[go: up one dir, main page]

JP2023033161A - Porous resin particle, production method of the same, personal care product including the same, heat insulation material and sound insulation material - Google Patents

Porous resin particle, production method of the same, personal care product including the same, heat insulation material and sound insulation material Download PDF

Info

Publication number
JP2023033161A
JP2023033161A JP2022127257A JP2022127257A JP2023033161A JP 2023033161 A JP2023033161 A JP 2023033161A JP 2022127257 A JP2022127257 A JP 2022127257A JP 2022127257 A JP2022127257 A JP 2022127257A JP 2023033161 A JP2023033161 A JP 2023033161A
Authority
JP
Japan
Prior art keywords
porous resin
resin particles
same
insulation material
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022127257A
Other languages
Japanese (ja)
Inventor
喬是 池田
Noritada Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Publication of JP2023033161A publication Critical patent/JP2023033161A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polymerisation Methods In General (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Cosmetics (AREA)
  • Dispersion Chemistry (AREA)

Abstract

【課題】樹脂粒子は構成するモノマー、形状によって耐候性、光拡散性をはじめとする様々な性質を発現、制御できることから、化粧品の添加剤や塗料の艶消し材、照明カバーや液晶パネル用の光拡散材など幅広い用途に用いられている。近年、化粧品に添加する際求められる吸油能力を向上させるため、樹脂粒子を多孔質化したものが報告されているが、より高度な要望に対しては吸油量が十分とは言えず、さらなる吸油能力の向上が求められている。本発明の目的は、油分や水分などの液状物の吸収・分離などにおいて、優れた吸収量を発現できる多孔質樹脂粒子および該粒子の製造方法を提供することにある。
【解決手段】累積細孔容積が1.5~5.0ml/gであり、平均細孔直径が0.1~2.0μmである多孔質樹脂粒子。
【選択図】なし
[Problem] Resin particles can express and control various properties such as weather resistance and light diffusivity depending on the monomers and shapes that constitute them. It is used in a wide range of applications such as light diffusing materials. In recent years, it has been reported that resin particles are made porous in order to improve the oil absorption capacity required when adding them to cosmetics. There is a need to improve their capabilities. An object of the present invention is to provide porous resin particles capable of exhibiting an excellent absorption capacity in the absorption and separation of liquid substances such as oil and water, and a method for producing the particles.
A porous resin particle having a cumulative pore volume of 1.5 to 5.0 ml/g and an average pore diameter of 0.1 to 2.0 μm.
[Selection figure] None

Description

本発明は多孔質樹脂粒子、該粒子の製造方法および該粒子を含有するパーソナルケア製品に関する。 The present invention relates to porous resin particles, methods of making the particles and personal care products containing the particles.

樹脂粒子は構成するモノマー、形状によって耐候性、光拡散性をはじめとする様々な性質を発現、制御できることから、化粧品の添加剤や塗料の艶消し材、照明カバーや液晶パネル用の光拡散材など幅広い用途に用いられている。なかでも、化粧品の皮脂吸着性や有効成分保持能力を向上させるため、化粧品に添加する樹脂粒子の吸油性を増大させる試みが報告されている。 Resin particles can express and control various properties such as weather resistance and light diffusivity depending on the monomers and shapes that constitute them. Therefore, they are used as additives for cosmetics, matting materials for paints, and light diffusion materials for lighting covers and liquid crystal panels. It is used for a wide range of purposes such as In particular, attempts have been reported to increase the oil absorbency of resin particles added to cosmetics in order to improve the sebum-adsorbing properties and the ability to retain active ingredients of cosmetics.

例えば、特許文献1では平均粒子径が1~50μmの内部に1個または2個以上の空孔を有する球状重合体が報告されている。また、特許文献2では、共重合可能な官能基を有する単量体を複数含む単量体混合物を、少なくとも、非重合性のシリコーン化合物が存在している状態で懸濁重合してなり、且つ、表面が粗面化している樹脂粒子が報告されている。 For example, Patent Document 1 reports a spherical polymer having an average particle size of 1 to 50 μm and having one or more pores inside. Further, in Patent Document 2, a monomer mixture containing a plurality of monomers having a copolymerizable functional group is subjected to suspension polymerization in the presence of at least a non-polymerizable silicone compound, and , resin particles having roughened surfaces have been reported.

さらに、特許文献3ではメタクリル酸メチルとポリ(エチレングリコール-プロピレングリコール)モノメタクリレートの共重合体からなり、吸油量が135ml/100gである化粧料用多孔質樹脂粒子が報告されている。 Furthermore, Patent Document 3 reports a cosmetic porous resin particle comprising a copolymer of methyl methacrylate and poly(ethylene glycol-propylene glycol) monomethacrylate and having an oil absorption of 135 ml/100 g.

特開昭60-184004号公報JP-A-60-184004 WO16/006540号公報WO16/006540 特開2017-88501号公報JP 2017-88501 A

しかし、特許文献1~3で報告されている多孔質樹脂粒子は、より高度な要望に対しては吸油量が十分とは言えない。これは、従来の多孔質樹脂粒子においては、粒子内部の空間体積が小さく、吸油量が制限されることが原因であると考えられる。本発明は、かかる従来技術の現状に鑑みて創案されたものであり、その目的は、油分や水分などの液状物の吸収・分離などにおいて、優れた吸収量を発現できる多孔質樹脂粒子および該粒子の製造方法を提供することにある。 However, it cannot be said that the porous resin particles reported in Patent Documents 1 to 3 have sufficient oil absorption for higher requirements. This is probably because conventional porous resin particles have a small space volume inside the particles, limiting the amount of oil absorption. The present invention was invented in view of the current state of the prior art, and its object is to provide porous resin particles capable of exhibiting an excellent absorption amount in the absorption and separation of liquid substances such as oil and water, and the porous resin particles. An object of the present invention is to provide a method for producing particles.

本発明者らは、上述の目的を達成するために鋭意検討を進めた結果、累積細孔容積が1.5~5.0ml/gであり、平均細孔直径が0.1~2.0μmである多孔質樹脂粒子が上記目的を達成することを見出し、本発明に到達した。 The present inventors have made intensive studies to achieve the above-mentioned objects, and found that the cumulative pore volume is 1.5 to 5.0 ml / g and the average pore diameter is 0.1 to 2.0 μm. The inventors have found that the porous resin particles can achieve the above object, and have completed the present invention.

即ち、本発明は以下の手段により達成される。
[1]累積細孔容積が1.5~5.0ml/gであり、平均細孔直径が0.1~2.0μmである多孔質樹脂粒子。
[2]メディアン径が3.0~150μmであることを特徴とする、[1]に記載の多孔質樹脂粒子。
[3]下記工程(a)~(d)を有する、多孔質樹脂粒子の製造方法。
(a)ポリエチレンイミン、ポリアリルアミンまたはポリアクリル酸ナトリウムのいずれかを含む内水相成分と、疎水性モノマー、重合開始剤、及びエチルセルロースを含む油相成分からなる、W/O(内水相/油相)型エマルションを得る工程。
(b)上記(a)で得られたW/O型エマルションと懸濁重合用分散安定剤を含む外水相成分からなる、W/O/W(内水相/油相/外水相)型エマルションを得る工程。
(c)上記(b)で得られたW/O/W型エマルションにおいて、モノマーを重合してポリマー水分散液を得る工程。
(d)上記(c)で得られたポリマー水分散液から外水相およびポリマー内部の水を除去する工程。
[4][1]または[2]のいずれかに記載の多孔質樹脂粒子を含有することを特徴とするパーソナルケア製品。
[5][1]または[2]のいずれかに記載の多孔質樹脂粒子を含有することを特徴とする断熱材。
[6][1]または[2]のいずれかに記載の多孔質樹脂粒子を含有することを特徴とする遮音材。
That is, the present invention is achieved by the following means.
[1] Porous resin particles having a cumulative pore volume of 1.5 to 5.0 ml/g and an average pore diameter of 0.1 to 2.0 μm.
[2] The porous resin particles according to [1], which have a median diameter of 3.0 to 150 μm.
[3] A method for producing porous resin particles, comprising the following steps (a) to (d).
(a) W/O (inner water phase/ Oil phase) step of obtaining a type emulsion.
(b) W/O/W (inner water phase/oil phase/outer water phase) comprising the W/O emulsion obtained in (a) above and an outer water phase component containing a dispersion stabilizer for suspension polymerization Obtaining a type emulsion.
(c) a step of polymerizing a monomer in the W/O/W emulsion obtained in (b) above to obtain an aqueous polymer dispersion;
(d) a step of removing the external aqueous phase and water inside the polymer from the aqueous polymer dispersion obtained in (c) above;
[4] A personal care product comprising the porous resin particles according to either [1] or [2].
[5] A heat insulating material comprising the porous resin particles according to any one of [1] and [2].
[6] A sound insulating material comprising the porous resin particles according to any one of [1] and [2].

本発明の多孔質樹脂粒子は、細孔容積が大きいため、液状物に対して優れた吸収性能を有するものである。かかる性能を有する本発明の多孔質樹脂粒子は、例えば、化粧品(ファンデーション、日焼け止めなど)や皮脂取り用品(皮脂吸着パウダー、脂取り紙、脂取りハンカチなど)のような過剰な皮脂の吸収を求められるパーソナルケア製品の添加剤などとして好適に利用することができる。また、本発明の多孔質樹脂粒子は粒子内に比較的大きな空洞を有していることから、断熱材や遮音材の構成成分としても好適に利用することができる。 Since the porous resin particles of the present invention have a large pore volume, they have excellent liquid absorbing performance. The porous resin particles of the present invention having such performance can be used to absorb excessive sebum such as cosmetics (foundation, sunscreen, etc.) and sebum removing products (sebum absorbing powder, oil removing paper, oil removing handkerchief, etc.). It can be suitably used as an additive for required personal care products. In addition, since the porous resin particles of the present invention have relatively large cavities in the particles, they can be suitably used as a constituent component of heat insulating materials and sound insulating materials.

実施例1で得られた本発明の多孔質樹脂粒子の外観を示すSEM写真である。2 is a SEM photograph showing the appearance of the porous resin particles of the present invention obtained in Example 1. FIG. 実施例1で得られた本発明の多孔質樹脂粒子の断面を示すSEM写真である。1 is an SEM photograph showing a cross section of the porous resin particles of the present invention obtained in Example 1. FIG.

以下に本発明を詳細に説明する。本発明の多孔質樹脂粒子は、樹脂を材料とする粒子であって、その表面から内部に通じる連通孔を有するものである。材料となる樹脂については特に制限はなく、例えばポリエチレン、ポリプロピレン、ポリ塩化ビニル、ABS樹脂、ポリスチレン、(メタ)アクリル樹脂、ポリアクリロニトリル、ポリビニルアルコール、ポリアミド、ポリアセタール、ポリカーボネート、ポリエステル、ポリウレタン、エポキシ樹脂、スチレンブタジエンゴム、クロロプレンゴムなどを採用することができる。 The present invention will be described in detail below. The porous resin particles of the present invention are particles made of resin, and have communicating pores extending from the surface to the inside. There are no particular restrictions on the resin used as the material, and examples include polyethylene, polypropylene, polyvinyl chloride, ABS resin, polystyrene, (meth)acrylic resin, polyacrylonitrile, polyvinyl alcohol, polyamide, polyacetal, polycarbonate, polyester, polyurethane, epoxy resin, Styrene-butadiene rubber, chloroprene rubber, and the like can be used.

また、本発明の多孔質樹脂粒子の累積細孔容積は、下限としては1.5ml/gであり、2.0ml/gであることが好ましく、2.5ml/gであることがより好ましい。また上限としては、5.0ml/gであり、4.0ml/gであることが好ましく、3.5ml/gであることがより好ましい。累積細孔容積が小さすぎる場合、粒子内部に液状物等が浸透できる領域が少なくなり、吸収量が低下してしまう。累積細孔容積が大きすぎる場合、強度が下がって崩壊しやすくなるため実用に不適なものとなってしまう。 The cumulative pore volume of the porous resin particles of the present invention has a lower limit of 1.5 ml/g, preferably 2.0 ml/g, more preferably 2.5 ml/g. The upper limit is 5.0 ml/g, preferably 4.0 ml/g, more preferably 3.5 ml/g. If the cumulative pore volume is too small, the area into which the liquid or the like can permeate becomes small, resulting in a decrease in absorption. If the cumulative pore volume is too large, the strength will decrease and the material will easily collapse, making it unsuitable for practical use.

さらに、本発明の多孔質樹脂粒子の平均細孔直径は、下限としては0.1μmであり、0.2μmであることが好ましく、0.3μmであることがより好ましい。また上限としては、2.0μmであり、1.5μmであることが好ましく、1.0μmであることが好ましい。平均細孔直径が小さすぎる場合、上記のような範囲の累積細孔容積を確保しようとすると空孔内壁の厚さを薄くすることになるため、脆い粒子となり、形状を維持できないことがある。一方、平均細孔直径が大きすぎる場合、粒子形状が球状を保てず異形となってしまい、肌触りが悪くなる場合がある。 Furthermore, the lower limit of the average pore diameter of the porous resin particles of the present invention is 0.1 μm, preferably 0.2 μm, more preferably 0.3 μm. The upper limit is 2.0 μm, preferably 1.5 μm, and preferably 1.0 μm. If the average pore diameter is too small, attempts to secure the cumulative pore volume within the range described above will result in a reduction in the thickness of the inner walls of the pores, resulting in brittle particles that may not be able to maintain their shape. On the other hand, when the average pore diameter is too large, the particle shape cannot maintain a spherical shape, resulting in an irregular shape, which may deteriorate the texture.

本発明の多孔質樹脂粒子のメディアン径は、下限としては3.0μmであることが好ましく、5.0μmであることがより好ましい。また上限としては、150μmであることが好ましく、100μmであることがより好ましく、50μmであることがさらに好ましく、30μmであることが最も好ましい。かかる数値範囲内であれば、化粧品等に添加した際の皮脂分の十分な吸収量と良好な質感や光拡散性を両立しやすくなる。一方、150μmを超えると懸濁重合で調製することが困難となる。ここでメディアン径とは、ある粉体について得られた体積基準の粒径分布における積算値50%となる粒径を指す。 The lower limit of the median diameter of the porous resin particles of the present invention is preferably 3.0 μm, more preferably 5.0 μm. The upper limit is preferably 150 μm, more preferably 100 μm, even more preferably 50 μm, and most preferably 30 μm. Within this numerical range, it is easy to achieve both a sufficient absorption amount of sebum and good texture and light diffusibility when added to cosmetics and the like. On the other hand, if it exceeds 150 μm, it becomes difficult to prepare by suspension polymerization. Here, the median diameter refers to the particle diameter at which the integrated value is 50% in the volume-based particle diameter distribution obtained for a certain powder.

上述してきた本発明の多孔質樹脂粒子は、後述する方法で測定される吸油量として、125ml/100g以上、好ましくは150ml/100g以上、より好ましくは180ml/100gを発現することができる。ただし、吸収した液状物が再放出されないようにする観点から、上限は400ml/100gが好ましく、300ml/100gがより好ましい。 The porous resin particles of the present invention described above can exhibit an oil absorption of 125 ml/100 g or more, preferably 150 ml/100 g or more, more preferably 180 ml/100 g, as measured by the method described later. However, the upper limit is preferably 400 ml/100 g, more preferably 300 ml/100 g, from the viewpoint of preventing re-release of the absorbed liquid.

また、かかる本発明の多孔質樹脂粒子の累積細孔比表面積については、特に制限はないが、上述した各特性を満たす結果として、概ね10m/g~100m/gとなる。 The cumulative pore specific surface area of the porous resin particles of the present invention is not particularly limited, but is generally 10 m 2 /g to 100 m 2 /g as a result of satisfying the above-mentioned characteristics.

以上に述べてきた本発明の多孔質樹脂粒子は、以下の(a)~(d)の工程を含む方法で製造することが好ましい。
(a)ポリエチレンイミン、ポリアリルアミンまたはポリアクリル酸ナトリウムのいずれかを含む内水相成分と疎水性モノマー及び重合開始剤、エチルセルロースを含む油相成分からなる、W/O(内水相/油相)型エマルションを得る工程。
(b)上記(a)で得られたW/O型エマルションと懸濁重合用分散安定剤を含む外水相成分からなる、W/O/W(内水相/油相/外水相)型エマルションを得る工程。
(c)上記(b)で得られたW/O/W型エマルションにおいて、モノマーを重合してポリマー水分散液を得る工程。
(d)上記(c)で得られたポリマー水分散液から外相およびポリマー内部の水を除去する工程。
The porous resin particles of the present invention described above are preferably produced by a method including the following steps (a) to (d).
(a) W/O (inner water phase/oil phase ) type emulsion.
(b) W/O/W (inner water phase/oil phase/outer water phase) comprising the W/O emulsion obtained in (a) above and an outer water phase component containing a dispersion stabilizer for suspension polymerization Obtaining a type emulsion.
(c) a step of polymerizing a monomer in the W/O/W emulsion obtained in (b) above to obtain an aqueous polymer dispersion;
(d) removing the external phase and the water inside the polymer from the aqueous polymer dispersion obtained in (c) above;

上記(a)工程における内水相は、水にポリエチレンイミン、ポリアリルアミンまたはポリアクリル酸ナトリウムのいずれかを溶解することで得られる。これらの添加剤は、油相に内水相を分散させるための水溶性分散剤としての役割があり、その添加量は、下限としてはモノマー重量に対して1.5重量%が好ましく、2.0重量%がより好ましい。また上限としては5.0重量%が好ましい。 The inner water phase in the above step (a) is obtained by dissolving any of polyethyleneimine, polyallylamine or sodium polyacrylate in water. These additives have a role as a water-soluble dispersant for dispersing the internal water phase in the oil phase, and the lower limit of the additive amount is preferably 1.5% by weight based on the weight of the monomer. 0% by weight is more preferred. Moreover, as an upper limit, 5.0 weight% is preferable.

上記(a)工程における油相は、疎水性モノマーに重合開始剤及びエチルセルロースを溶解することで得られる。疎水性モノマーとしては重合により粒子を形成できる限り特に制限はなく、例としてスチレン、p-メチルスチレン、p-クロロスチレン等のスチレン系モノマー;アクリル酸メチル、アクリル酸エチル、アクリル酸-2-エチルヘキシル、アクリル酸ラウリル、ジメチルアミノエチルアクリレート、ジエチルアミノエチルアクリレート等のアクリル酸エステル系モノマー;メタクリル酸メチル、メタクリル酸ラウリル、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート等のメタクリル酸エステル系モノマー;メチルビニルエーテル、エチルビニルエーテル等のアルキルビニルエーテル;酢酸ビニル、酪酸ビニル等のビニルエステル系モノマー;ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヘキサエチレングリコールジ(メタ)アクリレート等の、ポリエチレングリコールジ(メタ)アクリレート;エチレングリコールジ(メタ)アクリレート、ジビニルベンゼン、トリメチロールブロバントリ(メタ)アクリレートなどを挙げることができ、使用される用途に必要な特性を満足するよう適宜選択し、場合によっては組み合わせて使用すればよい。 The oil phase in the above step (a) is obtained by dissolving a polymerization initiator and ethyl cellulose in a hydrophobic monomer. The hydrophobic monomer is not particularly limited as long as particles can be formed by polymerization. Examples include styrene-based monomers such as styrene, p-methylstyrene and p-chlorostyrene; methyl acrylate, ethyl acrylate and 2-ethylhexyl acrylate. , lauryl acrylate, dimethylaminoethyl acrylate, diethylaminoethyl acrylate, etc.; methacrylate monomers, such as methyl methacrylate, lauryl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate; methyl vinyl ether, ethyl vinyl ether Alkyl vinyl ethers such as; vinyl ester monomers such as vinyl acetate and vinyl butyrate; diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, hexaethylene glycol di(meth)acrylate polyethylene glycol di(meth)acrylate; ethylene glycol di(meth)acrylate, divinylbenzene, trimethylolbrobane tri(meth)acrylate, etc.; You can choose and use them in combination.

また(a)工程における重合開始剤としては上記の疎水性モノマーに溶解し、ラジカル重合を開始できるものであれば特に制限はないが、例えばメチルエチルペルオキシド、ジ-t-ブチルペルオキシド、アセチルペルオキシド、ジラウロイルペルオキシド、t-ヘキシルペルオキシ-2-エチルヘキサノエート等の過酸化物類や2,2’-アゾビス(2、4-ジメチルバレロニトリル)等のアゾ化合物などを挙げることができる。油相への添加量は、下限としてはモノマー重量に対して0.1重量%が好ましく、上限としては2.0重量%が好ましい。 The polymerization initiator in step (a) is not particularly limited as long as it dissolves in the above hydrophobic monomer and can initiate radical polymerization. Examples include methyl ethyl peroxide, di-t-butyl peroxide, acetyl peroxide, Examples include peroxides such as dilauroyl peroxide and t-hexylperoxy-2-ethylhexanoate, and azo compounds such as 2,2′-azobis(2,4-dimethylvaleronitrile). The lower limit of the amount added to the oil phase is preferably 0.1% by weight, and the upper limit is preferably 2.0% by weight based on the weight of the monomer.

(a)工程におけるエチルセルロースは内水相の分散を安定化する役割を持つ。またその添加量は、下限としてはモノマー重量に対して0.1重量%が好ましく、上限としては2.0重量%が好ましい。 Ethyl cellulose in the step (a) plays a role in stabilizing the dispersion of the inner water phase. The lower limit of the amount added is preferably 0.1% by weight, and the upper limit is preferably 2.0% by weight based on the weight of the monomer.

(a)工程におけるW/O(内水相/油相)型エマルションは、上記油相に内水相を添加し、懸濁することで得られる。ここで、油相重量に対する内水相の添加量は、下限として20重量%が好ましく、上限としては75重量%が好ましい。 The W/O (inner water phase/oil phase) emulsion in step (a) is obtained by adding the inner water phase to the oil phase and suspending them. Here, the amount of the inner water phase to be added to the weight of the oil phase is preferably 20% by weight as a lower limit and 75% by weight as an upper limit.

(a)工程における懸濁方法は公知の手法、装置を用いればよい。例としては、ホモミキサー、バイオミキサー等の機械的分散機や、超音波ホモジナイザー等を用いて分散させる方法等が挙げられる。 The suspension method in the step (a) may be carried out using a known method and apparatus. Examples thereof include a method of dispersing using a mechanical dispersing machine such as a homomixer and a biomixer, an ultrasonic homogenizer, and the like.

次に、(b)工程における外水相は、水に懸濁重合用分散安定剤を添加、溶解することで得られる。該分散安定剤は公知のものを選択すればよく、例としてはポリビニルアルコール、ポリビニルピロリドン、セルロース、ゼラチン、ポリアクリル酸ナトリウム、ポリメタクリル酸ナトリウム等の水溶性高分子系分散剤;ラウリル硫酸ナトリウム、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩(例えば、ポリオキシエチレンジスチリルフェニルエーテル硫酸エステルアンモニウム)等のアニオン性界面活性剤;アルキルアミン塩、第四級アンモニウム塩等のカチオン性界面活性剤;ラウリルジメチルアミンオキサイド等の両性イオン性界面活性剤;ポリオキシエチレンアルキルエーテル等のノニオン性界面活性剤;その他アルギン酸塩、ゼイン、カゼイン;硫酸バリウム、硫酸カルシウム、炭酸バリウム、炭酸マグネシウム、リン酸カルシウム、タルク、粘土、ケイソウ土、ベントナイト、水酸化チタン、水酸化トリウム、金属酸化物粉末等の無機分散剤を用いることができる。これらは1種のみを用いてもよく、2種以上を併用してもよい。分散剤としては、水溶性高分子系分散剤を使用することが好ましい。分散剤の使用量は、下限としてはモノマー重量に対して0.5重量%が好ましく、上限としては5.0重量%が好ましい。 Next, the external aqueous phase in the step (b) is obtained by adding and dissolving a dispersion stabilizer for suspension polymerization in water. The dispersion stabilizer may be selected from known ones, examples of which include water-soluble polymeric dispersants such as polyvinyl alcohol, polyvinylpyrrolidone, cellulose, gelatin, sodium polyacrylate and sodium polymethacrylate; sodium lauryl sulfate; Anionic surfactants such as polyoxyethylene alkylphenyl ether sulfate (e.g., polyoxyethylene distyrylphenyl ether sulfate ammonium); cationic surfactants such as alkylamine salts and quaternary ammonium salts; lauryl dimethyl zwitterionic surfactants such as amine oxide; nonionic surfactants such as polyoxyethylene alkyl ether; other alginate, zein, casein; barium sulfate, calcium sulfate, barium carbonate, magnesium carbonate, calcium phosphate, talc, clay, Inorganic dispersants such as diatomaceous earth, bentonite, titanium hydroxide, thorium hydroxide, and metal oxide powders can be used. These may use only 1 type and may use 2 or more types together. As the dispersant, it is preferable to use a water-soluble polymer-based dispersant. The lower limit of the amount of the dispersant used is preferably 0.5% by weight, and the upper limit is preferably 5.0% by weight.

(b)工程におけるW/O/W(内水相/油相/外水相)型エマルションは、外水相に(a)工程で調製したW/O型エマルションを添加し、懸濁することで得られる。ここで、W/O型エマルションの添加量は、得られるW/O/W型エマルションの全重量に対するモノマー重量割合が10~40重量%の範囲となるようにするのが好ましい。 The W/O/W (inner water phase/oil phase/outer water phase) emulsion in the step (b) is obtained by adding the W/O emulsion prepared in the step (a) to the outer water phase and suspending it. is obtained by Here, the amount of the W/O type emulsion added is preferably such that the weight ratio of the monomer to the total weight of the obtained W/O/W type emulsion is in the range of 10 to 40% by weight.

(b)工程における懸濁方法は、上述した(a)工程と同様の方法を採用することができる。 The suspending method in step (b) can employ the same method as in step (a) described above.

次に、(c)工程におけるポリマー水分散液は、(b)工程で調製したW/O/W型エマルション中のモノマーを重合することで得られる。ここで、重合条件は特に限定されず、用いるモノマーや添加剤の種類に応じて、重合温度、重合時間等の諸条件を設定すればよい。例えば、重合開始剤の10時間半減期温度に応じて重合温度、重合時間を決定することができる。 Next, the aqueous polymer dispersion in step (c) is obtained by polymerizing the monomers in the W/O/W emulsion prepared in step (b). Here, polymerization conditions are not particularly limited, and various conditions such as polymerization temperature and polymerization time may be set according to the types of monomers and additives used. For example, the polymerization temperature and polymerization time can be determined according to the 10-hour half-life temperature of the polymerization initiator.

次に、(d)工程における水を除去する方法は特に限定されず、公知の方法を用いればよい。例としては、吸引ろ過、水洗浄、加熱乾燥を経て水を除去する方法が挙げられる。 Next, the method for removing water in step (d) is not particularly limited, and a known method may be used. Examples include a method of removing water through suction filtration, washing with water, and heat drying.

以上に説明してきた本発明の多孔質樹脂粒子は優れた吸油性を有しており、ファンデーション、日焼け止めなどの化粧品添加剤として好適に用いることができる。また、本発明の多孔質樹脂粒子は粒子内に比較的大きな空洞を有していることから、断熱材や遮音材の構成成分としても好適に利用することができる。 The porous resin particles of the present invention described above have excellent oil absorbency and can be suitably used as additives for cosmetics such as foundations and sunscreens. In addition, since the porous resin particles of the present invention have relatively large cavities in the particles, they can be suitably used as a constituent component of heat insulating materials and sound insulating materials.

以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例中の評価に用いた測定方法は、以下の通りである。 EXAMPLES The present invention will be described in detail below with reference to Examples, but the present invention is not limited to these Examples. The measurement methods used for evaluation in the examples are as follows.

(1)メディアン径
乾燥したサンプルを界面活性剤に馴染ませた後、水に分散させて分散液を調製する。該分散液に対し島津製作所製のレーザ回折式粒度分布測定装置であるSALD-200Vを使用してサンプル粒子の粒径分布を測定し、得られた粒径分布からメディアン径を求めた。
(1) Median diameter A dried sample is soaked in a surfactant and then dispersed in water to prepare a dispersion. Using SALD-200V, a laser diffraction particle size distribution analyzer manufactured by Shimadzu Corporation, the particle size distribution of the sample particles was measured, and the median diameter was obtained from the obtained particle size distribution.

(2)累積細孔容積、平均細孔直径、累積細孔比表面積
サンプルを120℃で4時間恒温乾燥したのち、水銀圧入法により細孔直径約0.0036μm~200μmの細孔分布を測定した。なお、細孔径はwashburnの式から算出し、測定条件及び測定装置は下記のようにした。
測定条件
・水銀の表面張力:480dynes/cm
・水銀とサンプルとの接触角:140degrees
測定装置
・オートポアV9620(マイクロメリティックス社製)
(2) Cumulative pore volume, average pore diameter, and cumulative pore specific surface area The sample was dried at a constant temperature of 120 ° C. for 4 hours, and then the pore distribution with a pore diameter of about 0.0036 μm to 200 μm was measured by mercury porosimetry. . The pore diameter was calculated from the washburn equation, and the measurement conditions and measurement apparatus were as follows.
Measurement conditions ・Surface tension of mercury: 480 dynes/cm
・Contact angle between mercury and sample: 140 degrees
Measuring device Autopore V9620 (manufactured by Micromeritics)

(3)吸油量
JIS K5101-13-2:2004に準拠して測定した。
(3) Oil absorption Measured according to JIS K5101-13-2:2004.

実施例1
(a)工程:W/O(内水相/油相)型エマルションの調製
メタクリル酸メチルとエチレングリコールジメタクリレートが重量比にして90:10で混合されてなるモノマー混合物に、ジラウロイルペルオキシドとエチルセルロースをモノマー混合物の重量に対してそれぞれ0.4重量%、1.0重量%添加し、溶解させ、油相を得た。かかる油相と、水にポリエチレンイミンが前記モノマー混合物の重量に対して3.0重量%添加されてなる内水相を混合したのち、ホモミキサーで攪拌することで、油相内に内水相の液滴が分散したW/O(水相/油相)型エマルションを得た。
Example 1
(a) Step: Preparation of W/O (internal water phase/oil phase) type emulsion Dilauroyl peroxide and ethyl cellulose were added to a monomer mixture in which methyl methacrylate and ethylene glycol dimethacrylate were mixed at a weight ratio of 90:10. were added in an amount of 0.4% by weight and 1.0% by weight relative to the weight of the monomer mixture and dissolved to obtain an oil phase. After mixing such an oil phase and an inner water phase obtained by adding polyethyleneimine to water in an amount of 3.0% by weight based on the weight of the monomer mixture, the inner water phase is formed in the oil phase by stirring with a homomixer. A W/O (aqueous phase/oil phase) type emulsion in which droplets of are dispersed was obtained.

(b)工程:W/O/W(内水相/油相/外水相)型エマルションの調製
上記(a)工程で得られたW/O型エマルションと、上記モノマー混合物の重量に対して2.0重量%のポリビニルアルコールが水に添加されてなる外水相を、得られるW/O/W型エマルションの全重量に対するモノマー混合物の重量割合が20重量%となるように混合したのち、ホモミキサーで攪拌し、W/O/W型エマルションを得た。
(b) Step: Preparation of W/O/W (inner water phase/oil phase/outer water phase) emulsion After mixing an external aqueous phase obtained by adding 2.0% by weight of polyvinyl alcohol to water so that the weight ratio of the monomer mixture to the total weight of the resulting W/O/W emulsion is 20% by weight, A W/O/W emulsion was obtained by stirring with a homomixer.

(c)及び(d)工程:多孔質樹脂粒子の調製
上記(b)工程で得られたW/O/W型エマルションを70℃まで昇温し、そのまま4時間反応させた。得られたスラリーを減圧濾過した後、濾別した固形物を水洗、乾燥し、実施例1の多孔質樹脂粒子を得た。得られた粒子の外観を撮影したSEM写真を図1に、粒子断面を撮影したSEM写真を図2に示す。図2から、空孔断面の奥側にさらなる空孔があり、空孔同士が連通していることがわかる。なお、図1の表面や空孔内部に見える微小粒子はコンタミネーションである。また、図2は、粒子を樹脂で固めたものを切断して撮影したものである。
Steps (c) and (d): Preparation of Porous Resin Particles The W/O/W emulsion obtained in step (b) above was heated to 70° C. and allowed to react for 4 hours. After the obtained slurry was filtered under reduced pressure, the filtered solid matter was washed with water and dried to obtain porous resin particles of Example 1. A SEM photograph of the appearance of the obtained particles is shown in FIG. 1, and an SEM photograph of the cross section of the particles is shown in FIG. From FIG. 2, it can be seen that there are further holes on the far side of the hole cross section, and the holes communicate with each other. The microparticles seen on the surface and inside the pores in FIG. 1 are contamination. FIG. 2 is a photograph taken by cutting the particles hardened with resin.

実施例2
実施例1において、(a)工程におけるポリエチレンイミンの添加量を2.3重量%とするほかは同様に行うことで、実施例2の多孔質樹脂粒子を得た。
Example 2
Porous resin particles of Example 2 were obtained in the same manner as in Example 1, except that the amount of polyethyleneimine added in the step (a) was changed to 2.3% by weight.

実施例3
実施例1において、(a)工程におけるポリエチレンイミンの添加量を1.5重量%とするほかは同様に行うことで、実施例3の多孔質樹脂粒子を得た。
Example 3
Porous resin particles of Example 3 were obtained in the same manner as in Example 1, except that the amount of polyethyleneimine added in the step (a) was changed to 1.5% by weight.

比較例1
実施例1の(a)工程において、エチルセルロースを添加せずにW/O型エマルションの調製を試みたが、油相と内水相が分離してしまい、目的の多孔質樹脂粒子は得られなかった。
Comparative example 1
In step (a) of Example 1, an attempt was made to prepare a W/O emulsion without adding ethyl cellulose, but the oil phase and internal water phase were separated, and the desired porous resin particles could not be obtained. rice field.

比較例2
実施例1の(a)工程において、ポリエチレンイミンを添加せずにW/O型エマルションの調製を試みたが、油相と内水相が分離してしまい、目的の多孔質樹脂粒子は得られなかった。
Comparative example 2
In step (a) of Example 1, an attempt was made to prepare a W/O emulsion without adding polyethylenimine, but the oil phase and internal water phase were separated, and the desired porous resin particles could not be obtained. I didn't.

比較例3
市販のアクリル系多孔質樹脂粒子(累積細孔容積:1.31ml/g、メディアン径:8μm)を比較例3として用いた。
Comparative example 3
As Comparative Example 3, commercially available acrylic porous resin particles (cumulative pore volume: 1.31 ml/g, median diameter: 8 μm) were used.

実施例1、2、3及び比較例3の多孔質樹脂粒子について、前述の方法で測定を行った結果を表1に示した。 The porous resin particles of Examples 1, 2, 3 and Comparative Example 3 were measured by the method described above, and the results are shown in Table 1.

Figure 2023033161000001
Figure 2023033161000001

表1から、実施例1、2、3の多孔質樹脂粒子は比較例3に比べ吸油量が高く、特に実施例1は優れた吸油能力を有していることがわかる。 From Table 1, it can be seen that the porous resin particles of Examples 1, 2 and 3 have higher oil absorption than Comparative Example 3, and that Example 1 in particular has excellent oil absorption capacity.

Claims (6)

累積細孔容積が1.5~5.0ml/gであり、平均細孔直径が0.1~2.0μmである多孔質樹脂粒子。 Porous resin particles having a cumulative pore volume of 1.5 to 5.0 ml/g and an average pore diameter of 0.1 to 2.0 μm. メディアン径が3.0~150μmであることを特徴とする、請求項1に記載の多孔質樹脂粒子。 2. The porous resin particles according to claim 1, which have a median diameter of 3.0 to 150 μm. 下記工程(a)~(d)を有する、多孔質樹脂粒子の製造方法。
(a)ポリエチレンイミン、ポリアリルアミンまたはポリアクリル酸ナトリウムのいずれかを含む内水相成分と、疎水性モノマー、重合開始剤、及びエチルセルロースを含む油相成分からなる、W/O(内水相/油相)型エマルションを得る工程。
(b)上記(a)で得られたW/O型エマルションと懸濁重合用分散安定剤を含む外水相成分からなる、W/O/W(内水相/油相/外水相)型エマルションを得る工程。
(c)上記(b)で得られたW/O/W型エマルションにおいて、モノマーを重合してポリマー水分散液を得る工程。
(d)上記(c)で得られたポリマー水分散液から外水相およびポリマー内部の水を除去する工程。
A method for producing porous resin particles, comprising the following steps (a) to (d).
(a) W/O (inner water phase/ Oil phase) step of obtaining a type emulsion.
(b) W/O/W (inner water phase/oil phase/outer water phase) comprising the W/O emulsion obtained in (a) above and an outer water phase component containing a dispersion stabilizer for suspension polymerization Obtaining a type emulsion.
(c) a step of polymerizing a monomer in the W/O/W emulsion obtained in (b) above to obtain an aqueous polymer dispersion;
(d) a step of removing the external aqueous phase and water inside the polymer from the aqueous polymer dispersion obtained in (c) above;
請求項1または2のいずれかに記載の多孔質樹脂粒子を含有することを特徴とするパーソナルケア製品。 A personal care product comprising the porous resin particles according to claim 1 or 2. 請求項1または2のいずれかに記載の多孔質樹脂粒子を含有することを特徴とする断熱材。 A heat insulating material comprising the porous resin particles according to claim 1 . 請求項1または2のいずれかに記載の多孔質樹脂粒子を含有することを特徴とする遮音材。 A sound insulating material comprising the porous resin particles according to claim 1 or 2.
JP2022127257A 2021-08-27 2022-08-09 Porous resin particle, production method of the same, personal care product including the same, heat insulation material and sound insulation material Pending JP2023033161A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021138454 2021-08-27
JP2021138454 2021-08-27

Publications (1)

Publication Number Publication Date
JP2023033161A true JP2023033161A (en) 2023-03-09

Family

ID=85415997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022127257A Pending JP2023033161A (en) 2021-08-27 2022-08-09 Porous resin particle, production method of the same, personal care product including the same, heat insulation material and sound insulation material

Country Status (2)

Country Link
JP (1) JP2023033161A (en)
KR (1) KR20230031782A (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611685B2 (en) 1984-03-02 1994-02-16 ポーラ化成工業株式会社 Cosmetics
WO2016006540A1 (en) 2014-07-09 2016-01-14 大日精化工業株式会社 Resin beads, method for manufacturing resin beads and product including resin beads
JP2017088501A (en) 2015-11-02 2017-05-25 積水化成品工業株式会社 Porous resin particles for cosmetics

Also Published As

Publication number Publication date
KR20230031782A (en) 2023-03-07

Similar Documents

Publication Publication Date Title
Thompson et al. Preparation of Pickering double emulsions using block copolymer worms
CN107868161B (en) Preparation method and application of polymer hollow microcapsule
Li et al. Microgel particles at the fluid–fluid interfaces
Chaiyasat et al. Preparation of poly (divinylbenzene) microencapsulated octadecane by microsuspension polymerization: oil droplets generated by phase inversion emulsification
JP3258660B2 (en) Wrinkled absorbent particles with highly effective surface area for fast absorption
Yan et al. Capturing nanoscopic length scales and structures by polymerization in microemulsions
Wu et al. Macroporous polymers made from medium internal phase emulsion templates: Effect of emulsion formulation on the pore structure of polyMIPEs
JP7342376B2 (en) Method for manufacturing hollow resin particles
CN114269816B (en) Porous cellulose microparticles and process for producing the same
US7741378B2 (en) Porous monodispersed particles and method for production thereof, and use thereof
JP7294345B2 (en) Resin composition and molded article thereof
KR20080072664A (en) Thermally expandable microspheres and manufacturing method thereof
Yin et al. Antagonistic effect of particles and surfactant on pore structure of macroporous materials based on high internal phase emulsion
EP2769995B1 (en) Micro-structured material and method for the preparation thereof
KR101470850B1 (en) Manufacturing method of macroporous Poly methyl methacrylate
CN106349421A (en) Polymer microsphere and preparation method thereof
EP1461149B1 (en) A method of producing hierarchical porous beads
JP2009120806A (en) Porous hollow polymer particle, manufacturing method of porous hollow polymer particle, perfume-carrying polymer particle and manufacturing method of perfume-carrying polymer particle
JP7673740B2 (en) Method for producing hollow resin particles
Omi et al. Synthesis of 100 μm uniform porous spheres by SPG emulsification with subsequent swelling of the droplets
JP2023033161A (en) Porous resin particle, production method of the same, personal care product including the same, heat insulation material and sound insulation material
JP4651883B2 (en) Skin cosmetics containing spherical porous crosslinked polymer particles
Zhai et al. One-pot facile synthesis of half-cauliflower amphiphilic Janus particles with pH-switchable emulsifiabilities
JP2003509549A5 (en) One-step seed polymerization to produce large polymer particles with narrow particle size distribution
WO2015051364A1 (en) Supraparticles including hollow polymeric particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20250304