[go: up one dir, main page]

JP2022144966A - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP2022144966A
JP2022144966A JP2021046185A JP2021046185A JP2022144966A JP 2022144966 A JP2022144966 A JP 2022144966A JP 2021046185 A JP2021046185 A JP 2021046185A JP 2021046185 A JP2021046185 A JP 2021046185A JP 2022144966 A JP2022144966 A JP 2022144966A
Authority
JP
Japan
Prior art keywords
blast furnace
gas
hydrogen
amount
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021046185A
Other languages
Japanese (ja)
Inventor
浩一 横山
Koichi Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2021046185A priority Critical patent/JP2022144966A/en
Publication of JP2022144966A publication Critical patent/JP2022144966A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

Figure 2022144966000001

【課題】非焼成含炭塊成鉱を高炉原料の一部として使用すると共に、水素を含んだ還元性ガスを高炉内に吹き込む高炉の操業において、高炉の効率を高めて、CO発生量を抑制することができる高炉操業方法を提供する。
【解決手段】ボッシュガス中の水素量をXとし、非焼成含炭塊成鉱の炭素含有率をYとしたときに、下記式(1)~(3)で囲まれた操業領域内で操業することを特徴とする高炉操業方法である。
(1):Y=-0.06X+29.07
(2):X=0
(3):Y=0
式中、Xの単位はNm/t-pigであり、Yの単位は質量%である。
【選択図】図5

Figure 2022144966000001

[Problem] To increase the efficiency of the blast furnace and reduce the amount of CO2 generated in the operation of the blast furnace in which a reducing gas containing hydrogen is injected into the blast furnace while using unburned coal-containing agglomerate ore as part of the raw material for the blast furnace. Provided is a method of operating a blast furnace that can be suppressed.
[Solution] When the amount of hydrogen in the bosh gas is X and the carbon content of the non-burned coal-containing agglomerate ore is Y, the operation is performed within the operation area surrounded by the following formulas (1) to (3). It is a blast furnace operating method characterized by doing.
(1): Y=−0.06X+29.07
(2): X=0
(3): Y=0
In the formula, the unit of X is Nm 3 /t-pig and the unit of Y is % by mass.
[Selection drawing] Fig. 5

Description

この発明は、高炉の操業方法に関し、詳しくは、非焼成含炭塊成鉱を高炉原料の一部として使用すると共に、水素を含んだ還元性ガスを高炉内に吹き込む操業において、高炉の効率を高めて銑鉄を得ることができ、しかも、CO発生量を抑制することができる高炉操業方法に関するものである。 The present invention relates to a method of operating a blast furnace, and more particularly, in an operation in which unburned coal-containing agglomerate ore is used as part of the blast furnace raw material and a reducing gas containing hydrogen is blown into the blast furnace, the efficiency of the blast furnace is improved. The present invention relates to a blast furnace operating method capable of obtaining pig iron by increasing the amount of CO 2 and suppressing the amount of CO 2 generated.

CO排出削減の社会的要請のもと、鉄鋼業においてはCO排出量の約70%が高炉によるため、高炉でのCO排出をできるだけ抑える必要がある。 Under the social demand for CO2 emission reduction, about 70% of the CO2 emission in the steel industry comes from the blast furnace, so it is necessary to reduce the CO2 emission from the blast furnace as much as possible.

高炉では、酸化鉄を還元して金属鉄とする製銑プロセスにおいて、主な還元材としてコークスが使用される。このコークスに含まれる炭素が最終的にCOとして大気中に放出されることから、CO排出量を削減するための方策のひとつに還元材としての水素の有効利用が挙げられる。コークスの燃焼により発生したCOは酸化鉄を還元してCOを発生するのに対して、水素による還元の生成物はHOであり、炭素系の還元材の使用の一部を水素系の還元材に置き換えることで、COの排出削減に効果を及ぼす。 In a blast furnace, coke is used as a main reducing agent in the ironmaking process of reducing iron oxide to metallic iron. Since the carbon contained in this coke is finally released into the atmosphere as CO 2 , one of the measures for reducing CO 2 emissions is the effective use of hydrogen as a reducing agent. The CO generated by coke combustion reduces iron oxide to generate CO2 , whereas the product of reduction by hydrogen is H2O , and part of the use of carbon-based reducing agents is replaced by hydrogen-based is effective in reducing CO 2 emissions.

このような高炉への水素ガスの吹き込みは、比較的古くから行われている。例えば、特許文献1には、Hを含む流体還元剤を送風中に添加して操業する高炉操業方法において、ブローパイプないし羽口部に臨んで開口させた吹込み管よりHを含む流体還元剤を吹込むようにして、その吹込みにあたり、吐出位置や流速を変化させることで、Hガスの炉内半径方向における分布を調節して、炉内を適正な還元状態で維持する方法が記載されている。 Blowing of hydrogen gas into such a blast furnace has been carried out for a relatively long time. For example, in Patent Document 1, in a method of operating a blast furnace in which a fluid reducing agent containing H 2 is added during air blowing, a fluid containing H 2 is fed from a blowpipe or a blow pipe that is open facing a tuyere. It describes a method of blowing in a reducing agent and adjusting the distribution of H2 gas in the radial direction in the furnace by changing the discharge position and flow velocity during the blowing, thereby maintaining the inside of the furnace in an appropriate reducing state. ing.

また、特許文献2では、高炉シャフトの塊状帯部分高さ方向における所定の複数個所のそれぞれにおいて、高炉半径方向における所定の複数個所で炉内ガスの成分とその量を測定すると共に、この測定値に基づいて水素ガス利用率を算定し、塊状帯部分の高さ方向位置間における水素ガス利用率の差を求めて、この差に基づいて炉頂装入物の分布調整を行いながら、水素ガス利用率の差を所定の範囲内に維持して、高炉操業の安定化と還元ガスの利用率向上を図る方法が記載されている。 Further, in Patent Document 2, the components and amounts of the in-furnace gas are measured at a plurality of predetermined locations in the radial direction of the blast furnace at each of a plurality of predetermined locations in the height direction of the massive band portion of the blast furnace shaft, and the measured values are Calculate the hydrogen gas utilization rate based on, obtain the difference in the hydrogen gas utilization rate between the positions in the height direction of the massive belt portion, and adjust the distribution of the top charge based on this difference. It describes a method for stabilizing blast furnace operation and improving the utilization rate of reducing gas by maintaining the difference in utilization rate within a predetermined range.

一方で、コークスや石炭等の炭材の微粉と酸化鉄の微粉とをセメントのような水硬性バインダーを用いて塊成化した非焼成含炭塊成鉱を使用することで、高炉操業における還元材比の低減を図ることができる。この非焼成含炭塊成鉱は、微粉状の鉄含有原料をセメント等の水硬性バインダーと共に水を加えて造粒して、ペレットのような塊成物に成形した後、養生して強度を高めて塊成鉱を得る、非焼成型の塊成化プロセスにより製造されることから、焼結鉱や焼成ペレットを得るような焼成型塊成化プロセスでは不可能である炭材の塊成鉱内への添加が可能となる。そのため、コークスの使用量を削減することにつながる。 On the other hand, by using a non-fired coal-containing agglomerate ore obtained by agglomerating carbonaceous fine powder such as coke or coal and iron oxide fine powder using a hydraulic binder such as cement, reduction in blast furnace operation can be achieved. It is possible to reduce the material ratio. This non-calcined coal-bearing agglomerate ore is made by granulating a finely powdered iron-containing raw material together with a hydraulic binder such as cement and water to form an agglomerate such as a pellet, which is then cured to increase its strength. Carbonaceous agglomerate ore, which is produced by a non-fired agglomeration process that obtains agglomerate ore by increasing it, is impossible with a fired agglomeration process that obtains sintered ore and fired pellets. can be added inside. Therefore, it leads to a reduction in the amount of coke used.

このような非焼成含炭塊成鉱は高炉原料の一部として使用されるが、例えば、特許文献3では、炉頂ガス中のCO濃度とCOガス濃度から算出されて、高炉内の反応効率を示すガス還元率ηCOについて、予めその基準値を定めておき、高炉操業中にこのηCOを測定して、その値に応じて、非焼成含炭塊成鉱における微粉炭材の粒度や反応性(JIS反応性)を調整することで、高炉のガス還元効率を常に高位に安定化させる方法が開示されている。 Such non - calcined coal-containing agglomerate ore is used as part of the blast furnace raw material. Regarding the gas reduction rate ηCO, which indicates the efficiency, a reference value is determined in advance, and this ηCO is measured during the operation of the blast furnace. A method for stabilizing the gas reduction efficiency of a blast furnace at a high level is disclosed by adjusting the reactivity (JIS reactivity).

特開昭58-87210号公報JP-A-58-87210 特開平6-57315号公報JP-A-6-57315 特開2015-74799号公報JP 2015-74799 A

高炉でのCO排出削減が求められるなか、水素を含んだ還元性ガスの高炉内への吹き込みや非焼成含炭塊成鉱を高炉原料の一部として使用することは、いずれも既に行われている。ところが、上述した特許文献のように、還元性ガスや非焼成含炭塊成鉱を利用する際に、それぞれで適正な条件を求めることはなされていても、還元性ガスの吹き込みと非焼成含炭塊成鉱の利用を同時に行う場合における、高炉全体での効率に着目した取り組みはこれまでに行われてこなかった。 While there is a need to reduce CO2 emissions from blast furnaces, the injection of hydrogen-containing reducing gas into the blast furnace and the use of unfired coal-containing agglomerate ore as part of the raw material for blast furnaces have already been implemented. ing. However, as in the above-mentioned patent document, when using a reducing gas or a non-burning coal-containing agglomerate ore, although appropriate conditions are sought for each, the blowing of the reducing gas and the non-burning inclusion No effort has been made so far to focus on the efficiency of the entire blast furnace when using coal agglomerates at the same time.

このような状況のもと、本発明者らは、上記の課題を解決するために鋭意検討した結果、高炉への還元性ガス吹込み時に非焼成含炭塊成鉱を使用する場合、高炉の効率を高めるにあたり、非焼成含炭塊成鉱に含まれる炭素量と還元性ガスの吹き込み量との間にある関係性を有することを見出した。そして、このような関係に基づいた高炉操業を行うことで、高炉の効率を高めて銑鉄を得ることができ、しかも、CO発生量を抑制することができるようになることから、本発明を完成させた。 Under these circumstances, the present inventors have made intensive studies to solve the above problems, and as a result, when using unburned coal-bearing agglomerate ore when injecting reducing gas into the blast furnace, It was found that there is a relationship between the amount of carbon contained in the non-calcined coal-containing agglomerate ore and the amount of blown reducing gas in order to increase the efficiency. By operating the blast furnace based on such a relationship, the efficiency of the blast furnace can be increased to obtain pig iron, and the amount of CO 2 generated can be suppressed. completed.

したがって、本発明の目的は、非焼成含炭塊成鉱を高炉原料の一部として使用すると共に、水素を含んだ還元性ガスを高炉内に吹き込む高炉の操業において、高炉の効率を高めて、CO発生量を抑制することができる高炉操業方法を提供することにある。 Accordingly, an object of the present invention is to increase the efficiency of the blast furnace in the operation of the blast furnace in which a non-burned coal-containing agglomerate ore is used as part of the blast furnace raw material and a reducing gas containing hydrogen is blown into the blast furnace, An object of the present invention is to provide a blast furnace operating method capable of suppressing the amount of CO 2 generated.

すなわち、本発明の要旨は次のとおりである。
〔1〕非焼成含炭塊成鉱を高炉原料の一部として使用すると共に、水素を含んだ還元性ガスを高炉内に吹き込む高炉操業方法において、ボッシュガス中の水素量をXとし、非焼成含炭塊成鉱の炭素含有率をYとしたときに、下記式(1)~(3)で囲まれた操業領域内で操業することを特徴とする高炉操業方法。
(1):Y=-0.06X+29.07
(2):X=0
(3):Y=0
式中、Xの単位はNm/t-pigであり、Yの単位は質量%である。
〔2〕下記関係式(a)~(c)に従い、前記ボッシュガス中の水素量Xに応じて、前記非焼成含炭塊成鉱由来の炭素量Y’を調整する〔1〕に記載の高炉操業方法。
(a):X≦140のとき、Y’≦0.2×160
(b):140<X≦220とのき、Y’≦0.15×160
(c):220<Xのとき、Y’≦0.1×160
式中、Xの単位はNm/t-pigであり、Y’の単位はkg/t-pigである。
〔3〕前記還元性ガスと共に微粉炭を羽口から吹き込む高炉操業方法において、前記ボッシュガス中の水素量Xは、還元性ガス中の水素ガス量x1に加えて、還元性ガスに含まれる炭化水素成分に由来する水素ガス量xと微粉炭に含まれる水素成分及び炭化水素成分に由来する水素ガス量xとの合計(X=x1+x+x)である〔1〕又は〔2〕に記載の高炉操業方法。
〔4〕前記ボッシュガス中の水素量Xが300Nm/t-pig以下となるように前記還元性ガスの吹き込みを行う〔1〕~〔3〕のいずれかに記載の高炉操業方法。
〔5〕前記非焼成含炭塊成鉱の炭素含有率Yは25質量%以下である〔1〕~〔4〕のいずれかに記載の高炉操業方法。
That is, the gist of the present invention is as follows.
[1] In a method of operating a blast furnace in which a non-calcined coal-containing agglomerate ore is used as part of the blast furnace raw material and a reducing gas containing hydrogen is blown into the blast furnace, the amount of hydrogen in the bosh gas is set to X, and the non-calcined A method of operating a blast furnace characterized by operating within an operating region surrounded by the following formulas (1) to (3), where Y is the carbon content of the coal-bearing agglomerate ore.
(1): Y=−0.06X+29.07
(2): X=0
(3): Y=0
In the formula, the unit of X is Nm 3 /t-pig and the unit of Y is % by mass.
[2] According to the following relational expressions (a) to (c), according to the hydrogen content X in the bosh gas, the carbon content Y' derived from the non-burnt coal-containing agglomerate ore is adjusted according to [1] Blast furnace operating method.
(a): when X ≤ 140, Y' ≤ 0.2 x 160
(b): Y′≦0.15×160 when 140<X≦220
(c): when 220<X, Y′≦0.1×160
In the formula, the unit of X is Nm 3 /t-pig and the unit of Y' is kg/t-pig.
[3] In the method of operating a blast furnace in which pulverized coal is blown through a tuyere together with the reducing gas, the hydrogen content X in the bosh gas is included in the reducing gas in addition to the hydrogen gas content x 1 in the reducing gas. [ 1 ] which is the sum of the hydrogen gas amount x2 derived from the hydrocarbon component and the hydrogen gas amount x3 derived from the hydrogen component and the hydrocarbon component contained in the pulverized coal (X=x1 + x2 + x3 ), or [2] The method for operating a blast furnace.
[4] The method for operating a blast furnace according to any one of [1] to [3], wherein the reducing gas is blown so that the hydrogen content X in the bosh gas is 300 Nm 3 /t-pig or less.
[5] The method for operating a blast furnace according to any one of [1] to [4], wherein the carbon content Y of the non-calcined coal-containing agglomerate ore is 25% by mass or less.

本発明によれば、非焼成含炭塊成鉱を高炉原料の一部として使用すると共に、水素を含んだ還元性ガスを高炉内に吹き込む操業において、高炉の効率を高めることができ、しかも、炭素の消費量を抑えることが可能になることから、CO発生量を抑制することができる。 According to the present invention, the efficiency of the blast furnace can be increased in the operation of using the unburned coal-containing agglomerate ore as part of the blast furnace raw material and blowing a hydrogen-containing reducing gas into the blast furnace, and Since it becomes possible to suppress the consumption of carbon, the amount of CO 2 generated can be suppressed.

図1は、実験例で使用した高炉内反応シミュレータを説明するための模式図である。FIG. 1 is a schematic diagram for explaining a blast furnace reaction simulator used in experimental examples. 図2は、高炉内反応シミュレータによる高炉操業実験の結果を示すグラフである。FIG. 2 is a graph showing the results of a blast furnace operation experiment using a blast furnace reaction simulator. 図3は、図2のグラフの一部(配合5の場合)を二次曲線で近似したものである。FIG. 3 is a quadratic curve approximation of a part of the graph in FIG. 2 (in the case of formulation 5). 図4は、図2のグラフの一部(配合4の場合)を二次曲線で近似したものである。FIG. 4 is a quadratic curve approximation of a portion of the graph in FIG. 2 (in the case of formulation 4). 図5は、高炉操業実験の結果から得られた操業領域を示すものである。FIG. 5 shows the operation area obtained from the results of the blast furnace operation experiment.

以下、本発明について詳しく説明する。
本発明では、非焼成含炭塊成鉱を高炉原料の一部として使用すると共に、水素を含んだ還元性ガスを高炉内に吹き込む高炉操業方法において、ボッシュガス中の水素量をXとし、非焼成含炭塊成鉱の炭素含有率をYとしたときに、下記式(1)~(3)で囲まれた操業領域内で操業を行うようにする。
(1):Y=-0.06X+29.07
(2):X=0
(3):Y=0
式中、Xの単位はNm/t-pigであり、Yの単位は質量%である。
The present invention will be described in detail below.
In the present invention, in a blast furnace operating method in which non-burned coal-containing agglomerate ore is used as part of the blast furnace raw material and a reducing gas containing hydrogen is blown into the blast furnace, the amount of hydrogen in the bosh gas is set to X, Assuming that the carbon content of the calcined coal-containing agglomerate ore is Y, the operation is carried out within the operating range defined by the following formulas (1) to (3).
(1): Y=−0.06X+29.07
(2): X=0
(3): Y=0
In the formula, the unit of X is Nm 3 /t-pig and the unit of Y is % by mass.

上記のような操業領域は、高炉内反応シミュレータによる実験結果に基づいて決定された。その詳細は後述の実施例で説明するが、非焼成含炭塊成鉱に含まれる炭素量と還元性ガスの吹き込み量との間でこのような関係性を示す理由は、次のように考えられる。 The operating range as described above was determined based on experimental results using a blast furnace reaction simulator. The details will be described later in Examples, but the reason why such a relationship is shown between the amount of carbon contained in the unburned coal-containing agglomerate ore and the amount of blown reducing gas is considered as follows. be done.

先ず、非焼成含炭塊成鉱は、一般に、コークスや石炭等の炭材の微粉と酸化鉄の微粉とをセメント等の水硬性バインダーを用いて塊成化したものであり、これらは微粉であることから、炭材、酸化鉄ともに反応性が高い。しかも、非焼成含炭塊成鉱内で微粉炭材と微粉酸化鉄とが近接配置されているため、以下の反応式のように、高炉操業中に炭材の反応によって生成した一酸化炭素が近接する酸化鉄を即座に還元し、生成した二酸化炭素が近接する微粉炭材と即座に反応する。この相乗的効果により非焼成含炭塊成鉱の高炉内における活性度は、焼結鉱やコークスよりも極めて高いことが知られている。
C+CO→2CO
CO+FeO→Fe+CO
First, non-calcined coal-containing agglomerated ore is generally obtained by agglomerating fine powders of carbon materials such as coke and coal and fine powders of iron oxide using a hydraulic binder such as cement. Therefore, both carbonaceous materials and iron oxides are highly reactive. Moreover, since the fine carbonaceous material and the fine iron oxide powder are arranged close to each other in the non-fired coal-bearing agglomerate ore, carbon monoxide produced by the reaction of the carbonaceous material during blast furnace operation is Adjacent iron oxide is immediately reduced, and the produced carbon dioxide immediately reacts with the adjoining fine carbonaceous material. It is known that due to this synergistic effect, the activity in the blast furnace of non-calcined coal-containing agglomerate ore is much higher than that of sintered ore and coke.
C+ CO2 →2CO
CO+FeO→Fe+ CO2

ところが、非焼成含炭塊成鉱において炭材の配合量が多い場合や、非焼成含炭塊成鉱そのものを多量に使用した場合には、高炉内で反応して生成した一酸化炭素が酸化鉄の還元に活用されずに炉外に排出されてしまう。 However, when the amount of carbonaceous material is large in the unburned coal-containing agglomerate ore, or when a large amount of unburned coal-containing agglomerate ore itself is used, the carbon monoxide produced by the reaction in the blast furnace is oxidized. It is discharged out of the furnace without being used for iron reduction.

一方で、CO発生の抑制のため、コークスのような炭素系の還元材のかわりに、水素を含んだ還元性ガスを高炉内に吹き込む場合、非焼成含炭塊成鉱における炭材は、上述した二酸化炭素との反応だけではなく、下記反応式のように、還元によって生成した水蒸気(H2O)との反応(水性ガス化反応)も進行するため、還元性ガスの吹き込みを行わない場合に比べて、より多くの水素と一酸化炭素が生成する。そして、この水素と一酸化炭素が酸化鉄の還元に有効活用されなければ、かえって高炉の効率は低下することになる。
C+HO→H+CO
On the other hand, when a reducing gas containing hydrogen is blown into the blast furnace instead of a carbon-based reducing agent such as coke in order to suppress the generation of CO2 , the carbonaceous material in the non-fired coal-containing agglomerate In addition to the reaction with carbon dioxide described above, as shown in the reaction formula below, the reaction with water vapor (H 2 O) generated by reduction (water gasification reaction) also proceeds, so reducing gas is not blown. More hydrogen and carbon monoxide are produced than would otherwise be the case. And if this hydrogen and carbon monoxide are not effectively utilized for the reduction of iron oxide, the efficiency of the blast furnace will rather decrease.
C+ H2O →H2 + CO

つまり、高炉への還元性ガス吹込み時に非焼成含炭塊成鉱を使用する場合、非焼成含炭塊成鉱内の炭材と還元性ガスに由来する水蒸気との反応により、通常より多くのCOとHが発生する。そのため、この還元性ガスを焼結鉱のような他の高炉原料の還元に有効に利用することで、高炉の効率を高めて銑鉄を得ることができ、結果としてCO発生量(カーボン消費量)が抑制されるようになる。 In other words, when using non-burnt coal-containing agglomerate ore when blowing reducing gas into the blast furnace, the reaction between the carbonaceous material in the non-burning coal-containing agglomerate ore and the water vapor derived from the reducing gas causes more of CO and H2 are generated. Therefore, by effectively using this reducing gas to reduce other blast furnace raw materials such as sintered ore, it is possible to increase the efficiency of the blast furnace and obtain pig iron. ) is suppressed.

本発明で行った高炉内反応シミュレータによる実際の高炉操業を模擬した実験結果によれば、非焼成含炭塊成鉱を高炉原料の一部として使用すると共に、水素を含んだ還元性ガスを高炉内に吹き込む高炉操業方法において、ボッシュガス中の水素量をXとし、非焼成含炭塊成鉱由来の炭素量をY’としたときに、下記関係式(a)~(c)に従い高炉操業を行うのがよいことがわかる。
(a):X≦140のとき、Y’≦0.2×160
(b):140<X≦220とのき、Y’≦0.15×160
(c):220<Xのとき、Y’≦0.1×160
According to the results of an experiment simulating actual blast furnace operation using a blast furnace reaction simulator conducted in the present invention, it was found that non-burned coal-containing agglomerate ore was used as part of the blast furnace raw material, and reducing gas containing hydrogen was added to the blast furnace. In the blast furnace operation method of blowing into the inside, when the amount of hydrogen in the bosh gas is X and the amount of carbon derived from the unburned coal-containing agglomerate ore is Y′, the blast furnace is operated according to the following relational expressions (a) to (c). It turns out that it is better to do
(a): when X ≤ 140, Y' ≤ 0.2 x 160
(b): Y′≦0.15×160 when 140<X≦220
(c): when 220<X, Y′≦0.1×160

このうち、ボッシュガス中の水素量Xの単位はNm/t-pigであり、非焼成含炭塊成鉱由来の炭素量Y’の単位はkg/t-pigである。この実験では、非焼成含炭塊成鉱の炭素含有率が0~20質量%の範囲で5質量%刻みに異なる5種類を用意し、各非焼成含炭塊成鉱を使用した際に、水素含有率の異なる還元性ガスを高炉内反応シミュレータに吹き込み、水素量の増加に伴い高まるカーボン削減量が減少に転じる変曲点を求めた。この結果に基づき、ボッシュガス中の水素量Xが140Nm/t-pig以下のときは、非焼成含炭塊成鉱由来の炭素量Y’は最大で32kg/t-pigとなるようにするのがよい。同様に、ボッシュガス中の水素量Xが140Nm/t-pig超から220Nm/t-pig以下のときには、非焼成含炭塊成鉱由来の炭素量Y’は最大で24kg/t-pigとなるようにし、この水素量Xが220Nm/t-pig超のときには、炭素量Y’は最大で16kg/t-pigとなるようにするのがよい。 Among these units, the unit of the amount of hydrogen X in the bosh gas is Nm 3 /t-pig, and the unit of the amount of carbon Y' derived from the unburned coal-containing agglomerate ore is kg/t-pig. In this experiment, five types of unburned coal-containing agglomerate ore with a carbon content in the range of 0 to 20% by mass were prepared in increments of 5% by mass. Reducing gases with different hydrogen contents were injected into a blast furnace reaction simulator, and the inflection point at which the amount of carbon reduction, which increases with increasing hydrogen content, turns to decrease was determined. Based on this result, when the amount of hydrogen X in the bosh gas is 140 Nm 3 /t-pig or less, the amount of carbon Y' derived from the unburned coal-containing agglomerate ore is set to 32 kg/t-pig at maximum. It's good. Similarly, when the amount of hydrogen X in the bosh gas is from more than 140 Nm 3 /t-pig to 220 Nm 3 /t-pig or less, the maximum amount of carbon Y′ derived from unburned coal-containing agglomerate ore is 24 kg/t-pig. When the amount of hydrogen X exceeds 220 Nm 3 /t-pig, the amount of carbon Y' should be 16 kg/t-pig at maximum.

ここで、上記関係式(a)~(c)で炭素量Y’の式中の「160」は銑鉄1トンあたりの非焼成含炭塊成鉱の装入量(kg)を表しており、関係式(a)~(c)ごとに非焼成含炭塊成鉱の炭材の割合(炭素含有率)を乗じている。また、ボッシュガス中の水素量Xを用いる理由は、還元性ガスに含まれる水素ガスに加えて、還元性ガスに含まれる炭化水素成分であったり、羽口から熱風と共に微粉炭を吹き込む場合にはその炭化水素成分が羽口先で分解して一酸化炭素と共に水素ガスを発生するためである。なお、カーボン削減量の算出方法や、カーボン削減量がボッシュガス中の水素量の増加に伴い高まるところ、それが減少に転じる変曲点の求め方など、詳しい内容は実施例で説明するとおりである。 Here, "160" in the formula of the carbon content Y' in the above relational expressions (a) to (c) represents the charging amount (kg) of unburned coal-bearing agglomerate ore per 1 ton of pig iron, Each of the relational expressions (a) to (c) is multiplied by the ratio (carbon content) of the carbonaceous material in the non-calcined coal-containing agglomerate ore. The reason for using the amount of hydrogen X in the bosh gas is that, in addition to the hydrogen gas contained in the reducing gas, the hydrocarbon component contained in the reducing gas, or when pulverized coal is blown from the tuyere with hot air. This is because the hydrocarbon component decomposes at the tip of the tuyere to generate hydrogen gas together with carbon monoxide. Details of how to calculate the amount of carbon reduction, where the amount of carbon reduction increases as the amount of hydrogen in the Bosch gas increases, and how to find the inflection point where it starts to decrease are as explained in the examples. be.

そして、この実験により求まる上記の変曲点、すなわち水素量の増加に伴い高まるカーボン削減量が減少に転じる変曲点をもとにして求めたものが先の式(1)である。この式(1)は水素量の増加に伴いカーボン削減量が高まる境界線を表すため、ボッシュガス中の水素量をXとし、非焼成含炭塊成鉱の炭素含有率をYとしたときに、式(1)の境界線を超えない範囲〔つまり式(1)~(3)で囲まれた操業領域内〕でボッシュガス中の水素量Xと非焼成含炭塊成鉱の炭素含有率Yを調整すればよい。 The above equation (1) is obtained based on the inflection point obtained by this experiment, that is, the inflection point at which the amount of carbon reduction, which increases as the amount of hydrogen increases, turns to decrease. Since this formula (1) represents the boundary line where the amount of carbon reduction increases as the amount of hydrogen increases, when the amount of hydrogen in the bosh gas is X and the carbon content of the unburned coal-containing agglomerate ore is Y, , the hydrogen content X in the bosh gas and the carbon content of the unburned coal-bearing agglomerate ore within a range that does not exceed the boundary line of formula (1) [that is, within the operating area surrounded by formulas (1) to (3)] Y should be adjusted.

本発明において、ボッシュガス中の水素量Xは、上記のように式(1)~(3)で囲まれた操業領域内であれば高炉の効率を落とさずに、かつCO発生量を抑制することができるが、水素還元はCO還元に比べて発生熱量が乏しく、過剰に吹き込んだ場合、高炉内の熱が不足し、かえって効果が低減してしまうことなどを考慮すると、好ましくは、ボッシュガス中の水素量Xは300Nm/t-pig以下、より好ましくは250Nm/t-pig以下となるようにするのがよい。ここで、ボッシュガス中の水素量Xは、還元性ガス中の水素ガス量x1に加えて、還元性ガスが炭化水素成分を有する場合にはそれが分解して発生する水素ガス量xを含むものであり(X=x1+x)、また、羽口から微粉炭を吹き込む場合には、微粉炭に含まれる水素成分及び炭化水素成分が分解して発生する水素ガス量xを更に含むものであり(X=x1+x+x)、更にまた、極めて微量ではあるが、コークスに含まれる水素成分が分解して発生する水素ガス量x4を更に含むもの(X=x1+x+x+x4)である。また、本発明は、水素を含んだ還元性ガスを高炉内に吹き込む操業に係るものであるため、ボッシュガス中の水素量Xは0を超えて有意な量であればよいが、その効果を発現させる観点から30Nm/t-pig以上であるのがよい。 In the present invention, the amount of hydrogen X in the bosh gas does not reduce the efficiency of the blast furnace and suppresses the amount of CO 2 generation as long as it is within the operation region surrounded by the formulas (1) to (3) as described above. However, hydrogen reduction generates less heat than CO reduction, and if it is blown excessively, the heat in the blast furnace will be insufficient, and the effect will be reduced. The amount of hydrogen X in the gas should be 300 Nm 3 /t-pig or less, more preferably 250 Nm 3 /t-pig or less. Here, in addition to the hydrogen gas amount x 1 in the reducing gas, the hydrogen gas amount X in the reducing gas is the hydrogen gas amount x 2 generated by decomposition of the hydrocarbon component when the reducing gas has a hydrocarbon component. (X = x 1 + x 2 ), and when pulverized coal is blown from the tuyere, the hydrogen gas amount x 3 generated by decomposition of the hydrogen component and hydrocarbon component contained in the pulverized coal is It further contains (X = x 1 + x 2 + x 3 ), and furthermore, although it is an extremely small amount, it further contains an amount of hydrogen gas x 4 generated by decomposition of the hydrogen component contained in the coke (X = x 1 + x 2 + x 3 + x 4 ). In addition, since the present invention relates to the operation of blowing a reducing gas containing hydrogen into the blast furnace, the amount of hydrogen X in the bosh gas may be a significant amount exceeding 0, but the effect is From the viewpoint of expression, it is preferably 30 Nm 3 /t-pig or more.

また、非焼成含炭塊成鉱の炭素含有率Yについては、水素量Xの場合と同様、式(1)~(3)で囲まれた操業領域内であればよいが、含炭塊成鉱中の炭材比率を過剰に増加させた場合、内在する高反応性炭材のガス化によるCO発生量が増加する一方で内在する高被還元性酸化鉄の比率が減少し、ガス化したCOガスによる還元が有効に活用されない可能性があることなどを考慮すると、好ましくは、非焼成含炭塊成鉱の炭素含有率Yは25質量%以下であるのがよい。この炭素含有率Yについても、本発明では、非焼成含炭塊成鉱を高炉原料の一部として使用するため、非焼成含炭塊成鉱中の炭素含有率Yは0を超えるものであればよいが、その効果の発現を考慮すると5質量%以上であるのがよい。 As for the carbon content Y of the non-calcined coal-containing agglomerate ore, as in the case of the hydrogen content X, it is sufficient if it is within the operation range surrounded by the formulas (1) to (3). When the ratio of carbonaceous materials in the ore is excessively increased, the amount of CO generated increases due to the gasification of the highly reactive carbonaceous materials contained therein, while the ratio of the highly reducible iron oxides contained therein decreases, resulting in gasification. Considering the possibility that the reduction by CO gas may not be effectively utilized, the carbon content Y of the non-calcined coal-containing agglomerate ore is preferably 25% by mass or less. Regarding this carbon content Y, in the present invention, since the non-burned coal-containing agglomerate ore is used as part of the blast furnace raw material, the carbon content Y in the non-burnt coal-containing agglomerate ore exceeds 0. However, considering the expression of the effect, it is preferably 5% by mass or more.

本発明において、高炉内に吹き込む還元性ガスについては、水素を含んだものであればよく、特に制限はないが、例えば、純水素のほか、コークス炉ガス、天然ガス等を用いることができる。ただし、コークス炉ガスや天然ガスは含まれる炭化水素をCOとHに分解するための、いわゆる分解熱が必要となるため、純水素を吹き込む条件に比べて、CO削減効果は目減りする。また、この還元性ガスは、羽口から吹き込むのが一般的であるが、シャフト部やその他の場所から高炉内に吹き込むようにしてもよい。 In the present invention, the reducing gas to be blown into the blast furnace is not particularly limited as long as it contains hydrogen. For example, pure hydrogen, coke oven gas, natural gas, etc. can be used. However, coke oven gas and natural gas require so - called decomposition heat to decompose the hydrocarbons contained in them into CO and H2 . Also, the reducing gas is generally blown from the tuyeres, but may be blown into the blast furnace from the shaft or other places.

また、非焼成含炭塊成鉱については、高炉の操業に使用されるものであれば特に制限されない。一般に、非焼成含炭塊成鉱は、焼結ダストや高炉ダストといった製鉄ダスト等の鉄(酸化鉄)を含有した微粉状の鉄含有原料と、コークス、無煙炭、コークスダスト、石炭チャー等の炭材を含有した微粉状の炭材含有原料とに加えて、ポルトランドセメント、早強ポルトランドセメント、アルミナセメント、高炉セメント等のような水硬性を有する水硬性バインダーを含んだ配合原料を用いて、このような配合原料を水分調整した後、塊成物に成形し、養生して得ることができる。その際の炭材含有原料の配合量は上述したとおりである。 Moreover, the non-calcined coal-containing agglomerate ore is not particularly limited as long as it is used for operation of a blast furnace. In general, non-calcined coal-bearing agglomerate ore consists of finely powdered iron-containing raw materials containing iron (iron oxide) such as ironmaking dust such as sintering dust and blast furnace dust, and coal such as coke, anthracite, coke dust and coal char. In addition to the finely powdered carbon material-containing raw material containing the carbonaceous material, using a blended raw material containing a hydraulic binder having hydraulic properties such as portland cement, high-early strength portland cement, alumina cement, blast furnace cement, etc. After adjusting the moisture content of such a blended raw material, it can be obtained by molding into an agglomerate and curing it. The blending amount of the carbon material-containing raw material at that time is as described above.

本発明においては、上述したように所定の操業領域内で操業すること以外には、公知の高炉操業と同様にすることができ、特に制限はない。 In the present invention, other than operating within a predetermined operating area as described above, the operation can be performed in the same manner as a known blast furnace, and there is no particular limitation.

以下、本発明について、実施例に基づきながら具体的に説明する。なお、本発明はこれらの内容に制限されるものではない。 Hereinafter, the present invention will be specifically described based on examples. In addition, this invention is not restricted to these contents.

(実験例)
高炉内反応シミュレータによる高炉操業実験を行った。この高炉内反応シミュレータ(BIS炉とも称される)は、高炉シャフト部の反応効率について、ガスと固体の向流反応にて還元と熱移動を評価、模擬できる装置であり、断熱制御することで、高炉内での発熱反応、吸熱反応及びガスによる昇温が内部試料に与える影響を高精度に再現することができる(内藤誠章ほか、高反応性コークス使用による高炉内反応効率向上技術、鉄と鋼、Vol.87(2001)、No.5、p.357-364のFig.2を参照)。
(Experimental example)
A blast furnace operation experiment was conducted using a blast furnace reaction simulator. This blast furnace reaction simulator (also called BIS furnace) is a device that can evaluate and simulate reduction and heat transfer in the countercurrent reaction of gas and solids in terms of the reaction efficiency of the blast furnace shaft. , the effects of exothermic reactions, endothermic reactions, and gas temperature rises in the blast furnace on internal samples can be reproduced with high accuracy (Nobuaki Naito et al., Technology for improving reaction efficiency in blast furnaces by using highly reactive coke, Iron Tokogane, Vol.87(2001), No.5, p.357-364, Fig.2).

詳しくは、図1に模式的に示したように、反応管1内に被還元材である酸化鉄(一般には焼結鉱であるが、本実験では、後述するように焼結鉱に非焼成含炭塊成鉱を混合)と還元材としてのコークスとを交互に層状に充填し、反応管1の外周に配置した電気炉6(加熱炉4と断熱炉5からなる)を反応管1の長手方向の上部から下部に移動させつつ、反応ガスを反応管1上部のガス導入口7から導入し、複数の酸化鉄層2及びコークス層3を通過させて、反応管1下部のガス排出口8から排出する向流移動層タイプの反応試験装置である。このうち、反応管1は、内径:103mm、長さ:5.4mのステンレス管である。電気炉6は、反応ガスを、高炉融着帯上部の温度(1200℃)まで予熱して、酸化鉄の還元を終了させるための加熱炉4と、この温度以下の反応を断熱系で進行させるための断熱炉5で構成されている。なお、加熱炉4及び断熱炉5は、それぞれ、長さが、950mm及び1090mmである。 Specifically, as schematically shown in FIG. 1, iron oxide (generally sintered ore), which is a material to be reduced, is placed in the reaction tube 1. A mixture of coal-bearing agglomerate ore) and coke as a reducing agent are alternately filled in layers, and an electric furnace 6 (consisting of a heating furnace 4 and an adiabatic furnace 5) arranged on the outer periphery of the reaction tube 1 is placed on the reaction tube 1. While moving from the top to the bottom in the longitudinal direction, the reaction gas is introduced from the gas introduction port 7 at the top of the reaction tube 1, passed through the plurality of iron oxide layers 2 and the coke layers 3, and passed through the gas discharge port at the bottom of the reaction tube 1. 8 is a countercurrent moving bed type reaction test apparatus. Among them, the reaction tube 1 is a stainless steel tube having an inner diameter of 103 mm and a length of 5.4 m. The electric furnace 6 preheats the reaction gas to the temperature (1200°C) of the upper part of the blast furnace cohesive zone, and the heating furnace 4 for completing the reduction of iron oxide, and the reaction below this temperature proceeds in an adiabatic system. It is composed of an adiabatic furnace 5 for The lengths of the heating furnace 4 and the adiabatic furnace 5 are 950 mm and 1090 mm, respectively.

このように高炉内反応シミュレータでは、酸化鉄とコークスを反応管1内に層状に装入して、電気炉6が反応管1の上端から下端に向かい下降すると同時に反応ガス(実機のボッシュガスに相当)を反応管1の上端から導入することによって、擬似向流移動層を再現することができる。 As described above, in the blast furnace reaction simulator, iron oxide and coke are charged into the reaction tube 1 in layers, and the electric furnace 6 descends from the upper end of the reaction tube 1 toward the lower end at the same time as the reaction gas (bosch gas in the actual machine) equivalent) from the upper end of the reaction tube 1, a pseudo countercurrent moving bed can be reproduced.

本実験例では、上記高炉内反応シミュレータの反応管1に対しておよそ0.5kgの酸化鉄からなる酸化鉄層2とおよそ0.1kgのコークスからなるコークス層3とが交互に配置されて、反応管1全体としては酸化鉄が35kg、コークスが7kg充填されるようにした。このうち、被還元材である酸化鉄としては非焼成含炭塊成鉱と焼結鉱を使用し、非焼成含炭塊成鉱を配合する場合には、これらが質量比で非焼成含炭塊成鉱:焼結鉱=1:9となるように混合して酸化鉄層2とした。 In this experimental example, an iron oxide layer 2 made of approximately 0.5 kg of iron oxide and a coke layer 3 made of approximately 0.1 kg of coke are alternately arranged with respect to the reaction tube 1 of the blast furnace reaction simulator. The reaction tube 1 as a whole was filled with 35 kg of iron oxide and 7 kg of coke. Of these, as the iron oxide that is the material to be reduced, non-burning coal-containing agglomerate ore and sintered ore are used. Iron oxide layer 2 was obtained by mixing agglomerate: sintered ore at a ratio of 1:9.

ここで、非焼成含炭塊成鉱は、鉄含有原料として焼結粉を用い、炭材含有原料としてコークス粉を用い、水硬性バインダーとして早強セメントを用いたものであり、これらの原料は表1に示した化学成分を有し、その粒度はいずれも150μm以下である。また、これらの原料配合比率としては、表2に示したように、炭材であるコークス粉の含有率を変えた4種類のもの(配合1~4)を用意した。そして、各配合原料において、水を加えて水分量を調整しながら混錬し、パンペレタイザーで造粒しておよそ10~15mmの粒径を有する生ペレットを作製した後、常温で14日間以上養生した。なお、表3には、各配合において得られた非焼成含炭塊成鉱の分析値が示されている。このうち、T-Cが非焼成含炭塊成鉱の炭素含有率Yに相当する。 Here, the non-calcined coal-containing agglomerate ore is obtained by using sintered powder as an iron-containing raw material, coke powder as a carbonaceous-containing raw material, and high-speed cement as a hydraulic binder. It has the chemical components shown in Table 1, and the particle size is 150 µm or less. In addition, as shown in Table 2, four kinds of materials (mixtures 1 to 4) were prepared by changing the content of coke powder as a carbonaceous material. Then, each blended raw material is kneaded while adjusting the moisture content by adding water, granulated with a pan pelletizer to produce raw pellets having a particle size of about 10 to 15 mm, and then cured at room temperature for 14 days or more. did. Table 3 shows analytical values of non-calcined coal-containing agglomerate ore obtained in each formulation. Of these, TC corresponds to the carbon content Y of the non-calcined carbon-containing agglomerate ore.

Figure 2022144966000002
Figure 2022144966000002

Figure 2022144966000003
Figure 2022144966000003

Figure 2022144966000004
Figure 2022144966000004

上記のように配合の異なる非焼成含炭塊成鉱を使用しながら焼結鉱と共に酸化鉄層2を形成し、コークス層3と交互に配した反応管1に対して、それぞれ以下の3つの条件のガス組成で反応ガスをガス導入口7から導入した。そして、酸化鉄及びコークスと反応させた後、ガス排出口8から排出される排ガス(実機での炉頂排ガスに相当)のガス成分分析を行った。
<条件1>
CO:38体積%、H:3体積%、N:59体積%
<条件2>
CO:40.1体積%、H:11.2体積%、N:48.7体積%
<条件3>
CO:41.7体積%、H:18.7体積%、N:39.6体積%
As described above, the iron oxide layer 2 is formed with the sintered ore while using the non-calcined coal-bearing agglomerate ore with a different composition, and the coke layer 3 and the reaction tube 1 alternately arranged are subjected to the following three conditions. The reaction gas was introduced from the gas inlet 7 with the gas composition under the condition. After reacting with iron oxide and coke, exhaust gas discharged from the gas outlet 8 (corresponding to furnace top exhaust gas in an actual furnace) was subjected to gas component analysis.
<Condition 1>
CO: 38% by volume, H2: 3 % by volume, N2 : 59% by volume
<Condition 2>
CO: 40.1% by volume, H2: 11.2 % by volume, N2 : 48.7% by volume
<Condition 3>
CO: 41.7% by volume, H2: 18.7% by volume , N2 : 39.6% by volume

このうち条件2及び3は、それぞれ水素を含んだ還元性ガスの高炉内への吹き込みを模擬したものであるのに対して、条件1はその吹き込みがないことを表す。つまり、条件1がこの実験例における反応ガスの基本条件であり、この条件1での還元材比は481kg/tとなる。但し、条件1では3体積%の水素ガスを含有するが、これは高炉への微粉炭の吹き込みがあることを想定しており、微粉炭に含まれる炭化水素成分が分解して発生する水素ガス量を3体積%として、条件2及び3でもこの3体積%を加味している。また、条件1~3における反応ガスの吹き込み量(反応ガス量)は22.1Nm3/minである。 Of these conditions, conditions 2 and 3 simulate the blowing of reducing gas containing hydrogen into the blast furnace, while condition 1 represents no such blowing. That is, condition 1 is the basic condition of the reaction gas in this experimental example, and the reducing agent ratio under condition 1 is 481 kg/t. However, although the condition 1 contains 3% by volume of hydrogen gas, this assumes that pulverized coal is blown into the blast furnace, and the hydrogen gas generated by decomposition of the hydrocarbon components contained in the pulverized coal. The amount is 3% by volume, and conditions 2 and 3 also take this 3% by volume into consideration. The amount of reaction gas blown (reactant gas amount) under conditions 1 to 3 was 22.1 Nm 3 /min.

この実験例では、所定の酸化鉄層2及びコークス層3を充填した反応管1に対して上記の各条件で反応ガスを吹き込みながら、電気炉6が上方から下方におよそ250mm/h移動し、装入物の移動を模擬しながら、対向流移動による反応を模擬した。電気炉6は加熱炉4と断熱炉5によって構成されている。加熱炉4の温度は1200℃とし、装入物の過熱を行う領域であり、一方、断熱炉5で高炉内のシャフト部分をシミュレートする領域となっている。断熱炉5は、高さ方向で10分割され、それぞれの位置の反応管内部と外部の温度差を制御することで、反応管からの熱の放散を防止する構造となっている。その際、電気炉6の下降中に、反応管1内部の固定位置(下端からおよそ1.4mの位置)でのガス組成と温度を測定した。ここでの温度とガス組成は非焼成含炭塊成鉱の使用に伴う、炉内温度や反応の変化を解析するものであって、最終的な還元効率やカーボン削減効果については、定常状態到達後の炉頂排ガスにあたるガス排出口8からの排ガス成分の分析値から還元ガス利用率ηCOを算出することで求めた。なお、反応管1内での反応が定常状態に到達して、ガス排出口8からの排ガス成分の分析をしてから所定時間(およそ3時間程度)経過した後に、反応管1内部の試料をN通流下で冷却して、実験を終了した。 In this experimental example, the electric furnace 6 was moved downward by about 250 mm/h while blowing the reaction gas under the above conditions into the reaction tube 1 filled with the predetermined iron oxide layer 2 and coke layer 3. While simulating the movement of the charge, the reaction due to countercurrent movement was simulated. The electric furnace 6 is composed of a heating furnace 4 and an adiabatic furnace 5 . The temperature of the heating furnace 4 is set at 1200° C. and is a region for superheating the charge, while the adiabatic furnace 5 is a region for simulating the shaft portion in the blast furnace. The adiabatic furnace 5 is divided into 10 sections in the height direction, and has a structure that prevents heat dissipation from the reaction tube by controlling the temperature difference between the inside and outside of the reaction tube at each position. At that time, while the electric furnace 6 was descending, the gas composition and temperature were measured at a fixed position inside the reaction tube 1 (a position approximately 1.4 m from the lower end). The temperature and gas composition here are used to analyze changes in furnace temperature and reaction accompanying the use of non-calcined coal-bearing agglomerate ore. It was obtained by calculating the reducing gas utilization rate ηCO from the analytical value of the exhaust gas component from the gas outlet 8, which is the later top exhaust gas. After a predetermined time (about 3 hours) has passed since the reaction in the reaction tube 1 reached a steady state and the exhaust gas components from the gas outlet 8 were analyzed, the sample inside the reaction tube 1 was taken. The experiment was terminated by cooling under flowing N2 .

ここで、反応管1内に装入した酸化鉄の量は全水準で一定としており、非焼成含炭塊成鉱を使用する場合は、鉄分等量で焼結鉱装入量を低減させているため全水準で取り除くべき酸素量は一定である。よって、反応が定常状態に到達した際のガス排出口8からの排ガス(炉頂排出ガスに相当)組成から、COガスとHガスの有効利用度であるηCOとηHが求まり、物質収支から還元に必要な炭素量を算出できる。このCOガス及びHガスの有効利用度が高いほど、酸素を取り除くために必要な炭材の量が低減されることになる。本実験例では、炭素含有率が異なる非焼成含炭塊成鉱を使用した。但し、炭素含有率が0質量%の条件では非焼成含炭塊成鉱を使用せず、酸化鉄源はすべて焼結鉱とした。含有炭素量が異なるそれぞれの非焼成含炭塊成鉱使用する条件で、反応管1内に先の3条件の反応ガスを吹き込み、先に述べた物質収支から各条件における所要炭素量を求めた。そして、非焼成含炭塊成鉱を使用しない条件で、且つ反応ガス吹き込みの基本条件である条件1での所要カーボン量をベースとし、非焼成含炭塊成鉱中の炭材量が増加した条件、及び、水素吹込み量を変化させた各条件での所要カーボン量との差からカーボン削減量を算出した。 Here, the amount of iron oxide charged into the reaction tube 1 is constant at all levels, and when non-calcined coal-containing agglomerate ore is used, the amount of sintered ore charged is reduced by the iron content equivalent. Therefore, the amount of oxygen to be removed at all levels is constant. Therefore, ηCO and ηH2 , which are effective utilization rates of CO gas and H2 gas, can be obtained from the composition of the exhaust gas (equivalent to furnace top exhaust gas) from the gas outlet 8 when the reaction reaches a steady state. The amount of carbon required for reduction can be calculated from Higher utilization of this CO gas and H2 gas will reduce the amount of carbonaceous material needed to remove oxygen. In this experimental example, non-calcined coal-containing agglomerate ores with different carbon contents were used. However, when the carbon content was 0% by mass, no non-calcined carbon-containing agglomerate ore was used, and sintered ore was used as the iron oxide source. Under the conditions of using non-calcined coal-bearing agglomerate ores with different carbon contents, the reaction gases under the above three conditions were blown into the reaction tube 1, and the required carbon content under each condition was obtained from the material balance described above. . Then, the amount of carbon material in the non-burned coal-containing agglomerate ore was increased based on the required amount of carbon under condition 1, which is the basic condition for blowing in the reaction gas, without using the non-burned coal-containing agglomerate ore. The amount of carbon reduction was calculated from the difference between the amount of carbon required under each condition and the amount of hydrogen injected under different conditions.

図2には、この実験例で得られた結果がまとめて示されている。この図2のグラフでは、縦軸がカーボン削減量Y”(kg/t-pig)を表し、横軸が吹き込み水素比率X”(Nm3/t-pig)を表している。このうち、カーボン削減量Y”は上述したとおりであり、また、吹き込み水素比率X”については、反応ガスの吹き込み量(22.1Nm3/min)と先の反応ガスの吹き込み条件1~3でのそれぞれの水素ガス量から水素ガスの比率を求めて、これらをプロットしている。 FIG. 2 summarizes the results obtained in this experimental example. In the graph of FIG. 2, the vertical axis represents the carbon reduction amount Y″ (kg/t-pig), and the horizontal axis represents the injected hydrogen ratio X″ (Nm 3 /t-pig). Of these, the carbon reduction amount Y″ is as described above, and the blown hydrogen ratio X″ is the amount of reaction gas blown (22.1 Nm 3 /min) and the above reaction gas blow conditions 1 to 3. The ratio of hydrogen gas is obtained from each hydrogen gas amount, and these are plotted.

図2のグラフから分かるように、先ず、非焼成含炭塊成鉱を使用しない場合(炭素含有率Yが0質量%の場合)に着目すれば、使用する反応ガスの水素ガス量の増加に伴い、カーボン削減量が比例して増えていく。これは配合1及び2の非焼成含炭塊成鉱を使用する場合でも同様であるが、配合3及び4の非焼成含炭塊成鉱ではカーボン削減量の増加が鈍化する傾向を示した。詳しくは、非焼成含炭塊成鉱での炭素含有率Yが19.60質量%である配合4と同じく炭素含有率Yが14.90質量%である配合3では、反応ガス中の水素ガス量を増加させていくと、それぞれ所定の水素ガス量以降では、非焼成含炭塊成鉱を使用しない場合に比べてカーボン削減量が下回る傾向を示した。 As can be seen from the graph in FIG. Along with this, the amount of carbon reduction increases proportionally. This is the same when using the non-calcined carbon-containing agglomerate ores of mixtures 1 and 2, but with the non-calcined carbon-containing agglomerate ores of mixtures 3 and 4, the increase in carbon reduction amount tends to slow down. Specifically, in combination 3, in which the carbon content Y is 14.90% by mass, which is the same as in combination 4, in which the carbon content Y in the non-calcined coal-containing agglomerate ore is 19.60% by mass, hydrogen gas in the reaction gas As the amount was increased, after a predetermined amount of hydrogen gas, the amount of carbon reduction tended to fall below that in the case of not using non-calcined carbon-containing agglomerate ore.

このような傾向について、図2における配合4と配合3のグラフをそれぞれ二次曲線の近似式で表したときに、非焼成含炭塊成鉱を使用しない場合での直線で表されるグラフとの交点を求めたものが図3と図4である。すなわち、図3によれば、吹き込み水素比率が140Nm3/t-pigになると配合4ではそれ以降カーボン削減効率が低下してしまう。また、図4によれば、吹き込み水素比率が220Nm3/t-pigになると配合3ではそれ以降カーボン削減効率が低下してしまう。これらの結果を踏まえれば、下記関係式(a)~(c)に従って操業するのがよいことが分かり、ボッシュガス中の水素量Xに応じて、非焼成含炭塊成鉱由来の炭素量Y’を調整すればよいと言える。
(a):X≦140のとき、Y’≦0.2×160
(b):140<X≦220とのき、Y’≦0.15×160
(c):220<Xのとき、Y’≦0.1×160
式中、Xの単位はNm/t-pigであり、Y’の単位はkg/t-pigである。
Regarding such a tendency, when the graphs of formulations 4 and 3 in FIG. 3 and 4 are the intersection points of . That is, according to FIG. 3, when the injected hydrogen ratio reaches 140 Nm 3 /t-pig, the carbon reduction efficiency of compound 4 decreases thereafter. Further, according to FIG. 4, when the injected hydrogen ratio reaches 220 Nm 3 /t-pig, the carbon reduction efficiency of Blend 3 decreases thereafter. Based on these results, it can be seen that it is preferable to operate according to the following relational expressions (a) to (c). ' should be adjusted.
(a): when X ≤ 140, Y' ≤ 0.2 x 160
(b): Y′≦0.15×160 when 140<X≦220
(c): when 220<X, Y′≦0.1×160
In the formula, the unit of X is Nm 3 /t-pig and the unit of Y' is kg/t-pig.

また、上記で得られた結果(図3及び4に示した結果)を踏まえれば、図5のような関係を導くことができる。すなわち、ボッシュガス中の水素量をXとし、非焼成含炭塊成鉱の炭素含有率をYとしたときに、下記式(1)~(3)で囲まれた操業領域内で操業すればよい。なお、図5では、ボッシュガス中の水素量Xが250Nm/t-pigまでを表記しているが、実機での操業における還元性ガスの吹き込み量を考慮してもこれで十分であると言える。
(1):Y=-0.06X+29.07
(2):X=0
(3):Y=0
式中、Xの単位はNm/t-pigであり、Yの単位は質量%である。
Also, based on the results obtained above (results shown in FIGS. 3 and 4), the relationship shown in FIG. 5 can be derived. That is, when the amount of hydrogen in the bosh gas is X and the carbon content of the unburned coal-containing agglomerate ore is Y, if the operation is performed within the operating range defined by the following formulas (1) to (3): good. In FIG. 5, the amount of hydrogen X in the bosh gas is shown up to 250 Nm 3 /t-pig, but even considering the amount of reducing gas blown in the actual operation, this is sufficient. I can say
(1): Y=−0.06X+29.07
(2): X=0
(3): Y=0
In the formula, the unit of X is Nm 3 /t-pig and the unit of Y is % by mass.

以上のように、本発明によれば、非焼成含炭塊成鉱を高炉原料の一部として使用すると共に、水素を含んだ還元性ガスを高炉内に吹き込む高炉操業方法において、非焼成含炭塊成鉱から発生するCOやHのような還元力を有するガスを有効に利用しながら、高炉の効率を高めて銑鉄を得ることができ、しかも、CO発生量を抑制することが可能になる。 As described above, according to the present invention, in a method for operating a blast furnace in which a non-calcined coal-containing agglomerate ore is used as part of the blast furnace raw material and a reducing gas containing hydrogen is blown into the blast furnace, the non-calcined coal-containing agglomerate ore is While making effective use of reducing gases such as CO and H2 generated from agglomerate ore, the efficiency of the blast furnace can be increased to obtain pig iron, and the amount of CO2 generated can be suppressed. become.

1:反応管、2:酸化鉄層、3:コークス層、4:加熱炉、5:断熱炉、6:電気炉、7:ガス導入口、8:ガス排出口。
1: reaction tube, 2: iron oxide layer, 3: coke layer, 4: heating furnace, 5: adiabatic furnace, 6: electric furnace, 7: gas inlet, 8: gas outlet.

Claims (5)

非焼成含炭塊成鉱を高炉原料の一部として使用すると共に、水素を含んだ還元性ガスを高炉内に吹き込む高炉操業方法において、ボッシュガス中の水素量をXとし、非焼成含炭塊成鉱の炭素含有率をYとしたときに、下記式(1)~(3)で囲まれた操業領域内で操業することを特徴とする高炉操業方法。
(1):Y=-0.06X+29.07
(2):X=0
(3):Y=0
式中、Xの単位はNm/t-pigであり、Yの単位は質量%である。
In a method of operating a blast furnace in which unburned coal-containing agglomerate ore is used as part of the blast furnace raw material and a reducing gas containing hydrogen is blown into the blast furnace, the amount of hydrogen in the bosh gas is set to X, and the unburned coal-containing agglomerate is A blast furnace operating method characterized by operating within an operating region surrounded by the following formulas (1) to (3), where Y is the carbon content of the ore.
(1): Y=−0.06X+29.07
(2): X=0
(3): Y=0
In the formula, the unit of X is Nm 3 /t-pig and the unit of Y is % by mass.
下記関係式(a)~(c)に従い、前記ボッシュガス中の水素量Xに応じて、前記非焼成含炭塊成鉱由来の炭素量Y’を調整する請求項1に記載の高炉操業方法。
(a):X≦140のとき、Y’≦0.2×160
(b):140<X≦220とのき、Y’≦0.15×160
(c):220<Xのとき、Y’≦0.1×160
式中、Xの単位はNm/t-pigであり、Y’の単位はkg/t-pigである。
The blast furnace operating method according to claim 1, wherein the carbon content Y′ derived from the unburned coal-containing agglomerate ore is adjusted according to the hydrogen content X in the bosh gas according to the following relational expressions (a) to (c). .
(a): when X ≤ 140, Y' ≤ 0.2 x 160
(b): Y′≦0.15×160 when 140<X≦220
(c): when 220<X, Y′≦0.1×160
In the formula, the unit of X is Nm 3 /t-pig and the unit of Y' is kg/t-pig.
前記還元性ガスと共に微粉炭を羽口から吹き込む高炉操業方法において、前記ボッシュガス中の水素量Xは、還元性ガス中の水素ガス量x1に加えて、還元性ガスに含まれる炭化水素成分に由来する水素ガス量xと微粉炭に含まれる水素成分及び炭化水素成分に由来する水素ガス量xとの合計(X=x1+x+x)である請求項1又は2に記載の高炉操業方法。 In the blast furnace operation method in which pulverized coal is blown into the tuyere together with the reducing gas, the amount of hydrogen X in the bosh gas is, in addition to the amount of hydrogen gas x 1 in the reducing gas, the hydrocarbon component contained in the reducing gas. 3. The sum of the hydrogen gas amount x 2 derived from and the hydrogen gas amount x 3 derived from the hydrogen component and the hydrocarbon component contained in the pulverized coal (X = x 1 + x 2 + x 3 ) according to claim 1 or 2 blast furnace operation method. 前記ボッシュガス中の水素量Xが300Nm/t-pig以下となるように前記還元性ガスの吹き込みを行う請求項1~3のいずれかに記載の高炉操業方法。 The blast furnace operating method according to any one of claims 1 to 3, wherein the reducing gas is blown so that the amount of hydrogen X in the bosh gas is 300 Nm 3 /t-pig or less. 前記非焼成含炭塊成鉱の炭素含有率Yは25質量%以下である請求項1~4のいずれかに記載の高炉操業方法。
The method for operating a blast furnace according to any one of claims 1 to 4, wherein the carbon content Y of the non-calcined coal-containing agglomerate ore is 25% by mass or less.
JP2021046185A 2021-03-19 2021-03-19 Blast furnace operation method Pending JP2022144966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021046185A JP2022144966A (en) 2021-03-19 2021-03-19 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021046185A JP2022144966A (en) 2021-03-19 2021-03-19 Blast furnace operation method

Publications (1)

Publication Number Publication Date
JP2022144966A true JP2022144966A (en) 2022-10-03

Family

ID=83454192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021046185A Pending JP2022144966A (en) 2021-03-19 2021-03-19 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP2022144966A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025023052A1 (en) * 2023-07-25 2025-01-30 Jfeスチール株式会社 Blast furnace operation method
WO2025028220A1 (en) * 2023-08-02 2025-02-06 Jfeスチール株式会社 Blast furnace operating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025023052A1 (en) * 2023-07-25 2025-01-30 Jfeスチール株式会社 Blast furnace operation method
WO2025028220A1 (en) * 2023-08-02 2025-02-06 Jfeスチール株式会社 Blast furnace operating method

Similar Documents

Publication Publication Date Title
JP4807103B2 (en) Blast furnace operation method
JP5064330B2 (en) Method for producing reduced iron and pig iron
JP2022144966A (en) Blast furnace operation method
RU2669653C2 (en) Method of producing granular metallic iron
CN114214474A (en) Iron-smelting method by blast furnace blowing Europe and metallurgy furnace gas
AU2003289517B8 (en) An apparatus for manufacturing molten irons to dry and convey iron ores and additives and manufacturing method using the same
JP4899726B2 (en) Blast furnace operation method
JP7575683B2 (en) Carbon-containing agglomerate for blast furnace and method for operating blast furnace using same
KR100376506B1 (en) Method for agglomerating iron ore fines for coal based iron making using waste sludge
JP2014111813A (en) Method of manufacturing reduced iron
JPH0285324A (en) Operating method for sintering low in nox
JP5910182B2 (en) Hot metal manufacturing method using vertical melting furnace
JP2008019455A (en) Method for producing semi-reduced sintered ore
JP3718604B2 (en) Blast furnace raw material charging method
JP2019007079A (en) Operation method of blast furnace
JP5867428B2 (en) Hot metal manufacturing method using vertical melting furnace
JP5251296B2 (en) Hot metal production method using vertical melting furnace
TW202430654A (en) Molten iron from sintered ore
JP2006307275A (en) Method for producing reduced iron
WO2025158975A1 (en) Reduction furnace operation method and reduced iron production method
JP2000119722A (en) Method for producing reduced iron pellets
JP6696376B2 (en) Blast furnace operation method
JP2023131283A (en) Reduced pellet production method
WO2025121099A1 (en) Method for operating reduction furnace and method for producing reduced iron
JP5626072B2 (en) Operation method of vertical melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20250225