[go: up one dir, main page]

JP2022500268A - Digital hydraulic drive method for a two-legged robot by multi-quadrant coupling in joint motion conditions - Google Patents

Digital hydraulic drive method for a two-legged robot by multi-quadrant coupling in joint motion conditions Download PDF

Info

Publication number
JP2022500268A
JP2022500268A JP2021521815A JP2021521815A JP2022500268A JP 2022500268 A JP2022500268 A JP 2022500268A JP 2021521815 A JP2021521815 A JP 2021521815A JP 2021521815 A JP2021521815 A JP 2021521815A JP 2022500268 A JP2022500268 A JP 2022500268A
Authority
JP
Japan
Prior art keywords
hydraulic
legged robot
digital
state
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021521815A
Other languages
Japanese (ja)
Other versions
JP7012904B2 (en
Inventor
安桓 ▲謝▼
利波 成
丹 ▲張▼
世▲強▼ 朱
Original Assignee
之江実験室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 之江実験室 filed Critical 之江実験室
Publication of JP2022500268A publication Critical patent/JP2022500268A/en
Application granted granted Critical
Publication of JP7012904B2 publication Critical patent/JP7012904B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

【課題】本発明は、関節動作状況における複数象限カップリングの最適化による2足ロボットのデジタル油圧省エネ駆動方法を提供する。【解決手段】本発明は2足ロボットの油圧駆動分野に関し、2足ロボットの有限状態機械及び関節運動、負荷動作状況グラフを構築し、油圧システムのデジタルバルブ群のグローバルな最適動作モードに合わせて、多目的最適化配置戦略を採用することにより、2足ロボット油圧システムの油圧エネルギーと運動ポテンシャルエネルギーとの間のエネルギー効率の高い変換メカニズムを実現する。本発明によれば、2足ロボット油圧駆動システムの解析及び省エネ駆動効果が良好であり、ロボット全体のエネルギー効率値を高めることができる。【選択図】図1PROBLEM TO BE SOLVED: To provide a digital hydraulic energy-saving driving method of a two-legged robot by optimizing a plurality of quadrant coupling in a joint operation state. The present invention relates to the field of hydraulic drive of a two-legged robot, constructs a finite state machine of the two-legged robot, joint movement, and a load operation status graph, and adapts to the global optimum operation mode of a digital valve group of the hydraulic system. By adopting a multi-objective optimized placement strategy, a highly energy-efficient conversion mechanism between the hydraulic energy and kinetic potential energy of a two-legged robot hydraulic system is realized. According to the present invention, the analysis of the two-legged robot hydraulic drive system and the energy-saving drive effect are good, and the energy efficiency value of the entire robot can be increased. [Selection diagram] Fig. 1

Description

本発明は2足ロボットの油圧駆動分野に関し、特に関節動作状況における複数象限カップリングによる2足ロボットのデジタル油圧駆動方法に関する。 The present invention relates to the field of hydraulic drive of a two-legged robot, and particularly to a digital hydraulic drive method of a two-legged robot by a multi-quadrant coupling in a joint operation situation.

2足ロボットはその独特のヒトのような構造及び運動方式により、柔軟性、環境適応性等の性能において優れた表現を有するが、一方で、ロボット全体の機動性、バランス、ロバスト性等に対して極めて高い要求を提出し、それにより2足ロボットが足型ロボット分野の人気スポット及び難点となった。効率的、高精度、軽量の駆動システムは2足ロボットの重要な技術の1つである。電気駆動技術に比べて、油圧駆動はパワー密度が高く、出力が大きく、直線運動を実施しやすいという多くの優位性を有し、現在ロボットの高機動性を実現する最適な選択の1つである。 The two-legged robot has excellent expressions in terms of flexibility, environmental adaptability, etc. due to its unique human-like structure and movement method, but on the other hand, it has respect for the mobility, balance, robustness, etc. of the entire robot. It submitted extremely high demands, which made bipedal robots a popular spot and a drawback in the field of foot robots. Efficient, accurate and lightweight drive system is one of the important technologies of two-legged robot. Compared to electric drive technology, hydraulic drive has many advantages such as high power density, high output, and easy linear motion, and is currently one of the best choices for achieving high mobility of robots. be.

油圧駆動システムは2足ロボットに広く応用されているが、そのエネルギー消費は常に油圧駆動型の足型ロボットの開発及び応用を制限する主なボトルネックでした。現在、世界では、最も高い油圧駆動レベルの1つを有する4足ロボットであるBigDogのエネルギー効率値(Cost of Transport、CoT=P/mv、)が15と高く、同種類の生物のエネルギー効率レベルより遥かに高く、これは、油圧駆動型の脚・足型ロボットのエネルギー効率の向上に余地があることを示している。 Although hydraulic drive systems are widely applied to two-legged robots, their energy consumption has always been a major bottleneck limiting the development and application of hydraulically driven foot-operated robots. Currently, the energy efficiency value (Cost of Transport, CoT = P / mv) of BigDog, a four-legged robot with one of the highest hydraulic drive levels in the world, is as high as 15, and the energy efficiency level of organisms of the same type. Much higher, which indicates that there is room for improved energy efficiency in hydraulically driven leg and foot robots.

従来の2足ロボットの油圧システムはエネルギー消費が大きく、エネルギー効率値が小さいという問題に対して、関節動作状況における複数象限カップリングによる2足ロボットのデジタル油圧駆動方法を提供する。 To solve the problems that the hydraulic system of the conventional two-legged robot consumes a large amount of energy and the energy efficiency value is small, it provides a digital hydraulic drive method of the two-legged robot by a multi-quadruple coupling in a joint operation situation.

本発明の目的は以下の技術案によって実現される。 The object of the present invention is realized by the following technical proposals.

関節動作状況における複数象限カップリングによる2足ロボットのデジタル油圧駆動方法であって、
2足ロボットの構成及び歩振りに基づいて順運動学と動力学モデルを構築し、腿・足部の位置及び関節の受力状況に応じてロボットの腿部油圧関節運動の有限状態機械を設計して、各油圧関節の負荷、運動状態及び変化規則を取得し、これに基づいて各油圧関節に対応する運動動作状況グラフを構築するステップ(1)と、
It is a digital hydraulic drive method for a two-legged robot by coupling in multiple quadrants in joint movement conditions.
Construct a forward kinematics and dynamics model based on the configuration and walking of a two-legged robot, and design a finite state machine for the robot's thigh hydraulic joint movement according to the position of the thigh / foot and the receiving condition of the joint. Then, the load, the motion state, and the change rule of each hydraulic joint are acquired, and based on this, the motion operation status graph corresponding to each hydraulic joint is constructed (1).

各時刻のすべての動作状況グラフの複数象限カップリング併存特徴を分析して、デジタル油圧システムの圧力と流量の分布を取得し、前記油圧システムの圧力と流量の分布に基づいて、2足ロボット油圧システムの総エネルギー効率値を説明する無次元コスト関数を構築し、ロボット制御における前記2足ロボットの総エネルギー効率値に対応する重みを設定するステップ(2)と、 The multi-quadruple coupling coexistence feature of all operating status graphs at each time is analyzed to obtain the pressure and flow distribution of the digital hydraulic system, and the two-legged robot hydraulic pressure is based on the pressure and flow distribution of the hydraulic system. A step (2) of constructing a dimensionless cost function explaining the total energy efficiency value of the system and setting a weight corresponding to the total energy efficiency value of the two-legged robot in robot control.

対応する重みに基づいて各油圧シリンダに対応するデジタルバルブ群の動作モードをマッチングし、油圧シリンダを駆動して動作させ、ロボットを制御して運動させるステップ(3)と、
を含む2足ロボットのデジタル油圧駆動方法。
The step (3) of matching the operation mode of the digital valve group corresponding to each hydraulic cylinder based on the corresponding weight, driving the hydraulic cylinder to operate, and controlling and moving the robot,
Digital hydraulic drive method for two-legged robots including.

更に、ステップ(1)における運動動作状況グラフは油圧シリンダの負荷状態、デジタル油圧バルブの動作モード及びそれらのマッピング関係を含む。 Further, the motion operation status graph in step (1) includes the load state of the hydraulic cylinder, the operation mode of the digital hydraulic valve, and their mapping relationship.

更に、前記油圧シリンダの負荷状態は速度−負荷座標系において、第1象限から第4象限までの負荷状態がそれぞれ負の負荷、正の負荷、負の負荷、正の負荷として示され、前記デジタル油圧バルブの動作モードがそれぞれ通常、浮動、再生、回収の4つのモードに分けられる。 Further, the load state of the hydraulic cylinder is shown as a negative load, a positive load, a negative load, and a positive load, respectively, in the speed-load coordinate system, and the load states from the first quadrant to the fourth quadrant are shown as the digital. The operation mode of the hydraulic valve is usually divided into four modes: floating, regeneration, and recovery.

更に、前記ロボット腿部運動の有限状態機械には、離地瞬間状態、足部離地状態、腿部を前に振る状態、離地最高点状態、腿部を後に振る状態、着地瞬間状態、圧縮減速状態、伸展加速状態を含む。 Further, the robot thigh motion finite state machine includes a takeoff moment state, a foot takeoff state, a thigh swing forward state, a takeoff maximum point state, a thigh swing back state, and a landing moment state. Includes compression deceleration state and extension acceleration state.

更に、ステップ(2)における総エネルギー効率値の無次元コスト関数は、次の式のとおりである。

Figure 2022500268
P(t)が油圧システムの総電力であり、nが油圧シリンダの数であり、PLi(t)がi番目の油圧シリンダの仕事電力であり、Pwi(t)がi番目の油圧シリンダに対応する散逸電力であり、該油圧シリンダに対応するパイプラインシステムの損失及びアクチュエータの損失を含み、ηが油圧ポンプの総効率値である。 Further, the dimensionless cost function of the total energy efficiency value in step (2) is as follows.
Figure 2022500268
P (t) is the total power of the hydraulic system, n is the number of hydraulic cylinders, P Li (t) is the work power of the i-th hydraulic cylinder, and P wi (t) is the i-th hydraulic cylinder. Is the dissipated power corresponding to, including the loss of the pipeline system and the loss of the actuator corresponding to the hydraulic cylinder, and η p is the total efficiency value of the hydraulic pump.

更に、各デジタルバルブ群は4つの高速スイッチ型のデジタル油圧バルブによって構成され、ロードポート独立制御技術を用いる。 Furthermore, each digital valve group is composed of four high-speed switch type digital hydraulic valves and uses load port independent control technology.

従来技術に比べて、本発明は以下の有益な効果を有する。本発明のデジタル油圧駆動方法は2足ロボットの油圧関節負荷及び運動状態の循環往復特徴、並びに関節動作状況に複数の象限が同時にカップリングされる特徴が存在することを十分に考慮して、グローバル角度からデジタル油圧バルブ群の動作モードのマッチングを最適化し、負仕事関節エネルギーを吸収し、正仕事関節エネルギーの補給を減少し、スロットル、オーバーフロー等の油圧パイプラインシステムのエネルギー損失を減少し、それにより2足ロボットのデジタル油圧関節を効率的に駆動するという目的を実現する。 Compared with the prior art, the present invention has the following beneficial effects. The digital hydraulic drive method of the present invention is global in consideration of the hydraulic joint load of the two-legged robot, the circular reciprocating feature of the motion state, and the feature that a plurality of quadrants are simultaneously coupled to the joint operation state. Optimizes the matching of operating modes of digital hydraulic valves from the angle, absorbs negative work joint energy, reduces the supply of positive work joint energy, reduces the energy loss of hydraulic pipeline system such as throttle, overflow, it. This realizes the purpose of efficiently driving the digital hydraulic joints of a two-legged robot.

図1は2足ロボットの腿部運動の有限状態機械を示す図である。FIG. 1 is a diagram showing a finite state machine of thigh movement of a two-legged robot. 図2は2足ロボットの油圧関節の負荷状態を示す図である。FIG. 2 is a diagram showing a load state of hydraulic joints of a two-legged robot. 図3はプログラマ可能なデジタルバルブの動作モードを列挙する図である。FIG. 3 is a diagram listing the operating modes of the digital valve that can be programmed. 図4は2足ロボットの腿部関節の模式図である。FIG. 4 is a schematic diagram of the thigh joint of a two-legged robot.

以下、本発明の目的及び効果がより明確になるように、図面を参照しながら好適な実施例によって本発明を詳しく説明する。理解されるように、ここで説明される具体的な実施例は本発明を解釈するためのものであって、本発明を制限するためのものではない。 Hereinafter, the present invention will be described in detail with reference to the drawings with reference to suitable examples so that the object and effect of the present invention become clearer. As will be appreciated, the specific examples described herein are for the purpose of interpreting the present invention and not for limiting the present invention.

本発明は関節動作状況における複数象限カップリングによる2足ロボットのデジタル油圧駆動方法を提供し、具体的に以下のステップを含む。 The present invention provides a digital hydraulic drive method for a two-legged robot by multi-quadrant coupling in a joint motion situation, specifically including the following steps.

(1)2足ロボットの構成及び歩振りに基づいて順運動学と動力学モデルを構築し、腿・足部の位置及び関節の受力状況に応じてロボット腿部油圧関節運動の有限状態機械を設計し、人間が歩く歩振りを模擬する。設計された有限状態機械が図1に示され、離地瞬間状態、足部離地状態、腿部を前に振る状態、離地最高点状態、腿部を後に振る状態、着地瞬間状態、圧縮減速状態、伸展加速状態を含む。各油圧関節の負荷、運動状態及び変化規則を取得し、これに基づいて各油圧関節に対応する運動動作状況グラフを構築する。前記運動動作状況グラフには油圧シリンダの負荷状態、デジタル油圧バルブの動作モード及びそれらのマッピング関係を含む。図2に示すように、前記油圧シリンダの負荷状態は、速度v−負荷F座標系において、第1象限から第4象限までの負荷状態がそれぞれ負の負荷、正の負荷、負の負荷、正の負荷として示され、図3に示すように、前記デジタル油圧バルブの動作モードは油圧シリンダの両側の受力及び流量方向によって通常、浮動、再生、回収の4つのモードに分けられる。負の負荷状態に対応するデジタル油圧バルブの動作モードは通常及び再生の2つのモードがあり、正の負荷状態に対応するデジタル油圧バルブの動作モードは通常、浮動、再生、回収の4つのモードがある。通常モードとは、給油オイルがすべて外部油ダクトから由来し、戻りオイルが直接油タンクに戻ることを意味し、浮動モードとは、すべての給油オイルが油タンク及び外部油ダクトを通過せずに戻りオイルからのものであることを意味し、再生モードとは、ロッドキャビティ内のすべてのオイルがロッドレスキャビティに入り又はロッドレスキャビティから由来し、不足又は余分な油圧作動油がすべて外部油ダクトにより補充又は回収されることを意味し、回収モードとは、回収された高圧オイルが外部油ダクトに戻り、給油された低圧オイルがすべて油タンクから由来することを意味する。 (1) A forward kinematics and dynamics model is constructed based on the configuration and walking of the two-legged robot, and a finite state machine of the robot thigh hydraulic joint movement according to the position of the thigh / foot and the receiving condition of the joint. To simulate the walking behavior of a human being. The designed finite state machine is shown in FIG. 1, which shows the momentary state of takeoff, the state of foot takeoff, the state of swinging the thigh forward, the state of the highest point of takeoff, the state of swinging the thigh backward, the state of momentary landing, and compression. Includes deceleration and extension acceleration. The load, motion state, and change rule of each hydraulic joint are acquired, and a motion motion status graph corresponding to each hydraulic joint is constructed based on this. The motion operation status graph includes the load state of the hydraulic cylinder, the operation mode of the digital hydraulic valve, and their mapping relationship. As shown in FIG. 2, the load states of the hydraulic cylinders are negative load, positive load, and negative load in the load states from the first quadrant to the fourth quadrant in the velocity v c -load FL coordinate system, respectively. As shown in FIG. 3, the operation mode of the digital hydraulic valve is usually divided into four modes of floating, regeneration, and recovery depending on the receiving force and the flow rate direction on both sides of the hydraulic cylinder. The operation mode of the digital hydraulic valve corresponding to the negative load condition has two modes, normal and regeneration, and the operation mode of the digital hydraulic valve corresponding to the positive load condition usually has four modes of floating, regeneration and recovery. be. Normal mode means that all the refueling oil comes from the external oil duct and the return oil returns directly to the oil tank, and floating mode means that all the refueling oil does not pass through the oil tank and the external oil duct. Regeneration mode means that it is from the return oil, all the oil in the rod cavity enters or comes from the rodless cavity, and all the missing or extra hydraulic hydraulic oil is in the external oil duct. The recovery mode means that the recovered high pressure oil is returned to the external oil duct and all the refueled low pressure oil is derived from the oil tank.

(2)各時刻のすべての動作状況グラフの複数象限カップリング併存特徴を分析して、デジタル油圧システムの圧力と流量の分布を取得する。前記油圧システムの圧力と流量の分布に基づいて、2足ロボット油圧システムの総エネルギー効率値を説明する無次元コスト関数を構築し、前記2足ロボットの総エネルギー効率値に対応する重みを設定する。前記無次元コスト関数はグローバル関節油圧シリンダの正の負荷及び負の負荷の分布状況、並びにパイプラインシステム及び実行システムによる電力損失を計算し、システムが外部油圧エネルギーの入力及び油圧作動油流量トポロジー構造の最適解を必要とするかどうかを決定する。 (2) Analyze the coexistence characteristics of multiple quadrant couplings in all operating status graphs at each time to obtain the pressure and flow rate distributions of the digital hydraulic system. Based on the pressure and flow rate distribution of the hydraulic system, a dimensionless cost function explaining the total energy efficiency value of the two-legged robot hydraulic system is constructed, and the weight corresponding to the total energy efficiency value of the two-legged robot is set. .. The dimensionless cost function calculates the distribution of positive and negative loads of the global articulated hydraulic cylinder, as well as the power loss due to the pipeline system and execution system, and the system inputs external hydraulic energy and hydraulic oil flow rate topology structure. Determine if you need the optimal solution for.

Figure 2022500268
P(t)が油圧システムの総電力であり、nが油圧シリンダの数であり、PLi(t)がi番目の油圧シリンダの仕事電力であり、Pwi(t)がi番目の油圧シリンダに対応する散逸電力であり、該油圧シリンダに対応するパイプラインシステムの損失及びアクチュエータの損失を含み、ηが油圧ポンプの総効率値である。
Figure 2022500268
P (t) is the total power of the hydraulic system, n is the number of hydraulic cylinders, P Li (t) is the work power of the i-th hydraulic cylinder, and P wi (t) is the i-th hydraulic cylinder. Is the dissipated power corresponding to, including the loss of the pipeline system and the loss of the actuator corresponding to the hydraulic cylinder, and η p is the total efficiency value of the hydraulic pump.

多目的最適化配置戦略は無次元コスト関数を基に、エネルギー効率値及びシステムのロバスト性、安定性、迅速性のバランスをまとめて考慮して、グローバルデジタルバルブ群に多目的最適化の動作モード配置戦略を構築し、対応する重みを取得する。 The multi-objective optimization placement strategy is based on a dimensionless cost function, and considers the balance between energy efficiency and system robustness, stability, and agility, and is a multi-purpose optimization operation mode placement strategy for the global digital valve group. And get the corresponding weights.

(3)対応する重みに基づいて各油圧シリンダに対応するデジタルバルブ群の動作モードをマッチングし、油圧シリンダを駆動して動作させ、ロボットを制御して運動させる。各デジタルバルブ群は4つの高速スイッチ型のデジタル油圧バルブによって構成され、ロードポート独立制御技術を用いて油圧シリンダの張力及び流量をデカップリングすることにより、油圧シリンダの動作モードを柔軟に切り替えることができる。 (3) The operation modes of the digital valve group corresponding to each hydraulic cylinder are matched based on the corresponding weights, the hydraulic cylinders are driven and operated, and the robot is controlled and moved. Each digital valve group consists of four high-speed switch type digital hydraulic valves, and the operation mode of the hydraulic cylinder can be flexibly switched by decoupling the tension and flow rate of the hydraulic cylinder using load port independent control technology. can.

図4は代表的な2足ロボットの腿部構造を示す図であり、その左右の2つの腿はそれぞれ6つの自由度を有し、合計で少なくとも12個の油圧関節がある。本実施例は両側の膝関節を例として説明する。 FIG. 4 is a diagram showing the thigh structure of a typical two-legged robot, each of which has six degrees of freedom on the left and right thighs, and has at least 12 hydraulic joints in total. This embodiment will be described by taking both knee joints as an example.

まず、ロボットの通常歩行歩振りに対して運動学と動力学分析を行う。腿部が着地瞬間から圧縮減速段階まで、膝関節は湾曲減速状態にあり、油圧シリンダは図2における第2象限の正の負荷状態にあり、外部に対して負の仕事をし、伸展加速から離地瞬間まで、膝関節は伸展加速段階にあり、油圧シリンダは図2における第1象限の負の負荷にあり、外部に対して正の仕事をし、足部離地から腿部を前に振る段階まで、膝関節は伸展減速段階にあり、油圧シリンダは図2における第4象限の正の負荷にあり、外部に対して負の仕事をし、離地最高点から腿部を後に振る段階まで、膝関節は湾曲加速状態にあり、油圧シリンダは第3象限にあり、外部に対して正の仕事をする。 First, kinematics and dynamics analysis are performed on the normal walking and walking behavior of the robot. From the moment the thigh lands to the compression / deceleration stage, the knee joint is in a curved deceleration state, and the hydraulic cylinder is in a positive load state in the second quadrant in FIG. Until the moment of takeoff, the knee joint is in the extension acceleration stage, the hydraulic cylinder is under the negative load of the first quadrant in FIG. Until the swing stage, the knee joint is in the extension / deceleration stage, the hydraulic cylinder is in the positive load of the 4th quadrant in FIG. 2, does negative work to the outside, and swings the thigh backward from the highest point of takeoff. Until then, the knee joint is in a curved acceleration state, the hydraulic cylinder is in the third quadrant, and it does a positive job to the outside.

着地瞬間から離地瞬間まで、ロボットの腿部は常に地面に接触しており、大きな負荷をかける必要があり、油圧シリンダに対応するデジタルバルブ群の動作モードを図3における第2象限の再生、回収及び第1象限の通常、再生としてもよい。足部離地から腿部を後に振る段階まで、ロボットの腿部は地面に接触しておらず、膝関節油圧シリンダは下腿以下の部分の慣性を克服して仕事をするだけでよく、負荷がより小さく、対応するデジタルバルブ群の動作モードは図3における第4象限の浮動、再生及び第3象限の通常であってもよい。 From the moment of landing to the moment of takeoff, the thigh of the robot is always in contact with the ground, and it is necessary to apply a large load. Recovery and normal regeneration of the first quadrant may be used. From the foot takeoff to the stage of swinging the thigh backward, the thigh of the robot is not in contact with the ground, and the knee joint hydraulic cylinder only has to overcome the inertia of the part below the lower leg to work, and the load is high. The smaller and corresponding operating modes of the digital valves may be the normal in the fourth quadrant, floating, regenerating and third quadrant in FIG.

本実施例では、2足膝関節の運動及び負荷状態のみを考慮して、油圧パイプラインのエネルギー損失及び油圧ポンプの効率等の要素を考慮しないため、最適化目的がより少なく、片側の膝関節の回収又は再生した後の余分な油圧エネルギーを他側の膝関節に容易に輸送することができ、これにより、2足ロボットの腿部油圧関節の効率的な省エネ駆動を実現する。 In this embodiment, only the movement and load state of the two-legged knee joint are considered, and factors such as the energy loss of the hydraulic pipeline and the efficiency of the hydraulic pump are not considered. The excess hydraulic energy after recovery or regeneration can be easily transported to the knee joint on the other side, thereby realizing efficient energy-saving driving of the thigh hydraulic joint of the two-legged robot.

当業者であれば理解されるように、以上の説明は本発明の簡単な実施例であって、本発明を制限するためのものではない。本発明の趣旨や原則内に行った修正や等価置換等はいずれも本発明の保護範囲内に含まれるべきである。 As will be appreciated by those skilled in the art, the above description is a brief embodiment of the invention and is not intended to limit the invention. Any modifications or equivalent substitutions made within the gist or principle of the present invention should be included within the scope of protection of the present invention.

Claims (6)

関節動作状況における複数象限カップリングによる2足ロボットのデジタル油圧駆動方法であって、
2足ロボットの構成及び歩振りに基づいて順運動学と動力学モデルを構築し、腿・足部の位置及び関節の受力状況に応じてロボットの腿部油圧関節運動の有限状態機械を設計し、各油圧関節の負荷、運動状態及び変化規則を取得し、これに基づいて各油圧関節に対応する運動動作状況グラフを構築するステップ(1)と、
各時刻のすべての動作状況グラフの複数象限カップリング併存特徴を分析して、デジタル油圧システムの圧力と流量の分布を取得し、前記油圧システムの圧力と流量の分布に基づいて、2足ロボット油圧システムの総エネルギー効率値を説明する無次元コスト関数を構築し、ロボット制御における前記2足ロボットの総エネルギー効率値に対応する重みを設定するステップ(2)と、
対応する重みに基づいて各油圧シリンダに対応するデジタルバルブ群の動作モードをマッチングし、油圧シリンダを駆動して動作させ、ロボットを制御して運動させるステップ(3)と、を含むことを特徴とする2足ロボットのデジタル油圧駆動方法。
It is a digital hydraulic drive method for a two-legged robot by coupling in multiple quadrants in joint movement conditions.
Construct a forward kinematics and dynamics model based on the configuration and walking of a two-legged robot, and design a finite state machine for the robot's thigh hydraulic joint movement according to the position of the thigh / foot and the receiving condition of the joint. Then, the load, motion state, and change rule of each hydraulic joint are acquired, and based on this, the motion operation status graph corresponding to each hydraulic joint is constructed (1).
The multi-quadruple coupling coexistence feature of all operating status graphs at each time is analyzed to obtain the pressure and flow distribution of the digital hydraulic system, and the two-legged robot hydraulic pressure is based on the pressure and flow distribution of the hydraulic system. A step (2) of constructing a dimensionless cost function explaining the total energy efficiency value of the system and setting a weight corresponding to the total energy efficiency value of the two-legged robot in robot control.
It is characterized by including a step (3) of matching the operation mode of the digital valve group corresponding to each hydraulic cylinder based on the corresponding weight, driving the hydraulic cylinder to operate, and controlling the robot to move. A digital hydraulic drive method for a two-legged robot.
ステップ(1)における運動動作状況グラフは油圧シリンダの負荷状態、デジタル油圧バルブの動作モード及びそれらのマッピング関係を含むことを特徴とする請求項1に記載の2足ロボットのデジタル油圧駆動方法。 The digital hydraulic drive method for a two-legged robot according to claim 1, wherein the motion operation status graph in step (1) includes a load state of a hydraulic cylinder, an operation mode of a digital hydraulic valve, and a mapping relationship thereof. 前記油圧シリンダの負荷状態は、速度−負荷座標系において、第1象限から第4象限までの負荷状態がそれぞれ負の負荷、正の負荷、負の負荷、正の負荷として示され、前記デジタル油圧バルブの動作モードは、それぞれ通常、浮動、再生、回収の4つのモードに分けられることを特徴とする請求項2に記載の2足ロボットのデジタル油圧駆動方法。 The load state of the hydraulic cylinder is shown as a negative load, a positive load, a negative load, and a positive load, respectively, in the speed-load coordinate system, in which the load states from the first quadrant to the fourth quadrant are shown as the digital hydraulic pressure. The digital hydraulic drive method for a two-legged robot according to claim 2, wherein the operation mode of the valve is usually divided into four modes of floating, regeneration, and recovery. 前記ロボットの腿部油圧関節運動の有限状態機械は、離地瞬間状態、足部離地状態、腿部を前に振る状態、離地最高点状態、腿部を後に振る状態、着地瞬間状態、圧縮減速状態、伸展加速状態を含むことを特徴とする請求項1に記載の2足ロボットのデジタル油圧駆動方法。 The finite state machine of the thigh hydraulic joint movement of the robot is a state of momentary takeoff, a state of takeoff of the foot, a state of swinging the thigh forward, a state of the highest point of takeoff, a state of swinging the thigh backward, a state of momentary landing, The digital hydraulic drive method for a two-legged robot according to claim 1, wherein the two-legged robot includes a compression deceleration state and an extension acceleration state. ステップ(2)における総エネルギー効率値の無次元コスト関数は、次の式のとおりであり、
Figure 2022500268
P(t)が油圧システムの総電力であり、nが油圧シリンダの数であり、PLi(t)がi番目の油圧シリンダの仕事電力であり、Pwi(t)がi番目の油圧シリンダに対応する散逸電力であり、該油圧シリンダに対応するパイプラインシステムの損失及びアクチュエータの損失を含み、ηが油圧ポンプの総効率値であることを特徴とする請求項1に記載の2足ロボットのデジタル油圧駆動方法。
The dimensionless cost function of the total energy efficiency value in step (2) is as follows.
Figure 2022500268
P (t) is the total power of the hydraulic system, n is the number of hydraulic cylinders, P Li (t) is the work power of the i-th hydraulic cylinder, and P wi (t) is the i-th hydraulic cylinder. The two pairs according to claim 1, wherein the dissipated power corresponds to, the loss of the pipeline system corresponding to the hydraulic cylinder and the loss of the actuator, and η p is the total efficiency value of the hydraulic pump. Digital hydraulic drive method for robots.
各デジタルバルブ群は4つの高速スイッチ型のデジタル油圧バルブによって構成され、ロードポート独立制御技術を用いることを特徴とする請求項1に記載の2足ロボットのデジタル油圧駆動方法。 The digital hydraulic drive method for a two-legged robot according to claim 1, wherein each digital valve group is composed of four high-speed switch type digital hydraulic valves and uses load port independent control technology.
JP2021521815A 2020-03-27 2020-09-16 Digital hydraulic drive method for a two-legged robot by multi-quadrant coupling in joint motion conditions Active JP7012904B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202010226464.X 2020-03-27
CN202010226464.XA CN111114668B (en) 2020-03-27 2020-03-27 Digital hydraulic drive method for biped robot based on multi-quadrant coupling of joint working conditions
PCT/CN2020/115592 WO2021077950A1 (en) 2020-03-27 2020-09-16 Digital hydraulic driving method for bipedal robot, based on multi-quadrant coupling of joint working states

Publications (2)

Publication Number Publication Date
JP2022500268A true JP2022500268A (en) 2022-01-04
JP7012904B2 JP7012904B2 (en) 2022-01-28

Family

ID=70493927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021521815A Active JP7012904B2 (en) 2020-03-27 2020-09-16 Digital hydraulic drive method for a two-legged robot by multi-quadrant coupling in joint motion conditions

Country Status (4)

Country Link
JP (1) JP7012904B2 (en)
CN (1) CN111114668B (en)
LU (1) LU500114B1 (en)
WO (1) WO2021077950A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111114668B (en) * 2020-03-27 2020-07-07 之江实验室 Digital hydraulic drive method for biped robot based on multi-quadrant coupling of joint working conditions
CN115056881B (en) * 2022-04-26 2024-12-20 中国北方车辆研究所 An electro-hydraulic hybrid quadruped robot with integrated bionic trunk
CN115416017B (en) * 2022-08-17 2024-09-27 燕山大学 Method for constructing electrohydraulic control sense simulation platform of hydraulic quadruped robot

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070233279A1 (en) * 2006-03-09 2007-10-04 The Regents Of The University Of California Power generating leg
JP2009274142A (en) * 2008-05-12 2009-11-26 Tokai Univ Walking robot
CN102378669A (en) * 2009-01-30 2012-03-14 麻省理工学院 Model-based neuromechanical controller for a robotic leg
CN105686930A (en) * 2016-03-01 2016-06-22 芜湖安普机器人产业技术研究院有限公司 Connecting rod and joint integrated hydraulic driving external skeleton
JP2017522195A (en) * 2014-07-23 2017-08-10 グーグル インコーポレイテッド Predictable adjustable hydraulic rail

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2994926B2 (en) * 1993-10-29 1999-12-27 松下電器産業株式会社 Method for creating finite state machine, method for creating pattern matching machine, method for transforming them, and method for driving
JP2004170756A (en) * 2002-11-21 2004-06-17 Sony Corp Unit and method for robot control, recording medium, and program
US10307272B2 (en) * 2005-03-31 2019-06-04 Massachusetts Institute Of Technology Method for using a model-based controller for a robotic leg
KR20100001567A (en) * 2008-06-27 2010-01-06 삼성전자주식회사 Walking robot and method of controlling the same
KR101985790B1 (en) * 2012-02-21 2019-06-04 삼성전자주식회사 Walking robot and control method thereof
CN103395065B (en) * 2013-08-07 2015-05-13 长春工业大学 Hydraulic hard and soft mechanical arm control method based on two-parameter singular perturbation
US9849003B2 (en) * 2014-03-19 2017-12-26 Mayo Foundation For Medical Education And Research System for powered ankle-foot prosthesis with active control of dorsiflexion-plantarflexion and inversion-eversion
US20190343710A1 (en) * 2018-05-11 2019-11-14 Arizona Board Of Regents On Behalf Of Northern Arizona University Exoskeleton device
CN108897318A (en) * 2018-06-22 2018-11-27 哈尔滨理工大学 Hydraulic quadruped robot power mechanism load matched method
CN110315543B (en) * 2019-07-29 2021-02-26 北京理工大学 Biped robot gait generation and optimization method
CN111114668B (en) * 2020-03-27 2020-07-07 之江实验室 Digital hydraulic drive method for biped robot based on multi-quadrant coupling of joint working conditions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070233279A1 (en) * 2006-03-09 2007-10-04 The Regents Of The University Of California Power generating leg
JP2009274142A (en) * 2008-05-12 2009-11-26 Tokai Univ Walking robot
CN102378669A (en) * 2009-01-30 2012-03-14 麻省理工学院 Model-based neuromechanical controller for a robotic leg
JP2017522195A (en) * 2014-07-23 2017-08-10 グーグル インコーポレイテッド Predictable adjustable hydraulic rail
CN105686930A (en) * 2016-03-01 2016-06-22 芜湖安普机器人产业技术研究院有限公司 Connecting rod and joint integrated hydraulic driving external skeleton

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ウッディサード ロードマイ: ""階段昇降可能な無動力油圧循環システムを有する大腿義足"", 第31回日本ロボット学会学術講演会, JPN6021052157, ISSN: 0004673816 *

Also Published As

Publication number Publication date
LU500114B1 (en) 2021-11-04
WO2021077950A1 (en) 2021-04-29
CN111114668A (en) 2020-05-08
JP7012904B2 (en) 2022-01-28
CN111114668B (en) 2020-07-07

Similar Documents

Publication Publication Date Title
JP7012904B2 (en) Digital hydraulic drive method for a two-legged robot by multi-quadrant coupling in joint motion conditions
CN110700337B (en) Energy-saving control system and control method for movable arm of excavator
US10533542B2 (en) Rapidly modulated hydraulic supply for a robotic device
CN113819105B (en) Hydraulic system for electrically proportional controlling multi-working-position valve and control method thereof
CN108412821B (en) A hydraulic-electric hybrid-driven walking robot
CN102493517B (en) Hydraulic hybrid excavator slewing system and driving and braking method of the slewing system
CN103235513A (en) Genetic-algorithm-based trajectory planning optimization method for mobile mechanical arm
CN108897318A (en) Hydraulic quadruped robot power mechanism load matched method
WO2012174937A1 (en) Excavator hydraulic system equipped with load-sensitive main valve and positive flow pump
CN106049593A (en) Automatic idling system based on multiple hydraulic accumulators and control method
CN101314404B (en) Parent-subsidiary bionic machinery fish system
Li et al. A new bionic hydraulic actuator system for legged robots with impact buffering, impact energy absorption, impact energy storage, and force burst
CN110421555A (en) A kind of four-degree-of-freedom crawl robot based on Electrical hydrostatic actuator driving unit
CN208010677U (en) A kind of electro-hydraulic hybrid-driven mechanical arm control system
CN111536085B (en) A hydraulic control system for a foot-type hydraulic robot with energy recovery
CN108517904A (en) A kind of hydraulic crawler excavator of liquid electricity combination drive
CN106013312B (en) Complete electrically driven (operated) hydraulic crawler excavator dynamical system
CN211312642U (en) Excavator movable arm energy-saving control system
CN209158403U (en) A joint energy-saving system for hydraulic quadruped robot with variable oil supply pressure
CN211144945U (en) A hydraulic power system of a quadruped robot with variable oil supply pressure from a single pump source
Hyon et al. Hydraulic servo booster for serially configured modular robots
CN211737606U (en) A Hydraulic Servo System for Heavy-Duty Mechanical Arm with Seven Degrees of Freedom
CN208533609U (en) A hydraulic excavator rotary energy recovery system
CN210829933U (en) Hydraulic walking system with series-parallel connection switchable multiple actuators
CN222405695U (en) Master-slave control electrohydraulic servo double-arm robot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210414

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220118

R150 Certificate of patent or registration of utility model

Ref document number: 7012904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150