JP2023020795A 2019-11-01 2023-02-14 Respiratory gas supply device and control method thereof Active JP7509936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023020795A JP7509936B2 (en) 2019-11-01 2023-02-14 Respiratory gas supply device and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019199974A JP7548691B2 (en) 2019-11-01 2019-11-01 Respiratory gas supply device and control method thereof
JP2023020795A JP7509936B2 (en) 2019-11-01 2023-02-14 Respiratory gas supply device and control method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019199974A Division JP7548691B2 (en) 2019-11-01 2019-11-01 Respiratory gas supply device and control method thereof

Publications (2)

Publication Number Publication Date
JP2023053302A true JP2023053302A (en) 2023-04-12
JP7509936B2 JP7509936B2 (en) 2024-07-02

Family

ID=75485699

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019199974A Active JP7548691B2 (en) 2019-11-01 2019-11-01 Respiratory gas supply device and control method thereof
JP2023020795A Active JP7509936B2 (en) 2019-11-01 2023-02-14 Respiratory gas supply device and control method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019199974A Active JP7548691B2 (en) 2019-11-01 2019-11-01 Respiratory gas supply device and control method thereof

Country Status (3)

Country Link
JP (2) JP7548691B2 (en)
CN (1) CN112773986A (en)
DE (1) DE102020211202A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180848A1 (en) * 2017-03-27 2018-10-04 帝人ファーマ株式会社 Gas supply device for respiration and control method therefor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2656530B2 (en) * 1988-02-29 1997-09-24 帝人株式会社 Respiratory gas supply device
JP4602643B2 (en) * 2003-02-28 2010-12-22 帝人株式会社 Respiratory gas supply device
US7841343B2 (en) * 2004-06-04 2010-11-30 Inogen, Inc. Systems and methods for delivering therapeutic gas to patients
JP4594112B2 (en) * 2005-01-18 2010-12-08 テルモ株式会社 Oxygen concentrator and control method thereof
JP4796918B2 (en) * 2006-08-10 2011-10-19 山陽電子工業株式会社 Oxygen-enriched gas supply device
JP6321663B2 (en) * 2012-10-12 2018-05-09 イノヴァ ラボ,インコーポレイテッド Methods and systems for oxygen-enriched gas delivery
CN107115583B (en) * 2013-12-20 2020-02-07 帝人制药株式会社 Breath-synchronized gas supply device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180848A1 (en) * 2017-03-27 2018-10-04 帝人ファーマ株式会社 Gas supply device for respiration and control method therefor

Also Published As

Publication number Publication date
JP7509936B2 (en) 2024-07-02
JP2021069862A (en) 2021-05-06
CN112773986A (en) 2021-05-11
DE102020211202A1 (en) 2021-05-06
JP7548691B2 (en) 2024-09-10

Similar Documents

Publication Publication Date Title
US8783250B2 (en) Methods and systems for transitory ventilation support
US8640699B2 (en) Breathing assistance systems with lung recruitment maneuvers
US9981096B2 (en) Methods and systems for triggering with unknown inspiratory flow
EP2569035B1 (en) System for detecting sleep onset in a subject based on responsiveness to breathing cues
JP6320755B2 (en) Obesity hypoventilation syndrome treatment system and method
CN102711888A (en) Methods and apparatus for adaptable pressure treatment of sleep disordered breathing
CN112118884A (en) System and method for respiratory effort detection with signal distortion
US20230364369A1 (en) Systems and methods for automatic cycling or cycling detection
EP3383463B1 (en) Device for treating ataxic breathing
JP6891268B2 (en) Respiratory gas supply device and its control method
JP2013543769A5 (en)
CN103182121A (en) Pressure trigger control method for breathing machine
CN114144218B (en) Equipment for non-invasive assisted ventilation of living beings
JP7290406B2 (en) Breathing gas supply device and its control method
JP6211253B2 (en) Oxygen supply equipment
JP2023053302A (en) Respiratory gas supply device and control method of the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230307

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240620

R150 Certificate of patent or registration of utility model

Ref document number: 7509936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150