[go: up one dir, main page]

JP2022173506A - 発光素子 - Google Patents

発光素子 Download PDF

Info

Publication number
JP2022173506A
JP2022173506A JP2022159244A JP2022159244A JP2022173506A JP 2022173506 A JP2022173506 A JP 2022173506A JP 2022159244 A JP2022159244 A JP 2022159244A JP 2022159244 A JP2022159244 A JP 2022159244A JP 2022173506 A JP2022173506 A JP 2022173506A
Authority
JP
Japan
Prior art keywords
light
emitting element
abbreviation
layer
phenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2022159244A
Other languages
English (en)
Inventor
哲史 瀬尾
Tetsushi Seo
俊介 細海
Shunsuke Hosomi
舜平 山崎
Shunpei Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2022173506A publication Critical patent/JP2022173506A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/70Testing, e.g. accelerated lifetime tests
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/128Active-matrix OLED [AMOLED] displays comprising two independent displays, e.g. for emitting information from two major sides of the display
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

Figure 2022173506000001
【課題】発光素子の駆動において、新たな劣化曲線を示す信頼性の高い発光素子を提供す
る。
【解決手段】長寿命な発光素子の劣化曲線は、初期劣化成分を表す指数関数と、長期劣化
成分を表す指数関数とを線形結合した複合指数関数で表される。ここで、初期劣化の成分
は、拡張指数関数(Stretched Exponential Function)
で表され、長期劣化の成分は一次的な減衰を示す単一指数関数(Single Expo
nential Function)で表される。該複合指数関数で表される劣化曲線を
有する発光素子を作製することで、信頼性が高い発光素子が得られる。別言すれば、本発
明の一態様の複合指数関数は、信頼性の高い発光素子の劣化曲線を精度よくフィッティン
グできる。
【選択図】図2

Description

本発明の一態様は、発光素子の劣化機構に関する。また、発光素子、発光装置、電子機器
、および照明装置に関する。但し、本発明の一態様は、それらに限定されない。すなわち
、本発明の一態様は、物、方法、製造方法、または駆動方法に関する。または、本発明の
一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オ
ブ・マター)に関する。また、具体的には、半導体装置、表示装置、液晶表示装置などを
一例として挙げることができる。
一対の電極間にEL層を挟んでなる発光素子(有機EL素子ともいう)は、薄型軽量、入
力信号に対する高速な応答性、低消費電力などの特性を有することから、これらを適用し
たディスプレイは、次世代のフラットパネルディスプレイとして注目されている。
発光素子は、一対の電極間に電圧を印加することにより、各電極から注入された電子およ
びホールがEL層において再結合し、EL層に含まれる発光物質(有機化合物)が励起状
態となり、その励起状態が基底状態に戻る際に発光する。なお、励起状態の種類としては
、一重項励起状態(S)と三重項励起状態(T)とがあり、一重項励起状態からの発
光が蛍光、三重項励起状態からの発光が燐光と呼ばれている。また、発光素子におけるそ
れらの統計的な生成比率は、S:T=1:3であると考えられている。発光物質から
得られる発光スペクトルはその発光物質特有のものであり、異なる種類の有機化合物を発
光物質として用いることによって、様々な発光色の発光素子を得ることができる。
一方、この様な発光素子に関しては、駆動による素子の劣化が問題となっており、分解物
の生成やダークスポットの発生を抑制し、長時間の駆動が可能な発光素子の開発が望まれ
ている。なお、このような経時劣化を予測すべく、様々な観点から劣化曲線を示す理論式
が導出されている(例えば、特許文献1参照。)。
特開2007-12581号公報
発光素子の開発において、劣化の要因となりうる「発光素子の駆動試験における輝度劣化
」と「有機分子の変化」とを結びつけることは非常に難しい。しかし、これらをパラメー
タとする劣化曲線を得ることができれば、発光素子の劣化要因を容易に特定することがで
き、これを低減すべく素子開発を進めることができる。またそれにより、信頼性の高い発
光素子の特徴を抽出し、更なる高信頼性化を図ることが出来る。
そこで、本発明の一態様では、素子特性や信頼性の高い発光素子において、その劣化曲線
を精度よくフィッティングできる新たな関数を提供することを課題とする。また、本発明
の一態様では、上記関数で表される新たな劣化曲線を示し、駆動した際の信頼性が高い発
光素子を提供する。また、このような発光素子を有する発光装置、電子機器、または照明
装置を提供する。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。また、本発明の一
態様は、必ずしも、これらの課題の全てを解決する必要はない。また、これら以外の課題
は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図
面、請求項などの記載から、これら以外の課題を抽出することが可能である。
発光素子の劣化要因は様々であり、一般には複雑と言われている。しかしながら、耐久性
の高い材料、劣化を抑制する素子構造、そして純度よく製造する製造プロセスなどを組み
合わせることにより長寿命化した発光素子の劣化曲線は、実はある特定の関数で表される
ことを本発明者らは見出した。
長寿命化な発光素子は劣化要因が単純化されているため、その劣化要因としては、初期劣
化と長期劣化の2種類のみの存在を考慮すればよい。そしてその劣化曲線は、初期劣化成
分を表す指数関数と、長期劣化成分を表す指数関数とを線形結合した複合指数関数で表さ
れる。ここで、初期劣化の成分は、拡張指数関数(Stretched Exponen
tial Function)で表され、長期劣化の成分は一次反応的な減衰を示す単一
指数関数(Single Exponential Function)で表される点が
重要であり、長寿命な本発明の一態様の発光素子に特徴的である。つまり、該複合指数関
数で表される新たな劣化曲線を示す発光素子を作製することで、信頼性が高い発光素子を
得ることができる。別言すれば、本発明の一態様の複合指数関数は、信頼性の高い発光素
子の劣化曲線を精度よくフィッティングできる。
すなわち本発明の一態様は、一対の電極間にEL層を有する発光素子であって、発光素子
の駆動において、下記式(1)で表される劣化曲線を示す発光素子である。
Figure 2022173506000002
上記構成において、上記式(1)で表される劣化曲線のスケーリング時間τが、1500
時間以上であることが好ましい。このような発光素子は、特に長寿命であると言える。な
お、常温(例えば25℃)にて、25mA/cmまたは50mA/cmの一定電流密
度で駆動させた際に、該スケーリング時間τが1500時間以上となることが好ましい。
なお、発光素子に対して温度を変えて駆動試験を行うと、温度と駆動寿命(例えば半減寿
命)の関係から、アレニウスプロットを作製することができる(通常、温度が上昇すると
駆動寿命は減少する相関が得られる)。この時、長寿命な本発明の一態様の発光素子にお
いては、一定電流で駆動した際の駆動寿命を縦軸としたアレニウスプロットが、25℃か
ら80℃の間において上に凸の曲線となることを本発明者らは見出した。したがって、こ
のような発光素子も本発明の一態様である。この時、該寿命は、輝度が初期輝度の90%
に減衰するまでの寿命(LT90)であるか、または、輝度が初期輝度の70%に減衰す
るまでの寿命(LT70)であるか、または、半減寿命(LT50)であることが好まし
い。
本発明の別の一態様は、発光素子に加えて、トランジスタ、基板などを有する発光装置も
発明の範疇に含める。さらに、これらの発光装置に加えて、マイク、カメラ、操作用ボタ
ン、外部接続部、筐体、カバー、支持台または、スピーカ等を有する電子機器や照明装置
も発明の範疇に含める。
また、本発明の一態様は、発光素子を有する発光装置を含み、さらに発光装置を有する照
明装置も範疇に含めるものである。従って、本明細書中における発光装置とは、画像表示
デバイス、または光源(照明装置含む)を指す。また、発光装置にコネクター、例えばF
PC(Flexible printed circuit)もしくはTCP(Tape
Carrier Package)が取り付けられたモジュール、TCPの先にプリン
ト配線板が設けられたモジュール、または発光素子にCOG(Chip On Glas
s)方式によりIC(集積回路)が直接実装されたモジュールも全て発光装置に含むもの
とする。
本発明の一態様は、素子特性や信頼性の高い発光素子において、その劣化曲線を精度よく
フィッティングできる新たな関数を提供することができる。また、本発明の一態様では、
上記関数で表される新たな劣化曲線を示し、駆動した際の信頼性が高い発光素子を提供す
ることができる。また、このような発光素子を有する発光装置、電子機器、または照明装
置を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。また、本発明の一
態様は、必ずしも、これらの効果の全てを有する必要はない。また、これら以外の効果は
、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面
、請求項などの記載から、これら以外の効果を抽出することが可能である。
劣化曲線について説明する図。 劣化曲線について説明する図。 劣化曲線について説明する図。 劣化曲線について説明する図。 発光素子の構造について説明する図。 発光装置について説明する図。 発光装置について説明する図。 電子機器について説明する図。 電子機器について説明する図。 電子機器の使用例を示す図。 自動車について説明する図。 照明装置について説明する図。 照明装置について説明する図。 タッチパネルの一例を示す図。 タッチパネルの一例を示す図。 タッチパネルの一例を示す図。 タッチセンサのブロック図及びタイミングチャート。 タッチセンサの回路図。 表示装置のブロック図。 表示装置の回路構成。 表示装置の断面構造。 発光素子について説明する図。 発光素子1~発光素子5の電流密度-輝度特性を示す図。 発光素子1~発光素子5の電圧-輝度特性を示す図。 発光素子1~発光素子5の輝度-電流効率特性を示す図。 発光素子1~発光素子5の電圧-電流特性を示す図。 発光素子1~発光素子5の発光スペクトルを示す図。 発光素子1~発光素子5の信頼性を示す図。 発光素子1および発光素子2のアレニウスプロットを示す図。 発光素子1および発光素子2のアレニウスプロットを示す図。 発光素子6および発光素子7の電流密度-輝度特性を示す図。 発光素子6および発光素子7の電圧-輝度特性を示す図。 発光素子6および発光素子7の輝度-電流効率特性を示す図。 発光素子6および発光素子7の電圧-電流特性を示す図。 発光素子6および発光素子7の発光スペクトルを示す図。 発光素子6および発光素子7の信頼性を示す図。 発光素子6および発光素子7のアレニウスプロットを示す図。 発光素子6および発光素子7のアレニウスプロットを示す図。
以下、本発明の実施の態様について図面を用いて詳細に説明する。但し、本発明は以下の
説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を
様々に変更し得ることが可能である。従って、本発明は以下に示す実施の形態の記載内容
に限定して解釈されるものではない。
なお、図面等において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実
際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必
ずしも、図面等に開示された位置、大きさ、範囲などに限定されない。
また、本明細書等において、図面を用いて発明の構成を説明するにあたり、同じものを指
す符号は異なる図面間でも共通して用いる。
(実施の形態1)
本実施の形態では、本発明の一態様である、発光素子の劣化曲線を精度よくフィッティン
グできる複合指数関数、について説明する。
一般に、劣化現象は、指数関数的減衰(Exponential Decay)で表すこ
とができるが、発光素子の劣化の場合はこれまで拡張指数関数(Stretched E
xponential Function)が合うとされてきた。これは、多くの発光素
子の場合には、物質が壊れていくような一次的な反応だけでなく、キャリアバランスの変
化など複数の劣化要因が存在し、反応速度(劣化速度)にばらつきが存在するためである
と考えられる。そして、そのばらつきを持つ平均的な反応速度(劣化速度)が一定以上大
きくなると、一次反応的で本質的な劣化が見えなくなり、劣化曲線全体が拡張指数関数で
表されるようになるのである。なお、拡張指数関数は以下の式(*)で表すことができる
Figure 2022173506000003
ここで、式(*)で示される劣化曲線において、スケーリング時間(τ)や劣化カーブの
形状ファクタ(β)を変化させた際の劣化曲線への影響を示す。図3には、τ=1000
0とし、βを変化させた時の劣化曲線を示す。なお、図3(A)は、両線形の図を示し、
図3(B)は、片対数の図を示す。また、図4には、β=1とし、τを変化させた時の劣
化曲線を示す。なお、図4(A)は、両線形の図を示し、図4(B)は、片対数の図を示
す。これらの図中において、縦軸は発光強度(輝度)、横軸は駆動時間を表す。
図3(B)の結果から、β=1の時、時間経過に伴う輝度の変化は、直線的に減衰する(
すなわち一次反応である)が、βの値が1よりも小さくなると初期の劣化率が大きくなる
ことがその形状からわかる。このことから、式(*)に示す劣化曲線では、βの値によっ
て劣化曲線の形状が表される。
また、図4(A)(B)に示す結果からは、τの値は発光素子の寿命自体を表し、式(*
)通り、縦軸の発光強度(輝度)が初期値に対して37%の時に、横軸の駆動時間は指定
のτの値を持つことがわかる。なお、τの値が大きくなれば、寿命は長くなる。
従って、上記式(*)で示す拡張指数関数では、βの値とτの値によって劣化曲線の形状
が定まる。
しかし、一対の電極間にEL層を挟んで形成された実際の発光素子(発光素子Aとする)
であって、信頼性に優れた発光素子においては、初期電流密度50mA/cmで駆動さ
せることによって得られる劣化曲線が、例えば、図1に示すような形状を示す。図1に示
す劣化曲線の形状は、上記式(*)で示される劣化曲線とは異なり、劣化が始まってから
100時間程度の駆動初期では、図中の1001で示される付近において急激な劣化(初
期劣化)を示すが、その後、図中の1002で示される付近において緩やかな劣化(長期
劣化)を示す。
このように初期劣化の要因と長期劣化の要因とを有する発光素子の劣化を、上記式(*)
の劣化曲線で表すことはできない。上記式(*)で表される劣化を示す発光素子というの
は、いわば図1における初期劣化よりもさらに大きな初期劣化がいつまでも継続し、いつ
まで経っても本質的な長期劣化成分が見えない信頼性の悪い発光素子だからである。換言
すれば、発光素子Aのような信頼性の高い発光素子は、一次反応的で本質的な長期劣化成
分を覆い隠すほど大きな初期劣化要因が排除された結果、それでもわずかな分布として残
り、駆動初期に目立つ初期劣化成分と、従来は見えなかった本質的な長期劣化成分の双方
が見えるようになった発光素子であると言える。
そこで、発光素子Aのような信頼性の高い発光素子の劣化曲線に対し、初期劣化と長期劣
化の両方を示すことができる複合指数関数として、以下の式(1)で示す劣化曲線を考え
た。ここでは、信頼性の良い発光素子においては、長期劣化の成分は一次反応的な減衰を
示すと考えて、単一指数関数(Single Exponential Functio
n)で表すべくβ=1とした。また、先の式(*)で示した拡張指数関数(Stretc
hed Exponential Function)で表される劣化は、このような発
光素子においては支配的でなく、初期劣化のみに寄与すると考えた。なお、式(1)にお
いて、α(但し、1>α>0)は初期劣化成分の割合を示す。αは0.8以下が好ましく
、さらに好ましくは0.5以下である。なお、τは長期劣化成分を表す単一指数関数の項
が初期値の37%にまで減衰する時間であり、τ’は初期劣化成分を表す拡張指数関数の
項が初期値の37%まで減衰する時間である。
Figure 2022173506000004
ここで、上記式(1)を用いて、図1に示した発光素子Aの劣化曲線(実測値)のフィッ
ティングを行った。結果を図2に示す。なお、図2には、実測値の劣化曲線を○でプロッ
トし、上記式(1)に示す複合指数関数で表される劣化曲線によりフィッティングした結
果を実線で示した。さらに、計算(フィッティング結果)から求めた初期劣化成分のみと
長期劣化成分のみを示す曲線もそれぞれ図2に示す。
図2に示すように初期劣化成分と長期劣化成分とを併せてなる、式(1)で表される劣化
曲線は、実測値の劣化曲線と非常に良く重なるという結果が得られた。すなわち、式(1
)によって発光素子Aの劣化曲線が精度よくフィッティングされることがわかる。また、
式(1)中の初期劣化成分の割合(α)は、図2で示す初期劣化成分を示す曲線のy切片
から求めることができる。なお、図2で示す初期劣化成分を示す曲線のy切片は、24.
8%であったので、発光素子Aの劣化における初期劣化成分の割合は、24.8%と比較
的高いが、単一指数関数で表される長期劣化成分が十分75%程度見えている劣化曲線で
あるため、十分に信頼性が高い発光素子であることがわかる。
本実施の形態では、上記式(1)で表される複合指数関数により信頼性の高い発光素子の
劣化曲線が精度よく表されることを示した。なお、上記式(1)で表される劣化曲線は、
初期劣化と、長期劣化とを含むが、これらを引き起こす要因は、それぞれ異なる。従って
、複合指数関数の劣化曲線で示される発光素子において、初期劣化成分の割合(α)が大
きい場合には、初期劣化の要因として考えられる、例えば発光素子形成時における有機化
合物の蒸着時の分解や、発光素子の素子構成に起因する特性不良を低減することにより、
初期劣化を低減させることが好ましい。また、スケーリング時間(τ)が小さい場合には
、長期劣化の要因として考えられる要因を改善すればよい。例えば、発光層に用いる物質
(特に発光物質)の分子構造おいて、不必要に捻じれた構造を導入しないことがτを向上
させる因子の一つである。また、キャリア再結合領域が狭くならないように発光層をバイ
ポーラ性とすることや、ホール過多ないしは電子過多にならないようにホール注入・輸送
層および電子注入・輸送層を選択することも長期劣化の傾きを低減させる(τを向上させ
る)のに有効である。このように、上記式(1)で表される複合指数関数(劣化曲線)か
ら得られるパラメータに基づき、発光素子毎の劣化特性を把握することで、更なる長寿命
化を図るにはどこが律速点となっているのかの指針を得ることができる。
また、上記式(1)で表される複合指数関数を用いた劣化曲線を示す発光素子において、
上記式(1)に含まれるパラメータを所望の範囲で満たすことにより、さらに長寿命な素
子が得られることがわかる。例えば、初期劣化成分の割合(α)が小さい場合において、
スケーリング時間(τ)が長い場合(1500時間以上)には、長寿命な発光素子が得ら
れる。特に、常温(例えば25℃)にて、25mA/cmまたは50mA/cmの一
定電流密度で駆動させた際に、該スケーリング時間τが1500時間以上となることが実
用上好ましい。
なお、発光素子に対して温度を変えて駆動試験を行うと、温度と駆動寿命(例えば半減寿
命)の関係から、図29(A)に示すようなアレニウスプロットを作製することができる
(通常、温度が上昇すると駆動寿命は減少する相関が得られる)。この時、上記式(1)
で表される複合指数関数を用いた劣化曲線を示す本発明の一態様の発光素子においては、
一定電流で駆動した際の寿命を縦軸としたアレニウスプロットが、25℃から80℃の間
において上に凸の曲線となる。このことは以下のように説明することができる。
まず、式(1)の長期劣化成分のみの劣化を考えた場合、その半減寿命LT50は下記式
(2)で表すことができる。
Figure 2022173506000005
ここで、式(1)の長期劣化成分は一次反応的な劣化であるため、スケーリング定数τの
温度依存性は、下記式(3)で表すことができる。ここで、Kは反応速度定数(劣化速度
定数と言ってもよい)、ΔEは活性化エネルギー[eV]、kはボルツマン定数[eV/
K]、Tは温度[K]である。
Figure 2022173506000006
式(2)(3)から下記式(4)が得られ、式(4)を変形すると式(5)となる。した
がって、τのアレニウスプロットは直線上に乗ることになる。すなわち、τの挙動は理論
的に明確である。
Figure 2022173506000007
Figure 2022173506000008
一方、本発明の一態様の発光素子は、式(1)の長期劣化成分のみならず、初期劣化成分
も有する。初期劣化成分のスケーリング時間τ’は、ばらつきのある寿命(反応速度定数
の逆数)の平均的挙動を表すため、その温度依存性は各種素子に依存する。しかし少なく
とも、τ’の温度に対する挙動はτとは異なるため、τとτ’が複合された本発明の一態
様の発光素子のアレニウスプロットは直線にはならない。そして本発明者らは、本発明の
一態様の発光素子においては、一定電流で駆動した際の寿命を縦軸としたアレニウスプロ
ットが、25℃から80℃の間において上に凸の曲線となることを見出した。したがって
、このような発光素子も本発明の一態様である。
なお、アレニウスプロットが上に凸になる要因としては、τ’の温度依存性がτよりも大
きい(すなわち、τ’のアレニウスプロットも直線に乗るものの、その傾きがτよりも大
きい)か、または、τ’のアレニウスプロット自体が上に凸の曲線となっている(高温領
域で特に大きな劣化を示す因子が存在している)ことが考えられる。いずれにしても、上
記式(1)で表される複合指数関数を用いた劣化曲線を示す本発明の一態様の発光素子に
おいては、アレニウスプロットが上に凸になる特徴を有する。
このように、アレニウスプロットが25℃から80℃の間において上に凸になるというこ
とは、この温度範囲において、駆動寿命の温度依存性(温度上昇に伴う寿命低下)が小さ
いことを意味する。すなわち、実用領域(常温~80℃)の温度における駆動寿命が長い
発光素子を得ることができる。
なおこの時、アレニウスプロットの縦軸の寿命は、輝度が初期輝度の90%に減衰するま
での寿命(LT90)であるか、または、輝度が初期輝度の70%に減衰するまでの寿命
(LT70)であるか、または、半減寿命(LT50)であることが好ましい。いずれの
寿命においても、駆動寿命の温度依存性(アレニウスプロット)に同様の傾向が見られる
なお、本実施の形態で示した劣化曲線を示す発光素子を用いることで、消費電力が低い発
光装置、電子機器、または照明装置を実現することができる。
なお、本実施の形態において、本発明の一態様について述べた。また、他の実施の形態に
おいて、本発明の一態様について述べる。ただし、本発明の一態様は、これらに限定され
ない。つまり、本実施の形態および他の実施の形態では、様々な発明の態様が記載されて
いるため、本発明の一態様は、特定の態様に限定されない。
本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いること
ができる。
(実施の形態2)
本実施の形態では、本発明の一態様である発光素子について図5を用いて説明する。
≪発光素子の基本的な構造≫
まず、発光素子の基本的な構造について説明する。図5(A)には、一対の電極間に発光
層を含むEL層を有する発光素子を示す。具体的には、第1の電極101と第2の電極1
02との間にEL層103が挟まれた構造を有する。
また、図5(B)には、一対の電極間に複数(図5(B)では、2層)のEL層(103
a、103b)を有し、EL層の間に電荷発生層104を有する積層構造(タンデム構造
)の発光素子を示す。タンデム構造の発光素子は、低電圧駆動が可能で消費電力が低い発
光装置を実現することができる。
電荷発生層104は、第1の電極101と第2の電極102に電圧を印加したときに、一
方のEL層(103aまたは103b)に電子を注入し、他方のEL層(103bまたは
103a)に正孔を注入する機能を有する。従って、図5(B)において、第1の電極1
01に第2の電極102よりも電位が高くなるように電圧を印加すると、電荷発生層10
4からEL層103aに電子が注入され、EL層103bに正孔が注入されることとなる
なお、電荷発生層104は、光の取り出し効率の点から、可視光に対して透光性を有する
(具体的には、電荷発生層104に対する可視光の透過率が、40%以上)ことが好まし
い。また、電荷発生層104は、第1の電極101や第2の電極102よりも低い導電率
であっても機能する。
また、図5(C)には、本発明の一態様である発光素子のEL層103の積層構造を示す
。但し、この場合、第1の電極101は陽極として機能するものとする。EL層103は
、第1の電極101上に、正孔(ホール)注入層111、正孔(ホール)輸送層112、
発光層113、電子輸送層114、電子注入層115が順次積層された構造を有する。な
お、図5(B)に示すタンデム構造のように複数のEL層を有する場合であっても、各E
L層が、陽極側から上記のように順次積層される構造とする。また、第1の電極101が
陰極で、第2の電極102が陽極の場合は、積層順は逆になる。
EL層(103、103a、103b)に含まれる発光層113は、それぞれ発光物質や
複数の物質を適宜組み合わせて有しており、所望の発光色を呈する蛍光発光や燐光発光が
得られる構成とすることができる。また、発光層113を発光色の異なる積層構造として
もよい。なお、この場合、積層された各発光層に用いる発光物質やその他の物質は、それ
ぞれ異なる材料を用いればよい。また、図5(B)に示す複数のEL層(103a、10
3b)から、それぞれ異なる発光色が得られる構成としても良い。この場合も各発光層に
用いる発光物質やその他の物質を異なる材料とすればよい。
また、本発明の一態様である発光素子において、例えば、図5(C)に示す第1の電極1
01を反射電極とし、第2の電極102を半透過・半反射電極とし、微小光共振器(マイ
クロキャビティ)構造とすることにより、EL層103に含まれる発光層113から得ら
れる発光を両電極間で共振させ、第2の電極102から得られる発光を強めることができ
る。
なお、発光素子の第1の電極101が、反射性を有する導電性材料と透光性を有する導電
性材料(透明導電膜)との積層構造からなる反射電極である場合、透明導電膜の膜厚を制
御することにより光学調整を行うことができる。具体的には、発光層113から得られる
光の波長λに対して、第1の電極101と、第2の電極102との電極間距離がmλ/2
(ただし、mは自然数)近傍となるように調整するのが好ましい。
また、発光層113から得られる所望の光(波長:λ)を増幅させるために、第1の電極
101から発光層113の所望の光が得られる領域(発光領域)までの光学距離と、第2
の電極102から発光層113の所望の光が得られる領域(発光領域)までの光学距離と
、をそれぞれ(2m’+1)λ/4(ただし、m’は自然数)近傍となるように調節する
のが好ましい。なお、ここでいう発光領域とは、発光層113における正孔(ホール)と
電子との再結合領域を示す。
このような光学調整を行うことにより、発光層113から得られる特定の単色光のスペク
トルを狭線化させ、色純度の良い発光を得ることができる。
但し、上記の場合、第1の電極101と第2の電極102との光学距離は、厳密には第1
の電極101における反射領域から第2の電極102における反射領域までの総厚という
ことができる。しかし、第1の電極101や第2の電極102における反射領域を厳密に
決定することは困難であるため、第1の電極101と第2の電極102の任意の位置を反
射領域と仮定することで充分に上述の効果を得ることができるものとする。また、第1の
電極101と、所望の光が得られる発光層との光学距離は、厳密には第1の電極101に
おける反射領域と、所望の光が得られる発光層における発光領域との光学距離であるとい
うことができる。しかし、第1の電極101における反射領域や、所望の光が得られる発
光層における発光領域を厳密に決定することは困難であるため、第1の電極101の任意
の位置を反射領域、所望の光が得られる発光層の任意の位置を発光領域と仮定することで
充分に上述の効果を得ることができるものとする。
図5(C)に示す発光素子は、マイクロキャビティ構造を有するため、同じEL層を有し
ていても異なる波長の光(単色光)を取り出すことができる。従って、異なる発光色を得
るための塗り分け(例えば、RGB)が不要となる。従って、高精細化を実現することが
容易である。また、着色層(カラーフィルタ)との組み合わせも可能である。さらに、特
定波長の正面方向の発光強度を強めることが可能となるため、低消費電力化を図ることが
できる。
なお、上述した本発明の一態様である発光素子において、第1の電極101と第2の電極
102の少なくとも一方は、透光性を有する電極(透明電極、半透過・半反射電極など)
とする。透光性を有する電極が透明電極の場合、透明電極の可視光の透過率は、40%以
上とする。また、半透過・半反射電極の場合、半透過・半反射電極の可視光の反射率は、
20%以上80%以下、好ましくは40%以上70%以下とする。また、これらの電極は
、抵抗率が1×10-2Ωcm以下とするのが好ましい。
また、上述した本発明の一態様である発光素子において、第1の電極101と第2の電極
102の一方が、反射性を有する電極(反射電極)である場合、反射性を有する電極の可
視光の反射率は、40%以上100%以下、好ましくは70%以上100%以下とする。
また、この電極は、抵抗率が1×10-2Ωcm以下とするのが好ましい。
≪発光素子の具体的な構造および作製方法≫
次に、本発明の一態様である発光素子の具体的な構造および作製方法について図5を用い
て説明する。また、ここでは、図5(B)に示すタンデム構造を有し、マイクロキャビテ
ィ構造を備えた発光素子についても、図5(D)を用いて説明する。図5(D)に示す発
光素子がマイクロキャビティ構造を有する場合は、第1の電極101を反射電極として形
成し、第2の電極102を半透過・半反射電極として形成する。従って、所望の電極材料
を単数または複数用い、単層または積層して形成することができる。なお、第2の電極1
02は、EL層103bを形成した後、上記と同様に材料を選択して形成する。また、こ
れらの電極の作製には、スパッタ法や真空蒸着法を用いることができる。
<第1の電極および第2の電極>
第1の電極101および第2の電極102を形成する材料としては、上述した両電極の機
能が満たせるのであれば、以下に示す材料を適宜組み合わせて用いることができる。例え
ば、金属、合金、電気伝導性化合物、およびこれらの混合物などを適宜用いることができ
る。具体的には、In-Sn酸化物(ITOともいう)、In-Si-Sn酸化物(IT
SOともいう)、In-Zn酸化物、In-W-Zn酸化物が挙げられる。その他、アル
ミニウム(Al)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、
コバルト(Co)、ニッケル(Ni)、銅(Cu)、ガリウム(Ga)、亜鉛(Zn)、
インジウム(In)、スズ(Sn)、モリブデン(Mo)、タンタル(Ta)、タングス
テン(W)、パラジウム(Pd)、金(Au)、白金(Pt)、銀(Ag)、イットリウ
ム(Y)、ネオジム(Nd)などの金属、およびこれらを適宜組み合わせて含む合金を用
いることもできる。その他、上記例示のない元素周期表の第1族または第2族に属する元
素(例えば、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、ストロンチウ
ム(Sr))、ユウロピウム(Eu)、イッテルビウム(Yb)などの希土類金属および
これらを適宜組み合わせて含む合金、その他グラフェン等を用いることができる。
図5(D)に示す発光素子において、第1の電極101が陽極である場合、第1の電極1
01上にEL層103aの正孔注入層111aおよび正孔輸送層112aが真空蒸着法に
より順次積層形成される。EL層103aおよび電荷発生層104が形成された後、電荷
発生層104上にEL層103bの正孔注入層111bおよび正孔輸送層112bが同様
に順次積層形成される。
<正孔注入層および正孔輸送層>
正孔注入層(111、111a、111b)は、陽極である第1の電極101や電荷発生
層(104)からEL層(103、103a、103b)に正孔(ホール)を注入する層
であり、正孔注入性の高い材料を含む層である。
正孔注入性の高い材料としては、モリブデン酸化物やバナジウム酸化物、ルテニウム酸化
物、タングステン酸化物、マンガン酸化物等の遷移金属酸化物が挙げられる。この他、フ
タロシアニン(略称:HPc)や銅フタロシアニン(略称:CuPC)等のフタロシア
ニン系の化合物、4,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニ
ルアミノ]ビフェニル(略称:DPAB)、N,N’-ビス{4-[ビス(3-メチルフ
ェニル)アミノ]フェニル}-N,N’-ジフェニル-(1,1’-ビフェニル)-4,
4’-ジアミン(略称:DNTPD)等の芳香族アミン化合物、またはポリ(3,4-エ
チレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(略称:PEDOT/PSS
)等の高分子等を用いることができる。
また、正孔注入性の高い材料としては、正孔輸送性材料とアクセプター性材料(電子受容
性材料)を含む複合材料を用いることもできる。この場合、アクセプター性材料により正
孔輸送性材料から電子が引き抜かれて正孔注入層(111、111a、111b)で正孔
が発生し、正孔輸送層(112、112a、112b)を介して発光層(113、113
a、113b)に正孔が注入される。なお、正孔注入層(111、111a、111b)
は、正孔輸送性材料とアクセプター性材料(電子受容性材料)を含む複合材料からなる単
層で形成しても良いが、正孔輸送性材料とアクセプター性材料(電子受容性材料)とをそ
れぞれ別の層で積層して形成しても良い。
正孔輸送層(112、112a、112b)は、正孔注入層(111、111a、111
b)によって、第1の電極101や電荷発生層(104)から注入された正孔を発光層(
113、113a、113b)に輸送する層である。なお、正孔輸送層(112、112
a、112b)は、正孔輸送性材料を含む層である。正孔輸送層(112、112a、1
12b)に用いる正孔輸送性材料は、特に正孔注入層(111、111a、111b)の
HOMO準位と同じ、あるいは近いHOMO準位を有するものを用いることが好ましい。
正孔注入層(111、111a、111b)に用いるアクセプター性材料としては、元素
周期表における第4族乃至第8族に属する金属の酸化物を用いることができる。具体的に
は、酸化モリブデン、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化タ
ングステン、酸化マンガン、酸化レニウムが挙げられる。中でも特に、酸化モリブデンは
大気中でも安定であり、吸湿性が低く、扱いやすいため好ましい。その他、キノジメタン
誘導体やクロラニル誘導体、ヘキサアザトリフェニレン誘導体などの有機アクセプターを
用いることができる。具体的には、7,7,8,8-テトラシアノ-2,3,5,6-テ
トラフルオロキノジメタン(略称:F-TCNQ)、クロラニル、2,3,6,7,1
0,11-ヘキサシアノ-1,4,5,8,9,12-ヘキサアザトリフェニレン(略称
:HAT-CN)等を用いることができる。
正孔注入層(111、111a、111b)および正孔輸送層(112、112a、11
2b)に用いる正孔輸送性材料としては、10-6cm/Vs以上の正孔移動度を有す
る物質が好ましい。なお、電子よりも正孔の輸送性の高い物質であれば、これら以外のも
のを用いることができる。
正孔輸送性材料としては、π電子過剰型複素芳香族化合物(例えばカルバゾール誘導体や
インドール誘導体)や芳香族アミン化合物が好ましく、具体例としては、4,4’-ビス
[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPBまたはα-N
PD)、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-
ビフェニル]-4,4’-ジアミン(略称:TPD)、4,4’-ビス[N-(スピロ-
9,9’-ビフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:BSP
B)、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン
(略称:BPAFLP)、4-フェニル-3’-(9-フェニルフルオレン-9-イル)
トリフェニルアミン(略称:mBPAFLP)、4-フェニル-4’-(9-フェニル-
9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBA1BP)、3-[
4-(9-フェナントリル)-フェニル]-9-フェニル-9H-カルバゾール(略称:
PCPPn)、
N-(4-ビフェニル)-N-(9,9-ジメチル-9H-フルオレン-2-イル)-9
-フェニル-9H-カルバゾール-3-アミン(略称:PCBiF)、N-(1,1’-
ビフェニル-4-イル)-N-[4-(9-フェニル-9H-カルバゾール-3-イル)
フェニル]-9,9-ジメチル-9H-フルオレン-2-アミン(略称:PCBBiF)
4,4’-ジフェニル-4’’-(9-フェニル-9H-カルバゾール-3-イル)トリ
フェニルアミン(略称:PCBBi1BP)、4-(1-ナフチル)-4’-(9-フェ
ニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBANB)、4
,4’-ジ(1-ナフチル)-4’’-(9-フェニル-9H-カルバゾール-3-イル
)トリフェニルアミン(略称:PCBNBB)、9,9-ジメチル-N-フェニル-N-
[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]フルオレン-2-ア
ミン(略称:PCBAF)、N-フェニル-N-[4-(9-フェニル-9H-カルバゾ
ール-3-イル)フェニル]スピロ-9,9’-ビフルオレン-2-アミン(略称:PC
BASF)、4,4’,4’’-トリス(カルバゾール-9-イル)トリフェニルアミン
(略称:TCTA)、4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェ
ニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニ
ル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)などの芳香族ア
ミン骨格を有する化合物、1,3-ビス(N-カルバゾリル)ベンゼン(略称:mCP)
、4,4’-ジ(N-カルバゾリル)ビフェニル(略称:CBP)、3,6-ビス(3,
5-ジフェニルフェニル)-9-フェニルカルバゾール(略称:CzTP)、3,3’-
ビス(9-フェニル-9H-カルバゾール)(略称:PCCP)、3-[N-(9-フェ
ニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略
称:PCzPCA1)、3,6-ビス[N-(9-フェニルカルバゾール-3-イル)-
N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA2)、3-[N
-(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル)アミノ]-9-フェ
ニルカルバゾール(略称:PCzPCN1)、1,3,5-トリス[4-(N-カルバゾ
リル)フェニル]ベンゼン(略称:TCPB)、9-[4-(10-フェニル-9-アン
トラセニル)フェニル]-9H-カルバゾール(略称:CzPA)などのカルバゾール骨
格を有する化合物、4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベ
ンゾチオフェン)(略称:DBT3P-II)、2,8-ジフェニル-4-[4-(9-
フェニル-9H-フルオレン-9-イル)フェニル]ジベンゾチオフェン(略称:DBT
FLP-III)、4-[4-(9-フェニル-9H-フルオレン-9-イル)フェニル
]-6-フェニルジベンゾチオフェン(略称:DBTFLP-IV)などのチオフェン骨
格を有する化合物、4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベ
ンゾフラン)(略称:DBF3P-II)、4-{3-[3-(9-フェニル-9H-フ
ルオレン-9-イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi
-II)などのフラン骨格を有する化合物が挙げられる。
さらに、ポリ(N-ビニルカルバゾール)(略称:PVK)、ポリ(4-ビニルトリフェ
ニルアミン)(略称:PVTPA)、ポリ[N-(4-{N’-[4-(4-ジフェニル
アミノ)フェニル]フェニル-N’-フェニルアミノ}フェニル)メタクリルアミド](
略称:PTPDMA)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス
(フェニル)ベンジジン](略称:Poly-TPD)などの高分子化合物を用いること
もできる。
但し、正孔輸送性材料は、上記に限られることなく公知の様々な材料を1種または複数種
組み合わせて正孔輸送性材料として正孔注入層(111、111a、111b)および正
孔輸送層(112、112a、112b)に用いることができる。なお、正孔輸送層(1
12、112a、112b)は、各々複数の層から形成されていても良い。すなわち、例
えば第一の正孔輸送層と第二の正孔輸送層とが積層されていても良い。
図5(D)に示す発光素子においては、EL層103aの正孔輸送層112a上に発光層
113aが真空蒸着法により形成される。また、EL層103aおよび電荷発生層104
が形成された後、EL層103bの正孔輸送層112b上に発光層113bが真空蒸着法
により形成される。
<発光層>
発光層(113、113a、113b、113c)は、発光物質を含む層である。なお、
発光物質としては、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色などの発光色
を呈する物質を適宜用いる。また、複数の発光層(113a、113b、113c)に異
なる発光物質を用いることにより異なる発光色を呈する構成(例えば、補色の関係にある
発光色を組み合わせて得られる白色発光)とすることができる。さらに、一つの発光層が
異なる発光物質を有する積層構造であっても良い。
また、発光層(113、113a、113b、113c)は、発光物質(ゲスト材料)に
加えて、1種または複数種の有機化合物(ホスト材料、アシスト材料)を有していても良
い。また、1種または複数種の有機化合物としては、本実施の形態で説明する正孔輸送性
材料や電子輸送性材料の一方または両方を用いることができる。
発光層(113、113a、113b、113c)に用いることができる発光物質として
は、特に限定は無く、一重項励起エネルギーを可視光領域の発光に変える発光物質、また
は三重項励起エネルギーを可視光領域の発光に変える発光物質を用いることができる。な
お、上記発光物質としては、例えば、以下のようなものが挙げられる。
一重項励起エネルギーを発光に変える発光物質としては、蛍光を発する物質(蛍光材料)
が挙げられ、例えば、ピレン誘導体、アントラセン誘導体、トリフェニレン誘導体、フル
オレン誘導体、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体
、ジベンゾキノキサリン誘導体、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導
体、フェナントレン誘導体、ナフタレン誘導体などが挙げられる。特にピレン誘導体は発
光量子収率が高いので好ましい。ピレン誘導体の具体例としては、N,N’-ビス(3-
メチルフェニル)-N,N’-ビス[3-(9-フェニル-9H-フルオレン-9-イル
)フェニル]ピレン-1,6-ジアミン(略称:1,6mMemFLPAPrn)、N,
N’-ジフェニル-N,N’-ビス[4-(9-フェニル-9H-フルオレン-9-イル
)フェニル]ピレン-1,6-ジアミン(略称:1,6FLPAPrn)、N,N’-ビ
ス(ジベンゾフラン-2-イル)-N,N’-ジフェニルピレン-1,6-ジアミン(略
称:1,6FrAPrn)、N,N’-ビス(ジベンゾチオフェン-2-イル)-N,N
’-ジフェニルピレン-1,6-ジアミン(略称:1,6ThAPrn)、N,N’-(
ピレン-1,6-ジイル)ビス[(N-フェニルベンゾ[b]ナフト[1,2-d]フラ
ン)-6-アミン](略称:1,6BnfAPrn)、N,N’-(ピレン-1,6-ジ
イル)ビス[(N-フェニルベンゾ[b]ナフト[1,2-d]フラン)-8-アミン]
(略称:1,6BnfAPrn-02)、N,N’-(ピレン-1,6-ジイル)ビス[
(6,N-ジフェニルベンゾ[b]ナフト[1,2-d]フラン)-8-アミン](略称
:1,6BnfAPrn-03)などが挙げられる。
その他にも、5,6-ビス[4-(10-フェニル-9-アントリル)フェニル]-2,
2’-ビピリジン(略称:PAP2BPy)、5,6-ビス[4’-(10-フェニル-
9-アントリル)ビフェニル-4-イル]-2,2’-ビピリジン(略称:PAPP2B
Py)、N,N’-ビス[4-(9H-カルバゾール-9-イル)フェニル]-N,N’
-ジフェニルスチルベン-4,4’-ジアミン(略称:YGA2S)、4-(9H-カル
バゾール-9-イル)-4’-(10-フェニル-9-アントリル)トリフェニルアミン
(略称:YGAPA)、4-(9H-カルバゾール-9-イル)-4’-(9,10-ジ
フェニル-2-アントリル)トリフェニルアミン(略称:2YGAPPA)、N,9-ジ
フェニル-N-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾ
ール-3-アミン(略称:PCAPA)、4-(10-フェニル-9-アントリル)-4
’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PC
BAPA)、4-[4-(10-フェニル-9-アントリル)フェニル]-4’-(9-
フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBAPBA
)、ペリレン、2,5,8,11-テトラ(tert-ブチル)ペリレン(略称:TBP
)、N,N’’-(2-tert-ブチルアントラセン-9,10-ジイルジ-4,1-
フェニレン)ビス[N,N’,N’-トリフェニル-1,4-フェニレンジアミン](略
称:DPABPA)、N,9-ジフェニル-N-[4-(9,10-ジフェニル-2-ア
ントリル)フェニル]-9H-カルバゾール-3-アミン(略称:2PCAPPA)、N
-[4-(9,10-ジフェニル-2-アントリル)フェニル]-N,N’,N’-トリ
フェニル-1,4-フェニレンジアミン(略称:2DPAPPA)等を用いることができ
る。
また、三重項励起エネルギーを発光に変える発光物質としては、例えば、燐光を発する物
質(燐光材料)や熱活性化遅延蛍光を示す熱活性化遅延蛍光(Thermally ac
tivated delayed fluorescence:TADF)材料が挙げら
れる。
燐光材料としては、有機金属錯体、金属錯体(白金錯体)、希土類金属錯体等が挙げられ
る。これらは、物質ごとに異なる発光色(発光ピーク)を示すため、必要に応じて適宜選
択して用いる。
青色または緑色を呈し、発光スペクトルのピーク波長が450nm以上570nm以下で
ある燐光材料としては、以下のような物質が挙げられる。
例えば、トリス{2-[5-(2-メチルフェニル)-4-(2,6-ジメチルフェニル
)-4H-1,2,4-トリアゾール-3-イル-κN2]フェニル-κC}イリジウム
(III)(略称:[Ir(mpptz-dmp)])、トリス(5-メチル-3,4
-ジフェニル-4H-1,2,4-トリアゾラト)イリジウム(III)(略称:[Ir
(Mptz)])、トリス[4-(3-ビフェニル)-5-イソプロピル-3-フェニ
ル-4H-1,2,4-トリアゾラト]イリジウム(III)(略称:[Ir(iPrp
tz-3b)])トリス[3-(5-ビフェニル)-5-イソプロピル-4-フェニル
-4H-1,2,4-トリアゾラト]イリジウム(III)(略称:Ir(iPr5bt
z)])、のような4H-トリアゾール骨格を有する有機金属錯体、トリス[3-メチ
ル-1-(2-メチルフェニル)-5-フェニル-1H-1,2,4-トリアゾラト]イ
リジウム(III)(略称:[Ir(Mptz1-mp)])、トリス(1-メチル-
5-フェニル-3-プロピル-1H-1,2,4-トリアゾラト)イリジウム(III)
(略称:[Ir(Prptz1-Me)])のような1H-トリアゾール骨格を有する
有機金属錯体、fac-トリス[(2,6-ジイソプロピルフェニル)-2-フェニル-
1H-イミダゾール]イリジウム(III)(略称:[Ir(iPrpmi)])、ト
リス[3-(2,6-ジメチルフェニル)-7-メチルイミダゾ[1,2-f]フェナン
トリジナト]イリジウム(III)(略称:[Ir(dmpimpt-Me)])のよ
うなイミダゾール骨格を有する有機金属錯体、ビス[2-(4’,6’-ジフルオロフェ
ニル)ピリジナト-N,C2’]イリジウム(III)テトラキス(1-ピラゾリル)ボ
ラート(略称:FIr6)、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト
-N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス{2-
[3’,5’-ビス(トリフルオロメチル)フェニル]ピリジナト-N,C2’}イリジ
ウム(III)ピコリナート(略称:[Ir(CFppy)(pic)])、ビス[
2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III
)アセチルアセトナート(略称:FIr(acac))のように電子吸引基を有するフェ
ニルピリジン誘導体を配位子とする有機金属錯体等が挙げられる。
緑色または黄色を呈し、発光スペクトルのピーク波長が495nm以上590nm以下で
ある燐光材料としては、以下のような物質が挙げられる。
例えば、トリス(4-メチル-6-フェニルピリミジナト)イリジウム(III)(略称
:[Ir(mppm)])、トリス(4-t-ブチル-6-フェニルピリミジナト)イ
リジウム(III)(略称:[Ir(tBuppm)])、(アセチルアセトナト)ビ
ス(6-メチル-4-フェニルピリミジナト)イリジウム(III)(略称:[Ir(m
ppm)(acac)])、(アセチルアセトナト)ビス(6-tert-ブチル-4
-フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)(a
cac)])、(アセチルアセトナト)ビス[6-(2-ノルボルニル)-4-フェニル
ピリミジナト]イリジウム(III)(略称:[Ir(nbppm)(acac)])
、(アセチルアセトナト)ビス[5-メチル-6-(2-メチルフェニル)-4-フェニ
ルピリミジナト]イリジウム(III)(略称:[Ir(mpmppm)(acac)
])、(アセチルアセトナト)ビス{4,6-ジメチル-2-[6-(2,6-ジメチル
フェニル)-4-ピリミジニル-κN3]フェニル-κC}イリジウム(III)(略称
:[Ir(dmppm-dmp)(acac)])、(アセチルアセトナト)ビス(4
,6-ジフェニルピリミジナト)イリジウム(III)(略称:[Ir(dppm)
acac)])のようなピリミジン骨格を有する有機金属イリジウム錯体、(アセチルア
セトナト)ビス(3,5-ジメチル-2-フェニルピラジナト)イリジウム(III)(
略称:[Ir(mppr-Me)(acac)])、(アセチルアセトナト)ビス(5
-イソプロピル-3-メチル-2-フェニルピラジナト)イリジウム(III)(略称:
[Ir(mppr-iPr)(acac)])のようなピラジン骨格を有する有機金属
イリジウム錯体、トリス(2-フェニルピリジナト-N,C2’)イリジウム(III)
(略称:[Ir(ppy)])、ビス(2-フェニルピリジナト-N,C2’)イリジ
ウム(III)アセチルアセトナート(略称:[Ir(ppy)(acac)])、ビ
ス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:[I
r(bzq)(acac)])、トリス(ベンゾ[h]キノリナト)イリジウム(II
I)(略称:[Ir(bzq)])、トリス(2-フェニルキノリナト-N,C2’
イリジウム(III)(略称:[Ir(pq)])、ビス(2-フェニルキノリナト-
N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(pq)(a
cac)])のようなピリジン骨格を有する有機金属イリジウム錯体、ビス(2,4-ジ
フェニル-1,3-オキサゾラト-N,C2’)イリジウム(III)アセチルアセトナ
ート(略称:[Ir(dpo)(acac)])、ビス{2-[4’-(パーフルオロ
フェニル)フェニル]ピリジナト-N,C2’}イリジウム(III)アセチルアセトナ
ート(略称:[Ir(p-PF-ph)(acac)])、ビス(2-フェニルベンゾ
チアゾラト-N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(
bt)(acac)])などの有機金属錯体の他、トリス(アセチルアセトナト)(モ
ノフェナントロリン)テルビウム(III)(略称:[Tb(acac)(Phen)
])のような希土類金属錯体が挙げられる。
黄色または赤色を呈し、発光スペクトルのピーク波長が570nm以上750nm以下で
ある燐光材料としては、以下のような物質が挙げられる。
例えば、(ジイソブチリルメタナト)ビス[4,6-ビス(3-メチルフェニル)ピリミ
ジナト]イリジウム(III)(略称:[Ir(5mdppm)(dibm)])、ビ
ス[4,6-ビス(3-メチルフェニル)ピリミジナト](ジピバロイルメタナト)イリ
ジウム(III)(略称:[Ir(5mdppm)(dpm)])、(ジピバロイルメ
タナト)ビス[4,6-ジ(ナフタレン-1-イル)ピリミジナト]イリジウム(III
)(略称:[Ir(d1npm)(dpm)])のようなピリミジン骨格を有する有機
金属錯体、(アセチルアセトナト)ビス(2,3,5-トリフェニルピラジナト)イリジ
ウム(III)(略称:[Ir(tppr)(acac)])、ビス(2,3,5-ト
リフェニルピラジナト)(ジピバロイルメタナト)イリジウム(III)(略称:[Ir
(tppr)(dpm)])、ビス{4,6-ジメチル-2-[3-(3,5-ジメチ
ルフェニル)-5-フェニル-2-ピラジニル-κN]フェニル-κC}(2,6-ジメ
チル-3,5-ヘプタンジオナト-κO,O’)イリジウム(III)(略称:[Ir
(dmdppr-P)(dibm)])、ビス{4,6-ジメチル-2-[5-(4-
シアノ-2,6-ジメチルフェニル)-3-(3,5-ジメチルフェニル)-2-ピラジ
ニル-κN]フェニル-κC}(2,2,6,6-テトラメチル-3,5-ヘプタンジオ
ナト-κO,O’)イリジウム(III)(略称:[Ir(dmdppr-dmCP)
(dpm)])、(アセチルアセトナト)ビス[2-メチル-3-フェニルキノキサリ
ナト-N,C2’]イリジウム(III)(略称:[Ir(mpq)(acac)])
、(アセチルアセトナト)ビス(2,3-ジフェニルキノキサリナト-N,C2’)イリ
ジウム(III)(略称:[Ir(dpq)(acac)])、(アセチルアセトナト
)ビス[2,3-ビス(4-フルオロフェニル)キノキサリナト]イリジウム(III)
(略称:[Ir(Fdpq)(acac)])のようなピラジン骨格を有する有機金属
錯体や、トリス(1-フェニルイソキノリナト-N,C2’)イリジウム(III)(略
称:[Ir(piq)])、ビス(1-フェニルイソキノリナト-N,C2’)イリジ
ウム(III)アセチルアセトナート(略称:[Ir(piq)(acac)])のよ
うなピリジン骨格を有する有機金属錯体、2,3,7,8,12,13,17,18-オ
クタエチル-21H,23H-ポルフィリン白金(II)(略称:[PtOEP])のよ
うな白金錯体、トリス(1,3-ジフェニル-1,3-プロパンジオナト)(モノフェナ
ントロリン)ユーロピウム(III)(略称:[Eu(DBM)(Phen)])、ト
リス[1-(2-テノイル)-3,3,3-トリフルオロアセトナト](モノフェナント
ロリン)ユーロピウム(III)(略称:[Eu(TTA)(Phen)])のような
希土類金属錯体が挙げられる。
発光層(113、113a、113b、113c)に用いる有機化合物(ホスト材料、ア
シスト材料)としては、発光物質(ゲスト材料)のエネルギーギャップより大きなエネル
ギーギャップを有する物質を、一種もしくは複数種選択して用いればよい。
発光物質が蛍光材料である場合、ホスト材料としては、一重項励起状態のエネルギー準位
が大きく、三重項励起状態のエネルギー準位が小さい有機化合物を用いるのが好ましい。
例えば、アントラセン誘導体やテトラセン誘導体を用いるのが好ましい。具体的には、9
-フェニル-3-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバ
ゾール(略称:PCzPA)、3-[4-(1-ナフチル)-フェニル]-9-フェニル
-9H-カルバゾール(略称:PCPN)、9-[4-(10-フェニル-9-アントラ
セニル)フェニル]-9H-カルバゾール(略称:CzPA)、7-[4-(10-フェ
ニル-9-アントリル)フェニル]-7H-ジベンゾ[c,g]カルバゾール(略称:c
gDBCzPA)、6-[3-(9,10-ジフェニル-2-アントリル)フェニル]-
ベンゾ[b]ナフト[1,2-d]フラン(略称:2mBnfPPA)、9-フェニル-
10-{4-(9-フェニル-9H-フルオレン-9-イル)ビフェニル-4’-イル}
アントラセン(略称:FLPPA)、5,12-ジフェニルテトラセン、5,12-ビス
(ビフェニル-2-イル)テトラセンなどが挙げられる。
発光物質が燐光材料である場合、ホスト材料としては、発光物質の三重項励起エネルギー
(基底状態と三重項励起状態とのエネルギー差)よりも三重項励起エネルギーの大きい有
機化合物を選択すれば良い。なお、この場合には、亜鉛やアルミニウム系金属錯体の他、
オキサジアゾール誘導体、トリアゾール誘導体、ベンゾイミダゾール誘導体、キノキサリ
ン誘導体、ジベンゾキノキサリン誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘
導体、ピリミジン誘導体、トリアジン誘導体、ピリジン誘導体、ビピリジン誘導体、フェ
ナントロリン誘導体等の他、芳香族アミンやカルバゾール誘導体等を用いることができる
ホスト材料として、より具体的には、例えば以下の正孔輸送性材料および電子輸送性材料
を用いることができる。
これら正孔輸送性の高いホスト材料としては、例えば、N,N’-ジ(p-トリル)-N
,N’-ジフェニル-p-フェニレンジアミン(略称:DTDPPA)、4,4’-ビス
[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:D
PAB)、N,N’-ビス{4-[ビス(3-メチルフェニル)アミノ]フェニル}-N
,N’-ジフェニル-(1,1’-ビフェニル)-4,4’-ジアミン(略称:DNTP
D)、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミ
ノ]ベンゼン(略称:DPA3B)等の芳香族アミン化合物を挙げることができる。
また、3-[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]-9-フェ
ニルカルバゾール(略称:PCzDPA1)、3,6-ビス[N-(4-ジフェニルアミ
ノフェニル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzDPA
2)、3,6-ビス[N-(4-ジフェニルアミノフェニル)-N-(1-ナフチル)ア
ミノ]-9-フェニルカルバゾール(略称:PCzTPN2)、3-[N-(9-フェニ
ルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称
:PCzPCA1)、3,6-ビス[N-(9-フェニルカルバゾール-3-イル)-N
-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA2)、3-[N-
(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル)アミノ]-9-フェニ
ルカルバゾール(略称:PCzPCN1)等のカルバゾール誘導体を挙げることができる
。また、カルバゾール誘導体としては、他に、4,4’-ジ(N-カルバゾリル)ビフェ
ニル(略称:CBP)、1,3,5-トリス[4-(N-カルバゾリル)フェニル]ベン
ゼン(略称:TCPB)、1,4-ビス[4-(N-カルバゾリル)フェニル]-2,3
,5,6-テトラフェニルベンゼン等を用いることもできる。
また、正孔輸送性の高いホスト材料としては、例えば、4,4’-ビス[N-(1-ナフ
チル)-N-フェニルアミノ]ビフェニル(略称:NPBまたはα-NPD)やN,N’
-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4
,4’-ジアミン(略称:TPD)、4,4’,4’’-トリス(カルバゾール-9-イ
ル)トリフェニルアミン(略称:TCTA)、4,4’,4’’-トリス[N-(1-ナ
フチル)-N-フェニルアミノ]トリフェニルアミン(略称:1’-TNATA)、4,
4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDA
TA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ
]トリフェニルアミン(略称:m-MTDATA)、4,4’-ビス[N-(スピロ-9
,9’-ビフルオレン-2-イル)-N―フェニルアミノ]ビフェニル(略称:BSPB
)、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(
略称:BPAFLP)、4-フェニル-3’-(9-フェニルフルオレン-9-イル)ト
リフェニルアミン(略称:mBPAFLP)、N-(9,9-ジメチル-9H-フルオレ
ン-2-イル)-N-{9,9-ジメチル-2-[N’-フェニル-N’-(9,9-ジ
メチル-9H-フルオレン-2-イル)アミノ]-9H-フルオレン-7-イル}フェニ
ルアミン(略称:DFLADFL)、N-(9,9-ジメチル-2-ジフェニルアミノ-
9H-フルオレン-7-イル)ジフェニルアミン(略称:DPNF)、2-[N-(4-
ジフェニルアミノフェニル)-N-フェニルアミノ]スピロ-9,9’-ビフルオレン(
略称:DPASF)、4-フェニル-4’-(9-フェニル-9H-カルバゾール-3-
イル)トリフェニルアミン(略称:PCBA1BP)、4,4’-ジフェニル-4’’-
(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBB
i1BP)、4-(1-ナフチル)-4’-(9-フェニル-9H-カルバゾール-3-
イル)トリフェニルアミン(略称:PCBANB)、4,4’-ジ(1-ナフチル)-4
’’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:P
CBNBB)、4-フェニルジフェニル-(9-フェニル-9H-カルバゾール-3-イ
ル)アミン(略称:PCA1BP)、N,N’-ビス(9-フェニルカルバゾール-3-
イル)-N,N’-ジフェニルベンゼン-1,3-ジアミン(略称:PCA2B)、N,
N’,N’’-トリフェニル-N,N’,N’’-トリス(9-フェニルカルバゾール-
3-イル)ベンゼン-1,3,5-トリアミン(略称:PCA3B)、N-(4-ビフェ
ニル)-N-(9,9-ジメチル-9H-フルオレン-2-イル)-9-フェニル-9H
-カルバゾール-3-アミン(略称:PCBiF)、N-(1,1’-ビフェニル-4-
イル)-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]-9,
9-ジメチル-9H-フルオレン-2-アミン(略称:PCBBiF)、9,9-ジメチ
ル-N-フェニル-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニ
ル]フルオレン-2-アミン(略称:PCBAF)、N-フェニル-N-[4-(9-フ
ェニル-9H-カルバゾール-3-イル)フェニル]スピロ-9,9’-ビフルオレン-
2-アミン(略称:PCBASF)、2-[N-(9-フェニルカルバゾール-3-イル
)-N-フェニルアミノ]スピロ-9,9’-ビフルオレン(略称:PCASF)、2,
7-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]-スピロ-9
,9’-ビフルオレン(略称:DPA2SF)、N-[4-(9H-カルバゾール-9-
イル)フェニル]-N-(4-フェニル)フェニルアニリン(略称:YGA1BP)、N
,N’-ビス[4-(カルバゾール-9-イル)フェニル]-N,N’-ジフェニル-9
,9-ジメチルフルオレン-2,7-ジアミン(略称:YGA2F)などの芳香族アミン
化合物等を用いることができる。また、3-[4-(1-ナフチル)-フェニル]-9-
フェニル-9H-カルバゾール(略称:PCPN)、3-[4-(9-フェナントリル)
-フェニル]-9-フェニル-9H-カルバゾール(略称:PCPPn)、3,3’-ビ
ス(9-フェニル-9H-カルバゾール)(略称:PCCP)、1,3-ビス(N-カル
バゾリル)ベンゼン(略称:mCP)、3,6-ビス(3,5-ジフェニルフェニル)-
9-フェニルカルバゾール(略称:CzTP)、4-{3-[3-(9-フェニル-9H
-フルオレン-9-イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFL
Bi-II)、4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベンゾ
フラン)(略称:DBF3P-II)、1,3,5-トリ(ジベンゾチオフェン-4-イ
ル)-ベンゼン(略称:DBT3P-II)、2,8-ジフェニル-4-[4-(9-フ
ェニル-9H-フルオレン-9-イル)フェニル]ジベンゾチオフェン(略称:DBTF
LP-III)、4-[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]
-6-フェニルジベンゾチオフェン(略称:DBTFLP-IV)、4-[3-(トリフ
ェニレン-2-イル)フェニル]ジベンゾチオフェン(略称:mDBTPTp-II)等
のカルバゾール化合物、チオフェン化合物、フラン化合物、フルオレン化合物、トリフェ
ニレン化合物、フェナントレン化合物等を用いることができる。
電子輸送性の高いホスト材料としては、例えば、トリス(8-キノリノラト)アルミニウ
ム(III)(略称:Alq)、トリス(4-メチル-8-キノリノラト)アルミニウム
(III)(略称:Almq)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベ
リリウム(II)(略称:BeBq)、ビス(2-メチル-8-キノリノラト)(4-
フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8-キノリノ
ラト)亜鉛(II)(略称:Znq)など、キノリン骨格またはベンゾキノリン骨格を有
する金属錯体等である。また、この他ビス[2-(2-ベンゾオキサゾリル)フェノラト
]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベンゾチアゾリル)フェノラト
]亜鉛(II)(略称:ZnBTZ)などのオキサゾール系、チアゾール系配位子を有す
る金属錯体なども用いることができる。さらに、金属錯体以外にも、2-(4-ビフェニ
リル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称
:PBD)や、1,3-ビス[5-(p-tert-ブチルフェニル)-1,3,4-オ
キサジアゾール-2-イル]ベンゼン(略称:OXD-7)、9-[4-(5-フェニル
-1,3,4-オキサジアゾール-2-イル)フェニル]-9H-カルバゾール(略称:
CO11)のようなオキサジアゾール誘導体や、3-(4-ビフェニリル)-4-フェニ
ル-5-(4-tert-ブチルフェニル)-1,2,4-トリアゾール(略称:TAZ
)のようなトリアゾール誘導体や、2,2’,2’’-(1,3,5-ベンゼントリイル
)トリス(1-フェニル-1H-ベンゾイミダゾール)(略称:TPBI)、2-[3-
(ジベンゾチオフェン-4-イル)フェニル]-1-フェニル-1H-ベンゾイミダゾー
ル(略称:mDBTBIm-II)のようなイミダゾール骨格を有する化合物(特にベン
ゾイミダゾール誘導体)や、4,4’-ビス(5-メチルベンゾオキサゾール-2-イル
)スチルベン(略称:BzOs)などのオキサゾール骨格を有する化合物(特にベンゾオ
キサゾール誘導体)や、バソフェナントロリン(略称:Bphen)、バソキュプロイン
(略称:BCP)、2,9-ビス(ナフタレン-2-イル)-4,7-ジフェニル-1,
10-フェナントロリン(略称:NBphen)などのフェナントロリン誘導体や、2-
[3-(ジベンゾチオフェン-4-イル)フェニル]ジベンゾ[f,h]キノキサリン(
略称:2mDBTPDBq-II)、2-[3’-(ジベンゾチオフェン-4-イル)ビ
フェニル-3-イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq-
II)、2-[3’-(9H-カルバゾール-9-イル)ビフェニル-3-イル]ジベン
ゾ[f,h]キノキサリン(略称:2mCzBPDBq)、2-[4-(3,6-ジフェ
ニル-9H-カルバゾール-9-イル)フェニル]ジベンゾ[f,h]キノキサリン(略
称:2CzPDBq-III)、7-[3-(ジベンゾチオフェン-4-イル)フェニル
]ジベンゾ[f,h]キノキサリン(略称:7mDBTPDBq-II)、及び、6-[
3-(ジベンゾチオフェン-4-イル)フェニル]ジベンゾ[f,h]キノキサリン(略
称:6mDBTPDBq-II)、4,6-ビス[3-(フェナントレン-9-イル)フ
ェニル]ピリミジン(略称:4,6mPnP2Pm)、4,6-ビス[3-(4-ジベン
ゾチエニル)フェニル]ピリミジン(略称:4,6mDBTP2Pm-II)、4,6-
ビス[3-(9H-カルバゾール-9-イル)フェニル]ピリミジン(略称:4,6mC
zP2Pm)などのジアジン骨格を有する複素環化合物や、2-{4-[3-(N-フェ
ニル-9H-カルバゾール-3-イル)-9H-カルバゾール-9-イル]フェニル}-
4,6-ジフェニル-1,3,5-トリアジン(略称:PCCzPTzn)などのトリア
ジン骨格を有する複素環化合物や、3,5-ビス[3-(9H-カルバゾール-9-イル
)フェニル]ピリジン(略称:35DCzPPy)、1,3,5-トリ[3-(3-ピリ
ジル)フェニル]ベンゼン(略称:TmPyPB)などのピリジン骨格を有する複素環化
合物も用いることができる。また、ポリ(2,5-ピリジンジイル)(略称:PPy)、
ポリ[(9,9-ジヘキシルフルオレン-2,7-ジイル)-co-(ピリジン-3,5
-ジイル)](略称:PF-Py)、ポリ[(9,9-ジオクチルフルオレン-2,7-
ジイル)-co-(2,2’-ビピリジン-6,6’-ジイル)](略称:PF-BPy
)のような高分子化合物を用いることもできる。
また、ホスト材料として、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、
クリセン誘導体、ジベンゾ[g,p]クリセン誘導体等の縮合多環芳香族化合物が挙げら
れ、具体的には、9,10-ジフェニルアントラセン(略称:DPAnth)、N,N-
ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバ
ゾール-3-アミン(略称:CzA1PA)、4-(10-フェニル-9-アントリル)
トリフェニルアミン(略称:DPhPA)、YGAPA、PCAPA、N,9-ジフェニ
ル-N-{4-[4-(10-フェニル-9-アントリル)フェニル]フェニル}-9H
-カルバゾール-3-アミン(略称:PCAPBA)2PCAPA、6,12-ジメトキ
シ-5,11-ジフェニルクリセン、DBC1、9-[4-(10-フェニル-9-アン
トラセニル)フェニル]-9H-カルバゾール(略称:CzPA)、3,6-ジフェニル
-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略
称:DPCzPA)、9,10-ビス(3,5-ジフェニルフェニル)アントラセン(略
称:DPPA)、9,10-ジ(2-ナフチル)アントラセン(略称:DNA)、2-t
ert-ブチル-9,10-ジ(2-ナフチル)アントラセン(略称:t-BuDNA)
、9,9’-ビアントリル(略称:BANT)、9,9’-(スチルベン-3,3’-ジ
イル)ジフェナントレン(略称:DPNS)、9,9’-(スチルベン-4,4’-ジイ
ル)ジフェナントレン(略称:DPNS2)、1,3,5-トリ(1-ピレニル)ベンゼ
ン(略称:TPB3)などを用いることができる。
また、発光層(113、113a、113b、113c)に有機化合物を複数用いる場合
、励起錯体を形成する2種類の化合物(第1の化合物および第2の化合物)と、ゲスト材
料とを混合して用いることが好ましい。この場合、様々な有機化合物を適宜組み合わせて
用いることができるが、効率よく励起錯体を形成するためには、正孔を受け取りやすい化
合物(正孔輸送性材料)と、電子を受け取りやすい化合物(電子輸送性材料)とを組み合
わせることが特に好ましい。なお、正孔輸送性材料および電子輸送性材料の具体例につい
ては、本実施の形態で示す材料を用いることができる。
TADF材料とは、三重項励起状態をわずかな熱エネルギーによって一重項励起状態にア
ップコンバート(逆項間交差)が可能で、一重項励起状態からの発光(蛍光)を効率よく
呈する材料のことである。また、熱活性化遅延蛍光が効率良く得られる条件としては、三
重項励起準位と一重項励起準位のエネルギー差が0eV以上0.2eV以下、好ましくは
0eV以上0.1eV以下であることが挙げられる。また、TADF材料における遅延蛍
光とは、通常の蛍光と同様のスペクトルを持ちながら、寿命が著しく長い発光をいう。そ
の寿命は、10-6秒以上、好ましくは10-3秒以上である。
TADF材料としては、例えば、フラーレンやその誘導体、プロフラビン等のアクリジン
誘導体、エオシン等が挙げられる。また、マグネシウム(Mg)、亜鉛(Zn)、カドミ
ウム(Cd)、スズ(Sn)、白金(Pt)、インジウム(In)、もしくはパラジウム
(Pd)等を含む金属含有ポルフィリンが挙げられる。金属含有ポルフィリンとしては、
例えば、プロトポルフィリン-フッ化スズ錯体(略称:SnF(Proto IX))
、メソポルフィリン-フッ化スズ錯体(略称:SnF(Meso IX))、ヘマトポ
ルフィリン-フッ化スズ錯体(略称:SnF(Hemato IX))、コプロポルフ
ィリンテトラメチルエステル-フッ化スズ錯体(略称:SnF(Copro III-
4Me))、オクタエチルポルフィリン-フッ化スズ錯体(略称:SnF(OEP))
、エチオポルフィリン-フッ化スズ錯体(略称:SnF(Etio I))、オクタエ
チルポルフィリン-塩化白金錯体(略称:PtClOEP)等が挙げられる。
その他にも、2-(ビフェニル-4-イル)-4,6-ビス(12-フェニルインドロ[
2,3-a]カルバゾール-11-イル)-1,3,5-トリアジン(略称:PIC-T
RZ)、2-{4-[3-(N-フェニル-9H-カルバゾール-3-イル)-9H-カ
ルバゾール-9-イル]フェニル}-4,6-ジフェニル-1,3,5-トリアジン(略
称:PCCzPTzn)、2-[4-(10H-フェノキサジン-10-イル)フェニル
]-4,6-ジフェニル-1,3,5-トリアジン(略称:PXZ-TRZ)、3-[4
-(5-フェニル-5,10-ジヒドロフェナジン-10-イル)フェニル]-4,5-
ジフェニル-1,2,4-トリアゾール(略称:PPZ-3TPT)、3-(9,9-ジ
メチル-9H-アクリジン-10-イル)-9H-キサンテン-9-オン(略称:ACR
XTN)、ビス[4-(9,9-ジメチル-9,10-ジヒドロアクリジン)フェニル]
スルホン(略称:DMAC-DPS)、10-フェニル-10H,10’H-スピロ[ア
クリジン-9,9’-アントラセン]-10’-オン(略称:ACRSA)、等のπ電子
過剰型複素芳香環及びπ電子不足型複素芳香環を有する複素環化合物を用いることができ
る。なお、π電子過剰型複素芳香環とπ電子不足型複素芳香環とが直接結合した物質は、
π電子過剰型複素芳香環のドナー性とπ電子不足型複素芳香環のアクセプター性が共に強
くなり、一重項励起状態と三重項励起状態のエネルギー差が小さくなるため、特に好まし
い。
なお、TADF材料を用いる場合、他の有機化合物と組み合わせて用いることもできる。
図5(D)に示す発光素子において、EL層103aの発光層113a上に電子輸送層1
14aが真空蒸着法により形成される。また、EL層103aおよび電荷発生層104が
形成された後、EL層103bの発光層113b上に電子輸送層114bが真空蒸着法に
より形成される。
<電子輸送層>
電子輸送層(114、114a、114b)は、電子注入層(115、115a、115
b)によって、第2の電極102や電荷発生層(104)から注入された電子を発光層(
113、113a、113b)に輸送する層である。なお、電子輸送層(114、114
a、114b)は、電子輸送性材料を含む層である。電子輸送層(114、114a、1
14b)に用いる電子輸送性材料は、1×10-6cm/Vs以上の電子移動度を有す
る物質が好ましい。なお、正孔よりも電子の輸送性の高い物質であれば、これら以外のも
のを用いることができる。
電子輸送性材料としては、キノリン配位子、ベンゾキノリン配位子、オキサゾール配位子
、あるいはチアゾール配位子を有する金属錯体、オキサジアゾール誘導体、トリアゾール
誘導体、フェナントロリン誘導体、ピリジン誘導体、ビピリジン誘導体などが挙げられる
。その他、含窒素複素芳香族化合物のようなπ電子不足型複素芳香族化合物を用いること
もできる。
具体的には、Alq、トリス(4-メチル-8-キノリノラト)アルミニウム(略称:
Almq)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:B
eBq)、BAlq、ビス[2-(2-ヒドロキシフェニル)ベンゾオキサゾラト]亜
鉛(II)(略称:Zn(BOX))、ビス[2-(2-ヒドロキシフェニル)ベンゾ
チアゾラト]亜鉛(II)(略称:Zn(BTZ))などの金属錯体、2-(4-ビフ
ェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(
略称:PBD)、OXD-7、3-(4’-tert-ブチルフェニル)-4-フェニル
-5-(4’’-ビフェニル)-1,2,4-トリアゾール(略称:TAZ)、3-(4
-tert-ブチルフェニル)-4-(4-エチルフェニル)-5-(4-ビフェニリル
)-1,2,4-トリアゾール(略称:p-EtTAZ)、バソフェナントロリン(略称
:Bphen)、バソキュプロイン(略称:BCP)、4,4’-ビス(5-メチルベン
ゾオキサゾール-2-イル)スチルベン(略称:BzOs)などの複素芳香族化合物、2
-[3-(ジベンゾチオフェン-4-イル)フェニル]ジベンゾ[f,h]キノキサリン
(略称:2mDBTPDBq-II)、2-[3’-(ジベンゾチオフェン-4-イル)
ビフェニル-3-イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq
-II)、2-[4-(3,6-ジフェニル-9H-カルバゾール-9-イル)フェニル
]ジベンゾ[f,h]キノキサリン(略称:2CzPDBq-III)、7-[3-(ジ
ベンゾチオフェン-4-イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:7m
DBTPDBq-II)、6-[3-(ジベンゾチオフェン-4-イル)フェニル]ジベ
ンゾ[f,h]キノキサリン(略称:6mDBTPDBq-II)等のキノキサリンない
しはジベンゾキノキサリン誘導体を用いることができる。
また、ポリ(2,5-ピリジンジイル)(略称:PPy)、ポリ[(9,9-ジヘキシル
フルオレン-2,7-ジイル)-co-(ピリジン-3,5-ジイル)](略称:PF-
Py)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(2,2’
-ビピリジン-6,6’-ジイル)](略称:PF-BPy)のような高分子化合物を用
いることもできる。
また、電子輸送層(114、114a、114b)は、単層のものだけでなく、上記物質
からなる層が2層以上積層した構造であってもよい。
図5(D)に示す発光素子においては、EL層103aの電子輸送層114a上に電子注
入層115aが真空蒸着法により形成される。その後、EL層103aおよび電荷発生層
104が形成され、EL層103bの電子輸送層114bまで形成された後、上に電子注
入層115bが真空蒸着法により形成される。
<電子注入層>
電子注入層(115、115a、115b)は、電子注入性の高い物質を含む層である。
電子注入層(115、115a、115b)には、フッ化リチウム(LiF)、フッ化セ
シウム(CsF)、フッ化カルシウム(CaF)、リチウム酸化物(LiO)等のよ
うなアルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。ま
た、フッ化エルビウム(ErF)のような希土類金属化合物を用いることができる。ま
た、電子注入層(115、115a、115b)にエレクトライドを用いてもよい。エレ
クトライドとしては、例えば、カルシウムとアルミニウムの混合酸化物に電子を高濃度添
加した物質等が挙げられる。なお、上述した電子輸送層(114、114a、114b)
を構成する物質を用いることもできる。
また、電子注入層(115、115a、115b)に、有機化合物と電子供与体(ドナー
)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によっ
て有機化合物に電子が発生するため、電子注入性および電子輸送性に優れている。この場
合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体
的には、例えば上述した電子輸送層(114、114a、114b)に用いる電子輸送性
材料(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有
機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属やアルカ
リ土類金属や希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、
エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類
金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げら
れる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラ
チアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
なお、例えば、発光層113bから得られる光を増幅させる場合には、第2の電極102
と、発光層113bとの光学距離が、発光層113bが呈する光の波長に対してλ/4未
満となるように形成するのが好ましい。この場合、電子輸送層114bまたは電子注入層
115bの膜厚を変えることにより、調整することができる。
<電荷発生層>
電荷発生層104は、第1の電極(陽極)101と第2の電極(陰極)102との間に電
圧を印加したときに、EL層103aに電子を注入し、EL層103bに正孔を注入する
機能を有する。なお、電荷発生層104は、正孔輸送性材料に電子受容体(アクセプター
)が添加された構成であっても、電子輸送性材料に電子供与体(ドナー)が添加された構
成であってもよい。また、これらの両方の構成が積層されていても良い。なお、上述した
材料を用いて電荷発生層104を形成することにより、EL層が積層された場合における
駆動電圧の上昇を抑制することができる。
電荷発生層104において、正孔輸送性材料に電子受容体が添加された構成とする場合、
正孔輸送性材料としては、本実施の形態で示した材料を用いることができる。また、電子
受容体としては、7,7,8,8-テトラシアノ-2,3,5,6-テトラフルオロキノ
ジメタン(略称:F-TCNQ)、クロラニル等を挙げることができる。また元素周期
表における第4族乃至第8族に属する金属の酸化物を挙げることができる。具体的には、
酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、酸化タング
ステン、酸化マンガン、酸化レニウムなどが挙げられる。
電荷発生層104において、電子輸送性材料に電子供与体が添加された構成とする場合、
電子輸送性材料としては、本実施の形態で示した材料を用いることができる。また、電子
供与体としては、アルカリ金属またはアルカリ土類金属または希土類金属または元素周期
表における第2、第13族に属する金属およびその酸化物、炭酸塩を用いることができる
。具体的には、リチウム(Li)、セシウム(Cs)、マグネシウム(Mg)、カルシウ
ム(Ca)、イッテルビウム(Yb)、インジウム(In)、酸化リチウム、炭酸セシウ
ムなどを用いることが好ましい。また、テトラチアナフタセンのような有機化合物を電子
供与体として用いてもよい。
なお、図5(E)のEL層103cは、上述したEL層(103、103a、103b)
と同様の構成とすればよい。また、電荷発生層104a、104bについても、上述した
電荷発生層104と同様の構成とすればよい。
<基板>
本実施の形態で示した発光素子は、様々な基板上に形成することができる。なお、基板の
種類は、特定のものに限定されることはない。基板の一例としては、半導体基板(例えば
単結晶基板又はシリコン基板)、SOI基板、ガラス基板、石英基板、プラスチック基板
、金属基板、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板、タン
グステン基板、タングステン・ホイルを有する基板、可撓性基板、貼り合わせフィルム、
繊維状の材料を含む紙、又は基材フィルムなどが挙げられる。
なお、ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラ
ス、又はソーダライムガラスなどが挙げられる。また、可撓性基板、貼り合わせフィルム
、基材フィルムなどの一例としては、ポリエチレンテレフタレート(PET)、ポリエチ
レンナフタレート(PEN)、ポリエーテルサルフォン(PES)に代表されるプラスチ
ック、アクリル等の合成樹脂、ポリプロピレン、ポリエステル、ポリフッ化ビニル、又は
ポリ塩化ビニル、ポリアミド、ポリイミド、アラミド、エポキシ、無機蒸着フィルム、又
は紙類などが挙げられる。
なお、本実施の形態で示す発光素子の作製には、蒸着法などの真空プロセスや、スピンコ
ート法やインクジェット法などの溶液プロセスを用いることができる。蒸着法を用いる場
合には、スパッタ法、イオンプレーティング法、イオンビーム蒸着法、分子線蒸着法、真
空蒸着法などの物理蒸着法(PVD法)や、化学蒸着法(CVD法)等を用いることがで
きる。特に発光素子のEL層に含まれる機能層(正孔注入層(111、111a、111
b)、正孔輸送層(112、112a、112b)、発光層(113、113a、113
b、113c)、電子輸送層(114、114a、114b)、電子注入層(115、1
15a、115b)、および電荷発生層(104、104a、104b)については、蒸
着法(真空蒸着法等)、塗布法(ディップコート法、ダイコート法、バーコート法、スピ
ンコート法、スプレーコート法等)、印刷法(インクジェット法、スクリーン(孔版印刷
)法、オフセット(平版印刷)法、フレキソ(凸版印刷)法、グラビア法、マイクロコン
タクト法等)などの方法により形成することができる。
なお、本実施の形態で示す発光素子のEL層(103、103a、103b)を構成する
各機能層(正孔注入層(111、111a、111b)、正孔輸送層(112、112a
、112b)、発光層(113、113a、113b、113c)、電子輸送層(114
、114a、114b)、電子注入層(115、115a、115b))や電荷発生層(
104、104a、104b)は、上述した材料に限られることはなく、それ以外の材料
であっても各層の機能を満たせるものであれば組み合わせて用いることができる。一例と
しては、高分子化合物(オリゴマー、デンドリマー、ポリマー等)、中分子化合物(低分
子と高分子の中間領域の化合物:分子量400~4000)、無機化合物(量子ドット材
料等)等を用いることができる。なお、量子ドット材料としては、コロイド状量子ドット
材料、合金型量子ドット材料、コア・シェル型量子ドット材料、コア型量子ドット材料な
どを用いることができる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることが
できるものとする。
(実施の形態3)
本実施の形態では、本発明の一態様である発光装置について説明する。なお、図6(A)
に示す発光装置は、第1の基板201上のトランジスタ(FET)202と発光素子(2
03R、203G、203B、203W)が電気的に接続されてなるアクティブマトリク
ス型の発光装置であり、複数の発光素子(203R、203G、203B、203W)は
、共通のEL層204を有し、また、各発光素子の発光色に応じて、各発光素子の電極間
の光学距離が調整されたマイクロキャビティ構造を有する。また、EL層204から得ら
れた発光が第2の基板205に形成されたカラーフィルタ(206R、206G、206
B)を介して射出されるトップエミッション型の発光装置である。
図6(A)に示す発光装置は、第1の電極207を反射電極として機能するように形成す
る。また、第2の電極208を半透過・半反射電極として機能するように形成する。なお
、第1の電極207および第2の電極208を形成する電極材料としては、他の実施形態
の記載を参照し、適宜用いればよい。
また、図6(A)において、例えば、発光素子203Rを赤色発光素子、発光素子203
Gを緑色発光素子、発光素子203Bを青色発光素子、発光素子203Wを白色発光素子
とする場合、図6(B)に示すように発光素子203Rは、第1の電極207と第2の電
極208との間が光学距離200Rとなるように調整し、発光素子203Gは、第1の電
極207と第2の電極208との間が光学距離200Gとなるように調整し、発光素子2
03Bは、第1の電極207と第2の電極208との間が光学距離200Bとなるように
調整する。なお、図6(B)に示すように、発光素子203Rにおいて導電層207Rを
第1の電極207に積層し、発光素子203Gにおいて導電層207Gを積層することに
より、光学調整を行うことができる。
第2の基板205には、カラーフィルタ(206R、206G、206B)が形成されて
いる。なお、カラーフィルタは、可視光のうち特定の波長域を通過させ、特定の波長域を
阻止するフィルタである。従って、図6(A)に示すように、発光素子203Rと重なる
位置に赤の波長域のみを通過させるカラーフィルタ206Rを設けることにより、発光素
子203Rから赤色発光を得ることができる。また、発光素子203Gと重なる位置に緑
の波長域のみを通過させるカラーフィルタ206Gを設けることにより、発光素子203
Gから緑色発光を得ることができる。また、発光素子203Bと重なる位置に青の波長域
のみを通過させるカラーフィルタ206Bを設けることにより、発光素子203Bから青
色発光を得ることができる。但し、発光素子203Wは、カラーフィルタを設けることな
く白色発光を得ることができる。なお、1種のカラーフィルタの端部には、黒色層(ブラ
ックマトリックス)209が設けられていてもよい。さらに、カラーフィルタ(206R
、206G、206B)や黒色層209は、透明な材料を用いたオーバーコート層で覆わ
れていても良い。
図6(A)では、第2の基板205側に発光を取り出す構造(トップエミッション型)の
発光装置を示したが、図6(C)に示すようにFET202が形成されている第1の基板
201側に光を取り出す構造(ボトムエミッション型)の発光装置としても良い。なお、
ボトムエミッション型の発光装置の場合には、第1の電極207を半透過・半反射電極と
して機能するように形成し、第2の電極208を反射電極として機能するように形成する
。また、第1の基板201は、少なくとも透光性の基板を用いる。また、カラーフィルタ
(206R’、206G’、206B’)は、図6(C)に示すように発光素子(203
R、203G、203B)よりも第1の基板201側に設ければよい。
また、図6(A)において、発光素子が、赤色発光素子、緑色発光素子、青色発光素子、
白色発光素子の場合について示したが、本発明の一態様である発光素子はその構成に限ら
れることはなく、黄色の発光素子や橙色の発光素子を有する構成であっても良い。なお、
これらの発光素子を作製するためにEL層(発光層、正孔注入層、正孔輸送層、電子輸送
層、電子注入層、電荷発生層など)に用いる材料としては、他の実施形態の記載を参照し
、適宜用いればよい。なお、その場合には、また、発光素子の発光色に応じてカラーフィ
ルタを適宜選択する必要がある。
以上のような構成とすることにより、複数の発光色を呈する発光素子を備えた発光装置を
得ることができる。
なお、本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いる
ことができるものとする。
(実施の形態4)
本実施の形態では、本発明の一態様である発光装置について説明する。
本発明の一態様である発光素子の素子構成を適用することで、アクティブマトリクス型の
発光装置やパッシブマトリクス型の発光装置を作製することができる。なお、アクティブ
マトリクス型の発光装置は、発光素子とトランジスタ(FET)とを組み合わせた構成を
有する。従って、パッシブマトリクス型の発光装置、アクティブマトリクス型の発光装置
は、いずれも本発明の一態様に含まれる。なお、本実施の形態に示す発光装置には、他の
実施形態で説明した発光素子を適用することが可能である。
本実施の形態では、アクティブマトリクス型の発光装置について図7を用いて説明する。
なお、図7(A)は発光装置を示す上面図であり、図7(B)は図7(A)を鎖線A-A
’で切断した断面図である。アクティブマトリクス型の発光装置は、第1の基板301上
に設けられた画素部302、駆動回路部(ソース線駆動回路)303と、駆動回路部(ゲ
ート線駆動回路)(304a、304b)を有する。画素部302および駆動回路部30
3、304a、304b)は、シール材305によって、第1の基板301と第2の基板
306との間に封止される。
また、第1の基板301上には、引き回し配線307が設けられる。引き回し配線307
は、外部入力端子であるFPC308と接続される。なお、FPC308は、駆動回路部
(303、304a、304b)に外部からの信号(例えば、ビデオ信号、クロック信号
、スタート信号、リセット信号等)や電位を伝達する。また、FPC308にはプリント
配線基板(PWB)が取り付けられていても良い。なお、これらFPCやのPWBが取り
付けられた状態は、発光装置に含まれる。
次に、図7(B)に断面構造を示す。
画素部302は、FET(スイッチング用FET)311、FET(電流制御用FET)
312、およびFET312と電気的に接続された第1の電極313を有する複数の画素
により形成される。なお、各画素が有するFETの数は、特に限定されることはなく、必
要に応じて適宜設けることができる。
FET309、310、311、312は、特に限定されることはなく、例えば、スタガ
型や逆スタガ型などのトランジスタを適用することができる。また、トップゲート型やボ
トムゲート型などのトランジスタ構造であってもよい。
なお、これらのFET309、310、311、312に用いることのできる半導体の結
晶性については特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、
多結晶半導体、単結晶半導体、又は一部に結晶領域を有する半導体)のいずれを用いても
よい。なお、結晶性を有する半導体を用いることで、トランジスタ特性の劣化を抑制でき
るため好ましい。
また、これらの半導体としては、例えば、第14族の元素、化合物半導体、酸化物半導体
、有機半導体などを用いることができる。代表的には、シリコンを含む半導体、ガリウム
ヒ素を含む半導体、インジウムを含む酸化物半導体などを適用することができる。
駆動回路部303は、FET309とFET310とを有する。なお、FET309とF
ET310は、単極性(N型またはP型のいずれか一方のみ)のトランジスタを含む回路
で形成されても良いし、N型のトランジスタとP型のトランジスタを含むCMOS回路で
形成されても良い。また、外部に駆動回路を有する構成としても良い。
第1の電極313の端部は、絶縁物314により覆われている。なお、絶縁物314には
、ネガ型の感光性樹脂や、ポジ型の感光性樹脂(アクリル樹脂)などの有機化合物や、酸
化シリコン、酸化窒化シリコン、窒化シリコン等の無機化合物を用いることができる。絶
縁物314の上端部または下端部には、曲率を有する曲面を有するのが好ましい。これに
より、絶縁物314の上層に形成される膜の被覆性を良好なものとすることができる。
第1の電極313上には、EL層315及び第2の電極316が積層形成される。EL層
315は、発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層、電荷発生層等を
有する。
なお、本実施の形態で示す発光素子317の構成は、他の実施の形態で説明した構成や材
料を適用することができる。なお、ここでは図示しないが、第2の電極316は外部入力
端子であるFPC308に電気的に接続されている。
また、図7(B)に示す断面図では発光素子317を1つのみ図示しているが、画素部3
02において、複数の発光素子がマトリクス状に配置されているものとする。画素部30
2には、3種類(R、G、B)の発光が得られる発光素子をそれぞれ選択的に形成し、フ
ルカラー表示可能な発光装置を形成することができる。また、3種類(R、G、B)の発
光が得られる発光素子の他に、例えば、ホワイト(W)、イエロー(Y)、マゼンタ(M
)、シアン(C)等の発光が得られる発光素子を形成してもよい。例えば、3種類(R、
G、B)の発光が得られる発光素子に上述の数種類の発光が得られる発光素子を追加する
ことにより、色純度の向上、消費電力の低減等の効果が得ることができる。また、カラー
フィルタと組み合わせることによってフルカラー表示可能な発光装置としてもよい。なお
、カラーフィルタの種類としては、赤(R)、緑(G)、青(B)、シアン(C)、マゼ
ンタ(M)、イエロー(Y)等を用いることができる。
第1の基板301上のFET(309、310、311、312)や、発光素子317は
、第2の基板306と第1の基板301とをシール材305により貼り合わせることによ
り、第1の基板301、第2の基板306、およびシール材305で囲まれた空間318
に備えられた構造を有する。なお、空間318には、不活性気体(窒素やアルゴン等)や
有機物(シール材305を含む)で充填されていてもよい。
シール材305には、エポキシ系樹脂やガラスフリットを用いることができる。なお、シ
ール材305には、できるだけ水分や酸素を透過しない材料を用いることが好ましい。ま
た、第2の基板306は、第1の基板301に用いることができるものを同様に用いるこ
とができる。従って、他の実施形態で説明した様々な基板を適宜用いることができるもの
とする。基板としてガラス基板や石英基板の他、FRP(Fiber-Reinforc
ed Plastics)、PVF(ポリビニルフロライド)、ポリエステルまたはアク
リル等からなるプラスチック基板を用いることができる。シール材としてガラスフリット
を用いる場合には、接着性の観点から第1の基板301及び第2の基板306はガラス基
板であることが好ましい。
以上のようにして、アクティブマトリクス型の発光装置を得ることができる。
また、アクティブマトリクス型の発光装置を可撓性基板に形成する場合、可撓性基板上に
FETと発光素子とを直接形成しても良いが、剥離層を有する別の基板にFETと発光素
子を形成した後、熱、力、レーザ照射などを与えることによりFETと発光素子を剥離層
で剥離し、さらに可撓性基板に転載して作製しても良い。なお、剥離層としては、例えば
、タングステン膜と酸化シリコン膜との無機膜の積層や、ポリイミド等の有機樹脂膜等を
用いることができる。また可撓性基板としては、トランジスタを形成することが可能な基
板に加え、紙基板、セロファン基板、アラミドフィルム基板、ポリイミドフィルム基板、
布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステル)
若しくは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)などを含む)
、皮革基板、又はゴム基板などが挙げられる。これらの基板を用いることにより、耐久性
や耐熱性に優れ、軽量化および薄型化を図ることができる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用い
ることができる。
(実施の形態5)
本実施の形態では、本発明の一態様である発光装置、本発明の一態様である発光素子を有
する表示装置を適用して完成させた様々な電子機器や自動車の一例について、説明する。
図8(A)~図8(E)に示す電子機器は、筐体7000、表示部7001、スピーカ7
003、LEDランプ7004、操作キー7005(電源スイッチ、又は操作スイッチを
含む)、接続端子7006、センサ7007(力、変位、位置、速度、加速度、角速度、
回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、
電力、放射線、流量、湿度、傾度、振動、におい、又は赤外線を測定する機能を含むもの
)、マイクロフォン7008、等を有することができる。
図8(A)はモバイルコンピュータであり、上述したものの他に、スイッチ7009、赤
外線ポート7010、等を有することができる。
図8(B)は記録媒体を備えた携帯型の画像再生装置(たとえば、DVD再生装置)であ
り、上述したものの他に、第2表示部7002、記録媒体読込部7011、等を有するこ
とができる。
図8(C)はゴーグル型ディスプレイであり、上述したものの他に、第2表示部7002
、支持部7012、イヤホン7013、等を有することができる。
図8(D)はテレビ受像機能付きデジタルカメラであり、上述したものの他に、アンテナ
7014、シャッターボタン7015、受像部7016、等を有することができる。
図8(E)は携帯電話機(スマートフォンを含む)であり、筐体7000に、表示部70
01、マイクロフォン7019、スピーカ7003、カメラ7020、外部接続部702
1、操作用ボタン7022、等を有することができる。
図8(F)は、大型のテレビジョン装置(テレビ、又はテレビジョン受信機ともいう)で
あり、筐体7000、表示部7001、スピーカ7003、等を有することができる。ま
た、ここでは、スタンド7018により筐体7000を支持した構成を示している。
図8(A)~図8(F)に示す電子機器は、様々な機能を有することができる。例えば、
様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル
機能、カレンダー、日付又は時刻などを表示する機能、様々なソフトウエア(プログラム
)によって処理を制御する機能、無線通信機能、無線通信機能を用いて様々なコンピュー
タネットワークに接続する機能、無線通信機能を用いて様々なデータの送信又は受信を行
う機能、記録媒体に記録されているプログラム又はデータを読み出して表示部に表示する
機能、等を有することができる。さらに、複数の表示部を有する電子機器においては、一
つの表示部を主として画像情報を表示し、別の一つの表示部を主として文字情報を表示す
る機能、または、複数の表示部に視差を考慮した画像を表示することで立体的な画像を表
示する機能、等を有することができる。さらに、受像部を有する電子機器においては、静
止画を撮影する機能、動画を撮影する機能、撮影した画像を自動または手動で補正する機
能、撮影した画像を記録媒体(外部又はカメラに内蔵)に保存する機能、撮影した画像を
表示部に表示する機能、等を有することができる。なお、図8(A)~図8(F)に示す
電子機器が有することのできる機能はこれらに限定されず、様々な機能を有することがで
きる。
図8(G)は、スマートウオッチであり、筐体7000、表示部7001、操作用ボタン
7022、7023、接続端子7024、バンド7025、留め金7026、等を有する
ベゼル部分を兼ねる筐体7000に搭載された表示部7001は、非矩形状の表示領域を
有している。表示部7001は、時刻を表すアイコン7027、その他のアイコン702
8等を表示することができる。また、表示部7001は、タッチセンサ(入力装置)を搭
載したタッチパネル(入出力装置)であってもよい。
なお、図8(G)に示すスマートウオッチは、様々な機能を有することができる。例えば
、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネ
ル機能、カレンダー、日付又は時刻などを表示する機能、様々なソフトウエア(プログラ
ム)によって処理を制御する機能、無線通信機能、無線通信機能を用いて様々なコンピュ
ータネットワークに接続する機能、無線通信機能を用いて様々なデータの送信又は受信を
行う機能、記録媒体に記録されているプログラム又はデータを読み出して表示部に表示す
る機能、等を有することができる。
また、筐体7000の内部に、スピーカ、センサ(力、変位、位置、速度、加速度、角速
度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電
圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外線を測定する機能を含むも
の)、マイクロフォン等を有することができる。
なお、本発明の一態様である発光装置および本発明の一態様である発光素子を有する表示
装置は、本実施の形態に示す電子機器の各表示部に用いることができ、長寿命な表示が可
能となる。
また、発光装置を適用した電子機器として、図9(A)~(C)に示すような折りたたみ
可能な携帯情報端末が挙げられる。図9(A)には、展開した状態の携帯情報端末931
0を示す。また、図9(B)には、展開した状態又は折りたたんだ状態の一方から他方に
変化する途中の状態の携帯情報端末9310を示す。さらに、図9(C)には、折りたた
んだ状態の携帯情報端末9310を示す。携帯情報端末9310は、折りたたんだ状態で
は可搬性に優れ、展開した状態では、継ぎ目のない広い表示領域により表示の一覧性に優
れる。
表示部9311はヒンジ9313によって連結された3つの筐体9315に支持されてい
る。なお、表示部9311は、タッチセンサ(入力装置)を搭載したタッチパネル(入出
力装置)であってもよい。また、表示部9311は、ヒンジ9313を介して2つの筐体
9315間を屈曲させることにより、携帯情報端末9310を展開した状態から折りたた
んだ状態に可逆的に変形させることができる。本発明の一態様の発光装置を表示部931
1に用いることができる。また、色純度の良い表示が可能となる。表示部9311におけ
る表示領域9312は折りたたんだ状態の携帯情報端末9310の側面に位置する表示領
域である。表示領域9312には、情報アイコンや使用頻度の高いアプリやプログラムの
ショートカットなどを表示させることができ、情報の確認やアプリなどの起動をスムーズ
に行うことができる。
また、電子機器の使用例の一例について、図10(A)、(B)を用いて説明する。なお
、ここで説明する電子機器は、その表示部に、本発明の一態様である発光素子を有する表
示装置を有する。従って、表示部において、反射型の液晶素子による反射モードと、発光
素子による透過モード、の両方の表示を行うことができる。なお、図10(A)は、照度
の大きい日中の屋外における電子機器の使用例を示し、図10(B)は照度の小さい夜間
の屋外での電子機器の使用例を示す。
図10(A)に示すように、照度の大きい環境下において、電子機器6000を反射表示
モードまたは反射表示-発光表示モードで動作させ、外光6002を反射させた反射光6
003を用いた表示を行う。このような構成とすることで、照度の大きい環境下において
も優れた視認性を確保するとともに、良好な表示品位と低消費電力化を図ることができる
また、図10(B)に示すように、照度の小さい環境下において、電子機器6000を発
光表示モードあるいは反射表示-発光表示モードで動作させ、表示装置の発光6004を
用いた表示を行う。このような構成とすることで、照度の小さい環境下においても優れた
視認性を確保することができる。
また、発光装置を適用した自動車について、図11(A)(B)に示す。すなわち、発光
装置を、自動車と一体にして設けることができる。具体的には、図11(A)に示す自動
車の外側のライト5101(車体後部も含む)、タイヤのホイール5102、ドア510
3の一部または全体などに適用することができる。また、図11(B)に示す自動車の内
側の表示部5104、ハンドル5105、シフトレバー5106、座席シート5107、
インナーリアビューミラー5108等に適用することができる。その他、ガラス窓の一部
に適用してもよい。
以上のようにして、本発明の一態様である発光装置や表示装置を適用した電子機器や自動
車を得ることができる。なお、その場合には、色純度の良い表示が可能となる。なお、適
用できる電子機器や自動車は、本実施の形態に示したものに限らず、あらゆる分野におい
て適用することが可能である。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用い
ることができる。
(実施の形態6)
本実施の形態では、本発明の一態様である発光装置、またはその一部である発光素子を適
用して作製される照明装置の構成について図12を用いて説明する。
図12(A)、(B)、(C)、(D)には、照明装置の断面図の一例を示す。なお、図
12(A)、(B)は基板側に光を取り出すボトムエミッション型の照明装置であり、図
12(C)、(D)は、封止基板側に光を取り出すトップエミッション型の照明装置であ
る。
図12(A)に示す照明装置4000は、基板4001上に発光素子4002を有する。
また、基板4001の外側に凹凸を有する基板4003を有する。発光素子4002は、
第1の電極4004と、EL層4005と、第2の電極4006を有する。
第1の電極4004は、電極4007と電気的に接続され、第2の電極4006は電極4
008と電気的に接続される。また、第1の電極4004と電気的に接続される補助配線
4009を設けてもよい。なお、補助配線4009上には、絶縁層4010が形成されて
いる。
また、基板4001と封止基板4011は、シール材4012で接着されている。また、
封止基板4011と発光素子4002の間には、乾燥剤4013が設けられていることが
好ましい。なお、基板4003は、図12(A)のような凹凸を有するため、発光素子4
002で生じた光の取り出し効率を向上させることができる。
また、基板4003に代えて、図12(B)の照明装置4100のように、基板4001
の外側に拡散板4015を設けてもよい。
図12(C)の照明装置4200は、基板4201上に発光素子4202を有する。発光
素子4202は第1の電極4204と、EL層4205と、第2の電極4206とを有す
る。
第1の電極4204は、電極4207と電気的に接続され、第2の電極4206は電極4
208と電気的に接続される。また第2の電極4206と電気的に接続される補助配線4
209を設けてもよい。また、補助配線4209の下部に、絶縁層4210を設けてもよ
い。
基板4201と凹凸のある封止基板4211は、シール材4212で接着されている。ま
た、封止基板4211と発光素子4202の間にバリア膜4213および平坦化膜421
4を設けてもよい。なお、封止基板4211は、図12(C)のような凹凸を有するため
、発光素子4202で生じた光の取り出し効率を向上させることができる。
また、封止基板4211に代えて、図12(D)の照明装置4300のように、発光素子
4202の上に拡散板4215を設けてもよい。
なお、本実施の形態で示すように、本発明の一態様である発光装置、またはその一部であ
る発光素子を適用することで、所望の色度を有する照明装置を提供することができる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用い
ることができる。
(実施の形態7)
本実施の形態では、本発明の一態様である発光装置、またはその一部である発光素子を適
用して作製される照明装置の応用例について、図13を用いて説明する。
室内の照明装置としては、シーリングライト8001として応用できる。シーリングライ
ト8001には、天井直付型や天井埋め込み型がある。なお、このような照明装置は、発
光装置を筐体やカバーと組み合わせることにより構成される。その他にもコードペンダン
ト型(天井からのコード吊り下げ式)への応用も可能である。
また、足元灯8002は、床面に灯りを照射し、足元の安全性を高めることができる。例
えば、寝室や階段や通路などに使用するのが有効である。その場合、部屋の広さや構造に
応じて適宜サイズや形状を変えることができる。また、発光装置と支持台とを組み合わせ
て構成される据え置き型の照明装置とすることも可能である。
また、シート状照明8003は、薄型のシート状の照明装置である。壁面に張り付けて使
用するため、場所を取らず幅広い用途に用いることができる。なお、大面積化も容易であ
る。なお、曲面を有する壁面や筐体に用いることもできる。
また、光源からの光が所望の方向のみに制御された照明装置8004を用いることもでき
る。
なお、上記以外にも室内に備えられた家具の一部に本発明の一態様である発光装置、また
はその一部である発光素子を適用することにより、家具としての機能を備えた照明装置と
することができる。
以上のように、発光装置を適用した様々な照明装置が得られる。なお、これらの照明装置
は本発明の一態様に含まれるものとする。
また、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用い
ることができる。
(実施の形態8)
本実施の形態においては、本発明の一態様である発光装置の構成を有するタッチパネルに
ついて、図14~図18を用いて説明を行う。
図14(A)(B)は、タッチパネル2000の斜視図である。なお、図14(A)(B
)において、明瞭化のため、タッチパネル2000の代表的な構成要素を示す。
タッチパネル2000は、表示パネル2501とタッチセンサ2595とを有する(図1
4(B)参照)。また、タッチパネル2000は、基板2510、基板2570、及び基
板2590を有する。
表示パネル2501は、基板2510上に複数の画素及び該画素に信号を供給することが
できる複数の配線2511を有する。複数の配線2511は、基板2510の外周部にま
で引き回され、その一部が端子2519を構成している。端子2519はFPC2509
(1)と電気的に接続する。
基板2590には、タッチセンサ2595と、タッチセンサ2595と電気的に接続する
複数の配線2598とを有する。複数の配線2598は、基板2590の外周部に引き回
され、その一部は端子2599を構成する。そして、端子2599はFPC2509(2
)と電気的に接続される。なお、図14(B)では明瞭化のため、基板2590の裏面側
(基板2510と対向する面側)に設けられるタッチセンサ2595の電極や配線等を実
線で示している。
タッチセンサ2595として、例えば静電容量方式のタッチセンサを適用できる。静電容
量方式としては、表面型静電容量方式、投影型静電容量方式等がある。
投影型静電容量方式としては、主に駆動方式の違いから自己容量方式、相互容量方式など
がある。相互容量方式を用いると同時多点検出が可能となるため好ましい。
まず、投影型静電容量方式のタッチセンサを適用する場合について、図14(B)を用い
て説明する。なお、投影型静電容量方式の場合には、指等の検知対象の近接または接触を
検知することができる、様々なセンサを適用することができる。
投影型静電容量方式のタッチセンサ2595は、電極2591と電極2592とを有する
。電極2591と電極2592は、複数の配線2598のうちのそれぞれ異なる配線と電
気的に接続する。また、電極2592は、図14(A)(B)に示すように、一方向に繰
り返し配置された複数の四辺形が角部で配線2594により、一方向に接続される形状を
有する。電極2591も同様に複数の四辺形が角部で接続される形状を有するが、接続さ
れる方向は、電極2592が接続される方向と交差する方向となる。なお、電極2591
が接続される方向と、電極2592が接続される方向とは、必ずしも直交する関係にある
必要はなく、0度を超えて90度未満の角度をなすように配置されてもよい。
なお、配線2594の電極2592との交差部の面積は、できるだけ小さくなる形状が好
ましい。これにより、電極が設けられていない領域の面積を低減でき、透過率のバラツキ
を低減できる。その結果、タッチセンサ2595を透過する光の輝度のバラツキを低減す
ることができる。
なお、電極2591及び電極2592の形状はこれに限定されず、様々な形状を取りうる
。例えば、複数の電極2591をできるだけ隙間が生じないように配置し、絶縁層を介し
て電極2592を複数設ける構成としてもよい。このとき、隣接する2つの電極2592
の間に、これらとは電気的に絶縁されたダミー電極を設けると、透過率の異なる領域の面
積を低減できるため好ましい。
次に、図15を用いて、タッチパネル2000の詳細について説明する。図15は、図1
4(A)に示す一点鎖線X1-X2間の断面図に相当する。
タッチパネル2000は、タッチセンサ2595と表示パネル2501とを有する。
タッチセンサ2595は、基板2590に接して千鳥格子状に配置された電極2591及
び電極2592と、電極2591及び電極2592を覆う絶縁層2593と、隣り合う電
極2591を電気的に接続する配線2594とを有する。なお、隣り合う電極2591の
間には、電極2592が設けられている。
電極2591及び電極2592は、透光性を有する導電材料を用いて形成することができ
る。透光性を有する導電性材料としては、In-Sn酸化物(ITOともいう)、In-
Si-Sn酸化物(ITSOともいう)、In-Zn酸化物、In-W-Zn酸化物が挙
げられる。その他、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、マンガン
(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、ガリウム(
Ga)、亜鉛(Zn)、インジウム(In)、スズ(Sn)、モリブデン(Mo)、タン
タル(Ta)、タングステン(W)、パラジウム(Pd)、金(Au)、白金(Pt)、
銀(Ag)、イットリウム(Y)、ネオジム(Nd)などの金属、およびこれらを適宜組
み合わせて含む合金を用いることもできる。また、グラフェン化合物を用いることもでき
る。なお、グラフェン化合物を用いる場合は、例えば膜状に形成された酸化グラフェンを
還元して形成することができる。還元する方法としては、熱を加える方法やレーザを照射
する方法等を挙げることができる。
電極2591及び電極2592の形成方法としては、例えば、透光性を有する導電性材料
を基板2590上にスパッタリング法により成膜した後、フォトリソグラフィ法等の様々
なパターニング技術により、不要な部分を除去することで形成することができる。
絶縁層2593に用いる材料としては、例えば、アクリル樹脂、エポキシ樹脂などの樹脂
、シロキサン結合を有する樹脂の他、酸化シリコン、酸化窒化シリコン、酸化アルミニウ
ムなどの無機絶縁材料を用いることができる。
また、絶縁層2593の一部に形成された配線2594により、隣接する電極2591が
電気的に接続される。なお、配線2594に用いる材料は、電極2591及び電極259
2に用いる材料よりも導電性の高い材料を用いることにより電気抵抗を低減することがで
きるため好ましい。
また、配線2598は、電極2591または電極2592と電気的に接続される。なお、
配線2598の一部は、端子として機能する。配線2598には、例えば、アルミニウム
、金、白金、銀、ニッケル、チタン、タングステン、クロム、モリブデン、鉄、コバルト
、銅、またはパラジウム等の金属材料や、該金属材料を含む合金材料を用いることができ
る。
また、端子2599により、配線2598とFPC2509(2)とが電気的に接続され
る。なお、端子2599には、様々な異方性導電フィルム(ACF:Anisotrop
ic Conductive Film)や、異方性導電ペースト(ACP:Aniso
tropic Conductive Paste)などを用いることができる。
また、配線2594に接して接着層2597が設けられる。すなわち、タッチセンサ25
95は、接着層2597を介して、表示パネル2501に重なるように貼り合わされる。
なお、接着層2597と接する表示パネル2501の表面は、図15(A)に示すように
基板2570を有していてもよいが、必ずしも必要ではない。
接着層2597は、透光性を有する。例えば、熱硬化性樹脂や紫外線硬化樹脂を用いるこ
とができ、具体的には、アクリル系樹脂、ウレタン系樹脂、エポキシ系樹脂、またはシロ
キサン系樹脂を用いることができる。
図15(A)に示す表示パネル2501は、基板2510と基板2570との間にマトリ
クス状に配置された複数の画素と駆動回路とを有する。また、各画素は発光素子と、発光
素子を駆動する画素回路とを有する。
図15(A)には、表示パネル2501の画素の一例として、画素2502Rを示し、駆
動回路の一例として走査線駆動回路2503gを示す。
画素2502Rは、発光素子2550Rと、発光素子2550Rに電力を供給することが
できるトランジスタ2502tとを有する。
トランジスタ2502tは、絶縁層2521で覆われている。なお、絶縁層2521は、
先に形成されたトランジスタ等に起因する凹凸を平坦化するための機能を有する。また、
絶縁層2521に不純物の拡散を抑制できる機能を付与してもよい。この場合、不純物の
拡散によるトランジスタ等の信頼性の低下を抑制できるので好ましい。
発光素子2550Rは、トランジスタ2502tと配線を介して電気的に接続される。な
お、配線と直接接続されるのは、発光素子2550Rの一方の電極である。なお、発光素
子2550Rの一方の電極の端部は、絶縁体2528で覆われている。
発光素子2550Rは、一対の電極間にEL層を有してなる。また、発光素子2550R
と重なる位置に着色層2567Rが設けられており、発光素子2550Rが発する光の一
部は、着色層2567Rを透過して、図中に示す矢印の方向に射出される。また、着色層
の端部に遮光層2567BMが設けられており、発光素子2550Rと着色層2567R
との間には、封止層2560を有する。
なお、発光素子2550Rからの光を取り出す方向に封止層2560が設けられている場
合には、封止層2560は、透光性を有するのが好ましい。また、封止層2560は、空
気より大きい屈折率を有すると好ましい。
走査線駆動回路2503gは、トランジスタ2503tと、容量素子2503cとを有す
る。なお、駆動回路を画素回路と同一の工程で同一基板上に形成することができる。従っ
て、画素回路のトランジスタ2502tと同様に、駆動回路(走査線駆動回路2503g
)のトランジスタ2503tも絶縁層2521で覆われている。
また、トランジスタ2503tに信号を供給することができる配線2511が設けられて
いる。なお、配線2511と接して端子2519が設けられる。また、端子2519は、
FPC2509(1)と電気的に接続されており、FPC2509(1)は、画像信号及
び同期信号等の信号を供給する機能を有する。なお、FPC2509(1)にはプリント
配線基板(PWB)が取り付けられていても良い。
図15(A)において示す表示パネル2501には、ボトムゲート型のトランジスタを適
用する場合について示したが、トランジスタの構造はこれに限られることはなく様々な構
造のトランジスタを適用することができる。また、図15(A)に示す、トランジスタ2
502t及びトランジスタ2503tには、酸化物半導体を含む半導体層をチャネル領域
として用いることができる。その他、アモルファスシリコンを含む半導体層や、レーザー
アニールなどの処理により結晶化させた多結晶シリコンを含む半導体層をチャネル領域と
して用いることができる。
また、図15(A)に示すボトムゲート型のトランジスタとは異なるトップゲート型のト
ランジスタを適用する場合の構成について、図15(B)に示す。なお、トランジスタの
構造が変わった場合でも、チャネル領域に用いることができるバリエーションについては
同様とする。
図15(A)で示したタッチパネル2000は、図15(A)に示すように画素からの光
が外部に射出される側の表面に、少なくとも画素と重なるように反射防止層2567pを
有するのが好ましい。なお、反射防止層2567pとして、円偏光板等を用いることがで
きる。
図15(A)で示した基板2510、基板2570、基板2590としては、例えば、水
蒸気の透過率が1×10-5g/(m・day)以下、好ましくは1×10-6g/(
・day)以下である可撓性を有する材料を好適に用いることができる。または、こ
れらの基板の熱膨張率が、およそ等しい材料を用いることが好ましい。例えば、線膨張率
が1×10-3/K以下、好ましくは5×10-5/K以下、より好ましくは1×10
/K以下である材料が挙げられる。
次に、図15に示すタッチパネル2000と構成の異なるタッチパネル2000’につい
て、図16を用いて説明する。但し、タッチパネル2000と同様にタッチパネルとして
適用することができる。
図16には、タッチパネル2000’の断面図を示す。図16に示すタッチパネル200
0’は、図15に示すタッチパネル2000と、表示パネル2501に対するタッチセン
サ2595の位置が異なる。ここでは異なる構成についてのみ説明し、同様の構成を用い
ることができる部分は、タッチパネル2000の説明を援用することとする。
着色層2567Rは、発光素子2550Rと重なる位置にある。また、図16(A)に示
す発光素子2550Rからの光は、トランジスタ2502tが設けられている方向に射出
される。すなわち、発光素子2550Rからの光(一部)は、着色層2567Rを透過し
て、図中に示す矢印の方向に射出される。なお、着色層2567Rの端部には遮光層25
67BMが設けられている。
また、タッチセンサ2595は、表示パネル2501の発光素子2550Rから見てトラ
ンジスタ2502tが設けられている側に設けられている(図16(A)参照)。
また、接着層2597は、表示パネル2501が有する基板2510と接しており、図1
6(A)に示す構造の場合には、表示パネル2501とタッチセンサ2595とを貼り合
わせている。但し、接着層2597により貼り合わされる表示パネル2501とタッチセ
ンサ2595との間に基板2510を設けない構成としてもよい。
また、タッチパネル2000の場合と同様にタッチパネル2000’の場合も表示パネル
2501には、様々な構造のトランジスタを適用することができる。なお、図16(A)
においては、ボトムゲート型のトランジスタを適用する場合について示したが、図16(
B)に示すようにトップゲート型のトランジスタを適用してもよい。
次に、タッチパネルの駆動方法の一例について、図17を用いて説明を行う。
図17(A)は、相互容量方式のタッチセンサの構成を示すブロック図である。図17(
A)では、パルス電圧出力回路2601、電流検出回路2602を示している。なお、図
17(A)では、パルス電圧が与えられる電極2621をX1-X6として、電流の変化
を検知する電極2622をY1-Y6として、それぞれ6本の配線で例示している。また
、図17(A)は、電極2621と、電極2622とが重畳することで形成される容量2
603を示している。なお、電極2621と電極2622とはその機能を互いに置き換え
てもよい。
パルス電圧出力回路2601は、X1-X6の配線に順にパルス電圧を印加するための回
路である。X1-X6の配線にパルス電圧が印加されることで、容量2603を形成する
電極2621と電極2622との間に電界が生じる。この電極間に生じる電界が遮蔽等に
より容量2603の相互容量に変化を生じさせることを利用して、被検知体の近接、また
は接触を検出することができる。
電流検出回路2602は、容量2603での相互容量の変化による、Y1~Y6の配線で
の電流の変化を検出するための回路である。Y1-Y6の配線では、被検知体の近接、ま
たは接触がないと検出される電流値に変化はないが、検出する被検知体の近接、または接
触により相互容量が減少する場合には電流値が減少する変化を検出する。なお電流の検出
は、積分回路等を用いて行えばよい。
次に、図17(B)には、図17(A)で示す相互容量方式のタッチセンサにおける入出
力波形のタイミングチャートを示す。図17(B)では、1フレーム期間で各行列での被
検知体の検出を行うものとする。また図17(B)では、被検知体を検出しない場合(非
タッチ)と被検知体を検出する場合(タッチ)との2つの場合について示している。なお
Y1-Y6の配線については、検出される電流値に対応する電圧値とした波形を示してい
る。
X1-X6の配線には、順にパルス電圧が与えられ、該パルス電圧にしたがってY1-Y
6の配線での波形が変化する。被検知体の近接または接触がない場合には、X1-X6の
配線の電圧の変化に応じてY1-Y6の波形が一様に変化する。一方、被検知体が近接ま
たは接触する箇所では、電流値が減少するため、これに対応する電圧値の波形も変化する
。このように、相互容量の変化を検出することにより、被検知体の近接または接触を検知
することができる。
また、図17(A)ではタッチセンサとして配線の交差部に容量2603のみを設けるパ
ッシブ型のタッチセンサの構成を示したが、トランジスタと容量とを備えたアクティブ型
のタッチセンサとしてもよい。図18にアクティブ型のタッチセンサに含まれる一つのセ
ンサ回路の例を示している。
図18に示すセンサ回路は、容量2603と、トランジスタ2611と、トランジスタ2
612と、トランジスタ2613とを有する。
トランジスタ2613はゲートに信号G2が与えられ、ソースまたはドレインの一方に電
圧VRESが与えられ、他方が容量2603の一方の電極およびトランジスタ2611の
ゲートと電気的に接続する。トランジスタ2611は、ソースまたはドレインの一方がト
ランジスタ2612のソースまたはドレインの一方と電気的に接続し、他方に電圧VSS
が与えられる。トランジスタ2612は、ゲートに信号G1が与えられ、ソースまたはド
レインの他方が配線MLと電気的に接続する。容量2603の他方の電極には電圧VSS
が与えられる。
次に、図18に示すセンサ回路の動作について説明する。まず信号G2としてトランジス
タ2613をオン状態とする電位が与えられることで、トランジスタ2611のゲートが
接続されるノードnに電圧VRESに対応した電位が与えられる。次に、信号G2として
トランジスタ2613をオフ状態とする電位が与えられることで、ノードnの電位が保持
される。続いて、指等の被検知体の近接または接触により、容量2603の相互容量が変
化することに伴い、ノードnの電位がVRESから変化する。
読み出し動作は、信号G1としてトランジスタ2612をオン状態とする電位を与える。
ノードnの電位に応じてトランジスタ2611に流れる電流、すなわち配線MLに流れる
電流が変化する。この電流を検出することにより、被検知体の近接または接触を検出する
ことができる。
トランジスタ2611、トランジスタ2612、及びトランジスタ2613としては、酸
化物半導体層をチャネル領域が形成される半導体層に用いることが好ましい。とくにトラ
ンジスタ2613にこのようなトランジスタを適用することにより、ノードnの電位を長
期間に亘って保持することが可能となり、ノードnにVRESを供給しなおす動作(リフ
レッシュ動作)の頻度を減らすことができる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用い
ることができる。
(実施の形態9)
本実施の形態においては、本発明の一態様である発光素子と、反射型の液晶素子と、を有
し、透過モードと反射モードの両方の表示を行うことのできる表示装置について、図19
~図21を用いて説明する。
なお、本実施の形態で示す表示装置は、屋外など外光の明るい場所において、反射モード
を用いた表示により、極めて電力消費が低い駆動を行うことができる。一方、夜間や室内
など外光が暗い場所では、透過モードを用いた表示により、広色域で色再現性の良い画像
表示ができるという特徴を有する。従って、これらを組み合わせて表示させることにより
、従来の表示パネルに比べて、低い消費電力で、且つ色再現性の良い表示を行うことがで
きる。
本実施の形態で示す表示装置の一例としては、反射電極を備えた液晶素子と、発光素子と
が積層され、発光素子と重なる位置に反射電極の開口部が設けられ、反射モードの際には
可視光を反射電極によって反射させ、透過モードの場合には、反射電極の開口部から発光
素子の光が射出される構成を有する表示装置について示す。なお、これらの素子(液晶素
子および発光素子)の駆動に用いるトランジスタは、同一平面上に配置されていることが
好ましい。また、積層される液晶素子と、発光素子とは、絶縁層を介して形成されること
が好ましい。
図19(A)には、本実施の形態で説明する表示装置のブロック図を示す。表示装置30
00は、回路(G)3001、回路(S)3002、および表示部3003を有する。な
お、表示部3003には、画素3004が、方向R及び方向Cにマトリクス状に複数配置
されている。また、回路(G)3001は、配線G1、配線G2、配線ANO、及び配線
CSCOMが、それぞれ複数電気的に接続されており、さらにこれらの配線は、方向Rに
複数配列された画素3004とも電気的に接続されている。回路(S)3002は、配線
S1及び配線S2が、それぞれ複数電気的に接続されており、さらにこれらの配線は、方
向Cに複数配列された画素3004とも電気的に接続されている。
また、画素3004は、液晶素子と発光素子を有し、これらは、互いに重なる部分を有す
る。
図19(B1)には、画素3004が有する液晶素子の反射電極として機能する導電膜3
005の形状について示す。なお、導電膜3005の一部で発光素子と重なる位置300
6に開口部3007が設けられている。すなわち、発光素子からの光は、この開口部30
07を介して射出される。
図19(B1)に示す画素3004は、方向Rに隣接する画素3004が異なる色を呈す
るように配列されている。さらに、開口部3007は、方向Rに一列に配列されることの
ないように設けられている。このような配列にすることは、隣接する画素3004が有す
る発光素子間におけるクロストークを抑制する効果を有する。さらに、微細化が緩和され
るので素子形成が容易になるといったメリットも有する。
開口部3007の形状としては、例えば多角形、四角形、楕円形、円形または十字等の形
状とすることができる。また、細長い筋状、スリット状等の形状としてもよい。
なお、導電膜3005の配列のバリエーションとしては、図19(B2)に示す配列とし
てもよい。
導電膜3005の総面積(開口部3007を除く)に対する開口部3007の割合は、表
示装置の表示に影響を与える。すなわち、開口部3007の面積が大きいと液晶素子によ
る表示が暗くなり、開口部3007の面積が小さいと発光素子による表示が暗くなるとい
う問題が生じる。また、上記の比率だけでなく、開口部3007の面積そのものが小さい
場合にも、発光素子から射出される光の取り出し効率が低下するという問題が生じる。な
お、上記導電膜3005の総面積(開口部3007を除く)に対する開口部3007の面
積の割合としては、5%以上60%以下とするのが液晶素子および発光素子を組み合わせ
た際の表示品位を保つ上で好ましい。
次に、画素3004の回路構成の一例について図20を用いて説明する。図20では、隣
接する2つの画素3004を示す。
画素3004は、トランジスタSW1、容量素子C1、液晶素子3010、トランジスタ
SW2、トランジスタM、容量素子C2、及び発光素子3011等を有する。なお、これ
らは、配線G1、配線G2、配線ANO、配線CSCOM、配線S1、及び配線S2のい
ずれかと画素3004において、電気的に接続されている。また、液晶素子3010は配
線VCOM1と、発光素子3011は配線VCOM2と、それぞれ電気的に接続されてい
る。
また、トランジスタSW1のゲートは、配線G1と接続され、トランジスタSW1のソー
ス又はドレインの一方は、配線S1と接続され、ソース又はドレインの他方は、容量素子
C1の一方の電極、及び液晶素子3010の一方の電極と接続されている。なお、容量素
子C1の他方の電極は、配線CSCOMと接続されている。また、液晶素子3010の他
方の電極は、配線VCOM1と接続されている。
また、トランジスタSW2のゲートは、配線G2と接続され、トランジスタSW2のソー
ス又はドレインの一方は、配線S2と接続され、ソース又はドレインの他方は、容量素子
C2の一方の電極、及びトランジスタMのゲートと接続されている。なお、容量素子C2
の他方の電極は、トランジスタMのソース又はドレインの一方、及び配線ANOと接続さ
れている。また、トランジスタMのソース又はドレインの他方は、発光素子3011の一
方の電極と接続されている。また、発光素子3011の他方の電極は、配線VCOM2と
接続されている。
なお、トランジスタMは、半導体を挟む2つのゲートを有し、これら2つのゲートは、電
気的に接続されている。このような構造とすることにより、トランジスタMが流す電流量
を増大させることができる。
配線G1から与えられる信号によって、トランジスタSW1の導通状態または非導通状態
が制御される。また、配線VCOM1からは、所定の電位が与えられる。また、配線S1
から与えられる信号によって、液晶素子3010の液晶の配向状態を制御することができ
る。また、配線CSCOMからは、所定の電位が与えられる。
配線G2から与えられる信号によって、トランジスタSW2の導通状態または非導通状態
が制御される。また、配線VCOM2及び配線ANOからそれぞれ与えられる電位の電位
差によって、発光素子3011を発光させることができる。また、配線S2から与えられ
る信号によって、トランジスタMの導通状態を制御することができる。
したがって、本実施の形態で示す構成において、例えば反射モードの場合には、配線G1
及び配線S1から与えられる信号により液晶素子3010を制御し、光学変調を利用して
表示させることができる。また、透過モードの場合には、配線G2及び配線S2から与え
られる信号により発光素子3011を発光させることができる。さらに両方のモードを同
時に用いる場合には、配線G1、配線G2、配線S1及び配線S2のそれぞれから与えら
れる信号に基づき所望の駆動を行うことができる。
次に、本実施の形態で説明する表示装置3000の断面概略図を図21に示し、詳細を説
明する。
表示装置3000は、基板3021と基板3022との間に、発光素子3023および液
晶素子3024を有する。なお、発光素子3023および液晶素子3024は、絶縁層3
025を介してそれぞれ形成される。すなわち、基板3021と絶縁層3025との間に
発光素子3023を有し、基板3022と絶縁層3025との間に液晶素子3024を有
する。
絶縁層3025と発光素子3023との間には、トランジスタ3015、トランジスタ3
016、トランジスタ3017、および着色層3028等を有する。
基板3021と発光素子3023との間には、接着層3029を有する。また、発光素子
3023は、絶縁層3025側から一方の電極となる導電層3030、EL層3031、
他方の電極となる導電層3032の順に積層された積層構造を有する。なお、発光素子3
023は、ボトムエミッション型の発光素子であるため、導電層3032は可視光を反射
する材料を含み、導電層3030は可視光を透過する材料を含む。発光素子3023が発
する光は、着色層3028、絶縁層3025を透過し、さらに開口部3033を通って液
晶素子3024を透過した後、基板3022から外部に射出される。
絶縁層3025と基板3022との間には、液晶素子3024の他、着色層3034、遮
光層3035、絶縁層3046および構造体3036等を有する。また、液晶素子302
4は、一方の電極となる導電層3037、液晶3038、他方の電極となる導電層303
9、および配向膜3040、3041等を有する。なお、液晶素子3024は、反射型の
液晶素子であり、導電層3039は、反射電極として機能するため反射率の高い材料を用
いる。また、導電層3037は、透明電極として機能するため可視光を透過する材料を含
む。さらに、導電層3037および導電層3039の液晶3038側には、それぞれ配向
膜3040、3041を有する。また、絶縁層3046は、着色層3034及び遮光層3
035を覆うように設けられており、オーバーコートとしての機能を有する。なお、配向
膜3040、3041は不要であれば設けなくてもよい。
導電層3039の一部には、開口部3033が設けられている。なお、導電層3039に
接して導電層3043を有しており、導電層3043は、透光性を有するため可視光を透
過する材料を含む。
構造体3036は、絶縁層3025と基板3022とが必要以上に接近することを抑制す
るスペーサとしての機能を有する。なお、構造体3036は不要であれば設けなくてもよ
い。
トランジスタ3015のソース又はドレインのいずれか一方は、発光素子3023の導電
層3030と電気的に接続されている。例えばトランジスタ3015は、図20に示すト
ランジスタMに対応する。
トランジスタ3016のソース又はドレインのいずれか一方は、端子部3018を介して
液晶素子3024の導電層3039及び導電層3043と電気的に接続されている。すな
わち、端子部3018は、絶縁層3025の両面に設けられる導電層同士を電気的に接続
する機能を有する。なお、トランジスタ3016は、図20に示すトランジスタSW1に
対応する。
基板3021と基板3022とが重ならない領域には、端子部3019が設けられている
。端子部3019は端子部3018と同様に、絶縁層3025の両面に設けられる導電層
同士を電気的に接続する。端子部3019は、導電層3043と同一の導電膜を加工して
得られた導電層と電気的に接続されている。これにより、端子部3019とFPC304
4とを接続層3045を介して電気的に接続することができる。
また、接着層3042が設けられる一部の領域には、接続部3047が設けられている。
接続部3047において、導電層3043と同一の導電膜を加工して得られた導電層と、
導電層3037の一部が、接続体3048によって電気的に接続されている。したがって
、導電層3037に、FPC3044から入力される信号または電位を、接続体3048
を介して供給することができる。
導電層3037と導電層3043の間に、構造体3036が設けられている。構造体30
36は、液晶素子3024のセルギャップを保持する機能を有する。
導電層3043としては、金属酸化物、金属窒化物、または低抵抗化された酸化物半導体
等の酸化物を用いることが好ましい。酸化物半導体を用いる場合には、水素、ボロン、リ
ン、窒素、及びその他の不純物の濃度、並びに酸素欠損量の少なくとも一が、トランジス
タに用いる半導体層に比べて高められた材料を、導電層3043に用いればよい。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用い
ることができる。
本実施例では、本発明の一態様である発光素子を作製し、その動作特性について測定した
結果を示す。なお、本実施例で示す発光素子の素子構造を図22に示し、具体的な構成に
ついて表1に示す。また、本実施例で用いる材料の化学式を以下に示す。
Figure 2022173506000009
Figure 2022173506000010
Figure 2022173506000011
≪発光素子の作製≫
本実施例で示す発光素子は、図22に示すように基板900上に形成された第1の電極9
01上に正孔注入層911、正孔輸送層912、発光層913、電子輸送層914、電子
注入層915が順次積層され、電子注入層915上に第2の電極903が積層された構造
を有する。
まず、基板900上に第1の電極901を形成した。電極面積は、4mm(2mm×2
mm)とした。また、基板900には、ガラス基板を用いた。また、第1の電極901は

酸化珪素を含むインジウム錫酸化物(ITO)をスパッタリング法により、70nmの膜
厚で成膜して形成した。
ここで、前処理として、基板の表面を水で洗浄し、200℃で1時間焼成した後、UVオ
ゾン処理を370秒行った。その後、10-4Pa程度まで内部が減圧された真空蒸着装
置に基板を導入し、真空蒸着装置内の加熱室において、170℃で60分間の真空焼成を
行った後、基板を30分程度放冷した。
次に、第1の電極901上に正孔注入層911を形成した。正孔注入層911は、真空蒸
着装置内を10-4Paに減圧した後、1,3,5-トリ(ジベンゾチオフェン-4-イ
ル)ベンゼン(略称:DBT3P-II)と酸化モリブデンとを、DBT3P-II:酸
化モリブデン=1:0.5(重量比)とし、発光素子1と発光素子3については、膜厚が
60nmとなるように、発光素子2、発光素子4および発光素子5については、膜厚が7
5nmとなるように、それぞれ共蒸着して形成した。
次に、正孔注入層911上に正孔輸送層912を形成した。正孔輸送層912は、4-フ
ェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BP
AFLP)を用い、膜厚が20nmになるように蒸着して形成した。
次に、正孔輸送層912上に発光層913を形成した。
発光層913は、発光素子1の場合は、ホスト材料として、2-[3’-(ジベンゾチオ
フェン-4-イル)ビフェニル-3-イル]ジベンゾ[f,h]キノキサリン(略称:2
mDBTBPDBq-II)を用い、アシスト材料として、N-(1,1’-ビフェニル
-4-イル)-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]
-9,9-ジメチル-9H-フルオレン-2-アミン(略称:PCBBiF)を用い、ゲ
スト材料(燐光材料)として、ビス(2,3,5-トリフェニルピラジナト)(ジピバロ
イルメタナト)イリジウム(III)(略称:[Ir(tppr)(dpm)])を用
い、重量比が2mDBTBPDBq-II:PCBBiF:[Ir(tppr)(dp
m)]=0.7:0.3:0.05となるように共蒸着した。なお、膜厚は、20nmの
膜厚とした。さらに、2mDBTBPDBq-II:PCBBiF:[Ir(tppr)
(dpm)]=0.8:0.2:0.05(重量比)となるように共蒸着した。なお、
膜厚は、20nmの膜厚とした。従って、発光層913は、膜厚40nmの積層構造を有
する。
発光層913は、発光素子2の場合は、ホスト材料として2mDBTBPDBq-IIを
用い、アシスト材料としてPCBBiF、ゲスト材料(燐光材料)としてビス{4,6-
ジメチル-2-[3-(3,5-ジメチルフェニル)-5-フェニル-2-ピラジニル-
κN]フェニル-κC}(2,6-ジメチル-3,5-ヘプタンジオナト-κO,O’
)イリジウム(III)(略称:[Ir(dmdppr-P)(dibm)])を用い
、重量比が2mDBTBPDBq-II:PCBBiF:[Ir(dmdppr-P)
(dibm)]=0.7:0.3:0.06となるように共蒸着した。なお、膜厚は、2
0nmの膜厚とした。さらに、2mDBTBPDBq-II:PCBBiF:[Ir(d
mdppr-P)(dibm)]=0.8:0.2:0.06(重量比)となるように
共蒸着した。なお、膜厚は、20nmの膜厚とした。従って、発光層913は、膜厚40
nmの積層構造を有する。
発光層913は、発光素子3の場合は、ホスト材料として、2mDBTBPDBq-II
を用い、アシスト材料として、PCBBiF、ゲスト材料(燐光材料)として、ビス{4
,6-ジメチル-2-[5-(2,6-ジメチルフェニル)-3-(3,5-ジメチルフ
ェニル)-2-ピラジニル-κN]フェニル-κC}(2,8-ジメチル-4,6-ノナ
ンジオナト-κO,O’)イリジウム(III)(略称:[Ir(dmdppr-dm
p)(divm)]を用い、重量比が2mDBTBPDBq-II:PCBBiF:[
Ir(dmdppr-dmp)(divm)]=0.7:0.3:0.05となるよう
に共蒸着した。なお、膜厚は、20nmの膜厚とした。さらに、2mDBTBPDBq-
II:PCBBiF:[Ir(dmdppr-dmp)(divm)]=0.8:0.
2:0.05(重量比)となるように共蒸着した。なお、膜厚は、20nmの膜厚とした
。従って、発光層913は、膜厚40nmの積層構造を有する。
発光層913は、発光素子4の場合は、ホスト材料として、2mDBTBPDBq-II
を用い、アシスト材料として、PCBBiF、ゲスト材料(燐光材料)として、ビス{4
,6-ジメチル-2-[5-(2,6-ジメチルフェニル)-3-(3,5-ジメチルフ
ェニル)-2-ピラジニル-κN]フェニル-κC}(2,2’,6,6’-テトラメチ
ル-3,5-ヘプタンジオナト-κO,O’)イリジウム(III)(略称:[Ir(
dmdppr-dmp)(dpm)])を用い、重量比が2mDBTBPDBq-II
:PCBBiF:[Ir(dmdppr-dmp)(dpm)]=0.7:0.3:0
.06となるように共蒸着した。なお、膜厚は、20nmの膜厚とした。さらに、2mD
BTBPDBq-II:PCBBiF:[Ir(dmdppr-dmp)(dpm)]
=0.8:0.2:0.06(重量比)となるように共蒸着した。なお、膜厚は、20n
mの膜厚とした。従って、発光層913は、膜厚40nmの積層構造を有する。
発光層913は、発光素子5の場合は、ホスト材料として、2mDBTBPDBq-II
を用い、アシスト材料として、PCBBiF、ゲスト材料(燐光材料)として、ビス{4
,6-ジメチル-2-[5-(2,5-ジメチルフェニル)-3-(3,5-ジメチルフ
ェニル)-2-ピラジニル-κN]フェニル-κC}(2,2,6,6-テトラメチル-
3,5-ヘプタンジオナト-κO,O’)イリジウム(III)(略称:[Ir(dm
dppr-25dmp)(dpm)]を用い、重量比が2mDBTBPDBq-II:
PCBBiF:[Ir(dmdppr-25dmp)(dpm)]=0.7:0.3:
0.06となるように共蒸着した。なお、膜厚は、20nmの膜厚とした。さらに、2m
DBTBPDBq-II:PCBBiF:[Ir(dmdppr-25dmp)(dp
m)]=0.8:0.2:0.06(重量比)となるように共蒸着した。なお、膜厚は、
20nmの膜厚とした。従って、発光層913は、膜厚40nmの積層構造を有する。
次に、発光層913上に電子輸送層914を形成した。電子輸送層914は、2mDBT
BPDBq-II、2,9-ビス(ナフタレン-2-イル)-4,7-ジフェニル-1,
10-フェナントロリン(略称:NBphen)を順次蒸着して形成した。なお、発光素
子1の場合は、2mDBTBPDBq-IIの膜厚が20nm、発光素子2、発光素子4
および発光素子5の場合は、2mDBTBPDBq-IIの膜厚が30nm、発光素子3
の場合は、2mDBTBPDBq-IIの膜厚が25nmとなるようにし、NBphen
の膜厚は、発光素子1~発光素子5までのいずれの素子も膜厚が15nmとなるように形
成した。
次に、電子輸送層914上に電子注入層915を形成した。電子注入層915は、フッ化
リチウム(LiF)を用い、膜厚が1nmになるように蒸着して形成した。
次に、電子注入層915上に第2の電極903を形成した。第2の電極903は、アルミ
ニウムを蒸着法により、膜厚が200nmとなるように形成した。なお、本実施例におい
て、第2の電極903は、陰極として機能する。
以上の工程により、基板900上に一対の電極間にEL層を挟んでなる発光素子を形成し
た。なお、上記工程で説明した正孔注入層911、正孔輸送層912、発光層913、電
子輸送層914、電子注入層915は、本発明の一態様におけるEL層を構成する機能層
である。また、上述した作製方法における蒸着工程では、全て抵抗加熱法による蒸着法を
用いた。
また、上記に示すように作製した発光素子は、別の基板(図示せず)により封止される。
なお、別の基板(図示せず)を用いた封止の際は、窒素雰囲気のグローブボックス内にお
いて、封止材を用いて別の基板(図示せず)を基板900上に固定し、シール材を基板9
00上に形成された発光素子の周囲に塗布し、封止時に365nmの紫外光を6J/cm
照射し、80℃にて1時間熱処理することにより行った。
≪発光素子の動作特性≫
作製した各発光素子の動作特性について測定した。なお、測定は室温(25℃に保たれた
雰囲気)で行った。また、結果を図23~図26に示す。
また、1000cd/m付近における各発光素子の主な初期特性値を以下の表2に示す
Figure 2022173506000012
上記結果から、本実施例で作製した発光素子は、いずれも良好な電流効率と高い外部量子
効率を示していることが分かる。
また、各発光素子に2.5mA/cmの電流密度で電流を流した際の発光スペクトルを
、図27に示す。
次に、各発光素子に対する信頼性試験を行った。信頼性試験の結果を図28に示す。図2
8において、縦軸は初期輝度を100%とした時の規格化輝度(%)を示し、横軸は素子
の駆動時間(h)を示す。なお、信頼性試験は、電流密度一定(50mA/cm)の条
件で電流を流し、各発光素子を駆動させて行った。
本実施例では、各発光素子の上記駆動試験結果について、下記式(1)に示す複合指数関
数で表される劣化曲線によりフィッティングを行った。なお、式(1)において、α(但
し、1>α>0)は初期劣化成分の割合を示す。
Figure 2022173506000013
フィッティングにより得られた、各発光素子の初期劣化成分の割合(α)とスケーリング
時間(τ)を以下の表3に示す。
Figure 2022173506000014
いずれの発光素子の劣化曲線も式(1)で表すことができるため、長寿命な発光素子であ
る。これは、発光層においてホール輸送材料であるPCBBiFと、電子輸送材料である
2mDBTBPDBq-IIが適切な割合で混合され、バイポーラ性の発光層となってい
ることに起因する。またそれに加え、各層の膜厚を最適化し、電子輸送層にNBphen
を適用することにより、キャリアの再結合領域が適切となった結果である。発光層に用い
たゲスト材料も、精製により純度を高めており、本結果の一因となっている。
また、表3の結果におけるスケーリング時間τに着目すると、発光素子1および発光素子
2において、他の発光素子よりもスケーリング時間が長く、特に長寿命な素子であること
がわかる。一方、発光素子3、発光素子4、および発光素子5は、発光素子1および発光
素子2に比べてスケーリング時間が短いことから、これらの発光素子は、本質的な劣化で
ある長期劣化の傾きが大きい素子であることがわかる。これらの違いは、ゲスト材料の分
子構造の違いに起因する。発光素子1および発光素子2に用いたゲスト材料は、ピラジン
環に結合するフェニル基がいずれも、そのオルト位にメチル基を有していない。一方、発
光素子3~5に用いた材料は、ピラジン環に結合するフェニル基が、そのオルト位にメチ
ル基を有している。このオルト位のメチル基は、ピラジン環とフェニル基を不必要に捻じ
れさせるため、信頼性に対しては悪影響となり、寿命が低下した(すなわちτが低下した
)と考えられる。
以上の結果から、発光素子の駆動試験結果を上記式(1)で表される劣化曲線でフィッテ
ィングできる燐光発光素子、特に本実施例で示した発光素子1や発光素子2のようにスケ
ーリング時間τが長時間(具体的には1500時間以上、より好ましくは1800時間以
上)である発光素子は、長寿命な発光素子であると言える。なお、本実施例に示す発光素
子1や発光素子2は、その他の素子と同様に図23~図26に示す良好な動作特性を示す
ことに加えて、長期劣化成分が小さく、長寿命な素子である。なお、このような条件を満
たす発光素子を得るためには、本実施例に示した発光素子1や発光素子2のように、用い
る有機化合物の分子構造設計や、素子構造の工夫が必要である。
次に、発光素子1および2に関して、25mA/cmの一定の電流密度で駆動した際の
輝度半減寿命を各温度にて測定し、アレニウスプロットを作製した。温度は25℃、40
℃、60℃、および80℃に設定した。結果を図29(A)に示す。さらに、輝度が90
%まで劣化する寿命と70%まで劣化する寿命を図30(A)と(B)に示す。図の通り
、いずれの素子のアレニウスプロットも、上に凸の曲線となっていることが分かる。ここ
で参考までに、発光素子1および2の各温度におけるτを抽出し、τに対するアレニウス
プロットを作製した結果を図29(B)に示す。また、プロットの回帰曲線(指数近似)
を示した。実施の形態にて説明した通り、τは指数関数で近似されることがわかる。
本実施例では、発光素子6および発光素子7を作製し、その動作特性について測定した結
果を示す。なお、本実施例で説明する発光素子6および発光素子7の基本的な積層構造は
、実施例1で示した発光素子と同様であるため図22を参照すればよく、説明は省略する
。また、具体的な構成を表4に示し、本実施例で用いる材料の化学式を以下に示す。
Figure 2022173506000015
Figure 2022173506000016
なお、表4に示すように発光素子6および発光素子7の正孔注入層には、3-[4-(9
-フェナントリル)-フェニル]-9-フェニル-9H-カルバゾール(略称:PCPP
n)および酸化モリブデンを用い、正孔輸送層には、PCPPnを用いた。また、発光素
子6の発光層には、7-[4-(10-フェニル-9-アントリル)フェニル]-7H-
ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)、およびN,N’-ビス(
3-メチルフェニル)-N,N’-ビス[3-(9-フェニル-9H-フルオレン-9-
イル)フェニル]ピレン-1,6-ジアミン(略称:1,6mMemFLPAPrn)を
用い、発光素子7の発光層には、cgDBCzPA、およびN,N’-(ピレン-1,6
-ジイル)ビス[(6,N-ジフェニルベンゾ[b]ナフト[1,2-d]フラン)-8
-アミン](略称:1,6BnfAPrn-03)を用いた。また、発光素子6の電子輸
送層には、cgDBCzPA、およびバソフェナントロリン(略称:BPhen)を用い
、発光素子7の電子輸送層には、cgDBCzPA、および2,9-ビス(ナフタレン-
2-イル)-4,7-ジフェニル-1,10-フェナントロリン(略称:NBphen)
を用いた。
≪発光素子の動作特性≫
作製した発光素子6および発光素子7の動作特性について測定した。なお、測定は室温(
25℃に保たれた雰囲気)で行った。また、結果を図31~図34に示す。
また、1000cd/m付近における発光素子6および発光素子7の主な初期特性値を
以下の表5に示す。
Figure 2022173506000017
上記結果から、本実施例で作製した発光素子は、いずれも良好な電流効率と外部量子効率
を示していることが分かる。
また、各発光素子に12.5mA/cmの電流密度で電流を流した際の発光スペクトル
を、図35に示す。
次に、各発光素子に対する信頼性試験を行った。信頼性試験の結果を図36に示す。図3
6において、縦軸は初期輝度を100%とした時の規格化輝度(%)を示し、横軸は素子
の駆動時間(h)を示す。なお、信頼性試験は、電流密度一定(50mA/cm)の条
件で電流を流し、各発光素子を駆動させて行った。
本実施例では、各発光素子の上記駆動試験結果について、実施例1で示した、式(1)に
示す複合指数関数で表される劣化曲線によりフィッティングを行った。
フィッティングにより得られた、各発光素子の初期劣化成分の割合(α)とスケーリング
時間(τ)を以下の表6に示す。
Figure 2022173506000018
いずれの発光素子の劣化曲線も式(1)で表すことができるため、長寿命な発光素子であ
る。これは、高い電子輸送性を有するcgDBCzPA、および高い電子ブロック性を有
するPCPPnを用いたことにより、キャリアの再結合領域が適切となった結果である。
発光層に用いたゲスト材料は、精製により純度を高めており、本結果の一因となっている
また、表6の結果におけるスケーリング時間τに着目すると、発光素子7において、発光
素子6よりもスケーリング時間が長く、本質的に長寿命な素子であることが分かる。また
、発光素子7の初期劣化成分の割合は、発光素子6よりも小さく、他の要因による劣化が
少ないことが分かる。これらの違いは、各発光素子に用いたゲスト材料の分子構造の違い
に起因すると思われる。従って、発光素子7にピレン骨格の1位と6位にそれぞれベンゾ
ナフトフラニルアミンが結合した構造を有し、ピレン骨格からベンゾナフトフラニルアミ
ンにかけて有効共役長を拡張させつつ、アミン骨格が安定する構造を有するゲスト材料を
用いることにより、ゲスト材料の骨格の安定性により発光素子の寿命を向上(すなわちス
ケーリング時間の増加)させることができたものと考えることができる。
以上の結果から、発光素子の駆動試験結果を上記式(1)で表される劣化曲線によりフィ
ッティングすることができる蛍光発光素子、特に発光素子7のようにスケーリング時間τ
が長時間(具体的には6000時間以上、より好ましくは8000時間以上)である発光
素子は、長寿命な発光素子であると言える。なお、発光素子7は、他の素子(発光素子6
)と同様に図31~図34に示す良好な動作特性を示すことに加えて、長期劣化成分が小
さく、長寿命な素子である。なお、このような条件を満たす発光素子を得るためには、本
実施例に示した発光素子7のように、用いる有機化合物の分子構造設計や、素子構造の工
夫が必要である。
次に、発光素子6および7に関して、25mA/cmの一定の電流密度で駆動した際の
輝度半減寿命を各温度にて測定し、アレニウスプロットを作製した。温度は25℃、40
℃、60℃、および80℃に設定した。結果を図37(A)に示す。さらに、輝度が90
%まで劣化する寿命と70%まで劣化する寿命を図38(A)と(B)に示す。図の通り
、いずれの素子のアレニウスプロットも、上に凸の曲線となっていることが分かる。ここ
で参考までに、発光素子6および発光素子7の各温度におけるτを抽出し、τに対するア
レニウスプロットを作製した結果を図37(B)に示す。また、プロットの回帰曲線(指
数近似)を示した。実施の形態にて説明した通り、τは指数関数で近似されることがわか
る。
101 第1の電極
102 第2の電極
103 EL層
103a、103b EL層
104 電荷発生層
111、111a、111b 正孔注入層
112、112a、112b 正孔輸送層
113、113a、113b 発光層
114、114a、114b 電子輸送層
115、115a、115b 電子注入層
201 第1の基板
202 トランジスタ(FET)
203R、203G、203B、203W 発光素子
204 EL層
205 第2の基板
206R、206G、206B カラーフィルタ
206R’、206G’、206B’ カラーフィルタ
207 第1の電極
208 第2の電極
209 黒色層(ブラックマトリックス)
210R、210G 導電層
301 第1の基板
302 画素部
303 駆動回路部(ソース線駆動回路)
304a、304b 駆動回路部(ゲート線駆動回路)
305 シール材
306 第2の基板
307 引き回し配線
308 FPC
309 FET
310 FET
311 FET
312 FET
313 第1の電極
314 絶縁物
315 EL層
316 第2の電極
317 発光素子
318 空間
900 基板
901 第1の電極
902 EL層
903 第2の電極
911 正孔注入層
912 正孔輸送層
913 発光層
914 電子輸送層
915 電子注入層
2000 タッチパネル
2000’ タッチパネル
2501 表示パネル
2502R 画素
2502t トランジスタ
2503c 容量素子
2503g 走査線駆動回路
2503t トランジスタ
2509 FPC
2510 基板
2511 配線
2519 端子
2521 絶縁層
2528 絶縁体
2550R 発光素子
2560 封止層
2567BM 遮光層
2567p 反射防止層
2567R 着色層
2570 基板
2590 基板
2591 電極
2592 電極
2593 絶縁層
2594 配線
2595 タッチセンサ
2597 接着層
2598 配線
2599 端子
2601 パルス電圧出力回路
2602 電流検出回路
2603 容量
2611 トランジスタ
2612 トランジスタ
2613 トランジスタ
2621 電極
2622 電極
3001 回路(G)
3002 回路(S)
3003 表示部
3004 画素
3005 導電膜
3007 開口部
4000 照明装置
4001 基板
4002 発光素子
4003 基板
4004 第1の電極
4005 EL層
4006 第2の電極
4007 電極
4008 電極
4009 補助配線
4010 絶縁層
4011 封止基板
4012 シール材
4013 乾燥剤
4015 拡散板
4100 照明装置
4200 照明装置
4201 基板
4202 発光素子
4204 第1の電極
4205 EL層
4206 第2の電極
4207 電極
4208 電極
4209 補助配線
4210 絶縁層
4211 封止基板
4212 シール材
4213 バリア膜
4214 平坦化膜
4215 拡散板
4300 照明装置
5101 ライト
5102 ホイール
5103 ドア
5104 表示部
5105 ハンドル
5106 シフトレバー
5107 座席シート
5108 インナーリアビューミラー
6000 電子機器
6002 外光
6003 反射光
6004 発光
7000 筐体
7001 表示部
7002 第2表示部
7003 スピーカ
7004 LEDランプ
7005 操作キー
7006 接続端子
7007 センサ
7008 マイクロフォン
7009 スイッチ
7010 赤外線ポート
7011 記録媒体読込部
7012 支持部
7013 イヤホン
7014 アンテナ
7015 シャッターボタン
7016 受像部
7018 スタンド
7020 カメラ
7021 外部接続部
7022、7023 操作用ボタン
7024 接続端子
7025 バンド、
7026 留め金
7027 時刻を表すアイコン
7028 その他のアイコン
8001 照明装置
8002 照明装置
8003 照明装置
8004 照明装置
9310 携帯情報端末
9311 表示部
9312 表示領域
9313 ヒンジ
9315 筐体

Claims (4)

  1. 一対の電極間にEL層を有する発光素子であって、
    前記EL層は、発光層を有し、
    前記発光層は、有機化合物と、蛍光材料と、を有し、
    前記発光素子の駆動において、下記式(1)で表される劣化曲線を示す発光素子。
    Figure 2022173506000019
  2. 請求項1において、
    前記式(1)で表される劣化曲線のスケーリング時間τが、1500時間以上である、発光素子。
  3. 請求項1において、
    常温にて、25mA/cmまたは50mA/cmの一定電流密度で駆動させた際に、前記式(1)で表される劣化曲線のスケーリング時間τが、1500時間以上となる、発光素子。
  4. 一対の電極間に発光層を有し、
    前記発光層は、有機化合物と、蛍光材料と、を有し、
    一定電流で駆動した際の寿命を縦軸としたアレニウスプロットが、25℃から80℃の間において上に凸の曲線となり、
    前記寿命が、輝度が初期輝度の90%にまで減衰する寿命であるか、または、輝度が初期輝度の70%にまで減衰する寿命であるか、または、半減寿命である、発光素子。
JP2022159244A 2016-12-27 2022-10-03 発光素子 Withdrawn JP2022173506A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016253893 2016-12-27
JP2016253893 2016-12-27
JP2017246055A JP2018107449A (ja) 2016-12-27 2017-12-22 発光素子、発光装置、電子機器、および照明装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017246055A Division JP2018107449A (ja) 2016-12-27 2017-12-22 発光素子、発光装置、電子機器、および照明装置

Publications (1)

Publication Number Publication Date
JP2022173506A true JP2022173506A (ja) 2022-11-18

Family

ID=62630769

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017246055A Withdrawn JP2018107449A (ja) 2016-12-27 2017-12-22 発光素子、発光装置、電子機器、および照明装置
JP2022159244A Withdrawn JP2022173506A (ja) 2016-12-27 2022-10-03 発光素子

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017246055A Withdrawn JP2018107449A (ja) 2016-12-27 2017-12-22 発光素子、発光装置、電子機器、および照明装置

Country Status (2)

Country Link
US (1) US20180182992A1 (ja)
JP (2) JP2018107449A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10748497B2 (en) 2016-12-27 2020-08-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
TWI750706B (zh) 2020-06-20 2021-12-21 丁逸聖 發光裝置、發光方法、光檢測裝置、光譜檢測方法及發光修正方法
KR20220118602A (ko) * 2021-02-18 2022-08-26 삼성디스플레이 주식회사 표시 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203672A (ja) * 2000-12-27 2002-07-19 Denso Corp 有機el素子の製造方法
KR20040003199A (ko) * 2002-07-02 2004-01-13 (주)네스디스플레이 밴드갭이 큰 도펀트를 발광층에 포함하는 유기전기발광소자
JP2005283608A (ja) * 2004-03-26 2005-10-13 Fuji Photo Film Co Ltd 有機el発光素子の経時劣化予測方法、駆動方法およびプリエージング方法
JP2012119064A (ja) * 2010-11-29 2012-06-21 Rohm Co Ltd 有機発光素子
US20120235701A1 (en) * 2011-03-14 2012-09-20 Universal Display Corporation Method for Accelerated Lifetesting of Large Area OLED Lighting Panels

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7898168B2 (en) * 2003-10-27 2011-03-01 Semiconductor Energy Laboratory Co., Ltd. Organic electroluminescent device having light-emitting layer with guest dopant
US20050248517A1 (en) * 2004-05-05 2005-11-10 Visteon Global Technologies, Inc. System and method for luminance degradation reduction using thermal feedback
US8916897B2 (en) * 2012-05-31 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
KR101605300B1 (ko) * 2013-11-29 2016-03-21 지세다이 가가쿠자이료효카 기쥬츠겡큐구미아이 유기 el 소자의 수명 추정 방법, 수명 추정 장치 및 제조 방법, 그리고 발광 장치
JP6530227B2 (ja) * 2014-04-25 2019-06-12 株式会社半導体エネルギー研究所 化合物、発光素子、発光装置、電子機器、及び照明装置
KR102124045B1 (ko) * 2014-05-02 2020-06-18 삼성디스플레이 주식회사 유기 발광 소자
US9991471B2 (en) * 2014-12-26 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, and electronic device
CN106328816B (zh) * 2015-06-16 2018-11-13 昆山国显光电有限公司 一种有机电致发光器件及其制备方法
US10748497B2 (en) * 2016-12-27 2020-08-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203672A (ja) * 2000-12-27 2002-07-19 Denso Corp 有機el素子の製造方法
KR20040003199A (ko) * 2002-07-02 2004-01-13 (주)네스디스플레이 밴드갭이 큰 도펀트를 발광층에 포함하는 유기전기발광소자
JP2005283608A (ja) * 2004-03-26 2005-10-13 Fuji Photo Film Co Ltd 有機el発光素子の経時劣化予測方法、駆動方法およびプリエージング方法
JP2012119064A (ja) * 2010-11-29 2012-06-21 Rohm Co Ltd 有機発光素子
US20120235701A1 (en) * 2011-03-14 2012-09-20 Universal Display Corporation Method for Accelerated Lifetesting of Large Area OLED Lighting Panels

Also Published As

Publication number Publication date
JP2018107449A (ja) 2018-07-05
US20180182992A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
US11387280B2 (en) Light-emitting device and electronic device
US10164203B2 (en) Light-emitting element, light-emitting device, electronic device, and lighting device
JP2022189942A (ja) 発光装置
JP2022188146A (ja) 発光装置、電子機器および照明装置
JP2023052438A (ja) 発光装置
JP6656817B2 (ja) 発光装置
JP7247388B2 (ja) 化合物
CN111916568A (zh) 发光元件、显示装置、电子设备及照明装置
TW201626601A (zh) 發光元件
JP7067916B2 (ja) 発光素子、発光装置、電子機器、および照明装置
JP7144161B2 (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
US20180083206A1 (en) Organometallic Complex, Light-Emitting Element, Light-Emitting Device, Display Device, Electronic Device, and Lighting Device
JP2022173506A (ja) 発光素子
JP2017120867A (ja) 発光素子、表示装置、電子機器、及び照明装置
JP2018065798A (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP2018002710A (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP7225097B2 (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231212

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20240306