[go: up one dir, main page]

JP2023029478A - Laminate manufacturing method - Google Patents

Laminate manufacturing method Download PDF

Info

Publication number
JP2023029478A
JP2023029478A JP2022210135A JP2022210135A JP2023029478A JP 2023029478 A JP2023029478 A JP 2023029478A JP 2022210135 A JP2022210135 A JP 2022210135A JP 2022210135 A JP2022210135 A JP 2022210135A JP 2023029478 A JP2023029478 A JP 2023029478A
Authority
JP
Japan
Prior art keywords
resin composition
photocurable resin
light
resin layer
light irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022210135A
Other languages
Japanese (ja)
Inventor
彰 今野
Akira Konno
好員 長澤
Yoshikazu Nagasawa
尚正 吉田
Naomasa Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2022210135A priority Critical patent/JP2023029478A/en
Publication of JP2023029478A publication Critical patent/JP2023029478A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/52Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive
    • B29C65/54Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive between pre-assembled parts
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Plasma & Fusion (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Liquid Crystal (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

【課題】光硬化性樹脂組成物を塗布した際の液ダレを抑制することができる積層体の製造方法を提供する。【解決手段】本製造方法は、光透過性部材3の表面に、光硬化性樹脂組成物6を仮硬化させた仮硬化樹脂層13を形成する工程(A)と、光透過性部材3と、画像表示部材2とを、仮硬化樹脂層13を介して貼合せる工程(B)と、仮硬化樹脂層13に光照射して本硬化させる工程(C)とを有する。工程(A)は、光透過性部材3の表面に光硬化性樹脂組成物6を塗布するとともに、塗布した光硬化性樹脂組成物6の変形を防止するために光硬化性樹脂組成物6に光照射する工程(A1)と、工程(A1)で光照射された光硬化性樹脂組成物6が所定の反応率となるようにさらに光照射する工程(A2)とを有する。【選択図】図5The present invention provides a method for producing a laminate that can suppress liquid dripping when a photocurable resin composition is applied. [Solution] This manufacturing method includes a step (A) of forming a temporarily cured resin layer 13 in which a photocurable resin composition 6 is temporarily cured on the surface of a light transmitting member 3; , a step (B) of bonding the image display member 2 with the temporary hardening resin layer 13, and a step (C) of irradiating the temporary hardening resin layer 13 with light to fully cure it. In step (A), the photocurable resin composition 6 is coated on the surface of the light-transmitting member 3, and the photocurable resin composition 6 is coated with the photocurable resin composition 6 to prevent deformation of the coated photocurable resin composition 6. The method includes a step (A1) of irradiating light, and a step (A2) of further irradiating light so that the photocurable resin composition 6 irradiated with light in step (A1) has a predetermined reaction rate. [Selection diagram] Figure 5

Description

本技術は、積層体の製造方法に関する。 The present technology relates to a method for manufacturing a laminate.

スマートフォン、タブレットPC等の情報端末に用いられる画像表示装置は、例えば、次のような方法で製造されている(例えば特許文献1を参照)。 Image display devices used in information terminals such as smart phones and tablet PCs are manufactured by, for example, the following method (see Patent Document 1, for example).

まず、図9に示すように、周縁部に遮光層5が形成された光透過性部材(第1の部材)3の表面に、塗布部101のノズル101Aから、液状の光硬化性樹脂組成物6を塗布する。次に、図10、11に示すように、光透過性部材3の表面に塗布された光硬化性樹脂組成物6に光照射部102から光照射して仮硬化樹脂層103を形成する。次に、図11に示すように、光透過性部材3と、画像表示部材(第2の部材)2とを、仮硬化樹脂層103を介して貼合せる。次に、仮硬化樹脂層103に光照射して仮硬化樹脂層103を本硬化させ、硬化樹脂層を形成する。これにより、画像表示装置が得られる。 First, as shown in FIG. 9, a liquid photocurable resin composition is applied from the nozzle 101A of the application portion 101 to the surface of the light-transmissive member (first member) 3 having the light-shielding layer 5 formed on the periphery. Apply 6. Next, as shown in FIGS. 10 and 11 , the photocurable resin composition 6 applied to the surface of the light-transmitting member 3 is irradiated with light from a light irradiation unit 102 to form a temporary cured resin layer 103 . Next, as shown in FIG. 11, the light-transmissive member 3 and the image display member (second member) 2 are pasted together with the provisionally cured resin layer 103 interposed therebetween. Next, the temporarily cured resin layer 103 is irradiated with light to be fully cured to form a cured resin layer. An image display device is thus obtained.

このように、図9~11に示す製造方法は、光硬化性樹脂組成物6を塗布した後に仮硬化を行うため、光硬化性樹脂組成物6の塗布形状を維持した状態で貼合せを行うことが可能となる。 As described above, the manufacturing method shown in FIGS. 9 to 11 performs temporary curing after applying the photocurable resin composition 6, so that the photocurable resin composition 6 is laminated while maintaining the application shape. becomes possible.

また、他の製造方法として、塗布した光硬化性樹脂組成物を仮硬化させずに貼合せる方法も挙げられる。この方法は、例えば図12(A)に示すように、光透過性部材3の表面に光硬化性樹脂組成物6を塗布し、図12(B)、(C)に示すように光透過性部材3と画像表示部材2とを光硬化性樹脂組成物6を介して貼合わせる。そして、光硬化性樹脂組成物6を本硬化させる。 Moreover, as another manufacturing method, there is a method of laminating the applied photocurable resin composition without pre-curing it. In this method, for example, as shown in FIG. The member 3 and the image display member 2 are pasted together with the photocurable resin composition 6 interposed therebetween. Then, the photocurable resin composition 6 is fully cured.

さらに、他の製造方法として、液状の光硬化性樹脂組成物を用いることに代えて、光学粘着シート(OCA: Optical Clear Adhesive)を用いる方法も挙げられる。この方法は、例えば図13(A)に示すように、光学透明粘着シート104を光透過性部材3の表面に貼付け、図13(B)、(C)に示すように、光透過性部材3と画像表示部材2とを透明粘着シート104を介して貼合せる。そして、透明粘着シート104を本硬化させる。 Furthermore, as another manufacturing method, a method using an optical clear adhesive sheet (OCA) instead of using a liquid photocurable resin composition is also available. In this method, for example, as shown in FIG. 13(A), an optically transparent adhesive sheet 104 is attached to the surface of the light transmissive member 3, and as shown in FIGS. 13(B) and 13(C), the light transmissive member 3 and the image display member 2 are pasted together with the transparent adhesive sheet 104 interposed therebetween. Then, the transparent adhesive sheet 104 is fully cured.

ところで、上述したように光硬化性樹脂組成物を仮硬化させた後に貼合せる方法では、図14(A)に示すように、光硬化性樹脂組成物6を光透過性部材3の表面に塗布したときに、塗布した光硬化性樹脂組成物の端部に液ダレが発生しやすい傾向にある。この液ダレは、光透過性部材3と画像表示部材2とを仮硬化樹脂層103を介して貼合せたときに、図14(B)に示すような未接着領域Rが発生する原因となる。未接着領域Rが発生すると、例えば、狭額縁化した液晶表示パネルにおいて接着領域を稼ぐことが困難となる。なお、図12(A)~(C)に示すように光硬化性樹脂組成物を仮硬化させずに液状態のまま貼合せる方法や、図13(A)~(C)に示すように光学粘着シート104を用いる方法では、液ダレが発生し難く未接着領域Rの問題が少ないと考えられる。 By the way, in the method of laminating the photocurable resin composition after temporary curing as described above, as shown in FIG. When the coating is applied, dripping tends to occur at the edges of the applied photocurable resin composition. This dripping causes the occurrence of an unbonded region R as shown in FIG. . If the non-bonded area R occurs, it becomes difficult to increase the bonded area in, for example, a narrow-framed liquid crystal display panel. In addition, as shown in FIGS. 12 (A) to (C), a method of laminating the photocurable resin composition in a liquid state without temporary curing, or as shown in FIGS. 13 (A) to (C), optical In the method using the adhesive sheet 104, it is considered that the problem of the non-adhered region R is less likely to occur because the liquid is less likely to sag.

特開2013-151151号公報JP 2013-151151 A

本技術は、このような従来の実情に鑑みて提案されたものであり、光硬化性樹脂組成物を塗布したときの液ダレを抑制することができる積層体の製造方法を提供する。 The present technology has been proposed in view of such conventional circumstances, and provides a method for manufacturing a laminate that can suppress dripping when a photocurable resin composition is applied.

本技術に係る積層体の製造方法は、第1の部材の表面に光硬化性樹脂組成物を仮硬化させた仮硬化樹脂層を形成する工程(A)と、第1の部材と、第2の部材とを、仮硬化樹脂層を介して貼合せる工程(B)と、仮硬化樹脂層に光照射して本硬化させる工程(C)とを有し、工程(A)は、第1の部材の表面に光硬化性樹脂組成物を塗布するとともに、塗布した光硬化性樹脂組成物の変形を防止するために光硬化性樹脂組成物に光照射する工程(A1)と、工程(A1)で光照射された光硬化性樹脂組成物が所定の反応率となるようにさらに光照射する工程(A2)とを有する。 A method for manufacturing a laminate according to the present technology includes a step (A) of forming a temporarily cured resin layer obtained by temporarily curing a photocurable resin composition on the surface of a first member, the first member, and the second member. A step (B) of laminating the members via a temporary hardening resin layer, and a step (C) of irradiating the temporary hardening resin layer with light to perform main curing, and the step (A) is the first A step (A1) of applying a photocurable resin composition to the surface of a member and irradiating the photocurable resin composition with light to prevent deformation of the applied photocurable resin composition; and a step (A2) of further irradiating the photocurable resin composition irradiated with light in step (A2) so that the photocurable resin composition has a predetermined reaction rate.

本技術によれば、仮硬化樹脂層を形成する工程が、塗布した光硬化性樹脂組成物の変形を防止するために光硬化性樹脂組成物に光照射することを含むため、光硬化性樹脂組成物を塗布した際の液ダレを抑制することができる。 According to the present technology, since the step of forming the temporary cured resin layer includes irradiating the photocurable resin composition with light to prevent deformation of the applied photocurable resin composition, the photocurable resin It is possible to suppress dripping when the composition is applied.

図1は、積層体の製造方法で得られる積層体の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a laminate obtained by a laminate manufacturing method. 図2は、光硬化性樹脂組成物を塗布してから光照射するまでの経過時間による、光硬化性樹脂組成物の塗布面の高さの測定結果を示すグラフである。FIG. 2 is a graph showing the measurement results of the height of the coated surface of the photocurable resin composition according to the elapsed time from application of the photocurable resin composition to light irradiation. 図3は、光硬化性樹脂組成物の塗布厚さによる、光硬化性樹脂組成物の塗布面の高さの測定結果を示すグラフである。FIG. 3 is a graph showing measurement results of the height of the coated surface of the photocurable resin composition according to the coating thickness of the photocurable resin composition. 図4は、塗布装置の構成例を示すブロック図である。FIG. 4 is a block diagram showing a configuration example of a coating device. 図5は、積層体の製造方法における工程(A1)の一例を説明するための図である。FIG. 5 is a diagram for explaining an example of step (A1) in the method for manufacturing a laminate. 図6は、積層体の製造方法における工程(A2)の一例を説明するための図である。FIG. 6 is a diagram for explaining an example of step (A2) in the method for manufacturing a laminate. 図7は、光硬化性樹脂組成物の塗布厚さ、及び光硬化性樹脂組成物の塗布から光照射までの時間に対する液ダレ量の変化を示すグラフである。FIG. 7 is a graph showing changes in the amount of dripping with respect to the coating thickness of the photocurable resin composition and the time from coating of the photocurable resin composition to light irradiation. 図8は、光硬化性樹脂組成物の粘度の違いによる液ダレ量の変化を示すグラフである。FIG. 8 is a graph showing changes in the amount of liquid dripping due to differences in the viscosity of the photocurable resin composition. 図9は、光透過性部材の表面に光硬化性樹脂組成物を塗布する工程の一例を示す斜視図である。FIG. 9 is a perspective view showing an example of a step of applying a photocurable resin composition to the surface of a light transmissive member. 図10は、光硬化性樹脂組成物に光照射して仮硬化樹脂層を形成する工程の一例を示す斜視図である。FIG. 10 is a perspective view showing an example of a process of irradiating a photocurable resin composition with light to form a temporary cured resin layer. 図11は、光透過性部材と画像表示部材とを仮硬化樹脂層を介して貼合せる工程の一例を示す斜視図である。FIG. 11 is a perspective view showing an example of a process of bonding a light-transmitting member and an image display member together with a temporary cured resin layer interposed therebetween. 図12は、画像表示装置の製造方法の一例を説明するための図であり、図12(A)は、光透過性部材の表面に光硬化性樹脂組成物を塗布する工程の一例を示す斜視図であり、図12(B)、(C)は、光硬化性樹脂組成物を介して光透過性部材と画像表示部材とを貼合せる工程の一例を示す断面図である。12A and 12B are diagrams for explaining an example of a method for manufacturing an image display device, and FIG. 12A is a perspective view showing an example of a step of applying a photocurable resin composition to the surface of a light-transmissive member. 12(B) and 12(C) are cross-sectional views showing an example of a process of laminating a light-transmissive member and an image display member via a photocurable resin composition. 図13は、画像表示装置の製造方法の一例を説明するための図であり、図13(A)は、光透過性部材の表面に光学透明粘着シートを貼付ける工程の一例を示す斜視図であり、図13(B)、(C)は、光学透明粘着シートを介して光透過性部材と画像表示部材とを貼合せる工程の一例を示す断面図である。13A and 13B are diagrams for explaining an example of a method for manufacturing an image display device, and FIG. 13A is a perspective view showing an example of a process of attaching an optically transparent adhesive sheet to the surface of a light transmissive member. 13(B) and 13(C) are cross-sectional views showing an example of a process of laminating a light-transmissive member and an image display member via an optically transparent adhesive sheet. 図14は、光透過性部材と画像表示部材とを仮硬化樹脂層を介して貼合せる工程の一例を示す断面図であり、図14(A)は、液ダレの一例を説明するための断面図であり、図14(B)は、未接着領域Rの一例を説明するための断面図である。14A and 14B are cross-sectional views showing an example of a process of bonding a light-transmitting member and an image display member via a temporary cured resin layer, and FIG. 14A is a cross-sectional view for explaining an example of liquid dripping 14B is a sectional view for explaining an example of the unbonded region R. FIG.

<積層体>
本実施の形態に係る積層体の製造方法では、例えば図1に示すように、周縁部に遮光層5が形成された光透過性部材3(第1の部材)と、画像表示部材2(第2の部材)とが、硬化樹脂層4を介して積層した画像表示装置1(積層体)を得る。
<Laminate>
In the method for manufacturing a laminate according to the present embodiment, for example, as shown in FIG. 2) obtains the image display device 1 (laminate) laminated with the cured resin layer 4 interposed therebetween.

画像表示部材2は、例えば液晶表示パネル、有機EL表示パネル、プラズマ表示パネル、タッチパネル等を挙げることができる。ここで、タッチパネルとは、液晶表示パネルのような表示素子とタッチパッドのような位置入力装置を組み合わせた画像表示・入力パネルを意味する。 Examples of the image display member 2 include a liquid crystal display panel, an organic EL display panel, a plasma display panel, and a touch panel. Here, the touch panel means an image display/input panel in which a display element such as a liquid crystal display panel and a position input device such as a touch pad are combined.

光透過性部材3は、画像表示部材2に形成された画像が視認可能となるような光透過性を有するものであればよい。例えば、ガラス、アクリル樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート等の板状材料やシート状材料が挙げられる。これらの材料には、少なくとも一方の面にハードコート処理、反射防止処理等が施されていてもよい。光透過性部材3の厚さや弾性率などの物性は、使用目的に応じて適宜決定することができる。また、光透過部材3は、上記のような比較的構成の簡単な部材だけでなく、タッチパネルモジュールのような各種シート又はフィルム材が積層されたものも含まれる。 The light-transmitting member 3 may have light-transmitting properties such that an image formed on the image display member 2 can be visually recognized. Examples thereof include plate-like materials and sheet-like materials such as glass, acrylic resin, polyethylene terephthalate, polyethylene naphthalate, and polycarbonate. At least one surface of these materials may be subjected to hard coating treatment, antireflection treatment, or the like. Physical properties such as the thickness and elastic modulus of the light-transmitting member 3 can be appropriately determined according to the purpose of use. Further, the light transmitting member 3 includes not only a member having a relatively simple structure as described above, but also a laminate of various sheets or film materials such as a touch panel module.

遮光層5は、画像のコントラスト向上のために設けられるものであり、例えば、黒色等に着色された塗料をスクリーン印刷法などで塗布し、乾燥・硬化させて形成することができる。遮光層5の厚さは、通常5~100μmである。 The light-shielding layer 5 is provided to improve the contrast of an image, and can be formed by, for example, applying a paint colored in black or the like by a screen printing method or the like, followed by drying and curing. The thickness of the light shielding layer 5 is usually 5 to 100 μm.

硬化樹脂層4の屈折率は、画像表示部材2や光透過性部材3の屈折率とほぼ同等とすることが好ましく、例えば1.45以上1.55以下であることが好ましい。これにより、画像表示部材2からの映像光の輝度やコントラストを高め、視認性を良好にすることができる。また、硬化樹脂層4の透過率は、90%を超えることが好ましい。これにより、画像表示部材2に形成された画像の視認性をより良好にすることができる。硬化樹脂層4の厚さは、例えば、50~150μmであることが好ましい。 The refractive index of the cured resin layer 4 is preferably substantially the same as the refractive index of the image display member 2 and the light-transmitting member 3, and is preferably 1.45 or more and 1.55 or less, for example. Thereby, the brightness and contrast of the image light from the image display member 2 can be increased, and the visibility can be improved. Moreover, it is preferable that the transmittance of the cured resin layer 4 exceeds 90%. Thereby, the visibility of the image formed on the image display member 2 can be improved. The thickness of the cured resin layer 4 is preferably 50 to 150 μm, for example.

硬化樹脂層4は、透明で、紫外線又は可視光で硬化可能な液状の光硬化性樹脂組成物6を用いて形成することができる。光硬化性樹脂組成物6は液状、ゲル状等のいずれの状態であってもよく、液状が好ましい。ここで、光硬化性樹脂組成物6が液状であるとは、B型粘度計で測定した25℃における粘度が0.01~100Pa・sを示すことが好ましい。本実施の形態に係る積層体の製造方法では、例えば25℃における粘度が1000~60000mPa・sの範囲の光硬化性樹脂組成物を用いた場合でも、光硬化性樹脂組成物を塗布した際の液ダレを抑制することができる。 The cured resin layer 4 can be formed using a liquid photocurable resin composition 6 that is transparent and curable with ultraviolet light or visible light. The photocurable resin composition 6 may be in any state such as liquid or gel, and is preferably liquid. Here, the photocurable resin composition 6 preferably exhibits a viscosity of 0.01 to 100 Pa·s at 25° C. as measured by a Brookfield viscometer. In the method for manufacturing a laminate according to the present embodiment, even when a photocurable resin composition having a viscosity in the range of 1000 to 60000 mPa s at 25 ° C. is used, for example, when the photocurable resin composition is applied, Liquid dripping can be suppressed.

本製造方法で用いることができる光硬化性樹脂組成物6の一例を説明する。光硬化性樹脂組成物6は、例えば、(メタ)アクリレートオリゴマーと、(メタ)アクリレートモノマーと、光重合開始剤と、柔軟剤とを含有する。なお、光硬化性樹脂組成物6は、本技術の効果を損なわない範囲でこれらの成分以外の他の成分をさらに含有していてもよい。本明細書において、(メタ)アクリレートとは、アクリレートとメタクリレートとの両方を包含する。 An example of the photocurable resin composition 6 that can be used in this production method will be described. The photocurable resin composition 6 contains, for example, a (meth)acrylate oligomer, a (meth)acrylate monomer, a photopolymerization initiator, and a softening agent. In addition, the photocurable resin composition 6 may further contain components other than these components within a range that does not impair the effects of the present technology. As used herein, (meth)acrylate includes both acrylate and methacrylate.

(メタ)アクリレートオリゴマーは、光硬化性樹脂組成物6のベース材料として用いられる。(メタ)アクリレートオリゴマーは、例えば、ポリウレタン、ポリイソプレン、ポリブタジエン等を骨格に持つ(メタ)アクリレートオリゴマーを用いることができる。ポリウレタン骨格を持つ(メタ)アクリレートオリゴマーの具体例としては、脂肪族ウレタンアクリレート(EBECRYL230、ダイセル・オルネクス社製)等が挙げられる。また、ポリイソプレン骨格を持つ(メタ)アクリレートオリゴマーの具体例としては、ポリイソプレン重合体の無水マレイン酸付加物と2-ヒドロキシエチルメタクリレートとのエステル化物(UC102、(株)クラレ社製)等が挙げられる。 A (meth)acrylate oligomer is used as a base material for the photocurable resin composition 6 . As the (meth)acrylate oligomer, for example, a (meth)acrylate oligomer having a skeleton of polyurethane, polyisoprene, polybutadiene, or the like can be used. Specific examples of the (meth)acrylate oligomer having a polyurethane skeleton include aliphatic urethane acrylate (EBECRYL230, manufactured by Daicel Allnex). Further, as a specific example of the (meth)acrylate oligomer having a polyisoprene skeleton, there is an esterified product of a maleic anhydride adduct of a polyisoprene polymer and 2-hydroxyethyl methacrylate (UC102, manufactured by Kuraray Co., Ltd.). mentioned.

(メタ)アクリレートモノマーは、光硬化性樹脂組成物6に十分な反応性、塗布性等を付与するための反応希釈剤として用いられる。(メタ)アクリレートモノマーは、例えば、2-ヒドロキシプロピル(メタ)アクリレート、ベンジルアクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、オクチル(メタ)アクリレート等を挙げることができる。 The (meth)acrylate monomer is used as a reactive diluent for imparting sufficient reactivity, coatability, etc. to the photocurable resin composition 6 . Examples of (meth)acrylate monomers include 2-hydroxypropyl (meth)acrylate, benzyl acrylate, dicyclopentenyloxyethyl (meth)acrylate, isobornyl (meth)acrylate, octyl (meth)acrylate and the like.

光重合開始剤としては、公知の光重合開始剤を用いることができる。例えば、1-ヒドロキシ-シクロへキシルフェニルケトン(イルガキュア184、BASF社製)、2-ヒドロキシ-1-{4-[4-(2一ヒドロキシ-2-メチル-プロピロニル)ベンジル]フェニル}-2-メチル-1-プロパン-1-オン(イルガキュア127、BASF社製)、ベンゾフェノン、アセトフェノン等を挙げることができる。 A known photopolymerization initiator can be used as the photopolymerization initiator. For example, 1-hydroxy-cyclohexyl phenyl ketone (Irgacure 184, manufactured by BASF), 2-hydroxy-1-{4-[4-(2-hydroxy-2-methyl-propyronyl)benzyl]phenyl}-2- Methyl-1-propan-1-one (Irgacure 127, manufactured by BASF), benzophenone, acetophenone and the like can be mentioned.

柔軟剤は、液状可塑剤と粘着付与剤の少なくとも1種からなる。液状可塑剤は、紫外線照射によりそれ自身は光硬化をせず、光硬化後の硬化樹脂層又は仮硬化樹脂層に柔軟性を与え、また硬化樹脂層又は仮硬化樹脂層の硬化収縮率を低減させるものである。液状可塑剤としては、例えば、ポリブタジエン系可塑剤、ポリイソプレン系可塑剤、フタル酸エステル系可塑剤、アジピン酸エステル系可塑剤等が挙げられる。 A softening agent consists of at least 1 sort(s) of a liquid plasticizer and a tackifier. The liquid plasticizer itself does not photo-cure when irradiated with ultraviolet rays, gives flexibility to the cured resin layer or temporary cured resin layer after photocuring, and reduces the cure shrinkage rate of the cured resin layer or temporary cured resin layer. It is something that makes Examples of liquid plasticizers include polybutadiene-based plasticizers, polyisoprene-based plasticizers, phthalate-based plasticizers, and adipate-based plasticizers.

粘着付与剤は、光硬化後の硬化樹脂層又は仮硬化樹脂層に柔軟性を与えるとともに、硬化樹脂層又は仮硬化樹脂層の初期接着強度(いわゆるタック性)を向上させる。粘着付与剤としては、例えば、テルペン樹脂、テルペンフェノール樹脂、水素添加テルペン樹脂等のテルペン系樹脂、天然ロジン、重合ロジン、ロジンエステル、水素添加ロジン等のロジン樹脂、ポリブタジエン、ポリイソプレン等の石油樹脂などが挙げられる。 The tackifier imparts flexibility to the cured resin layer or temporary cured resin layer after photocuring, and improves the initial adhesive strength (so-called tackiness) of the cured resin layer or temporary cured resin layer. Examples of tackifiers include terpene resins such as terpene resins, terpene phenol resins, and hydrogenated terpene resins, rosin resins such as natural rosin, polymerized rosin, rosin esters, and hydrogenated rosins, and petroleum resins such as polybutadiene and polyisoprene. etc.

光硬化性樹脂組成物は、上述した成分を公知の混合手法に従って均一に混合することにより調製することができる。光硬化性樹脂組成物の市販品としては、例えば商品名「LCR1000-DM」、「HSVR600」、「HSVR330」(以上、デクセリアルズ(株)社製)などが挙げられる。 The photocurable resin composition can be prepared by uniformly mixing the components described above according to a known mixing method. Commercially available photocurable resin compositions include, for example, trade names “LCR1000-DM”, “HSVR600” and “HSVR330” (manufactured by Dexerials Corporation).

<積層体の製造方法>
本製造方法は、以下の工程(A)~(C)を有する。
工程(A):第1の部材の表面に、光硬化性樹脂組成物を仮硬化させた仮硬化樹脂層を形成する。
工程(B):第1の部材と、第2の部材とを、仮硬化樹脂層を介して貼合せる。
工程(C):仮硬化樹脂層に光照射して本硬化させる。
<Method for manufacturing laminate>
This manufacturing method has the following steps (A) to (C).
Step (A): A temporarily cured resin layer is formed by temporarily curing a photocurable resin composition on the surface of the first member.
Step (B): The first member and the second member are bonded together with the provisionally cured resin layer interposed therebetween.
Step (C): The temporarily cured resin layer is irradiated with light to be fully cured.

また、工程(A)は、以下の工程(A1)及び(A2)を有する。
工程(A1):第1の部材の表面に光硬化性樹脂組成物を塗布するとともに、塗布した光硬化性樹脂組成物の変形を防止するために光硬化性樹脂組成物に光照射する。
工程(A2):工程(A1)で光照射された光硬化性樹脂組成物が所定の反応率となるようにさらに光照射する。
Moreover, the step (A) has the following steps (A1) and (A2).
Step (A1): A photocurable resin composition is applied to the surface of the first member, and the photocurable resin composition is irradiated with light to prevent deformation of the applied photocurable resin composition.
Step (A2): The photocurable resin composition irradiated with light in step (A1) is further irradiated with light so as to achieve a predetermined reaction rate.

このように、本製造方法は、仮硬化樹脂層を形成する工程(A)が、塗布した光硬化性樹脂組成物の変形(少なくとも塗布した光硬化性樹脂組成物の端部の変形)を防止するために光硬化性樹脂組成物に光照射することを含む。これにより、光硬化性樹脂組成物を塗布した際の液ダレを抑制することができる。特に、本製造方法では、粘度が比較的低い光硬化性樹脂組成物を用いた場合でも、液ダレを抑制することができる。本製造方法は、例えば狭額縁(例えば幅が1mm以下)の液晶表示パネルを用いた場合に好適である。 Thus, in the present production method, the step (A) of forming the temporary cured resin layer prevents deformation of the applied photocurable resin composition (at least deformation of the edge of the applied photocurable resin composition). and irradiating the photocurable resin composition with light. This makes it possible to suppress dripping when the photocurable resin composition is applied. In particular, in this production method, dripping can be suppressed even when a photocurable resin composition having a relatively low viscosity is used. This manufacturing method is suitable, for example, when a liquid crystal display panel having a narrow frame (for example, a width of 1 mm or less) is used.

図2は、光硬化性樹脂組成物を塗布してから光照射するまでの経過時間による、光硬化性樹脂組成物の塗布面の高さの測定結果を示すグラフである。また、図3は、光硬化性樹脂組成物の塗布厚さによる、光硬化性樹脂組成物の塗布面の高さの測定結果を示すグラフである。図2、図3中の縦軸は、光硬化性樹脂組成物の塗布厚さ(mm)を表す。また、図2、図3中の横軸は、光硬化性樹脂組成物が塗布される光透過性部材の長手方向の一方の端部からの距離(mm)を表す。ここで、光硬化性樹脂組成物の塗布厚さは、例えば、光硬化性樹脂組成物の塗布面にレーザ、超音波等を照射して高さを測定する公知の変位センサを用いて測定することができる。 FIG. 2 is a graph showing the measurement results of the height of the coated surface of the photocurable resin composition according to the elapsed time from application of the photocurable resin composition to light irradiation. FIG. 3 is a graph showing measurement results of the height of the coated surface of the photocurable resin composition according to the coating thickness of the photocurable resin composition. The vertical axis in FIGS. 2 and 3 represents the coating thickness (mm) of the photocurable resin composition. The horizontal axis in FIGS. 2 and 3 represents the distance (mm) from one end in the longitudinal direction of the light transmissive member to which the photocurable resin composition is applied. Here, the coating thickness of the photocurable resin composition is measured, for example, using a known displacement sensor that measures the height by irradiating the coated surface of the photocurable resin composition with a laser, ultrasonic waves, or the like. be able to.

図2に示す結果から、光硬化性樹脂組成物が光透過性部材の表面に塗布されてから光照射されるまでの経過時間が15秒、10秒、5秒と短くなる程、液ダレが少ない傾向にあることが分かる。また、図3に示す結果から、光硬化性樹脂組成物の塗布厚さが250μm、175μm、100μmと薄くなる程、液ダレが抑制される傾向にあることが分かる。 From the results shown in FIG. 2, the shorter the elapsed time from the application of the photocurable resin composition to the surface of the light-transmitting member to the light irradiation, 15 seconds, 10 seconds, and 5 seconds, the more liquid dripped. It can be seen that there is a tendency to decrease Further, from the results shown in FIG. 3, it can be seen that dripping tends to be suppressed as the coating thickness of the photocurable resin composition becomes thinner, such as 250 μm, 175 μm, and 100 μm.

上記結果から、例えば、超高速で光硬化性樹脂組成物の塗布を行い、その後すぐに仮硬化を行う方式を採用することで、液ダレを抑制することが可能と考えられる。しかし、この方式は、エリア型の光照射器が必要となることや、高速・高精度駆動が可能な塗布装置(ロボット)が必要となること等、設備面での制約が多くなり、設備費用が非常に高くなってしまう。 From the above results, it is considered possible to suppress dripping by, for example, applying a photocurable resin composition at an ultra-high speed and then immediately precuring the composition. However, this method requires an area-type light irradiator and a coating device (robot) capable of high-speed, high-precision driving. becomes very high.

また、上記結果から、光硬化性樹脂組成物を塗布する塗布部(ノズル)の近傍に光照射部(例えば紫外線照射器)を配置し、光硬化性樹脂組成物の塗布を行いながら光照射(仮硬化)を行う方式が理想的と考えられる。しかし、この方式が全ての光硬化性樹脂組成物に対して有効であるとは限らない。例えば、硬化反応が比較的遅い光硬化性樹脂組成物を用いる場合、光硬化性樹脂組成物の塗布速度を極端に下げないと、最適な仮硬化条件にならないおそれがある。 Further, from the above results, a light irradiation unit (for example, an ultraviolet ray irradiator) is placed in the vicinity of the application unit (nozzle) for applying the photocurable resin composition, and light irradiation ( Temporary curing) is thought to be ideal. However, this method is not necessarily effective for all photocurable resin compositions. For example, in the case of using a photocurable resin composition having a relatively slow curing reaction, there is a possibility that the optimum pre-curing conditions cannot be obtained unless the coating speed of the photocurable resin composition is extremely lowered.

また、光硬化性樹脂組成物の種類によって最適な光照射量が異なる。これは、仮硬化の状態によって本硬化後の光硬化性樹脂組成物の強度、ムラの有無等に影響を及ぼすためである。 In addition, the optimum amount of light irradiation varies depending on the type of photocurable resin composition. This is because the strength of the photocurable resin composition after main curing, the presence or absence of unevenness, etc. are affected by the state of temporary curing.

以上のような事情を考慮して、本製造方法では、仮硬化樹脂層を形成する工程を少なくとも2回行うようにする。まず、1回目の仮硬化(工程(A1))では、光硬化性樹脂組成物の変形を防止するために光硬化性樹脂組成物に光照射する。すなわち、光硬化性樹脂組成物の塗布形状が維持可能な程度に仮硬化させる。これにより、塗布した光硬化性樹脂組成物の液ダレが抑制されるようにする。そして、2回目の仮硬化(工程(A2))では、1回目の仮硬化で得られた仮硬化樹脂層が所定の反応率となるようにさらに光照射する。これにより、光硬化性樹脂組成物の塗布形状を維持した状態で貼合せを行うことが可能な程度に仮硬化した仮硬化樹脂層が得られる。 Considering the circumstances as described above, in the present manufacturing method, the step of forming the temporarily cured resin layer is performed at least twice. First, in the first temporary curing (step (A1)), the photocurable resin composition is irradiated with light in order to prevent deformation of the photocurable resin composition. That is, the photocurable resin composition is temporarily cured to such an extent that the applied shape can be maintained. As a result, dripping of the applied photocurable resin composition is suppressed. Then, in the second temporary curing (step (A2)), light is further irradiated so that the temporarily cured resin layer obtained in the first temporary curing has a predetermined reaction rate. As a result, a temporarily cured resin layer that is temporarily cured to such an extent that lamination can be performed while maintaining the applied shape of the photocurable resin composition is obtained.

本製造方法によれば、エリア型の光照射器や、高速・高精度駆動が可能な塗布装置を用いずに、光硬化性樹脂組成物を塗布したときに、塗布した光硬化性樹脂組成物の端部に液ダレが発生することを抑制できる。したがって、設備面での制約を増大させずに、光硬化性樹脂組成物を塗布した際の液ダレを抑制することができる。 According to this production method, when a photocurable resin composition is applied without using an area-type light irradiation device or a coating device capable of high-speed and high-precision driving, the applied photocurable resin composition It is possible to suppress the occurrence of liquid dripping at the end of the. Therefore, it is possible to suppress dripping when the photocurable resin composition is applied without increasing restrictions in terms of facilities.

次に、本製造方法の各工程、すなわち工程(A1)、工程(A2)、工程(B)、工程(C)の詳細について説明する。 Next, details of each step of the production method, that is, step (A1), step (A2), step (B), and step (C) will be described.

[工程(A1)]
工程(A1)における光硬化性樹脂組成物の塗布は、一般に使用される各種の塗布方法により行うことができる。工程(A1)では、例えば図4に示すように、塗布部7と、光照射部8と、制御部9とを備える塗布装置を用いることができる。
[Step (A1)]
The application of the photocurable resin composition in step (A1) can be performed by various commonly used application methods. In the step (A1), for example, as shown in FIG. 4, a coating device including a coating section 7, a light irradiation section 8, and a control section 9 can be used.

塗布部7は、例えば、光硬化性樹脂組成物6を貯留する貯留部(図示せず)と、光硬化性樹脂組成物6を吐出するスリット状のノズル7A(図5、6を参照)と、貯留部に貯留される光硬化性樹脂組成物6をノズル7Aに押し出すポンプ(図示せず)とを備える。塗布部7は、例えば図9に示すように、ノズル7Aの幅が、光透過性部材3の表面の遮光層5で囲まれた領域3Sの幅よりも広い幅を有する。すなわち、ノズル7Aは、光透過性部材3の幅方向の両端に形成された各遮光層5と領域3Sとを跨ぐ幅を有する。これにより、塗布部7は、光透過性部材3の幅方向の両端に形成された各遮光層5と領域3Sとに跨って光硬化性樹脂組成物6を塗布することができる。 The application unit 7 includes, for example, a storage unit (not shown) that stores the photocurable resin composition 6, and a slit-shaped nozzle 7A (see FIGS. 5 and 6) that discharges the photocurable resin composition 6. , and a pump (not shown) for pushing out the photocurable resin composition 6 stored in the storage section to the nozzle 7A. In the application portion 7, for example, as shown in FIG. 9, the width of the nozzle 7A is wider than the width of the region 3S surrounded by the light shielding layer 5 on the surface of the light transmissive member 3. As shown in FIG. That is, the nozzle 7A has a width that straddles the regions 3S and the light shielding layers 5 formed at both ends of the light transmissive member 3 in the width direction. Thereby, the coating part 7 can apply the photocurable resin composition 6 across the regions 3S and the light shielding layers 5 formed at both ends of the light transmissive member 3 in the width direction.

光照射部8は、塗布部7の近傍であって、塗布部7のノズル7Aに光が照射されないような位置に配置されることが好ましい。このような配置にすることで、ノズル7Aの先端部分が光硬化性樹脂組成物6の硬化物によって固まることを防止することができる。光照射部8としては、例えば紫外線照射器を用いることができる。 It is preferable that the light irradiation section 8 is arranged in the vicinity of the application section 7 at a position where the nozzle 7A of the application section 7 is not irradiated with light. With such an arrangement, it is possible to prevent the tip portion of the nozzle 7A from hardening with the cured product of the photocurable resin composition 6 . As the light irradiator 8, for example, an ultraviolet irradiator can be used.

制御部9は、塗布部7及び光照射部8と、光透過性部材3とを相対的に移動させる。これにより、光透過性部材3の表面の一端側から他端側に亘って光硬化性樹脂組成物6を塗布するとともに、塗布した光硬化性樹脂組成物6に光照射する。 The control unit 9 relatively moves the coating unit 7 and the light irradiation unit 8 and the light transmissive member 3 . As a result, the photocurable resin composition 6 is applied from one end side to the other end side of the surface of the light transmissive member 3, and the applied photocurable resin composition 6 is irradiated with light.

工程(A1)の具体例として、図5(A)~(C)に示すように、光透過性部材3を載置するステージを矢印方向に移動させ、光透過性部材3の表面の一端側3Aから他端側3Bに亘って光硬化性樹脂組成物6を塗布部7から塗布しながら、塗布した光硬化性樹脂組成物6に光照射部8から光照射することが好ましい。これにより、光硬化性樹脂組成物を塗布した際の液ダレをより効果的に抑制することができる。工程(A1)では、光透過性部材3を載置するステージを移動させずに、光透過性部材3の表面の一端側3Aから他端側3Bに亘って光硬化性樹脂組成物6を塗布しながら、塗布した光硬化性樹脂組成物6に光照射するように、塗布部7及び光照射部8を移動させてもよい。 As a specific example of step (A1), as shown in FIGS. It is preferable to irradiate the applied photocurable resin composition 6 with light from the light irradiation unit 8 while applying the photocurable resin composition 6 from the application unit 7 from 3A to the other end 3B. This makes it possible to more effectively suppress dripping when the photocurable resin composition is applied. In step (A1), the photocurable resin composition 6 is applied from one end side 3A to the other end side 3B of the surface of the light-transmitting member 3 without moving the stage on which the light-transmitting member 3 is placed. Meanwhile, the application section 7 and the light irradiation section 8 may be moved so as to irradiate the applied photocurable resin composition 6 with light.

工程(A1)において、光硬化性樹脂組成物6が光透過部材3の表面に塗布されてから光照射されるまでの経過時間(以下、「塗布から光照射までの時間」とも言う。)は、光硬化性樹脂組成物6の液ダレ抑制の観点から短い程好ましい。例えば、塗布から光照射までの時間は、5秒以内であることが好ましい。 In the step (A1), the elapsed time from the application of the photocurable resin composition 6 on the surface of the light-transmitting member 3 to the irradiation with light (hereinafter also referred to as “time from application to irradiation with light”) is , from the viewpoint of suppressing dripping of the photocurable resin composition 6, the shorter the better. For example, the time from application to light irradiation is preferably within 5 seconds.

光硬化性樹脂組成物6の塗布厚さは、光透過性部材3の表面の周縁部に遮光層5が形成されている場合、遮光層5の厚さよりも厚く塗布することが好ましい。具体的には、遮光層5の表面も含め、光透過性部材3の遮光層形成側表面の全面に、遮光層5の厚さの1.2~50倍(より好ましくは2~30倍)の厚さで塗布することが好ましい。より具体的な塗布厚さとしては、25~350μmが好ましく、50~150μmがより好ましい。 When the light-shielding layer 5 is formed on the periphery of the surface of the light-transmitting member 3 , the coating thickness of the photocurable resin composition 6 is preferably thicker than the thickness of the light-shielding layer 5 . Specifically, 1.2 to 50 times (more preferably 2 to 30 times) the thickness of the light shielding layer 5 is applied to the entire surface of the light transmissive member 3 on the side where the light shielding layer is formed, including the surface of the light shielding layer 5 . is preferably applied to a thickness of A more specific coating thickness is preferably 25 to 350 μm, more preferably 50 to 150 μm.

工程(A1)における光照射条件は、例えば、工程(A1)で光照射後に得られる仮硬化樹脂層12の硬化率が、40~50%となるように行うことが好ましい。ここで、硬化率とは、光照射前の光硬化性樹脂組成物中の(メタ)アクリロイル基の存在量に対する、光照射後の(メタ)アクリロイル基の存在量の割合(消費量割合)で定義される数値である。この硬化率の数値が大きい程、硬化がより進行していることを示す。具体的に、硬化率は、光照射前の光硬化性樹脂組成物6のFT-IR測定チャートにおけるベースラインからの1640~1620cm-1の吸収ピーク高さ(X)と、光照射後の光硬化性樹脂組成物(仮硬化樹脂層12)のFT-IR測定チャートにおけるベースラインからの1640~1620cm-1の吸収ピーク高さ(Y)とを、下記式に代入することにより算出することができる。
硬化率(%)=[(X-Y)/X]×100
The light irradiation conditions in step (A1) are preferably such that the curing rate of the temporarily cured resin layer 12 obtained after light irradiation in step (A1) is 40 to 50%, for example. Here, the curing rate is the ratio (consumption ratio) of the amount of (meth)acryloyl groups present after light irradiation to the amount of (meth)acryloyl groups present in the photocurable resin composition before light irradiation. is a defined number. The larger the value of this curing rate, the more advanced the curing. Specifically, the curing rate is the absorption peak height (X) from 1640 to 1620 cm −1 from the baseline in the FT-IR measurement chart of the photocurable resin composition 6 before light irradiation, and the light after light irradiation. The absorption peak height (Y) from 1640 to 1620 cm −1 from the baseline in the FT-IR measurement chart of the curable resin composition (temporary cured resin layer 12) can be calculated by substituting in the following formula. can.
Curing rate (%) = [(XY) / X] × 100

光照射の条件は、仮硬化樹脂層12の硬化率が、好ましくは40~50%となるような条件であれば、光源の種類、出力、照度、積算光量などは特に制限されない。 As for the light irradiation conditions, the type of light source, output, illuminance, integrated light amount, etc. are not particularly limited as long as the curing rate of the temporary cured resin layer 12 is preferably 40 to 50%.

[工程(A2)]
工程(A2)では、例えば、光照射部8と、光透過性部材3とを相対的に移動させることにより、光透過性部材3の表面の一端側から他端側に亘って仮硬化樹脂層に光照射する。工程(A2)の具体例としては、図6(A)~(C)に示すように、光透過性部材3を載置するステージを矢印方向に移動させ、光透過性部材3の表面の一端側3Aから他端側3Bに亘って仮硬化樹脂層12に光照射部8から光照射する方法が挙げられる。これ以外の方法として、工程(A2)では、光透過性部材3を載置するステージを移動させずに、光透過性部材3の表面の一端側3Aから他端側3Bに亘って仮硬化樹脂層12に光照射するように、光照射部8を移動させてもよい。
[Step (A2)]
In step (A2), for example, by relatively moving the light irradiation unit 8 and the light-transmitting member 3, the temporarily cured resin layer is formed from one end side to the other end side of the surface of the light-transmitting member 3. is irradiated with light. As a specific example of step (A2), as shown in FIGS. 6A to 6C, the stage on which the light transmissive member 3 is placed is moved in the direction of the arrow, and one end of the surface of the light transmissive member 3 is moved. A method of irradiating the temporarily cured resin layer 12 with light from the light irradiation unit 8 from the side 3A to the other end 3B may be used. As another method, in step (A2), the temporary curing resin is applied from one end side 3A to the other end side 3B of the surface of the light-transmitting member 3 without moving the stage on which the light-transmitting member 3 is placed. The light irradiation section 8 may be moved so as to irradiate the layer 12 with light.

工程(A2)における光照射条件は、例えば、工程(A2)で光照射後に得られる仮硬化樹脂層13の硬化率が90%以下となるように行うことが好ましい。ここで、硬化率とは、上述した硬化率と同義である。光照射の条件は、仮硬化樹脂層13の硬化率が、好ましくは90%以下となる条件であれば、光源の種類、出力、照度、積算光量などは特に制限されない。 The light irradiation conditions in step (A2) are preferably such that the curing rate of the temporarily cured resin layer 13 obtained after light irradiation in step (A2) is 90% or less, for example. Here, the hardening rate is synonymous with the hardening rate described above. As for the light irradiation conditions, the type of light source, output, illuminance, integrated light amount, etc. are not particularly limited as long as the curing rate of the temporary cured resin layer 13 is preferably 90% or less.

[工程(B)]
工程(B)では、例えば図14(A)、(B)に示すように、画像表示部材2と光透過性部材3とを仮硬化樹脂層13を介して貼合せる。貼合せは、例えば、公知の圧着装置を用いて、10~80℃で加圧することにより行うことができる。画像表示部材2と光透過性部材3との貼合せの際の押し易さの観点から、例えば図14(A)に示す仮硬化樹脂層13の表面端部の凸状部分の角度が鋭角であることが好ましい。
[Step (B)]
In step (B), as shown in FIGS. 14A and 14B, the image display member 2 and the light-transmitting member 3 are bonded together with the provisionally cured resin layer 13 interposed therebetween. The lamination can be performed by applying pressure at 10 to 80° C. using a known crimping device, for example. From the viewpoint of ease of pressing when the image display member 2 and the light-transmitting member 3 are bonded together, for example, the angle of the convex portion at the end of the surface of the temporarily cured resin layer 13 shown in FIG. Preferably.

[工程(C)]
工程(C)では、仮硬化樹脂層13に対し光照射を行い、仮硬化樹脂層13を本硬化させる。これにより、硬化樹脂層4(図1参照)が形成され、積層体1が得られる。
[Step (C)]
In the step (C), the temporary hardening resin layer 13 is irradiated with light, and the temporary hardening resin layer 13 is fully cured. Thereby, the cured resin layer 4 (see FIG. 1) is formed, and the laminate 1 is obtained.

工程(C)における光照射は、硬化樹脂層4の硬化率が90%以上となるように行うことが好ましく、95%以上となるように行うことがより好ましい。ここで、硬化率とは、上述した硬化率と同義である。光照射の条件は、硬化樹脂層4の硬化率が、好ましくは90%以上となる条件であれば、光源の種類、出力、照度、積算光量などは特に制限されない。 The light irradiation in step (C) is preferably performed so that the curing rate of the cured resin layer 4 is 90% or more, more preferably 95% or more. Here, the hardening rate is synonymous with the hardening rate described above. As for the light irradiation conditions, the type of light source, output, illuminance, integrated light amount, etc. are not particularly limited as long as the curing rate of the cured resin layer 4 is preferably 90% or more.

本製造方法は、光硬化性樹脂組成物を塗布した際の液ダレを抑制するという効果を損なわない範囲で、上述した工程以外の他の工程をさらに有していてもよい。例えば、工程(C)の後に、積層体1の側面からさらに光照射する工程を有してもよい。 This production method may further include other processes other than the processes described above, as long as the effect of suppressing dripping when the photocurable resin composition is applied is not impaired. For example, after the step (C), a step of further irradiating light from the side surface of the laminate 1 may be included.

本製造方法では、遮光層5が形成された光透過性部材3を用いたが、この例に限定されるものではない。例えば、遮光層5が形成されていない光透過性部材3を用いてもよい。このように、遮光層が形成されていない光透過性部材の表面に光硬化性樹脂組成物を塗布した場合にも、液ダレを抑制することができる。 In this manufacturing method, the light transmissive member 3 having the light shielding layer 5 formed thereon is used, but the present invention is not limited to this example. For example, the light transmissive member 3 without the light shielding layer 5 may be used. Thus, dripping can be suppressed even when the photocurable resin composition is applied to the surface of the light-transmitting member on which the light-shielding layer is not formed.

また、本製造方法では、光透過性部材3の遮光層5が形成された側の表面に光硬化性樹脂組成物6を塗布するようにしたが、これに限定されるものではない。例えば、画像表示部材2の表面に光硬化性樹脂組成物6を塗布してもよい。 In addition, in this manufacturing method, the photocurable resin composition 6 is applied to the surface of the light-transmitting member 3 on which the light-shielding layer 5 is formed, but the present invention is not limited to this. For example, the photocurable resin composition 6 may be applied to the surface of the image display member 2 .

以下、本技術の実施例について説明する。本実験例では、光透過性部材の表面に仮硬化樹脂層を形成し、光透過性部材と画像表示部材とを仮硬化樹脂層を介して貼合わせた。貼合せ後の仮硬化樹脂層の端部における液ダレ量を評価した。本技術は、これらの実施例に限定されるものではない。 Examples of the present technology will be described below. In this experimental example, a temporary hardening resin layer was formed on the surface of the light transmissive member, and the light transmissive member and the image display member were pasted together via the temporary hardening resin layer. The amount of liquid dripping at the edge of the temporarily cured resin layer after bonding was evaluated. The present technology is not limited to these examples.

[実験例1]
光硬化性樹脂組成物として、液状の光硬化性樹脂組成物(製品名:HSVR600、粘度:4700mPa・s、デクセリアルズ(株)社製)を用いた。光透過性部材として、周縁部に遮光層が形成されたガラス板を用いた。このガラス板は、45(w)×80(l)×0.4(t)mmのサイズのガラス板の周縁部全域に、乾燥厚で40μmとなるように4mm幅の遮光層を、熱硬化タイプの黒色インク(MRXインキ、帝国インキ製造(株))を用いて、スクリーン印刷法により塗布し、乾燥させることにより得た。また、画像表示部材として、液晶表示パネルを用いた。
[Experimental example 1]
A liquid photocurable resin composition (product name: HSVR600, viscosity: 4700 mPa·s, manufactured by Dexerials Corporation) was used as the photocurable resin composition. A glass plate with a light-shielding layer formed on the periphery was used as the light-transmitting member. This glass plate has a size of 45 (w) × 80 (l) × 0.4 (t) mm, and a 4 mm wide light-shielding layer is heat-cured on the entire periphery of the glass plate so that the dry thickness is 40 µm. type black ink (MRX ink, Teikoku Ink Mfg. Co., Ltd.) was applied by screen printing and dried. A liquid crystal display panel was used as an image display member.

図9に示すように光透過性部材3の表面の一端側から他端側に亘って光硬化性樹脂組成物6を塗布部101から塗布した後、図10に示すように塗布した光硬化性樹脂組成物6に光照射部102から光照射した。 After applying the photocurable resin composition 6 from the coating portion 101 from one end side to the other end side of the surface of the light transmitting member 3 as shown in FIG. 9, the photocurable resin composition coated as shown in FIG. The resin composition 6 was irradiated with light from the light irradiation unit 102 .

光硬化性樹脂組成物の塗布厚さは、150μmとなるようにした。また、光硬化性樹脂組成物が光透過性部材の表面に塗布されてから光照射されるまでの時間が30秒となるようにした。光照射後の仮硬化樹脂層の反応率は、70~90%であった。 The coating thickness of the photocurable resin composition was set to 150 μm. Also, the time from the application of the photocurable resin composition on the surface of the light-transmitting member to the light irradiation was set to 30 seconds. The reaction rate of the temporarily cured resin layer after light irradiation was 70 to 90%.

次に、図14(A)、(B)に示すように、光透過性部材3と画像表示部材2とを仮硬化樹脂層13を介して貼合せた。そして、図14(B)に示すように、貼合せ後の未接着領域Rの距離を測定し、この距離を液ダレ量と評価した。なお、未接着領域Rの距離は、光透過性部材3と画像表示部材2とを貼合せした後の仮硬化樹脂層13の端部に見える二重線の距離を測定した。この二重線は、液ダレに起因するものである。また、二重線の距離は、液ダレの量に比例する。実験例1における液ダレ量は、約0.8mmであった。 Next, as shown in FIGS. 14A and 14B, the light transmissive member 3 and the image display member 2 were pasted together with the provisionally cured resin layer 13 interposed therebetween. Then, as shown in FIG. 14B, the distance of the unbonded region R after lamination was measured, and this distance was evaluated as the amount of liquid dripping. In addition, the distance of the non-adhered area|region R measured the distance of the double line seen in the edge part of the temporary hardening resin layer 13 after bonding the light transmissive member 3 and the image display member 2 together. This double line is due to liquid dripping. Also, the distance between the double lines is proportional to the amount of liquid dripping. The amount of liquid dripping in Experimental Example 1 was about 0.8 mm.

[実験例2]
実験例2では、実験例1と同じ光硬化性樹脂組成物、光透過性部材及び画像表示部材を用いた。実験例2では、図5(A)~(C)に示すように、光透過性部材3を載置するステージを矢印方向に移動させることにより、光透過性部材3の表面の一端側3Aから他端側3Bに亘って光硬化性樹脂組成物6を塗布部7から塗布するとともに、塗布した光硬化性樹脂組成物4に光照射部8から光照射した(工程(A1))。
[Experimental example 2]
In Experimental Example 2, the same photocurable resin composition, light transmissive member and image display member as in Experimental Example 1 were used. In Experimental Example 2, as shown in FIGS. 5A to 5C, by moving the stage on which the light transmissive member 3 is placed in the direction of the arrow, the surface of the light transmissive member 3 is moved from one end side 3A. The photocurable resin composition 6 was applied from the application portion 7 over the other end side 3B, and the applied photocurable resin composition 4 was irradiated with light from the light irradiation portion 8 (step (A1)).

光硬化性樹脂組成物の塗布厚さは、150μmとなるようにした。また、光硬化性樹脂組成物が光透過性部材の表面に塗布されてから光照射されるまでの時間が4秒となるようにステージの移動速度を設定した。光照射後の仮硬化樹脂層12の反応率は、40~50%であった。 The coating thickness of the photocurable resin composition was set to 150 μm. In addition, the moving speed of the stage was set so that the time from the application of the photocurable resin composition on the surface of the light transmissive member to the light irradiation was 4 seconds. The reaction rate of the temporarily cured resin layer 12 after light irradiation was 40 to 50%.

次に、塗布部7と光照射部8と光透過性部材3との位置関係が図6(A)に示す状態となるようにステージを移動させた。次に、図6(A)~(C)に示すように、光透過性部材3を載置するステージを矢印方向に10mm/秒の速度で移動させることにより、光透過性部材3の表面の一端側3Aから他端側3Bに亘って仮硬化樹脂層12に光照射した(工程(A2))。光照射後の仮硬化樹脂層13の反応率は、70~90%であった。 Next, the stage was moved so that the positional relationship between the coating section 7, the light irradiation section 8, and the light transmissive member 3 was as shown in FIG. 6(A). Next, as shown in FIGS. 6A to 6C, the stage on which the light-transmitting member 3 is placed is moved in the direction of the arrow at a speed of 10 mm/sec, thereby changing the surface of the light-transmitting member 3. The temporarily cured resin layer 12 was irradiated with light from the one end side 3A to the other end side 3B (step (A2)). The reaction rate of the temporarily cured resin layer 13 after light irradiation was 70 to 90%.

次に、図14(A)、(B)に示すように、光透過性部材3と画像表示部材2とを仮硬化樹脂層13を介して貼合せ、液ダレ量を評価した。実験例2における液ダレ量は、約0.5mmであった。 Next, as shown in FIGS. 14A and 14B, the light-transmitting member 3 and the image display member 2 were pasted together with the temporarily cured resin layer 13 interposed therebetween, and the amount of liquid dripping was evaluated. The amount of liquid dripping in Experimental Example 2 was about 0.5 mm.

[実験例3]
実験例2の工程(A1)において、塗布から光照射までの時間が2秒となるようにしたこと以外は、実験例2と同様の方法で評価を行った。実験例3における液ダレ量は、約0.4mmであった。
[Experimental example 3]
Evaluation was performed in the same manner as in Experimental Example 2, except that in the step (A1) of Experimental Example 2, the time from application to light irradiation was set to 2 seconds. The amount of liquid dripping in Experimental Example 3 was about 0.4 mm.

[実験例4]
実験例2の工程(A1)において、光硬化性樹脂組成物の塗布厚さが100μmとなるようにしたこと以外は、実験例2と同様の方法で評価を行った。実験例4における液ダレ量は、約0.4mmであった。
[Experimental example 4]
Evaluation was performed in the same manner as in Experimental Example 2, except that in the step (A1) of Experimental Example 2, the coating thickness of the photocurable resin composition was set to 100 μm. The amount of liquid dripping in Experimental Example 4 was about 0.4 mm.

[実験例5]
実験例2の工程(A1)において、光硬化性樹脂組成物の塗布厚さが50μmとなるようにしたこと以外は、実験例2と同様の方法で評価を行った。実験例5における液ダレ量は、約0.15mmであった。
[Experimental example 5]
Evaluation was performed in the same manner as in Experimental Example 2, except that in the step (A1) of Experimental Example 2, the coating thickness of the photocurable resin composition was set to 50 μm. The amount of liquid dripping in Experimental Example 5 was about 0.15 mm.

[実験例6]
光硬化性樹脂組成物として、粘度が1400mPa・sの光硬化性樹脂組成物を用いたこと、及び光硬化性樹脂組成物の塗布厚さが100μmとなるようにしたこと以外は、実験例1と同様の方法で評価を行った。実験例6における液ダレ量は、約0.9mmであった。
[Experimental example 6]
Experimental Example 1 except that a photocurable resin composition having a viscosity of 1400 mPa s was used as the photocurable resin composition, and the coating thickness of the photocurable resin composition was set to 100 μm. was evaluated in the same manner as The amount of liquid dripping in Experimental Example 6 was about 0.9 mm.

[実験例7]
光硬化性樹脂組成物として、粘度が1400mPa・sの光硬化性樹脂組成物を用いたこと以外は、実験例4と同様の方法で評価を行った。実験例7における液ダレ量は、約0.6mmであった。
[Experimental example 7]
Evaluation was performed in the same manner as in Experimental Example 4, except that a photocurable resin composition having a viscosity of 1400 mPa·s was used as the photocurable resin composition. The amount of liquid dripping in Experimental Example 7 was about 0.6 mm.

[実験例8]
光硬化性樹脂組成物として、粘度が4700mPa・sの光硬化性樹脂組成物を用いたこと以外は、実験例6と同様の方法で評価を行った。実験例8における液ダレ量は、約0.75mmであった。
[Experimental example 8]
Evaluation was performed in the same manner as in Experimental Example 6, except that a photocurable resin composition having a viscosity of 4700 mPa·s was used as the photocurable resin composition. The amount of liquid dripping in Experimental Example 8 was about 0.75 mm.

[実験例9]
光硬化性樹脂組成物として、粘度が8800mPa・sの光硬化性樹脂組成物を用いたこと以外は、実験例6と同様の方法で評価を行った。実験例9における液ダレ量は、約0.4mmであった。
[Experimental example 9]
Evaluation was performed in the same manner as in Experimental Example 6, except that a photocurable resin composition having a viscosity of 8800 mPa·s was used as the photocurable resin composition. The amount of liquid dripping in Experimental Example 9 was about 0.4 mm.

[実験例10]
光硬化性樹脂組成物として、粘度が8800mPa・sの光硬化性樹脂組成物を用いたこと以外は、実験例4と同様の方法で評価を行った。実験例10における液ダレ量は、約0.25mmであった。
[Experimental example 10]
Evaluation was performed in the same manner as in Experimental Example 4, except that a photocurable resin composition having a viscosity of 8800 mPa·s was used as the photocurable resin composition. The amount of liquid dripping in Experimental Example 10 was about 0.25 mm.

[実験例11]
光硬化性樹脂組成物として、粘度50000mPa・sの光硬化性樹脂組成物を用いたこと以外は、実験例6と同様の方法で評価を行った。実験例11における液ダレ量は、約0.2mmであった。
[Experimental example 11]
Evaluation was performed in the same manner as in Experimental Example 6, except that a photocurable resin composition having a viscosity of 50000 mPa·s was used as the photocurable resin composition. The amount of liquid dripping in Experimental Example 11 was about 0.2 mm.

[実験例12]
光硬化性樹脂組成物として、粘度が50000mPa・sの光硬化性樹脂組成物を用いたこと以外は、実験例4と同様の方法で評価を行った。実験例12における液ダレ量は、約0.15mmであった。
[Experimental example 12]
Evaluation was performed in the same manner as in Experimental Example 4, except that a photocurable resin composition having a viscosity of 50000 mPa·s was used as the photocurable resin composition. The amount of liquid dripping in Experimental Example 12 was about 0.15 mm.

実験例1~5の結果を図7に示す。図7中の横軸は、各実験例における光硬化性樹脂組成物の塗布厚さ、及び塗布から光照射までの時間(秒)を表す。また、図7中の縦軸は、液ダレ量(mm)を表す。 The results of Experimental Examples 1 to 5 are shown in FIG. The horizontal axis in FIG. 7 represents the coating thickness of the photocurable resin composition and the time (seconds) from coating to light irradiation in each experimental example. Moreover, the vertical axis in FIG. 7 represents the liquid dripping amount (mm).

図7に示す結果から、塗布から光照射までの時間が短い程、液ダレが抑制される傾向にあることが分かった。具体的には、塗布から光照射までの時間が5秒以内であることが好ましいことが分かった。 From the results shown in FIG. 7, it was found that the shorter the time from application to light irradiation, the more the liquid dripping tends to be suppressed. Specifically, it was found that the time from application to light irradiation is preferably within 5 seconds.

また、光硬化性樹脂組成物の塗布厚さが薄い程、液ダレが抑制される傾向にあることが分かった。具体的には、光硬化性樹脂組成物の塗布厚さは、50~150μmであるであることが好ましいことが分かった。 Moreover, it turned out that there exists a tendency for liquid dripping to be suppressed, so that the coating thickness of a photocurable resin composition is thin. Specifically, it was found that the coating thickness of the photocurable resin composition is preferably 50 to 150 μm.

実験例4、6~12の結果を図8に示す。図8中の横軸は、各実験例における光硬化性樹脂組成物の粘度(mPa・s)を表す。また、図8中の縦軸は、液ダレ量(mm)を表す。図8に示す結果から、粘度が低い光硬化性樹脂組成物を用いた場合ほど、実験例4、7、10、12のように仮硬化樹脂層を形成する工程において2回硬化(工程(A1)と工程(A2))を行うことによる液ダレ抑制の効果が大きいことが分かった。なお、実験例11、12のように粘度が高い光硬化性樹脂組成物を用いた場合も、2回硬化を行った実験例12の方が、2回硬化を行っていない実験例11よりも液ダレが抑制されることが分かった。 The results of Experimental Examples 4 and 6 to 12 are shown in FIG. The horizontal axis in FIG. 8 represents the viscosity (mPa·s) of the photocurable resin composition in each experimental example. Moreover, the vertical axis in FIG. 8 represents the liquid dripping amount (mm). From the results shown in FIG. 8, when a photocurable resin composition with a lower viscosity is used, it is cured twice (step (A1 ) and step (A2)) are highly effective in suppressing dripping. Even when a photocurable resin composition having a high viscosity is used as in Experimental Examples 11 and 12, Experimental Example 12, in which curing is performed twice, is higher than Experimental Example 11, in which curing is not performed twice. It was found that liquid dripping was suppressed.

1 画像表示装置、2 画像表示部材、3 光透過性部材、4 硬化樹脂層、5 遮光層、6 光硬化性樹脂組成物、7 塗布部、7A ノズル、8 光照射部、9 制御部、10 塗布装置、11 ステージ、12 仮硬化樹脂層、13 仮硬化樹脂層、101 塗布部、101A ノズル、102 光照射部、103 仮硬化樹脂層、104 光学透明粘着シート REFERENCE SIGNS LIST 1 image display device 2 image display member 3 light transmissive member 4 cured resin layer 5 light shielding layer 6 photocurable resin composition 7 application section 7A nozzle 8 light irradiation section 9 control section 10 Coating device 11 Stage 12 Temporary cured resin layer 13 Temporary cured resin layer 101 Coating part 101A Nozzle 102 Light irradiation part 103 Temporary cured resin layer 104 Optically transparent adhesive sheet

Claims (9)

第1の部材の表面に、光硬化性樹脂組成物を仮硬化させた仮硬化樹脂層を形成する工程(A)と、
上記第1の部材と、第2の部材とを、上記仮硬化樹脂層を介して貼合せる工程(B)と、
上記仮硬化樹脂層に光照射して本硬化させる工程(C)とを有し、
上記工程(A)は、
上記第1の部材の表面に光硬化性樹脂組成物を塗布するとともに、上記塗布した光硬化性樹脂組成物の変形を防止するために上記光硬化性樹脂組成物に光照射する工程(A1)と、
上記工程(A1)で光照射された光硬化性樹脂組成物が所定の反応率となるようにさらに光照射する工程(A2)とを有する、積層体の製造方法。
A step (A) of forming a temporarily cured resin layer obtained by temporarily curing a photocurable resin composition on the surface of the first member;
A step (B) of bonding the first member and the second member together with the temporary cured resin layer interposed therebetween;
and a step (C) of irradiating the temporarily cured resin layer with light for final curing,
The above step (A) is
The step of applying a photocurable resin composition to the surface of the first member and irradiating the photocurable resin composition with light to prevent deformation of the applied photocurable resin composition (A1) and,
A method for producing a laminate, comprising a step (A2) of further irradiating the photocurable resin composition irradiated with light in the step (A1) with light so that the reaction rate becomes a predetermined value.
上記工程(A1)では、上記光硬化性樹脂組成物を塗布する塗布部及び上記塗布部の近傍に配置された光照射部と、上記第1の部材とを相対的に移動させることにより、上記第1の部材の表面の一端側から他端側に亘って上記光硬化性樹脂組成物を塗布しながら、上記塗布した光硬化性樹脂組成物に光照射する、請求項1に記載の積層体の製造方法。 In the step (A1), by relatively moving the first member and the coating portion for coating the photocurable resin composition and the light irradiation portion disposed in the vicinity of the coating portion, the The laminate according to claim 1, wherein the photocurable resin composition is applied while applying the photocurable resin composition from one end side to the other end side of the surface of the first member, and the applied photocurable resin composition is irradiated with light. manufacturing method. 上記工程(A1)において、上記光硬化性樹脂組成物が上記第1の部材の表面に塗布されてから光照射されるまでの時間が5秒以内である、請求項1又は2に記載の積層体の製造方法。 3. The laminate according to claim 1 or 2, wherein in the step (A1), the time from when the photocurable resin composition is applied to the surface of the first member to when it is irradiated with light is within 5 seconds. body manufacturing method. 上記工程(A1)では、上記光硬化性樹脂組成物の塗布厚さが50~150μmとなるように塗布する、請求項1~3のいずれか1項に記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 3, wherein in the step (A1), the photocurable resin composition is applied so that the coating thickness is 50 to 150 µm. 上記工程(A1)では、粘度が1000~60000mPa・sである光硬化性樹脂組成物を塗布する、請求項1~4のいずれか1項に記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 4, wherein in the step (A1), a photocurable resin composition having a viscosity of 1000 to 60000 mPa·s is applied. 上記工程(A1)では、上記工程(A1)で得られる仮硬化樹脂層の硬化率が40~50%となるように光照射する、請求項1~5のいずれか1項に記載の積層体の製造方法。 The laminate according to any one of claims 1 to 5, wherein in the step (A1), light irradiation is performed so that the curing rate of the temporarily cured resin layer obtained in the step (A1) is 40 to 50%. manufacturing method. 上記工程(A2)では、上記工程(A2)で得られる仮硬化樹脂層の硬化率が90%未満となるように光照射する、請求項1~6のいずれか1項に記載の積層体の製造方法。 The laminate according to any one of claims 1 to 6, wherein in the step (A2), light irradiation is performed so that the curing rate of the temporarily cured resin layer obtained in the step (A2) is less than 90%. Production method. 上記第1の部材、又は上記第2の部材は、画像表示部材であり、
上記積層体は、画像表示装置である、請求項1~7のいずれか1項に記載の積層体の製造方法。
The first member or the second member is an image display member,
The method for producing a laminate according to any one of claims 1 to 7, wherein the laminate is an image display device.
請求項1~8のいずれか1項に記載の積層体の製造方法に用いられる塗布装置であって、
上記光硬化性樹脂組成物を塗布する塗布部と、
上記塗布部の近傍に配置された光照射部と、
制御部とを備え、
上記制御部は、上記塗布部及び上記光照射部と、上記第1の部材とを相対的に移動させることにより、上記第1の部材の表面の一端側から他端側に亘って上記塗布部が上記第1の部材の表面に光硬化性樹脂組成物を塗布するように制御しながら、上記塗布した光硬化性樹脂組成物の変形を防止するために上記光照射部が上記光硬化性樹脂組成物に光照射するように制御する、塗布装置。
A coating device used in the method for manufacturing a laminate according to any one of claims 1 to 8,
An application portion for applying the photocurable resin composition,
a light irradiation unit disposed near the application unit;
and a control unit,
The control unit relatively moves the application unit and the light irradiation unit, and the first member, thereby causing the application unit to move from one end side to the other end side of the surface of the first member. While controlling to apply the photocurable resin composition to the surface of the first member, the light irradiation unit is the photocurable resin to prevent deformation of the applied photocurable resin composition A coating device that controls to irradiate the composition with light.
JP2022210135A 2016-10-31 2022-12-27 Laminate manufacturing method Pending JP2023029478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022210135A JP2023029478A (en) 2016-10-31 2022-12-27 Laminate manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016213777A JP6905325B2 (en) 2016-10-31 2016-10-31 Method of manufacturing a laminate
JP2021031428A JP7442471B2 (en) 2016-10-31 2021-03-01 Method for manufacturing laminate
JP2022210135A JP2023029478A (en) 2016-10-31 2022-12-27 Laminate manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021031428A Division JP7442471B2 (en) 2016-10-31 2021-03-01 Method for manufacturing laminate

Publications (1)

Publication Number Publication Date
JP2023029478A true JP2023029478A (en) 2023-03-03

Family

ID=62023455

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016213777A Active JP6905325B2 (en) 2016-10-31 2016-10-31 Method of manufacturing a laminate
JP2021031428A Active JP7442471B2 (en) 2016-10-31 2021-03-01 Method for manufacturing laminate
JP2022210135A Pending JP2023029478A (en) 2016-10-31 2022-12-27 Laminate manufacturing method

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2016213777A Active JP6905325B2 (en) 2016-10-31 2016-10-31 Method of manufacturing a laminate
JP2021031428A Active JP7442471B2 (en) 2016-10-31 2021-03-01 Method for manufacturing laminate

Country Status (4)

Country Link
JP (3) JP6905325B2 (en)
CN (1) CN109843562B (en)
TW (2) TWI874293B (en)
WO (1) WO2018079433A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024122475A1 (en) 2022-12-07 2024-06-13 ソフトバンクグループ株式会社 Control system for robot and control program for robot

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7368990B2 (en) * 2019-09-23 2023-10-25 デクセリアルズ株式会社 Method for manufacturing optical devices
JP7705715B2 (en) * 2020-03-03 2025-07-10 デクセリアルズ株式会社 Manufacturing method of image display device
JP2022047865A (en) * 2020-09-14 2022-03-25 株式会社飯沼ゲージ製作所 Work bonding device and work bonding method
CN114242926B (en) * 2021-12-17 2023-07-25 昆山梦显电子科技有限公司 Patch device and laminating control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032661A (en) * 2010-07-30 2012-02-16 Fujifilm Corp Laminate and optical film, production method for the same, polarizer plate, image display device, three dimensional image display system
JP2013152339A (en) * 2012-01-25 2013-08-08 Dexerials Corp Method for manufacturing image display apparatus
JP2016155926A (en) * 2015-02-24 2016-09-01 大阪ガスケミカル株式会社 Method for suppressing yellowing of optical member, optical member and adhesive

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2138218C (en) * 1993-12-16 2000-10-10 Shinji Tanaka Process for delaminating organic resin from board and process for manufacturing organic resin multi-layer wiring board
JP4741897B2 (en) * 2005-01-12 2011-08-10 芝浦メカトロニクス株式会社 Photocurable resin coating apparatus and coating method
JP6012601B2 (en) * 2011-07-15 2016-10-25 デンカ株式会社 Method for manufacturing translucent hard substrate laminate and translucent hard substrate laminating apparatus
KR20210090286A (en) * 2012-01-25 2021-07-19 데쿠세리아루즈 가부시키가이샤 Method of manufacturing image display device
JP5994618B2 (en) * 2012-12-14 2016-09-21 デクセリアルズ株式会社 Photocurable resin composition and method for producing image display device using the same
JP6127745B2 (en) * 2013-06-06 2017-05-17 デクセリアルズ株式会社 Photocurable resin composition and method for manufacturing image display device
JP6251636B2 (en) * 2014-05-27 2017-12-20 協立化学産業株式会社 Manufacturing method of laminate
JP2016036780A (en) * 2014-08-08 2016-03-22 協立化学産業株式会社 Method of manufacturing laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032661A (en) * 2010-07-30 2012-02-16 Fujifilm Corp Laminate and optical film, production method for the same, polarizer plate, image display device, three dimensional image display system
JP2013152339A (en) * 2012-01-25 2013-08-08 Dexerials Corp Method for manufacturing image display apparatus
JP2016155926A (en) * 2015-02-24 2016-09-01 大阪ガスケミカル株式会社 Method for suppressing yellowing of optical member, optical member and adhesive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024122475A1 (en) 2022-12-07 2024-06-13 ソフトバンクグループ株式会社 Control system for robot and control program for robot

Also Published As

Publication number Publication date
JP6905325B2 (en) 2021-07-21
TWI874293B (en) 2025-03-01
WO2018079433A1 (en) 2018-05-03
TW202332587A (en) 2023-08-16
JP2021100813A (en) 2021-07-08
CN109843562A (en) 2019-06-04
JP2018069625A (en) 2018-05-10
TWI848643B (en) 2024-07-11
TW201823029A (en) 2018-07-01
JP7442471B2 (en) 2024-03-04
CN109843562B (en) 2022-04-19

Similar Documents

Publication Publication Date Title
JP7442471B2 (en) Method for manufacturing laminate
JP5994618B2 (en) Photocurable resin composition and method for producing image display device using the same
CN109917566B (en) Method for manufacturing image display device, and dispenser for resin
US11124676B2 (en) Method for manufacturing optical member
TW201348752A (en) Image display device manufacturing method
CN103538305A (en) Hard coat film and touch panel using the same
TW201921047A (en) Method for manufacturing transparent panel and method for manufacturing optical device
JP2017048358A (en) Photocurable resin composition and method for manufacturing image display device
JP7184843B2 (en) Method for manufacturing optical member
KR20170039715A (en) Laminate production method
KR20190007001A (en) Method of manufacturing a connection body, connection method
JP2019040025A (en) Manufacturing method of image display device
JP7274966B2 (en) Optical device manufacturing method
WO2018179874A1 (en) Method for manufacturing optical device and optical device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231219

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240730

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20250225