JP2022521580A - How to reduce pre-ignition of internal combustion engines - Google Patents
How to reduce pre-ignition of internal combustion engines Download PDFInfo
- Publication number
- JP2022521580A JP2022521580A JP2021548256A JP2021548256A JP2022521580A JP 2022521580 A JP2022521580 A JP 2022521580A JP 2021548256 A JP2021548256 A JP 2021548256A JP 2021548256 A JP2021548256 A JP 2021548256A JP 2022521580 A JP2022521580 A JP 2022521580A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- engine
- combustion chamber
- internal combustion
- injection pulse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P5/00—Advancing or retarding ignition; Control therefor
- F02P5/04—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
- F02P5/145—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
- F02P5/15—Digital data processing
- F02P5/152—Digital data processing dependent on pinking
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
- F02D41/402—Multiple injections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P5/00—Advancing or retarding ignition; Control therefor
- F02P5/04—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
- F02P5/045—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions combined with electronic control of other engine functions, e.g. fuel injection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L23/00—Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
- G01L23/22—Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines
- G01L23/221—Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D2041/389—Controlling fuel injection of the high pressure type for injecting directly into the cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/10—Parameters related to the engine output, e.g. engine torque or engine speed
- F02D2200/1015—Engines misfires
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
本開示の1つ以上の実施形態による内燃機関は、シリンダヘッドおよびシリンダ側壁を有するエンジンシリンダと、エンジンシリンダ内で往復運動するピストンとを含み得る。ピストン、シリンダヘッド、およびシリンダ側壁は、燃焼チャンバを少なくとも部分的に画定することができる。内燃機関はまた、燃焼チャンバに燃料を直接噴射するように位置付けられた燃料噴射装置も含み得る。内燃機関は、燃料噴射装置と電子通信しているエンジン制御モジュールをさらに含み得る。エンジン制御モジュールは、内燃機関がスーパーノック状態に対応する状態で動作しているかどうかを決定し、複数の噴射パルスで燃焼チャンバ内に燃料を噴射する分割噴射モードで動作するように燃料噴射装置に命令することができる。
An internal combustion engine according to one or more embodiments of the present disclosure may include an engine cylinder having a cylinder head and cylinder sidewalls and a piston reciprocating within the engine cylinder. Pistons, cylinder heads, and cylinder sidewalls can at least partially define the combustion chamber. The internal combustion engine may also include a fuel injection device positioned to inject fuel directly into the combustion chamber. The internal combustion engine may further include an engine control module that is electronically communicating with the fuel injection device. The engine control module determines whether the internal combustion engine is operating in a state corresponding to the super knock condition, and the fuel injection device is operated in a split injection mode in which fuel is injected into the combustion chamber by multiple injection pulses. You can order.
Description
本出願は、2019年2月20日に出願された「Internal Combustion Engines Having Pre-Ignition Mitigation Controls and Methods for Their Operation」と題された米国特許出願第16/280,526号の優先権を主張し、その内容はその全体が本明細書に組み込まれる。 This application is the priority of US Patent Application No. 16 / 280, 526 entitled "Internal Combustion Engines Having Pre-Ignition Mitration Controls and Methods for Their Operation" filed on February 20, 2019. , The contents of which are incorporated herein in their entirety.
本開示は、内燃機関に関するものであり、より具体的には、プレイグニッション低減制御を有する内燃機関に関するものである。 The present disclosure relates to an internal combustion engine, and more specifically, to an internal combustion engine having pre-ignition reduction control.
過給機内燃機関は、吸気行程中に燃焼チャンバに入る空気の量を増加させるために吸気マニホルドを加圧するスーパーチャージャーまたはターボチャージャーを含む。特定の動作状態では、このようなエンジンはスーパーノックを発生する傾向があり、スーパーノックは、燃焼チャンバ内の混合気が事前に点火し、これによりシリンダ圧力が高くなり、エンジン部品が損傷する可能性がある状態である。したがって、プレイグニッション緩和制御を含む内燃機関が望まれる場合がある。 The turbocharged internal combustion engine includes a supercharger or turbocharger that pressurizes the intake manifold to increase the amount of air entering the combustion chamber during the intake stroke. Under certain operating conditions, such engines tend to produce super knocks, where the air-fuel mixture in the combustion chamber pre-ignites, which increases cylinder pressure and can damage engine components. It is in a state of having sex. Therefore, an internal combustion engine including pre-ignition mitigation control may be desired.
本明細書に開示されるように、内燃機関は、混合気のプレイグニッションの状態がいつ発生する可能性が高いかを検出し、吸気行程および圧縮行程中に複数のパルスで燃焼チャンバ内に燃料を噴射する分割噴射モードで燃料噴射装置を動作させるプレイグニッション軽減制御を含むことができる。例えば、燃料の噴射は、2つ、3つ、またはそれ以上の別個のパルス(本明細書では一次、二次、および三次パルスと呼ばれることもある)で行われ得る。空燃比は、一酸化炭素、未燃炭化水素、および窒素酸化物の触媒変換などの高い触媒変換効率を維持するために、化学量論比またはその近くに維持することができる。圧縮行程の後半の燃料の噴射により、燃焼チャンバ内に存在する混合気の温度が低下する可能性があり、これにより、混合気がプレイグニッションを開始する傾向が低下する可能性がある。圧縮行程の後半の燃料の追加により、燃焼チャンバが急冷されて、本来発生していた可能性のあるプレイグニッションが減少または排除される可能性もある。燃料噴射装置を分割噴射モードで動作させることにより、混合気のプレイグニッションを防ぎ、スーパーノック状態の形成を妨げることができる。燃料噴射のタイミング、圧力、および継続時間を管理することを通じて、分割噴射モードで燃料を噴射すると、エンジン出力、ノイズ、および燃料消費への悪影響を最小限に抑えることができる。 As disclosed herein, the internal combustion engine detects when a pre-ignition condition of the air-fuel mixture is likely to occur and fuels into the combustion chamber with multiple pulses during the intake and compression strokes. It can include pre-ignition mitigation control that operates the fuel injection device in the split injection mode in which the fuel is injected. For example, fuel injection can be done in two, three, or more separate pulses (sometimes referred to herein as primary, secondary, and tertiary pulses). The air-fuel ratio can be maintained at or near the chemical ratio to maintain high catalytic conversion efficiencies such as catalytic conversion of carbon monoxide, unburned hydrocarbons, and nitrogen oxides. Fuel injection in the second half of the compression stroke can reduce the temperature of the air-fuel mixture present in the combustion chamber, which can reduce the tendency of the air-fuel mixture to initiate pre-ignition. The addition of fuel later in the compression stroke can also quench the combustion chamber, reducing or eliminating pre-ignition that may have originally occurred. By operating the fuel injection device in the split injection mode, it is possible to prevent pre-ignition of the air-fuel mixture and prevent the formation of a super knock state. By controlling the timing, pressure, and duration of fuel injection, injecting fuel in split injection mode can minimize adverse effects on engine power, noise, and fuel consumption.
1つ以上の実施形態では、内燃機関は、シリンダヘッドおよびシリンダ側壁を含むエンジンシリンダと、エンジンシリンダ内で往復運動するピストンであって、ピストン、シリンダヘッド、およびシリンダ側壁が燃焼チャンバを少なくとも部分的に画定する、ピストンと、燃焼チャンバ内に燃料を導入するように位置付けられた1つ以上の燃料噴射装置と、1つ以上の燃料噴射装置と電子通信するエンジン制御モジュールと、を備えてもよい。エンジン制御モジュールは、プロセッサと、プロセッサによって実行されたときに、内燃機関がスーパーノック状態が発生する可能性のある状態で動作しているかどうかを決定することと、燃料噴射装置に、燃料が少なくとも一次噴射パルスおよび一次噴射パルスよりも遅く発生する二次噴射パルスで燃焼チャンバ内に噴射される分割噴射モードで動作するように命令することと、を行うコンピュータ可読命令セットを記憶するメモリと、を備えてもよい。 In one or more embodiments, the internal combustion engine is an engine cylinder that includes a cylinder head and cylinder sidewalls and a piston that reciprocates within the engine cylinder, wherein the piston, cylinder head, and cylinder sidewalls at least partially occupy the combustion chamber. May include a piston, one or more fuel injectors positioned to introduce fuel into the combustion chamber, and an engine control module that electronically communicates with one or more fuel injectors. .. The engine control module determines the processor and whether the internal combustion engine is operating in a state where a super knock condition can occur when executed by the processor, and the fuel injector has at least fuel. A memory that stores a computer-readable instruction set to instruct to operate in a split injection mode injecting into the combustion chamber with a primary injection pulse and a secondary injection pulse that occurs later than the primary injection pulse. You may prepare.
1つ以上の追加の実施形態では、内燃機関を動作させる方法は、エンジン制御モジュールを使用して、内燃機関がスーパーノック状態が発生する可能性のある場合に対応する状態で動作しているかどうかを決定することと、燃料噴射装置を使用して、シリンダヘッドおよびシリンダ側壁を備えるエンジンシリンダと、エンジンシリンダ内で往復運動するピストンと、を備える燃焼チャンバ内に燃料を直接噴射することと、を含む。燃料は、燃料が少なくとも一次噴射パルスおよび一次噴射パルスよりも遅く発生する二次噴射パルスで燃焼チャンバ内に噴射される、分割噴射モードで燃焼チャンバ内に噴射されてもよい。 In one or more additional embodiments, the method of operating the internal combustion engine is to use an engine control module to determine if the internal combustion engine is operating in a state corresponding to the possibility of a super knock condition. And to use a fuel injection device to inject fuel directly into a combustion chamber comprising an engine cylinder with a cylinder head and cylinder sidewalls and a piston reciprocating within the engine cylinder. include. The fuel may be injected into the combustion chamber in a split injection mode in which the fuel is injected into the combustion chamber with at least a primary injection pulse and a secondary injection pulse that occurs later than the primary injection pulse.
1つ以上の追加の実施形態では、エンジンシリンダは、シリンダヘッドおよびシリンダ側壁と、エンジンシリンダ内で往復運動するピストンであって、ピストン、シリンダヘッド、およびシリンダ側壁が燃焼チャンバを少なくとも部分的に画定する、ピストンと、燃焼チャンバ内に燃料を導入するように位置付けられた燃料噴射装置と、燃料噴射装置と電子通信するエンジン制御モジュールと、を備えてもよい。エンジン制御モジュールは、プロセッサと、プロセッサによって実行されたときに、内燃機関がスーパーノック状態が発生する可能性のある状態で動作しているかどうかを決定することと、燃料噴射装置に、燃料が少なくとも一次噴射パルスおよび一次噴射パルスよりも遅く発生する二次噴射パルスで燃焼チャンバ内に噴射される分割噴射モードで動作するように命令することであって、エンジン制御モジュールが、燃焼チャンバ内の空燃比を理論空燃比の3%以内、好ましくは化学量論比の1%以内に維持する、命令することと、を行うコンピュータ可読命令セットを記憶する、メモリと、を備える。 In one or more additional embodiments, the engine cylinder is a cylinder head and cylinder sidewalls and a piston that reciprocates within the engine cylinder, with the piston, cylinder head, and cylinder sidewalls at least partially defining the combustion chamber. It may include a cylinder, a fuel injection device positioned to introduce fuel into the combustion chamber, and an engine control module that electronically communicates with the fuel injection device. The engine control module determines the processor and whether the internal combustion engine is operating in a condition where a super knock condition can occur when run by the processor, and the fuel injector has at least fuel. It is to instruct the engine control module to operate in the split injection mode in which the primary injection pulse and the secondary injection pulse generated later than the primary injection pulse are injected into the combustion chamber, and the engine control module has the air-fuel ratio in the combustion chamber. It comprises a memory, which stores a computer-readable instruction set to instruct and to maintain within 3% of the stoichiometric air-fuel ratio, preferably within 1% of the chemical quantity theory ratio.
本開示において開示された技術のさらなる特徴および利点は、以下の詳細な説明に記載され、部分的に、説明から当業者に容易に明らかになるか、または以下の詳細な説明、特許請求の範囲、ならびに添付の図面を含む、本開示に記載される技術を実践することによって認識されるであろう。 Further features and advantages of the techniques disclosed in this disclosure are described in the detailed description below, which may be readily apparent to those skilled in the art from the description, or the detailed description below, claims. , As well as by practicing the techniques described in this disclosure, including the accompanying drawings.
本開示の特定の実施形態の以下の詳細な説明は、同様の構造が同様の参照番号で示されている以下の図面と併せて読むと、最もよく理解することができる。 The following detailed description of a particular embodiment of the present disclosure can best be understood when read in conjunction with the following drawings in which similar structures are indicated by similar reference numbers.
ここで、様々な実施形態をより詳細に参照し、そのいくつかの実施形態が添付の図面に示される。可能な限り、図面全体を通して同じ参照番号を使用して、同じまたは類似の部分を指す。 Here, various embodiments are referred to in more detail, some of which are shown in the accompanying drawings. Wherever possible, use the same reference numbers throughout the drawing to refer to the same or similar parts.
本明細書に記載するのは、スーパーノック軽減制御を有する内燃機関およびその動作のための方法である。エンジンは、エンジンがスーパーノック状態が形成される可能性のあるエンジン状態で動作しているかどうかを決定し得るエンジン制御モジュールを含み得、そのようなエンジン動作状態の検出時に、エンジン制御モジュールは、燃料が複数の個別のパルス(例えば、2つ、3つ、またはそれ以上の個別のパルス)で燃焼チャンバに噴射される分割噴射モードで、燃料噴射装置を動作させる燃料スケジュールを選択する。後半のパルスは、従来の単一パルス噴射と比較して、エンジンタイミングが遅くなる可能性がある。圧縮行程の後半で燃料の一部分を燃焼チャンバ内に噴射すると、スーパーノック状態の形成が中断される可能性がある。 Described herein are internal combustion engines with super knock mitigation control and methods for their operation. The engine may include an engine control module that may determine if the engine is operating in an engine condition in which a super knock condition may be formed, and upon detection of such an engine operating condition, the engine control module may include an engine control module. Select a fuel schedule to operate the fuel injection device in a split injection mode in which the fuel is injected into the combustion chamber in multiple individual pulses (eg, two, three, or more individual pulses). The latter pulse may have a slower engine timing compared to conventional single pulse injection. Injecting a portion of the fuel into the combustion chamber later in the compression stroke can interrupt the formation of the super knock state.
本明細書に記載するように、火花点火式内燃機関のスーパーノックは、燃焼がプレイグニッションによって開始される燃焼チャンバ内での混合気の不規則な燃焼の発生を指す。「プレイグニッション」は、スパークタイミングの前に火花以外の「ホットスポット」によってトリガーされた混合気の燃焼を表す。ただし、プレイグニッションのタイミングおよび燃焼チャンバ内のプレイグニッションの位置に応じて、プレイグニッションは、ノッキング以外の燃焼を含む、様々な燃焼現象を引き起こす可能性がある。スーパーノックにつながる可能性のあるプレイグニッションは、低速および高負荷のエンジン動作状態で発生することがよくある。 As described herein, super knocking of a spark-ignition internal combustion engine refers to the occurrence of irregular combustion of the air-fuel mixture in a combustion chamber where combustion is initiated by pre-ignition. "Pre-ignition" represents the combustion of an air-fuel mixture triggered by a "hot spot" other than a spark prior to spark timing. However, depending on the timing of the pre-ignition and the position of the pre-ignition in the combustion chamber, the pre-ignition can cause a variety of combustion phenomena, including combustion other than knocking. Pre-ignition that can lead to super knocks often occurs at low speed and high load engine operating conditions.
スーパーノック状態は、エンジンをサイクルごとに評価するときに散発的に発生するように見えるため、スーパーノック状態が発生するかどうかの正確な予測は、エンジンの動作状態のみと直接相関しない場合がある。したがって、一部のサイクルでは、プレイグニッションおよびスーパーノック状態の形成に対応するエンジン動作条件でスーパーノックが発生しない場合がある。しかしながら、本明細書に記載するように、内燃機関は、スーパーノック状態が形成されることが知られているエンジン動作状態でスーパーノック状態を制御するように選択され得る。プレイグニッションとその結果生じるスーパーノック状態は、そのようなエンジン動作状態で形成される可能性が高くなる。 Accurate predictions of whether a super knock condition will occur may not directly correlate with the operating state of the engine alone, as super knock conditions appear to occur sporadically when assessing the engine on a cycle-by-cycle basis. .. Therefore, in some cycles, super knock may not occur under engine operating conditions that correspond to the formation of pre-ignition and super knock states. However, as described herein, the internal combustion engine may be selected to control the super knock state in an engine operating state known to form a super knock state. Pre-ignition and the resulting super knock conditions are more likely to be formed in such engine operating conditions.
スーパーノックは、従来のエンジンノックとは異なり、火炎伝播が燃焼チャンバ内のエンドガスを消費する前に、混合気のエンドガスが自動点火することに起因する。 Super knocks, unlike conventional engine knocks, result from the automatic ignition of the end gas in the air-fuel mixture before flame propagation consumes the end gas in the combustion chamber.
本明細書で使用される場合、「図示平均有効圧力」(IMEP)は、完全なエンジンサイクルにわたって平均されたエンジンシリンダ内の測定された圧力を指す。IMEPは、エンジンの正の仕事の測定値である。エンジンシリンダ内の圧力は、シリンダ内圧力検知機器を使用して測定することができる。 As used herein, "animated mean effective pressure" (IMEP) refers to the measured pressure in an engine cylinder that has been averaged over a complete engine cycle. IMEP is a measure of the positive work of the engine. The pressure in the engine cylinder can be measured using an in-cylinder pressure sensing device.
本明細書で使用される場合、「変動係数」(CoV)は、内燃機関のサイクルごとの変動性の測定値である。CoVは、サンプリングされたサイクルの数にわたって測定されたIMEPの標準偏差を、サンプリングされたサイクルの数にわたるIMEPの平均で割ることによって計算することができる。 As used herein, the "coefficient of variation" (CoV) is a measure of the cycle-by-cycle variability of an internal combustion engine. CoV can be calculated by dividing the standard deviation of IMEP measured over the number of sampled cycles by the average of IMEP over the number of sampled cycles.
次に図1を参照すると、内燃機関100の一部分の概略図が描かれている。具体的には、図1は、内燃機関100の単一のエンジンシリンダ110を描いている。しかしながら、当業者によって理解されるように、内燃機関100は、エンジンシリンダ110などの多数のエンジンシリンダを備えてもよく、これらは、図1に描かれているクランクシャフト180などの1つ以上のクランクシャフトの長さに沿って様々な構成で配置されていてもよい。
Next, referring to FIG. 1, a schematic diagram of a part of the
内燃機関100は、少なくとも機関シリンダ110、吸気ポート171、排気ポート173、およびピストン120を含むことができる。吸気ポート171は、吸気マニホルド140でエンジンシリンダ110に接続する吸気ポート171を選択的に開閉するように位置付けられた吸気弁172によって調整される。同様に、排気ポート173は、排気マニホルド150でエンジンシリンダ110に接続する排気ポート173を選択的に開閉するように位置付けられた排気弁174によって調整される。
The
機関シリンダ110によって上部および側部に画定され、ピストン120によって下部に画定された容積は、燃焼チャンバ122と呼ばれる。吸気ポート171および排気ポート173は、空気、混合気、および/または燃焼生成物が、エンジンサイクル中の様々な時点で燃焼チャンバ122に出入りすることを可能にする。スパークプラグ118は、燃焼チャンバ122に位置付けられた電極を含み、タイミング調整される電気バーストで燃焼開始を提供する。いくつかの実施形態では、スパークプラグ118は、燃焼チャンバ122の中心またはその近くに(例えば、円筒形のエンジンシリンダ110の壁に対して半径方向の中心またはその近くに)位置付けることができる。
The volume defined at the top and sides by the
いくつかの実施形態では、吸気弁172および/または排気弁174は、吸気弁172および/または排気弁174を選択的に開閉する役割を果たし得る1つ以上のカムまたはカムシャフト(図1には描かれていない)に接続されており、それによって、エンジン動作に合わせてそれぞれの吸気ポート171および排気ポート173の選択的な開閉が維持される。ピストン120は、接続ロッド182を接続することによってクランクシャフト180に連結することができる。機関シリンダ110は、シリンダヘッド114およびシリンダ側壁112を含むことができる。吸気ポート171および排気ポート173は、シリンダヘッド114上に配置することができる。さらに、燃料噴射装置116およびスパークプラグ118は、シリンダヘッド114に位置付けられ、燃料噴射装置116およびスパークプラグ118が燃焼チャンバ122内に存在する空気および/または混合気に作用することができるように、燃焼チャンバ122内に延びていてもよい。スパークプラグ118は、点火システム119に電子的に結合することができ、点火システム119は、スパークプラグ118を介して充電し、次に放電する。
In some embodiments, the intake valve 172 and / or the
内燃機関100は、圧縮および膨張行程中に燃焼チャンバ122内に存在する混合気の繰り返し燃焼によって動作することができる。混合気の燃焼により、燃焼チャンバ122が加圧され、これにより、ピストン120がシリンダヘッド114から離れるように並進する。ピストン120の並進は、クランクシャフト180を回転させる。ピストン120がシリンダヘッド114から離れる方向に並進するとき、混合気の燃焼による燃焼チャンバ122内の圧力上昇は、クランクシャフト180の回転に向けられる。クランクシャフト180は、上死点位置(シリンダヘッド114に対するピストン120の最も近い位置に対応する)および下死点位置(シリンダヘッド114に対するピストン120の最も遠い位置に対応する)を通じて回転してもよい。1つ以上の実施形態では、内燃機関100は、4行程エンジンとして動作してもよいが、他のエンジン構成も企図されている。そのような実施形態では、吸気、圧縮、出力、および排気の行程は、規則的かつ連続的な方法で循環する。吸気行程では、ピストンは、下方に移動し、空気および/または燃料は、吸気ポート171を通って燃焼チャンバ122に入ることができる。圧縮行程では、ピストン120がシリンダヘッド114に向かって移動することで、空気および/または燃料が圧縮される。燃料はまた、吸気および/または圧縮行程中に燃焼チャンバ122内に噴射される。出力行程では、ピストンは、燃焼された混合気によってシリンダヘッド114から押しのけられ、この混合気は、混合気の燃焼に起因して高温および高圧になっている。排気行程では、ピストン120はシリンダヘッド114に向かって移動し、排気ガス(燃焼反応の生成物)を排気ポート173を通して燃焼チャンバ122から押し出す。
The
内燃機関100はまた、吸気マニホルド140に近接して位置付けられた圧縮機90も含み得る。圧縮機90は、吸気マニホルド140内にある空気の圧力を増加させるので、吸気行程中に、より大きな質量の空気を燃焼チャンバ122に向けることができる。圧縮機90は、排気マニホルド150内に位置付けられたタービン(図示せず)に結合することができる。タービンは、燃焼生成物からエネルギーを抽出し、そのエネルギーを使用して、吸気マニホルド140に向けられた空気を加圧する。このような圧縮機90およびタービンシステムは、「ターボチャージャー」と呼ばれる。他の実施形態では、圧縮機90は、内燃機関100の回転ハードウェア、例えば、クランクシャフト180に結合することができる。このような回転結合圧縮機90は、「スーパーチャージャー」と呼ばれる。
The
内燃機関100はまた、エンジン制御モジュール80も含み得る。エンジン制御モジュール80は、コンピュータ可読命令セットを記憶するプロセッサ82およびメモリ84を含み得る。エンジン制御モジュール80は、燃料噴射装置116、スパークプラグ118と電子通信している点火システム119、様々なエンジンセンサ、例えば、スロットル位置センサ(図示せず)、吸気マニホルド圧力および温度センサ(図示せず)、ならびにクランクシャフト180の回転範囲全体の角度方向を検出するクランク角センサ181を含む、内燃機関100の様々な構成要素と電子通信している。エンジン制御モジュール80は、様々なエンジンセンサを評価して、エンジンの動作状態およびオペレータからの出力需要を決定することができる。エンジン制御モジュール80は、燃料噴射装置116を制御することによって燃焼チャンバ122に供給される燃料のタイミングおよび量を変更することができ、また、スパークプラグ118の排出のタイミングを変更することができる。エンジン制御モジュール80は、燃料供給スケジュールおよびスパークタイミングスケジュールを使用してプログラムされ、これにより、内燃機関100は、出力供給、燃料消費、および排出目標を満たす事前定義された特性に従って動作することができる。
The
図1に描かれるように、内燃機関100は、燃焼チャンバ122内への燃料の直接噴射で動作することができる。燃料噴射装置116は、燃料を燃焼チャンバ122に直接噴射するように位置付けられているので、燃料噴射装置116は、内燃機関100の吸気および/または圧縮行程中に燃料を燃焼チャンバ122内に噴射することができる。燃焼チャンバ122に向けられた燃料は、燃焼チャンバ122内の空気と混合され、混合気は加熱され、圧縮行程中の燃焼のために準備される。一般に、吸気行程中に燃焼チャンバ122に燃料を早期に導入すると、十分に混合された均質な混合気が得られる。混合が不十分な混合気は、燃焼効率の低さを示す可能性があり、特定の物質の排出量、炭化水素の排出量、一酸化炭素の排出量、またはこれらの組み合わせのレベルが高くなる可能性がある。
As depicted in FIG. 1, the
しかしながら、吸気行程における燃焼チャンバ122への燃料の導入は、混合気がシリンダ側壁112、シリンダヘッド114、およびピストン120によって加熱されることを可能にし得る。より高温の混合気は、より低温の混合気よりも混合気を点火しやすい。混合気を加熱すると、冷却された混合気と比較して、点火時から混合気が完全に燃焼するのにかかる時間が短縮される可能性がある。しかしながら、スーパーノック状態が発生する可能性が高いエンジン状態では、混合気の加熱は、混合気のプレイグニッションの可能性を高める可能性がある。本明細書で上述したように、混合気のプレイグニッションは、燃焼チャンバ内122内のスーパーノック状態の発生と相関している。
However, the introduction of fuel into the
追加の実施形態では、ポート燃料噴射は、直接噴射とともに利用され得る。例えば、一次噴射はポート燃料噴射を利用し、後の噴射(例えば、二次および三次噴射)は直接噴射を利用することができる。したがって、1つ以上の実施形態では、複数の噴射装置(直接およびポート)を同じエンジンで利用することができる。 In additional embodiments, port fuel injection can be utilized with direct injection. For example, the primary injection can utilize port fuel injection and the later injection (eg, secondary and tertiary injection) can utilize direct injection. Therefore, in one or more embodiments, multiple injection devices (direct and port) can be utilized in the same engine.
1つ以上の実施形態では、本開示は、燃焼チャンバ内への燃料の直接噴射を有する内燃機関100、およびそのような内燃機関100を動作させる方法に関する。内燃機関100は、他のエンジン要素の中でもとりわけ、燃料噴射装置116の動作を制御するエンジン制御モジュール80と、スパークプラグ118の排出を制御する点火システム119と、を含むことができる。エンジン制御モジュール80は、エンジン制御モジュール80が吸気および圧縮行程中に複数の離散的なパルスで燃焼チャンバ122内に燃料を噴射するように燃料噴射装置116に命令する、分割噴射モードで内燃機関100を選択的に動作させる。
In one or more embodiments, the present disclosure relates to an
ここで図2を参照すると、直接噴射燃料供給スケジュールの一例が描かれている。描かれた実施形態では、燃料は、吸気行程中に単一パルスで燃料噴射装置116によって燃焼チャンバ122内に供給される。パルスは、スパークプラグが排出されるときに燃焼チャンバ内に噴射される燃料が十分に混合されるようにタイミング調整される。よく混合された混合気は、燃焼チャンバ全体に安定した高速の火炎伝播を促進する。
Here, referring to FIG. 2, an example of a direct injection fuel supply schedule is drawn. In the illustrated embodiment, the fuel is supplied into the
図2に描かれる燃料供給スケジュールは、スーパーノックが発生する可能性が低いエンジン動作状態に適切である可能性がある。そのような状態では、エンジン制御モジュールは、単一パルス噴射で燃料を噴射することができる。スーパーノックが発生する可能性が低いそのようなエンジン状態は、一般に、高速および/または低負荷エンジン状態を含む。そのような燃料供給スケジュールは、スーパーノック状態が発生する可能性がある、または発生する可能性が高いことさえある低速および/または高負荷エンジン状態での混合気のプレイグニッションをもたらす可能性がある。 The fuel supply schedule depicted in FIG. 2 may be appropriate for engine operating conditions where super knock is unlikely to occur. In such a state, the engine control module can inject fuel with a single pulse injection. Such engine conditions in which super knock is unlikely to occur generally include high speed and / or low load engine conditions. Such a fuel supply schedule can result in pre-ignition of the air-fuel mixture at low speed and / or high load engine conditions where super knock conditions can or may even occur. ..
燃料の単一パルスの燃焼チャンバへの噴射タイミングを遅らせると、プレイグニッション成分の発生率が低下する可能性がある。ただし、IMEPの低下が示すように、燃料噴射のタイミングを遅らせると、エンジン出力が低下する可能性がある。燃料噴射のタイミングを遅らせると、また、サイクル全体のCoVが増加し、内燃機関の騒音、振動、およびハーシュネス特性が損なわれる可能性もあり、また炭化水素および一酸化炭素の排出量が増加する可能性もある。 Delaying the timing of injection of a single pulse of fuel into the combustion chamber can reduce the rate of pre-ignition component generation. However, as the decrease in IMEP shows, if the timing of fuel injection is delayed, the engine output may decrease. Delaying the timing of fuel injection can also increase CoV throughout the cycle, impair internal combustion engine noise, vibration, and harshness characteristics, and increase hydrocarbon and carbon monoxide emissions. There is also sex.
本開示による実施形態は、内燃機関の動作状態に基づいて選択される複数の燃料供給スケジュールを含むエンジン制御モジュールを含み得る。例えば、内燃機関が低速高出力状態で動作する場合、圧縮行程中にプレイグニッション生成物を形成する可能性が高くなり、スーパーノック状態が発生する可能性があり、または発生する可能性が高いことさえある。そのような状態で、エンジン制御モジュールは、複数の個別のパルスで燃焼チャンバに内に燃料が噴射される分割噴射モードに対応する燃料供給スケジュールの動作を選択することができる。そのような燃料供給スケジュールの例が図3に示されている。燃料供給スケジュールは、吸気および/または圧縮行程と一致するようにタイミング調整される一次噴射パルス、および一次噴射パルスよりも遅く発生するようにタイミング調整される二次噴射パルスで、燃料を噴射するように指示することができる。いくつかの実施形態では、二次噴射パルスは、吸気行程で開始される。いくつかの実施形態では、二次噴射パルスは、圧縮行程で開始される。 The embodiments according to the present disclosure may include an engine control module including a plurality of fuel supply schedules selected based on the operating state of the internal combustion engine. For example, if an internal combustion engine operates at low speeds and high powers, it is more likely to form pre-ignition products during the compression stroke, and a super knock condition is likely or is likely to occur. There is even. In such a state, the engine control module can select the operation of the fuel supply schedule corresponding to the split injection mode in which the fuel is injected into the combustion chamber by a plurality of individual pulses. An example of such a fuel supply schedule is shown in FIG. The fuel supply schedule is to inject fuel with a primary injection pulse that is timed to coincide with the intake and / or compression stroke, and a secondary injection pulse that is timed to occur later than the primary injection pulse. Can be instructed to. In some embodiments, the secondary injection pulse is initiated at the inspiratory stroke. In some embodiments, the secondary injection pulse is initiated in the compression stroke.
ここで図4を参照すると、別の実施形態では、燃料供給スケジュールは、吸気および/または圧縮行程と一致するようにタイミング調整される一次噴射パルス、一次注入パルスよりも後で発生するようにタイミング調整される二次噴射パルス、二次噴射パルスよりも遅く発生するようにタイミングが調整される三次噴射パルスで、燃料を噴射するように指示することができる。いくつかの実施形態では、二次噴射パルスは吸気行程で開始され、三次噴射パルスは圧縮行程で開始される。いくつかの実施形態では、二次噴射パルスおよび三次噴射パルスは、圧縮行程で開始される。 Now referring to FIG. 4, in another embodiment, the fuel supply schedule is timed to occur after the primary injection pulse, the primary injection pulse, which is timed to coincide with the intake and / or compression stroke. A secondary injection pulse that is adjusted, a tertiary injection pulse whose timing is adjusted to occur later than the secondary injection pulse, can be instructed to inject fuel. In some embodiments, the secondary injection pulse is initiated in the intake stroke and the tertiary injection pulse is initiated in the compression stroke. In some embodiments, the secondary and tertiary injection pulses are initiated in the compression stroke.
いくつかの実施形態では、一次噴射パルスと二次噴射パルスの間、および一次、二次、および三次噴射パルスの間で供給される燃料の量を選択して、燃焼チャンバ内で所望の燃焼を提供することができる。一実施形態では、燃焼チャンバ内に噴射される燃料は、一次噴射パルスと二次噴射パルスとの間、または一次、二次、および三次噴射パルスの間で均等に分割される。いくつかの実施形態では、燃焼チャンバ内に噴射される燃料は不均一に分割される。そのような実施形態では、燃焼チャンバ内に噴射される燃料は、二次噴射パルスよりも一次噴射パルスでより大きな割合で、または三次噴射パルスよりも一次噴射パルスでより大きな割合で供給される(3つの噴射パルスが利用される場合)、または二次噴射パルスと三次噴射パルスとの組み合わせよりも一次噴射パルスの方が大きな割合で供給される。 In some embodiments, the amount of fuel supplied between the primary and secondary injection pulses and between the primary, secondary and tertiary injection pulses is selected to produce the desired combustion in the combustion chamber. Can be provided. In one embodiment, the fuel injected into the combustion chamber is evenly divided between the primary and secondary injection pulses, or between the primary, secondary, and tertiary injection pulses. In some embodiments, the fuel injected into the combustion chamber is unevenly divided. In such an embodiment, the fuel injected into the combustion chamber is delivered at a greater rate in the primary injection pulse than in the secondary injection pulse, or in a larger proportion in the primary injection pulse than in the tertiary injection pulse (). (When three injection pulses are used), or the primary injection pulse is supplied in a larger proportion than the combination of the secondary injection pulse and the tertiary injection pulse.
一実施形態では、二次または三次噴射パルスで噴射される燃料は、燃焼チャンバに噴射される全燃料の50%以下、例えば、40%以下、例えば、33%以下、例えば、25%以下、例えば、20%以下、例えば、15%以下、例えば10%以下である。一実施形態では、二次噴射パルスで噴射される燃料は、燃焼チャンバに噴射される全燃料の50%以下、例えば、40%以下、例えば、33%以下、例えば、25%以下、例えば、20%以下、例えば、15%以下である(2、3、またはそれ以上の噴射パルスが利用される実施形態において)。 In one embodiment, the fuel injected by the secondary or tertiary injection pulse is 50% or less, eg, 40% or less, eg, 33% or less, eg, 25% or less, eg, 25% or less of the total fuel injected into the combustion chamber. , 20% or less, for example, 15% or less, for example, 10% or less. In one embodiment, the fuel injected by the secondary injection pulse is 50% or less, eg, 40% or less, eg, 33% or less, eg, 25% or less, eg, 20% or less of the total fuel injected into the combustion chamber. % Or less, for example 15% or less (in embodiments where a few or more injection pulses are utilized).
様々な燃料供給スケジュールは、例えば、化学量論比の約5%以内、例えば、化学量論比の約3%以内、例えば、化学量論比の約2%以内、例えば、化学量論比の約1%以内の、化学量論比に近い混合気を燃焼チャンバに提供するように較正されてもよい。化学量論比に近い混合気で内燃機関を動作させることで、燃焼効率を維持することができ、NOx、一酸化炭素、および/または未燃炭化水素(燃料残渣)の排出を低減するために、排気ポート150の下流に配置された三元触媒コンバータを使用できるようになる。
The various fuel supply schedules are, for example, within about 5% of the chemical ratio, eg, within about 3% of the chemical ratio, eg, within about 2% of the chemical ratio, eg, of the chemical ratio. It may be calibrated to provide the combustion chamber with an air-fuel mixture close to the chemical ratio within about 1%. Combustion efficiency can be maintained and NOx, carbon monoxide, and / or unburned hydrocarbon (fuel residue) emissions can be reduced by operating the internal combustion engine with an air-fuel mixture close to the chemical ratio. , A three-way catalytic converter located downstream of the
二次噴射パルスおよび/または三次噴射パルスで一次噴射パルスよりも遅く噴射される燃料は、燃焼チャンバ内に存在する混合気を冷却する可能性がある。いくつかの実施形態では、二次噴射パルスおよび/または三次噴射パルスで噴射される燃料は、燃焼チャンバ内の熱を使用して燃料を気化させることによって、混合気を冷却することができる。いくつかの実施形態では、二次噴射パルスおよび/または三次噴射パルスで混合気を冷却することで、事前に点火された混合気を消火することができる。いくつかの実施形態では、二次噴射パルスおよび/または三次噴射パルスで混合気を冷却しても、事前に点火された混合気を消火することはできないが、残りの未燃混合気を十分に冷却して、未燃混合気が内燃機関でスーパーノック状態を形成するのを防ぐことができる。 Fuel injected later than the primary injection pulse in the secondary injection pulse and / or the tertiary injection pulse may cool the air-fuel mixture present in the combustion chamber. In some embodiments, the fuel injected by the secondary and / or tertiary injection pulses can cool the mixture by using the heat in the combustion chamber to vaporize the fuel. In some embodiments, the pre-ignited air-fuel mixture can be extinguished by cooling the air-fuel mixture with a secondary injection pulse and / or a tertiary injection pulse. In some embodiments, cooling the air-fuel mixture with a secondary-injection pulse and / or a tertiary-injection pulse does not extinguish the pre-ignited air-fuel mixture, but the remaining unburned air-fuel mixture is sufficient. Cooling can prevent the unburned mixture from forming a super-knock state in the internal combustion engine.
いくつかの実施形態では、第2の(または三次)噴射パルスは、上死点の前の120度よりも後、例えば上死点の前の90度よりも遅く、例えば上死点の前の60度よりも後、例えば上死点の前の30度よりも後で、燃料の噴射を開始してもよい。圧縮行程の後半に燃料を導入することで、混合気が冷却され、混合気に発生していたプレイグニッションが消滅し、これによりスーパーノック状態の発生を抑制することができる。 In some embodiments, the second (or tertiary) injection pulse is later than 120 degrees before top dead center, eg, 90 degrees before top dead center, eg before top dead center. Fuel injection may be initiated after 60 degrees, for example after 30 degrees before top dead center. By introducing the fuel in the latter half of the compression stroke, the air-fuel mixture is cooled and the pre-ignition generated in the air-fuel mixture disappears, whereby the occurrence of the super knock state can be suppressed.
燃料は、燃料噴射装置によって高圧で燃焼チャンバ内に噴射されて、燃焼チャンバに存在する空気中の燃料の噴霧化を促進することができる。燃料の噴霧化は、内燃機関の燃焼効率を高め、混合気が燃焼するときに特定の物質の排出、ならびにNOxおよび一酸化炭素の形成を減少させ、エンジンを出る未反応の炭化水素の量を減少させることがある。いくつかの実施形態では、高圧で燃料を噴射することにより、空気と燃料の混合気が燃焼される時に、空気と燃料の混合気を良好に混合することができるように、燃焼チャンバ内の比較的遠い距離に燃料を噴射することができる場合がある。いくつかの実施形態では、燃料は、少なくとも約100バール、例えば、少なくとも約120バール、例えば、少なくとも約140バール、例えば、少なくとも約160バール、例えば、少なくとも約180バール、例えば、少なくとも約200バールの圧力で噴射されてもよい。いくつかの実施形態では、燃料は、さらに高い圧力、例えば、少なくとも約500バール、例えば、少なくとも約750バール、例えば、少なくとも約1000バールで噴射されてもよい。高圧で燃料を噴射すると、燃焼チャンバ内の燃料の噴霧化が改善される場合がある。ただし、高圧で燃料を噴射すると、燃料が燃焼チャンバ内を移動する距離が短くなる可能性がある。したがって、燃料は、シリンダヘッドに近接して位置付けられているピストンに対応するタイミングで高圧で噴射されてもよい。燃焼チャンバ内での燃料の良好な噴霧化および混合は、エンジンの動力供給の改善(IMEPで測定される)、CoVの改善、排出量の改善、またはこれらの組み合わせとして示される場合がある。 The fuel can be injected into the combustion chamber at high pressure by the fuel injection device to promote atomization of the fuel in the air present in the combustion chamber. Fuel atomization increases the combustion efficiency of the internal combustion engine, reduces the emission of certain substances when the air-fuel mixture burns, as well as the formation of NOx and carbon monoxide, and reduces the amount of unreacted hydrocarbons that leave the engine. May be reduced. In some embodiments, a comparison within the combustion chamber allows the air-fuel mixture to be well mixed when the air-fuel mixture is burned by injecting fuel at high pressure. It may be possible to inject fuel over a distant distance. In some embodiments, the fuel is at least about 100 bar, eg, at least about 120 bar, eg, at least about 140 bar, eg, at least about 160 bar, eg, at least about 180 bar, eg, at least about 200 bar. It may be injected by pressure. In some embodiments, the fuel may be injected at a higher pressure, eg, at least about 500 bar, eg, at least about 750 bar, eg, at least about 1000 bar. Injecting fuel at high pressure may improve fuel atomization in the combustion chamber. However, injecting fuel at high pressure may reduce the distance the fuel travels in the combustion chamber. Therefore, the fuel may be injected at high pressure at the timing corresponding to the piston located close to the cylinder head. Good fuel atomization and mixing in the combustion chamber may be indicated as improved engine power supply (measured by IMEP), improved CoV, improved emissions, or a combination thereof.
いくつかの実施形態では、燃料噴射装置は、長時間パルスを発するように制御することができる。いくつかの実施形態では、一次、二次、および/または三次噴射パルスは、少なくとも約300μs、例えば、少なくとも約400μs、例えば、少なくとも約500μs、例えば、少なくとも約600μs、例えば、少なくとも約700μsの間保持されてもよい。一次、二次、および/または三次噴射パルスを長時間開いたままにすると、燃焼チャンバ内で燃料と空気をよりよく混合できるようになり、これは、エンジンの改善された出力供給(IMEPによって測定される)、改善されたCoV、またはその両方として示されることがある。 In some embodiments, the fuel injector can be controlled to emit long-term pulses. In some embodiments, the primary, secondary, and / or tertiary injection pulses are retained for at least about 300 μs, eg, at least about 400 μs, eg, at least about 500 μs, eg, at least about 600 μs, eg, at least about 700 μs. May be done. Leaving the primary, secondary, and / or tertiary injection pulses open for extended periods of time allows for better mixing of fuel and air in the combustion chamber, which is measured by the engine's improved power supply (measured by IMEP). ), Improved CoV, or both.
様々な実施形態では、本開示による内燃機関は、低速および高負荷状態において分割噴射モードを命令する燃料供給スケジュールで動作した場合に、単一パルス噴射モードで運転された同等のエンジンの出力供給および燃料消費率と同様の、エンジンの動力供給(IMEPによって測定される)および燃料消費率を引き続き示す。現在説明されているように、低速は、例えば、3000rpmまたは2000rpm未満のエンジン速度に対応し得る。高負荷状態は、12バールを超える、15バールを超える、またはさらには17バールを超える圧力に対応し得、17バールを超える負荷ではプレイグニッションの可能性が高くなる。しかしながら、当業者によって理解されるように、現在記載されている分割噴射技術は、他のエンジン状態でプレイグニッションを起こしやすいエンジンで利用することができる。分割噴射モードで動作するときに同等の出力供給および燃料消費率を提供することにより、内燃機関は、混合気のプレイグニッションを最小限に抑え、燃焼チャンバ内で形成されるスーパーノック状態に寄与する状態の形成を最小限に抑えながら、目標の性能を提供することができる。さらに、分割噴射モードで内燃機関を動作させた場合の燃料消費量は、単一パルス噴射モードで動作させた場合と同じであるため、エンジン制御モジュールは、混合気のプレイグニッションおよびスーパーノック状態の形成の可能性が高いエンジン状態において、分割噴射モードを有する燃料供給スケジュールを選択し、出力供給または燃料消費に悪影響を及ぼすことなく、その燃料供給スケジュールに従って内燃機関を動作させることができる。 In various embodiments, the internal combustion engine according to the present disclosure is the output supply and output of an equivalent engine operated in single pulse injection mode when operated on a fuel supply schedule that directs split injection mode at low speed and high load conditions. The engine power supply (measured by IMEP) and fuel consumption rate, similar to the fuel consumption rate, will continue to be shown. As currently described, low speeds may correspond to engine speeds of less than 3000 rpm or 2000 rpm, for example. High load conditions can accommodate pressures above 12 bar, above 15 bar, or even above 17 bar, with loads above 17 bar increasing the likelihood of pre-ignition. However, as will be appreciated by those skilled in the art, the split injection techniques currently described can be used in engines that are prone to pre-ignition in other engine conditions. By providing comparable power supply and fuel consumption when operating in split injection mode, the internal combustion engine minimizes pre-ignition of the air-fuel mixture and contributes to the super-knock condition formed within the combustion chamber. Target performance can be provided while minimizing the formation of conditions. Furthermore, since the fuel consumption when operating the internal combustion engine in the split injection mode is the same as when operating in the single pulse injection mode, the engine control module is in the preignition and super knock state of the air-fuel mixture. In an engine state that is likely to form, a fuel supply schedule with a split injection mode can be selected and the internal combustion engine can be operated according to the fuel supply schedule without adversely affecting the output supply or fuel consumption.
本開示による内燃機関は、シリンダヘッドおよびシリンダ側壁を有するエンジンシリンダと、エンジンシリンダ内で往復運動するピストンとを含み得ることが理解されるべきである。ピストン、シリンダヘッド、およびシリンダ側壁は、燃焼チャンバを少なくとも部分的に画定することができる。内燃機関はまた、燃焼チャンバに燃料を直接噴射するように位置付けられた燃料噴射装置も含み得る。内燃機関は、燃料噴射装置と電子通信しているエンジン制御モジュールをさらに含み得る。エンジン制御モジュールは、内燃機関がスーパーノック状態が発生する可能性の増加に対応する状態で動作しているかどうかを決定し、燃料噴射装置に、少なくとも一次噴射パルス、および一次噴射パルスよりも遅く発生する二次噴射パルスとで燃料を燃焼チャンバに噴射する分割噴射モードで動作するように命令する。 It should be understood that an internal combustion engine according to the present disclosure may include an engine cylinder having a cylinder head and cylinder sidewalls and a piston reciprocating within the engine cylinder. Pistons, cylinder heads, and cylinder sidewalls can at least partially define the combustion chamber. The internal combustion engine may also include a fuel injection device positioned to inject fuel directly into the combustion chamber. The internal combustion engine may further include an engine control module that is electronically communicating with the fuel injection device. The engine control module determines whether the internal combustion engine is operating in a condition that corresponds to the increased likelihood of a super knock condition occurring in the fuel injector, at least the primary injection pulse, and later than the primary injection pulse. It is instructed to operate in a split injection mode in which fuel is injected into the combustion chamber with a secondary injection pulse.
本開示の様々な態様は、以下の番号を付した態様で説明することができる。 Various aspects of the present disclosure can be described by the following numbered embodiments.
第1の態様A1は、内燃機関であって、シリンダヘッドおよびシリンダ側壁を含むエンジンシリンダと、エンジンシリンダ内で往復運動するピストンであって、ピストン、シリンダヘッド、および前記シリンダ側壁が燃焼チャンバを少なくとも部分的に画定する、ピストンと、燃焼チャンバ内に燃料を導入するように位置付けられた1つ以上の燃料噴射装置と、1つ以上の燃料噴射装置と電子通信するエンジン制御モジュールであって、エンジン制御モジュールが、プロセッサと、プロセッサによって実行されたときに、内燃機関がスーパーノック状態が発生する可能性のある状態で動作しているかどうかを決定することと、燃料噴射装置に、燃料が少なくとも一次噴射パルスおよび一次噴射パルスよりも遅く発生する二次噴射パルスで燃焼チャンバ内に噴射される分割噴射モードで動作するように命令することと、を行うコンピュータ可読命令セットを記憶するメモリと、を備える、エンジン制御モジュールと、を備える、内燃機関を含む。 The first aspect A1 is an internal combustion engine, in which an engine cylinder including a cylinder head and a cylinder side wall and a piston reciprocating in the engine cylinder, wherein the piston, the cylinder head, and the cylinder side wall at least a combustion chamber. A partially defined piston, one or more fuel injectors positioned to introduce fuel into a combustion chamber, and an engine control module that electronically communicates with one or more fuel injectors, an engine. The control module determines whether the internal combustion engine is operating with the processor and in conditions where a super knock condition can occur when run by the processor, and to the fuel injector that the fuel is at least primary. It comprises an injection pulse and a memory that stores a computer-readable instruction set to instruct to operate in a split injection mode injecting into the combustion chamber with a secondary injection pulse that occurs later than the primary injection pulse. Includes an internal combustion engine, which comprises an engine control module.
第2の態様A2は、態様A1の内燃機関を含み、分割噴射モードは、二次噴射パルスよりも遅く発生する三次噴射パルスをさらに含む。 The second aspect A2 includes the internal combustion engine of aspect A1, and the split injection mode further includes a tertiary injection pulse that occurs later than the secondary injection pulse.
第3の態様A3は、態様A1またはA2のいずれかに記載の内燃機関を含み、二次噴射パルスは、燃焼チャンバ内に燃料の20%以下を噴射する。 A third aspect A3 comprises the internal combustion engine according to either aspect A1 or A2, wherein the secondary injection pulse injects 20% or less of the fuel into the combustion chamber.
第4の態様A4は、態様A1~A3のいずれか1つに記載の内燃機関を含み、一次噴射パルスにおいて、二次噴射パルスよりも大量の燃料が噴射される。 A fourth aspect A4 includes the internal combustion engine according to any one of aspects A1 to A3, in which a larger amount of fuel is injected in the primary injection pulse than in the secondary injection pulse.
第5の態様A5は、態様A4の内燃機関を含み、二次噴射パルスは、燃焼チャンバ内に燃料の20%以下を噴射する。 A fifth aspect A5 includes the internal combustion engine of aspect A4, in which the secondary injection pulse injects 20% or less of the fuel into the combustion chamber.
第6の態様A6は、態様A1~A5のいずれか1つに記載の内燃機関を含み、燃焼チャンバと選択的に流体連絡している吸気マニホルドを加圧するように位置付けられた圧縮機をさらに備える。 A sixth aspect A6 includes the internal combustion engine according to any one of aspects A1 to A5, further comprising a compressor positioned to pressurize an intake manifold that is selectively fluid-contacted with the combustion chamber. ..
第7の態様A7は、態様A1~A6のいずれか1つに記載の内燃機関を含み、エンジン制御モジュールは、燃焼チャンバ内の空燃比を化学量論比の3%以内に維持する。 A seventh aspect A7 includes the internal combustion engine according to any one of aspects A1 to A6, wherein the engine control module maintains the air-fuel ratio in the combustion chamber within 3% of the chemical ratio.
第8の態様A8は、態様A1~A7のいずれか1つに記載の内燃機関を含み、二次噴射パルスは、上死点の前の120度より後のクランク角で燃焼チャンバ内に燃料を噴射する。 Eighth aspect A8 comprises the internal combustion engine according to any one of aspects A1 to A7, wherein the secondary injection pulse fuels fuel into the combustion chamber at a crank angle after 120 degrees before top dead center. Inject.
第9の態様A9は、態様A1~A8のいずれか1つに記載の内燃機関を含み、エンジン制御モジュールは、内燃機関がスーパーノック状態が発生する可能性が低い状態で動作しているかどうかをさらに決定し、単一パルス噴射で燃焼チャンバ内に燃料を噴射する。 A ninth aspect A9 includes the internal combustion engine according to any one of aspects A1 to A8, and the engine control module determines whether or not the internal combustion engine is operating in a state in which the possibility of a super knock state is low. Further determined, fuel is injected into the combustion chamber with a single pulse injection.
第10の態様A10は、内燃機関を動作させる方法であって、エンジン制御モジュールを使用して、内燃機関がスーパーノック状態が発生する可能性のある場合に対応する状態で動作しているかどうかを決定することと、燃料噴射装置を使用して、シリンダヘッドおよびシリンダ側壁を備えるエンジンシリンダと、エンジンシリンダ内で往復運動するピストンと、を備える燃焼チャンバ内に燃料を直接噴射することと、を含み、燃料が、燃料が少なくとも一次噴射パルスおよび一次噴射パルスよりも遅く発生する二次噴射パルスで燃焼チャンバ内に噴射される、分割噴射モードで前記燃焼チャンバ内に噴射される、方法を含む。 A tenth aspect A10 is a method of operating an internal combustion engine, in which an engine control module is used to determine whether the internal combustion engine is operating in a state corresponding to a case where a super knock state may occur. Includes determining and using a fuel injection device to inject fuel directly into a combustion chamber comprising an engine cylinder with a cylinder head and cylinder sidewalls and a piston reciprocating within the engine cylinder. Includes a method in which the fuel is injected into the combustion chamber in a split injection mode, where the fuel is injected into the combustion chamber with a secondary injection pulse that occurs at least later than the primary injection pulse and the primary injection pulse.
第11の態様A11は、態様A10に記載の方法を含み、エンジン制御モジュールが燃焼チャンバ内の空燃比を化学量論比の3%以内に維持する。 Eleventh aspect A11 comprises the method of aspect A10, wherein the engine control module maintains the air-fuel ratio in the combustion chamber within 3% of the stoichiometric ratio.
第12の態様A12は、態様A10またはA11のいずれかに記載の方法を含み、エンジン制御モジュールを使用して、内燃機関がスーパーノック状態が発生する可能性が低い状態で動作しているかどうかを決定し、単一パルス噴射で燃焼チャンバ内に燃料を注入することをさらに含む。 A twelfth aspect A12 includes the method according to any one of aspects A10 or A11, and uses an engine control module to determine whether the internal combustion engine is operating in a state in which the possibility of a super knock state is low. Determining and further including injecting fuel into the combustion chamber with a single pulse injection.
第13の態様A13は、態様A10~A12のいずれか1つに記載の方法を含み、二次噴射パルスが燃焼チャンバ内に燃料の20%以下を噴射する。 A thirteenth aspect A13 comprises the method according to any one of aspects A10 to A12, wherein the secondary injection pulse injects 20% or less of the fuel into the combustion chamber.
第14の態様A14は、態様A10~A13のいずれか1つに記載の方法を含み、分割噴射モードでの燃料の噴射が、二次噴射パルスよりも遅く発生する三次噴射パルスをさらに含み、二次噴射パルスが、燃焼チャンバ内の燃料の20%以下を噴射する。 A14th aspect A14 includes the method according to any one of aspects A10 to A13, further comprising a tertiary injection pulse in which fuel injection in the split injection mode occurs later than the secondary injection pulse. The next injection pulse injects less than 20% of the fuel in the combustion chamber.
第15の態様A15は、内燃機関であって、シリンダヘッドおよびシリンダ側壁を含むエンジンシリンダと、エンジンシリンダ内で往復運動するピストンであって、ピストン、シリンダヘッド、および前記シリンダ側壁が燃焼チャンバを少なくとも部分的に画定する、ピストンと、燃焼チャンバ内に燃料を導入するように位置付けられた燃料噴射装置と、燃料噴射装置と電子通信するエンジン制御モジュールであって、エンジン制御モジュールが、プロセッサと、プロセッサによって実行されたときに、内燃機関がスーパーノック状態が発生する可能性のある状態で動作しているかどうかを決定することと、燃料噴射装置に、燃料が少なくとも一次噴射パルスおよび一次噴射パルスよりも遅く発生する二次噴射パルスで燃焼チャンバ内に噴射される分割噴射モードで動作するように命令することであって、エンジン制御モジュールが、燃焼チャンバ内の空燃比を化学量論比の3%以内に維持する、命令することと、を行うコンピュータ可読命令セットを記憶する、メモリと、を備える、エンジン制御モジュールと、を備える、内燃機関を含む。 Fifteenth aspect A15 is an internal combustion engine, in which an engine cylinder including a cylinder head and a cylinder side wall and a piston reciprocating in the engine cylinder, wherein the piston, the cylinder head, and the cylinder side wall at least a combustion chamber. A partially defined piston, a fuel injector positioned to introduce fuel into the combustion chamber, and an engine control module that electronically communicates with the fuel injector, the engine control module being a processor and a processor. To determine if the internal combustion engine is operating in a condition where a super knock condition can occur when run by, and to the fuel injector, the fuel is at least more than the primary injection pulse and the primary injection pulse. By instructing the engine to operate in a split injection mode in which a late secondary injection pulse is injected into the combustion chamber, the engine control module sets the air-fuel ratio in the combustion chamber to within 3% of the chemical ratio. Includes an internal combustion engine, including an engine control module, which stores a computer-readable instruction set that maintains, commands, and performs.
当業者には、特許請求される主題の趣旨および範囲から逸脱することなく、本明細書に記載される実施形態に対してさまざまな修正および変更がなされ得ることが明らかであろう。したがって、本明細書は、本明細書に記載される様々な実施形態の修正および変更を包含することが意図されるが、そのような修正および変更が、添付の特許請求の範囲およびその等価物の範囲内に入ることを条件とする。 It will be apparent to those skilled in the art that various modifications and changes can be made to the embodiments described herein without departing from the spirit and scope of the claimed subject matter. Accordingly, this specification is intended to include amendments and modifications of the various embodiments described herein, such amendments and amendments to the appended claims and their equivalents. It is a condition that it falls within the range of.
Claims (15)
シリンダヘッドおよびシリンダ側壁を含むエンジンシリンダと、
前記エンジンシリンダ内で往復運動するピストンであって、前記ピストン、前記シリンダヘッド、および前記シリンダ側壁が燃焼チャンバを少なくとも部分的に画定する、ピストンと、
前記燃焼チャンバ内に燃料を導入するように位置付けられた1つ以上の燃料噴射装置と、
前記1つ以上の燃料噴射装置と電子通信するエンジン制御モジュールであって、前記エンジン制御モジュールが、プロセッサと、前記プロセッサによって実行されたときに、
前記内燃機関がスーパーノック状態が発生する可能性のある状態で動作しているかどうかを決定することと、
前記燃料噴射装置に、燃料が少なくとも一次噴射パルスおよび前記一次噴射パルスよりも遅く発生する二次噴射パルスで燃焼チャンバ内に噴射される分割噴射モードで動作するように命令することと、を行うコンピュータ可読命令セットを記憶するメモリと、を備える、エンジン制御モジュールと、
を備える、内燃機関。 It ’s an internal combustion engine.
Engine cylinders, including cylinder heads and cylinder sidewalls,
A piston that reciprocates in the engine cylinder, wherein the piston, the cylinder head, and the cylinder sidewalls at least partially define the combustion chamber.
With one or more fuel injectors positioned to introduce fuel into the combustion chamber,
An engine control module that electronically communicates with one or more fuel injectors, wherein the engine control module is executed by a processor and the processor.
Determining whether the internal combustion engine is operating in a condition where a super knock condition may occur.
A computer that commands the fuel injection device to operate in a split injection mode in which fuel is injected into the combustion chamber with at least a primary injection pulse and a secondary injection pulse that occurs later than the primary injection pulse. An engine control module with a memory for storing a set of readable instructions,
With an internal combustion engine.
前記内燃機関が前記スーパーノック状態が発生する可能性が低い状態で動作しているかどうかを決定することと、
単一パルス噴射で前記燃焼チャンバ内に前記燃料を噴射することと、
をさらに行う、請求項1~8のいずれか一項に記載の内燃機関。 The engine control module
Determining whether the internal combustion engine is operating in a state in which the super knock condition is unlikely to occur, and
Injecting the fuel into the combustion chamber with a single pulse injection,
The internal combustion engine according to any one of claims 1 to 8, further comprising the above.
エンジン制御モジュールを使用して、内燃機関がスーパーノック状態が発生する可能性のある場合に対応する状態で動作しているかどうかを決定することと、
燃料噴射装置を使用して、シリンダヘッドおよびシリンダ側壁を備えるエンジンシリンダと、前記エンジンシリンダ内で往復運動するピストンと、を備える燃焼チャンバ内に燃料を直接噴射することと、
を含み、
前記燃料が、前記燃料が少なくとも一次噴射パルスおよび前記一次噴射パルスよりも遅く発生する二次噴射パルスで前記燃焼チャンバ内に噴射される、分割噴射モードで前記燃焼チャンバ内に噴射される、方法。 It ’s a way to operate an internal combustion engine.
Using the engine control module to determine if the internal combustion engine is operating in a condition that corresponds to the potential for a super knock condition.
Using a fuel injector to inject fuel directly into a combustion chamber comprising an engine cylinder with a cylinder head and cylinder sidewalls and a piston reciprocating within the engine cylinder.
Including
A method of injecting the fuel into the combustion chamber in a split injection mode, wherein the fuel is injected into the combustion chamber with at least a primary injection pulse and a secondary injection pulse generated later than the primary injection pulse.
シリンダヘッドおよびシリンダ側壁を含むエンジンシリンダと、
前記エンジンシリンダ内で往復運動するピストンであって、前記ピストン、前記シリンダヘッド、および前記シリンダ側壁が燃焼チャンバを少なくとも部分的に画定する、ピストンと、
前記燃焼チャンバ内に燃料を導入するように位置付けられた燃料噴射装置と、
前記燃料噴射装置と電子通信するエンジン制御モジュールであって、前記エンジン制御モジュールが、プロセッサと、実行されたときに前記プロセッサに、
前記内燃機関がスーパーノック状態が発生する可能性のある状態で動作しているかどうかを決定することと、
前記燃料噴射装置に、燃料が少なくとも一次噴射パルスおよび前記一次噴射パルスよりも遅く発生する二次噴射パルスで燃焼チャンバ内に噴射される分割噴射モードで動作するように命令することであって、前記エンジン制御モジュールが、前記燃焼チャンバ内の空燃比を化学量論比の3%以内に維持する、命令することと、を行うコンピュータ可読命令セットを記憶する、メモリと、を備える、エンジン制御モジュールと、
を備える、内燃機関。 It ’s an internal combustion engine.
Engine cylinders, including cylinder heads and cylinder sidewalls,
A piston that reciprocates in the engine cylinder, wherein the piston, the cylinder head, and the cylinder sidewalls at least partially define the combustion chamber.
A fuel injection device positioned to introduce fuel into the combustion chamber,
An engine control module that electronically communicates with the fuel injection device, the engine control module having a processor and, when executed, the processor.
Determining whether the internal combustion engine is operating in a condition where a super knock condition may occur.
The fuel injection device is instructed to operate in a split injection mode in which fuel is injected into the combustion chamber with at least a primary injection pulse and a secondary injection pulse generated later than the primary injection pulse. With an engine control module, the engine control module comprises a memory, which stores a computer-readable instruction set that keeps the air-fuel ratio in the combustion chamber within 3% of the stoichiometric ratio, commands, and performs. ,
With an internal combustion engine.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/280,526 | 2019-02-20 | ||
US16/280,526 US11236698B2 (en) | 2019-02-20 | 2019-02-20 | Internal combustion engines having pre-ignition mitigation controls and methods for their operation |
PCT/US2019/050734 WO2020171848A1 (en) | 2019-02-20 | 2019-09-12 | Method for mitigating the pre-ignitions in an internal combustion engine |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2022521580A true JP2022521580A (en) | 2022-04-11 |
JPWO2020171848A5 JPWO2020171848A5 (en) | 2022-09-20 |
JP7411669B2 JP7411669B2 (en) | 2024-01-11 |
Family
ID=68159149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021548256A Active JP7411669B2 (en) | 2019-02-20 | 2019-09-12 | How to reduce preignition in internal combustion engines |
Country Status (7)
Country | Link |
---|---|
US (1) | US11236698B2 (en) |
EP (1) | EP3927956A1 (en) |
JP (1) | JP7411669B2 (en) |
KR (1) | KR102801729B1 (en) |
CN (1) | CN113508223A (en) |
SA (1) | SA521430086B1 (en) |
WO (1) | WO2020171848A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119256154A (en) * | 2022-05-25 | 2025-01-03 | 合派迪艾技术有限合伙企业 | Device and method for managing auto-ignition in an in-cylinder injector and combustion chamber of an internal combustion engine |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002161831A (en) * | 2000-11-27 | 2002-06-07 | Nissan Motor Co Ltd | Fuel injection valve and fuel injection device of spark ignition type direct injection internal combustion engine |
JP2007224753A (en) * | 2006-02-21 | 2007-09-06 | Mazda Motor Corp | Spark ignition type direct injection engine |
JP2008202559A (en) * | 2007-02-22 | 2008-09-04 | Toyota Motor Corp | Fuel injection control device for internal combustion engine |
JP2016531994A (en) * | 2013-09-19 | 2016-10-13 | ザ ルブリゾル コーポレイションThe Lubrizol Corporation | Lubricant composition for direct injection engines |
JP2016186260A (en) * | 2015-03-27 | 2016-10-27 | マツダ株式会社 | Engine fuel control device |
JP2017020355A (en) * | 2015-07-07 | 2017-01-26 | マツダ株式会社 | Control device for engine |
Family Cites Families (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5373726A (en) * | 1992-03-19 | 1994-12-20 | Woodward Governor Company | Detonation detection system for internal combustion engines |
SE505543C2 (en) | 1995-12-27 | 1997-09-15 | Mecel Ab | Method for controlling knocking in an internal combustion engine |
JP3472661B2 (en) | 1996-03-28 | 2003-12-02 | 三菱電機株式会社 | Ion current detector for internal combustion engines |
JPH09324690A (en) | 1996-06-03 | 1997-12-16 | Mitsubishi Electric Corp | Internal combustion engine control device |
JP3715082B2 (en) | 1996-09-19 | 2005-11-09 | トヨタ自動車株式会社 | Knock control device for internal combustion engine |
JP3129403B2 (en) | 1997-05-15 | 2001-01-29 | トヨタ自動車株式会社 | Ion current detector |
JP3505419B2 (en) | 1999-01-27 | 2004-03-08 | 三菱電機株式会社 | Device for detecting combustion state of internal combustion engine |
JP3474810B2 (en) | 1999-08-30 | 2003-12-08 | 三菱電機株式会社 | Device for detecting combustion state of internal combustion engine |
JP3783823B2 (en) | 1999-09-03 | 2006-06-07 | 三菱電機株式会社 | Knock control device for internal combustion engine |
US6892885B2 (en) | 2001-10-15 | 2005-05-17 | Rehrig Pacific Company | Nestable crate for containers |
US6615811B1 (en) | 2002-03-04 | 2003-09-09 | Delphi Technologies, Inc. | Ignition coil integrated ion sense with combustion and knock outputs |
US6883497B2 (en) | 2003-09-17 | 2005-04-26 | General Motors Corporation | Method of preventing preignition for an internal combustion engine |
JP4415876B2 (en) | 2004-07-22 | 2010-02-17 | トヨタ自動車株式会社 | Control device for internal combustion engine |
US7412966B2 (en) | 2005-11-30 | 2008-08-19 | Ford Global Technologies, Llc | Engine output control system and method |
US7302932B2 (en) | 2006-03-17 | 2007-12-04 | Ford Global Technologies, Llc | Pre-ignition detection and mitigation |
US7533651B2 (en) | 2006-03-17 | 2009-05-19 | Ford Global Technologies, Llc | System and method for reducing knock and preignition in an internal combustion engine |
US7484498B2 (en) * | 2006-03-31 | 2009-02-03 | Mazda Motor Corporation | Spark-ignition gasoline engine |
JP5332645B2 (en) | 2008-03-03 | 2013-11-06 | 日産自動車株式会社 | In-cylinder direct injection internal combustion engine |
CN102472165B (en) | 2009-06-30 | 2014-11-05 | 康明斯发电Ip公司 | Apparatus, systems, and methods to address evaporative cooling and wet compression for engine thermal management |
JP5424944B2 (en) | 2010-03-12 | 2014-02-26 | 三菱電機株式会社 | Control device for internal combustion engine |
DE102010064186B4 (en) | 2010-03-25 | 2023-03-16 | Robert Bosch Gmbh | Method and device for treating uncontrolled burns in an internal combustion engine of a motor vehicle |
DE102010003291B4 (en) * | 2010-03-25 | 2017-05-11 | Robert Bosch Gmbh | Method and device for reducing uncontrolled burns in an internal combustion engine |
US8639432B2 (en) * | 2010-03-31 | 2014-01-28 | Mazda Motor Corporation | Abnormal combustion detection method for spark-ignition engine, and spark-ignition engine |
US20120029789A1 (en) * | 2010-04-30 | 2012-02-02 | Southwest Research Institute | Methods of detecting pre-ignition and preventing it from causing knock in direct injection spark ignition engines |
US8463533B2 (en) | 2010-08-05 | 2013-06-11 | Ford Global Technologies, Llc | Method and system for pre-ignition control |
JP4924751B1 (en) * | 2010-11-09 | 2012-04-25 | マツダ株式会社 | Control method and control device for spark ignition direct injection engine |
US8910615B2 (en) | 2011-02-02 | 2014-12-16 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for internal combustion engine |
US8095297B2 (en) | 2011-03-24 | 2012-01-10 | Ford Global Technologies, Llc | Method and system for pre-ignition control |
US8838365B2 (en) | 2011-03-24 | 2014-09-16 | Ford Global Technologies, Llc | Method and system for pre-ignition control |
US8171912B2 (en) | 2011-04-20 | 2012-05-08 | Ford Global Technologies, Llc | Method and system for pre-ignition control |
US8156923B2 (en) | 2011-04-20 | 2012-04-17 | Ford Global Technologies, Llc | Method and system for pre-ignition control |
JP5048856B1 (en) | 2011-04-27 | 2012-10-17 | 三菱電機株式会社 | Preignition estimation control device for internal combustion engine |
US8666637B2 (en) | 2011-08-03 | 2014-03-04 | Ford Global Technologies, Llc | Method and system for pre-ignition control |
US8347852B2 (en) | 2011-08-03 | 2013-01-08 | Ford Global Technologies, Llc | Method and system for pre-ignition control |
US9038596B2 (en) | 2011-12-02 | 2015-05-26 | Ford Global Technologies, Llc | Method and system for pre-ignition control |
US9551288B2 (en) | 2012-06-29 | 2017-01-24 | Ford Global Technologies, Llc | Method and system for pre-ignition control |
US9043122B2 (en) | 2012-06-29 | 2015-05-26 | Ford Global Technologies, Llc | Method and system for pre-ignition control |
US9057339B2 (en) | 2012-07-19 | 2015-06-16 | GM Global Technology Operations LLC | Stochastic pre-ignition mitigation system |
US9932883B2 (en) * | 2012-08-29 | 2018-04-03 | Mazda Motor Corporation | Spark-ignition direct-injection engine |
US9267484B2 (en) | 2013-03-14 | 2016-02-23 | Ford Global Technologies, Llc | Method and system for pre-ignition control |
US20140297164A1 (en) | 2013-04-01 | 2014-10-02 | GM Global Technologies Operations LLC | Stochastic pre-ignition (spi) mitigation using an adaptive spi scaler |
CN103334846B (en) | 2013-07-23 | 2016-03-30 | 清华大学 | Super knocking judgment and control method |
US9399968B2 (en) | 2013-09-05 | 2016-07-26 | Ford Global Technologies, Llc | Engine control for a liquid petroleum gas fueled engine |
CN103603730A (en) | 2013-11-18 | 2014-02-26 | 同济大学 | Ionic current based spark ignition engine preignition detection control device |
US10196999B2 (en) | 2013-12-05 | 2019-02-05 | Ford Global Technologies, Llc | Method and system for pre-ignition control |
US9273622B2 (en) | 2014-03-07 | 2016-03-01 | Ford Global Technologies, Llc | Methods and systems for pre-ignition control in a variable displacement engine |
US9631572B2 (en) | 2014-05-28 | 2017-04-25 | Ford Global Technologies, Llc | Method and system for pre-ignition control |
US9506411B2 (en) | 2014-10-17 | 2016-11-29 | Ford Global Technologies, Llc | If method and system for engine knock control |
US9611801B2 (en) * | 2014-12-15 | 2017-04-04 | Ford Global Technologies, Llc | Methods and systems for fixed and variable pressure fuel injection |
CN104533618B (en) | 2015-01-04 | 2017-09-26 | 同济大学 | The system and detection method of engine super detonation are detected based on gas current |
US9890716B2 (en) | 2015-01-23 | 2018-02-13 | Ford Global Technologies, Llc | Method and system for pre-ignition control |
JP6312618B2 (en) | 2015-03-13 | 2018-04-18 | 日立オートモティブシステムズ株式会社 | Internal combustion engine control device and abnormal combustion detection method |
US9759145B2 (en) | 2015-08-21 | 2017-09-12 | Ford Global Technologies, Llc | Method and system for pre-ignition control |
US9903334B2 (en) | 2016-05-10 | 2018-02-27 | Fca Us Llc | Low speed pre-ignition knock detection |
US10626813B2 (en) | 2016-06-09 | 2020-04-21 | Ford Global Technologies, Llc | System and method for controlling engine knock |
US10208691B2 (en) | 2017-01-03 | 2019-02-19 | Fev Gmbh | System and process for predicting and preventing pre-ignition |
US10202898B2 (en) * | 2017-04-25 | 2019-02-12 | Ford Global Technologies, Llc | Method and system for fuel injection control |
JP6555312B2 (en) * | 2017-09-27 | 2019-08-07 | マツダ株式会社 | Turbocharged engine |
-
2019
- 2019-02-20 US US16/280,526 patent/US11236698B2/en active Active
- 2019-09-12 JP JP2021548256A patent/JP7411669B2/en active Active
- 2019-09-12 WO PCT/US2019/050734 patent/WO2020171848A1/en unknown
- 2019-09-12 CN CN201980092584.0A patent/CN113508223A/en active Pending
- 2019-09-12 KR KR1020217030151A patent/KR102801729B1/en active Active
- 2019-09-12 EP EP19783390.8A patent/EP3927956A1/en not_active Withdrawn
-
2021
- 2021-08-17 SA SA521430086A patent/SA521430086B1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002161831A (en) * | 2000-11-27 | 2002-06-07 | Nissan Motor Co Ltd | Fuel injection valve and fuel injection device of spark ignition type direct injection internal combustion engine |
JP2007224753A (en) * | 2006-02-21 | 2007-09-06 | Mazda Motor Corp | Spark ignition type direct injection engine |
JP2008202559A (en) * | 2007-02-22 | 2008-09-04 | Toyota Motor Corp | Fuel injection control device for internal combustion engine |
JP2016531994A (en) * | 2013-09-19 | 2016-10-13 | ザ ルブリゾル コーポレイションThe Lubrizol Corporation | Lubricant composition for direct injection engines |
JP2016186260A (en) * | 2015-03-27 | 2016-10-27 | マツダ株式会社 | Engine fuel control device |
JP2017020355A (en) * | 2015-07-07 | 2017-01-26 | マツダ株式会社 | Control device for engine |
Also Published As
Publication number | Publication date |
---|---|
JP7411669B2 (en) | 2024-01-11 |
KR20210126745A (en) | 2021-10-20 |
WO2020171848A1 (en) | 2020-08-27 |
EP3927956A1 (en) | 2021-12-29 |
US11236698B2 (en) | 2022-02-01 |
SA521430086B1 (en) | 2023-02-28 |
US20200263626A1 (en) | 2020-08-20 |
KR102801729B1 (en) | 2025-04-30 |
CN113508223A (en) | 2021-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103201478B (en) | The method of the combustion process of internal-combustion engine and controlling combustion engine | |
JP5423717B2 (en) | Spark ignition gasoline engine | |
JP5447423B2 (en) | gasoline engine | |
US9470174B2 (en) | Control system and control method of spark ignition gasoline engine | |
JP5494545B2 (en) | Spark ignition gasoline engine | |
US10677186B2 (en) | Control apparatus for compression auto-ignition engine | |
US9784207B2 (en) | Control apparatus for internal combustion engine | |
US7441537B2 (en) | Method and apparatus to control combustion in a spray-guided direct injection spark-ignited engine | |
JP2004239208A (en) | Engine combustion control device | |
JP2004500514A (en) | Method and apparatus for controlling combustion by introducing gaseous fuel into an internal combustion engine | |
JP5922830B1 (en) | Gas engine | |
US10787985B2 (en) | Combustion control device for compression autoignition engine | |
US11118528B2 (en) | Fuel injection control device for engine | |
US11149675B2 (en) | Fuel injection control device for engine | |
US10066574B2 (en) | Control apparatus for internal combustion engine | |
US11162448B2 (en) | Fuel injection control device for engine | |
US10677187B2 (en) | Combustion control device for compression autoignition engine | |
US11313311B2 (en) | Fuel injection control device for engine | |
JP2012241591A (en) | Gasoline engine | |
US20150114355A1 (en) | Method and apparatus for controlling combustion of engine having mixed combustion mode | |
JP2018040263A (en) | Control device for internal combustion engine | |
JP2018040264A (en) | Control device for internal combustion engine | |
JP7411669B2 (en) | How to reduce preignition in internal combustion engines | |
JP3879568B2 (en) | In-cylinder injection spark ignition internal combustion engine | |
Park et al. | Combustion characteristics of stratified mixture in lean-burn LPG direct-injection engine with spray-guided combustion system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220909 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220909 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230628 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230705 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231003 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231225 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7411669 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |