JP2022118516A - Bacteria capable of promoting plant growth and method for isolating the same - Google Patents
Bacteria capable of promoting plant growth and method for isolating the same Download PDFInfo
- Publication number
- JP2022118516A JP2022118516A JP2021015090A JP2021015090A JP2022118516A JP 2022118516 A JP2022118516 A JP 2022118516A JP 2021015090 A JP2021015090 A JP 2021015090A JP 2021015090 A JP2021015090 A JP 2021015090A JP 2022118516 A JP2022118516 A JP 2022118516A
- Authority
- JP
- Japan
- Prior art keywords
- rugamonas
- bacterium
- plant growth
- strain
- genus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 241000894006 Bacteria Species 0.000 title claims abstract description 131
- 238000000034 method Methods 0.000 title claims abstract description 47
- 230000008635 plant growth Effects 0.000 title claims abstract description 41
- 230000001737 promoting effect Effects 0.000 title claims abstract description 15
- 241000196324 Embryophyta Species 0.000 claims abstract description 86
- 241001552687 Rugamonas Species 0.000 claims abstract description 60
- 240000005979 Hordeum vulgare Species 0.000 claims abstract description 40
- 235000007340 Hordeum vulgare Nutrition 0.000 claims abstract description 40
- 238000012258 culturing Methods 0.000 claims abstract description 13
- 241001331605 Rugamonas sp. Species 0.000 claims description 36
- 239000000203 mixture Substances 0.000 claims description 36
- 239000002689 soil Substances 0.000 claims description 34
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 239000000284 extract Substances 0.000 claims description 9
- 241001648896 Rugamonas rubra Species 0.000 claims description 8
- 239000002773 nucleotide Substances 0.000 claims description 7
- 125000003729 nucleotide group Chemical group 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 6
- 241001083841 Aquatica Species 0.000 claims description 5
- 239000002904 solvent Substances 0.000 claims description 3
- 244000005700 microbiome Species 0.000 abstract description 23
- 239000002609 medium Substances 0.000 description 29
- 108020004465 16S ribosomal RNA Proteins 0.000 description 27
- 108090000623 proteins and genes Proteins 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 241000894007 species Species 0.000 description 16
- 108091093088 Amplicon Proteins 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 13
- 230000001580 bacterial effect Effects 0.000 description 13
- 230000012010 growth Effects 0.000 description 13
- 241001148465 Janthinobacterium Species 0.000 description 12
- 235000013399 edible fruits Nutrition 0.000 description 10
- 241000209140 Triticum Species 0.000 description 9
- 239000000725 suspension Substances 0.000 description 8
- 229920001817 Agar Polymers 0.000 description 7
- 240000007594 Oryza sativa Species 0.000 description 7
- 235000007164 Oryza sativa Nutrition 0.000 description 7
- 235000021307 Triticum Nutrition 0.000 description 7
- 239000008272 agar Substances 0.000 description 7
- 210000004027 cell Anatomy 0.000 description 7
- 235000009566 rice Nutrition 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000003337 fertilizer Substances 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 108020000946 Bacterial DNA Proteins 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- 238000012300 Sequence Analysis Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000004720 fertilization Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000002703 mutagenesis Methods 0.000 description 4
- 231100000350 mutagenesis Toxicity 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 238000001712 DNA sequencing Methods 0.000 description 3
- 208000035240 Disease Resistance Diseases 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 241001303121 Methylibium Species 0.000 description 3
- 241000130158 Roseomonas aquatica Species 0.000 description 3
- 241000592344 Spermatophyta Species 0.000 description 3
- 230000015784 hyperosmotic salinity response Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 102000042567 non-coding RNA Human genes 0.000 description 3
- 230000008520 organization Effects 0.000 description 3
- 239000002504 physiological saline solution Substances 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 244000075850 Avena orientalis Species 0.000 description 2
- 235000007319 Avena orientalis Nutrition 0.000 description 2
- 235000007558 Avena sp Nutrition 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 238000007900 DNA-DNA hybridization Methods 0.000 description 2
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- PLUBXMRUUVWRLT-UHFFFAOYSA-N Ethyl methanesulfonate Chemical compound CCOS(C)(=O)=O PLUBXMRUUVWRLT-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 241000209504 Poaceae Species 0.000 description 2
- 241000489347 Rugamonas sp. r1 Species 0.000 description 2
- 235000007238 Secale cereale Nutrition 0.000 description 2
- 244000082988 Secale cereale Species 0.000 description 2
- 240000006394 Sorghum bicolor Species 0.000 description 2
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 2
- 244000062793 Sorghum vulgare Species 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 210000003763 chloroplast Anatomy 0.000 description 2
- 239000002361 compost Substances 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000009355 double cropping Methods 0.000 description 2
- 230000005094 fruit set Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 235000019713 millet Nutrition 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000006916 nutrient agar Substances 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000006150 trypticase soy agar Substances 0.000 description 2
- 235000019354 vermiculite Nutrition 0.000 description 2
- 229910052902 vermiculite Inorganic materials 0.000 description 2
- 239000010455 vermiculite Substances 0.000 description 2
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical compound BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- 244000153158 Ammi visnaga Species 0.000 description 1
- 235000010585 Ammi visnaga Nutrition 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 241001600148 Burkholderiales Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241001277594 Duganella Species 0.000 description 1
- 238000001061 Dunnett's test Methods 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 241000908229 Herminiimonas Species 0.000 description 1
- 239000006142 Luria-Bertani Agar Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241001358049 Massilia Species 0.000 description 1
- 241000408736 Methylobacterium aquaticum Species 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- VZUNGTLZRAYYDE-UHFFFAOYSA-N N-methyl-N'-nitro-N-nitrosoguanidine Chemical compound O=NN(C)C(=N)N[N+]([O-])=O VZUNGTLZRAYYDE-UHFFFAOYSA-N 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000795409 Pseudoduganella Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 150000001251 acridines Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 239000002374 bone meal Substances 0.000 description 1
- 229940036811 bone meal Drugs 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002550 fecal effect Effects 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 230000035558 fertility Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- -1 for example Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 238000010362 genome editing Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 239000007952 growth promoter Substances 0.000 description 1
- 239000003864 humus Substances 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000007481 next generation sequencing Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 239000003895 organic fertilizer Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000013081 phylogenetic analysis Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000002786 root growth Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000031068 symbiosis, encompassing mutualism through parasitism Effects 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- XAPNKXIRQFHCHN-QGOAFFKASA-N violacein Chemical compound O=C\1NC2=CC=CC=C2C/1=C(C(=O)N1)/C=C1C1=CNC2=CC=C(O)C=C21 XAPNKXIRQFHCHN-QGOAFFKASA-N 0.000 description 1
- LEJQUNAZZRYZKJ-UHFFFAOYSA-N violacein Natural products Oc1ccc2NCC(C3=CC(=C4/C(=O)Nc5ccccc45)C(=O)N3)c2c1 LEJQUNAZZRYZKJ-UHFFFAOYSA-N 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
【課題】植物生長促進能を有する新規な微生物を提供すること、及び、植物生長促進能を有する微生物を分離する新規な方法を提供すること。【解決手段】植物生長促進能を有する、ルガモナス属(Rugamonas)に属する細菌又はその変異体、並びに、(a)オオムギの根に共生する細菌を培養すること、及び(b)前記細菌の植物生長促進能を有する細菌を選抜することを含む、植物生長促進能を有する細菌又はその変異体の分離方法。【選択図】図7A novel microorganism capable of promoting plant growth is provided, and a novel method for isolating the microorganism capable of promoting plant growth. Kind Code: A1 A bacterium belonging to the genus Rugamonas or a mutant thereof having a plant growth-promoting ability, and (a) culturing a bacterium symbiotic with barley roots, and (b) plant growth of said bacterium. A method for isolating a bacterium capable of promoting plant growth or a mutant thereof, comprising selecting a bacterium having the ability to promote plant growth. [Selection drawing] Fig. 7
Description
本発明は、植物生長促進能を有する新規な細菌及びその使用、及び当該細菌又はその変異体の分離方法に関する。 TECHNICAL FIELD The present invention relates to a novel bacterium having plant growth-promoting ability, its use, and a method for isolating said bacterium or its mutants.
穀物としてのオオムギはビールの原料として、また家畜飼料としても利用される。イネもまた、米として食用とされるほか、米加工品や飼料としても利用される。これらの植物の生産量の向上は食料や飼料の供給に重要であるが、同じ土地で栽培をし続けると、連作障害が発生して生産量が低下する場合がある。 Barley as a grain is used as a raw material for beer and also as livestock feed. In addition to being edible as rice, rice is also used as processed rice products and feed. Improving the production of these plants is important for the supply of food and fodder, but continuous cultivation on the same land can lead to continuous crop failures and reduced production.
同じ耕地で一年の間にイネとムギを栽培する二毛作は、地力低下や連作障害などの問題に経験的に対処しながら高い土地利用効率を実現する穀物生産手法として、日本の西南暖地を中心に普及している。しかし、その持続性の基盤要因は生物学的には殆ど理解されていない。 Double cropping, in which rice and wheat are cultivated on the same arable land in one year, is a grain production method that achieves high land use efficiency while empirically dealing with problems such as soil fertility deterioration and continuous crop failure, mainly in the warm southwestern region of Japan. popular in However, the underlying factors of its persistence are poorly understood biologically.
一方、植物の生産量向上の手段として、特定の微生物株で植物を処理して、当該植物の生長を促進させる方法が知られている。例えば特許文献1には、タバコ、オオムギ及びダイズよりなる群より選ばれる種子植物の生長促進方法であって、特定のメタノール資化性細菌メチロバクテリウム・アクアティカム(Methylobacterium aquaticum)を準備するステップと、該選ばれた種子植物の種子に該細菌を接触させて該種子の培養を行うステップとを含んでなる方法が開示されている。
On the other hand, as a means for improving the production of plants, a method of treating plants with specific strains of microorganisms to promote the growth of the plants is known. For example,
増殖可能な微生物、特に植物と共生可能な微生物によって植物の生長を促進することができれば、化学肥料や有機肥料に依存しない、持続的な植物生長促進が期待できる。しかし、そのような植物生長促進能を有する微生物に関する知見や、そのような微生物を容易に得るための手段は、未だ限られている。 If the growth of plants can be promoted by microorganisms that can grow, especially microorganisms that can coexist with plants, sustainable plant growth promotion that does not depend on chemical fertilizers or organic fertilizers can be expected. However, knowledge about microorganisms having such plant growth-promoting ability and means for easily obtaining such microorganisms are still limited.
そこで、本発明は、植物生長促進能を有する新規な微生物を提供することを第1の課題とする。 Accordingly, the first object of the present invention is to provide a novel microorganism capable of promoting plant growth.
また、本発明は、植物生長促進能を有する微生物を分離する新規な方法を提供することを第2の課題とする。 A second object of the present invention is to provide a novel method for isolating microorganisms capable of promoting plant growth.
本発明者らは、前記課題を解決するために鋭意検討した結果、意外にも、特定のルガモナス属(Rugamonas)に属する新種細菌又はその変異体が、植物の生長促進能を有することを見出した。また、本発明者らは、(a)オオムギの根に共生する細菌を培養すること、及び(b)前記細菌の植物生長促進能を評価することを含む方法が、例えば当該新種細菌又はその変異体を含む、植物生長促進能を有する細菌の分離に適していることを見出した。以上の知見に基づき、本発明者らは本発明を完成させた。 The inventors of the present invention have made intensive studies to solve the above problems, and surprisingly found that a new species of bacterium belonging to the genus Rugamonas or a mutant thereof has the ability to promote plant growth. . In addition, the present inventors have found that a method comprising (a) culturing a bacterium symbiotic with barley roots, and (b) evaluating the ability of the bacterium to promote plant growth is, for example, the new bacterium or a mutation thereof It has been found to be suitable for the isolation of bacteria with plant growth-promoting ability, including the body. Based on the above findings, the present inventors completed the present invention.
すなわち、本発明は、下記のルガモナス属(Rugamonas)に属する新種細菌又はその変異体を包含する。
[1]
植物生長促進能を有する、ルガモナス属(Rugamonas)に属する細菌又はその変異体。
[2]
前記ルガモナス属に属する細菌又はその変異体のゲノム配列と、
ルガモナス・アクアティカ(Rugamonas aquatica)FT29W株ゲノム配列(RefSeq assemblyアクセッション番号GCF_009380215.1)、ルガモナス・リブリ(Rugamonas rivuli)FT103W株ゲノム配列(RefSeq assemblyアクセッション番号GCF_009380165.1)及びルガモナス・ルブラ(Rugamonas rubra)ATCC 43154株ゲノム配列(RefSeq assemblyアクセッション番号GCF_900114705.1)との間の平均ヌクレオチド同一性(ANI)値が、それぞれ80%以上95%未満である、[1]に記載の細菌又はその変異体。
[3]
Rugamonas sp. R1株(NITE AP-03371)、Rugamonas sp. R57株(NITE AP-03372)、又はRugamonas sp. R64株(NITE AP-03373)である、[1]又は[2]に記載の細菌又はその変異体。
That is, the present invention includes the following new species of bacteria belonging to the genus Rugamonas or mutants thereof.
[1]
A bacterium belonging to the genus Rugamonas or a mutant thereof, which has the ability to promote plant growth.
[2]
a genome sequence of a bacterium belonging to the genus Rugamonas or a mutant thereof;
Rugamonas aquatica strain FT29W genome sequence (RefSeq assembly accession number GCF_009380215.1), Rugamonas rivuli strain FT103W genome sequence (RefSeq assembly accession number GCF_009380165.1) and Rugamonas rubra rubra) The bacterium according to [1] or its Mutant.
[3]
R1 strain (NITE AP-03371), Rugamonas sp. R57 strain (NITE AP-03372), or Rugamonas sp. R64 strain (NITE AP-03373), the bacterium according to [1] or [2]. or a variant thereof.
また本発明は、下記の組成物を包含する。
[4]
[1]~[3]のいずれか1に記載の細菌及びその変異体から選ばれる少なくとも1種以上の細菌又はそれらの抽出物を含有する、組成物。
The present invention also includes the following compositions.
[4]
A composition comprising at least one bacterium selected from the bacterium and its mutants according to any one of [1] to [3], or an extract thereof.
さらに本発明は、下記の植物生長促進方法及び土壌改良方法を包含する。
[5]
[4]に記載の組成物で植物体又はその種子を処理することを含む、植物生長促進方法。
[6]
[4]に記載の組成物を土壌に添加又は配合することを含む、土壌改良方法。
Furthermore, the present invention includes the following plant growth promotion method and soil improvement method.
[5]
A method for promoting plant growth, which comprises treating a plant body or its seed with the composition according to [4].
[6]
[4] A soil improvement method comprising adding or blending the composition according to [4] to soil.
さらに本発明は、下記の植物の生産方法を包含する。
[7]
[4]に記載の組成物で、植物体又はその種子を処理することを含む、植物の生産方法。
Furthermore, the present invention includes the following plant production methods.
[7]
A method for producing a plant, which comprises treating a plant body or its seed with the composition of [4].
さらに本発明は、下記の細菌又はその変異体の分離方法を包含する。
[8]
(a)オオムギの根に共生する細菌を培養すること、及び
(b)前記細菌の植物生長促進能を有する細菌を選抜すること
を含む、植物生長促進能を有する細菌又はその変異体の分離方法。
[9]
さらに(c)ルガモナス属に属する細菌を選抜することを含む、[8]に記載の方法。
[10]
[8]又は[9]で選抜された細菌又はその変異体を含有させる工程、又は、前記細菌又はその変異体を溶媒で抽出する工程を含む、[4]に記載の組成物の製造方法。
Furthermore, the present invention includes methods for isolating the following bacteria or mutants thereof.
[8]
A method for isolating a bacterium having plant growth-promoting ability or a mutant thereof, comprising (a) culturing a bacterium that grows symbiotically with barley roots, and (b) selecting a bacterium having plant growth-promoting ability of said bacterium. .
[9]
The method of [8], further comprising (c) selecting a bacterium belonging to the genus Rugamonas.
[10]
A method for producing the composition according to [4], comprising the step of incorporating the bacterium selected in [8] or [9] or a variant thereof, or the step of extracting the bacterium or the variant thereof with a solvent.
本発明の細菌又はその変異体は植物生長促進能を有する。そのため、それらを含有する本発明の組成物は、植物生長促進や土壌改良等の用途に適し、植物の生産方法に使用することができるなど、産業上、極めて優れた利点を有する。
また、本発明の分離方法によれば、植物生長促進能を有する細菌又はその変異体を容易に分離することができる。
The bacterium or mutant thereof of the present invention has the ability to promote plant growth. Therefore, the composition of the present invention containing them is suitable for applications such as plant growth promotion and soil improvement, and has excellent industrial advantages such as being usable in plant production methods.
In addition, according to the separation method of the present invention, it is possible to easily separate bacteria or mutants thereof that have the ability to promote plant growth.
[ルガモナス属(Rugamonas)に属する細菌又はその変異体]
本発明は、植物生長促進能を有するルガモナス属(Rugamonas)に属する細菌又はその変異体を包含する。
[Bacteria belonging to the genus Rugamonas or mutants thereof]
The present invention encompasses a bacterium belonging to the genus Rugamonas or a mutant thereof having the ability to promote plant growth.
(植物生長促進能)
本明細書において、特定の微生物(例えば細菌)が植物生長促進能を有するとは、当該特定の微生物で植物を処理した場合に、無処理の場合に比べて生長が促進されることを表す。本発明で言う植物生長促進とは、例えば、植物体全体の重量(又は乾燥重量)の増加;地下部(殊に、根)の長さ又は生長速度の増加;地上部の長さ又は生長速度の増加;根の長さ又は数の増加;種子、種実又は果実の収量の増加又は品質の向上;種子、種実又は果実の1個当たりの重量の増加又は品質の向上;花芽の数の増加又は結実数の増加;植物病抵抗性、耐寒性、耐高温性又は耐塩性の向上からなる群より選ばれる1以上が挙げられる。特定の実施形態の一例として、本発明で言う植物の生長促進能には、植物体全体の乾燥重量の増加又は地下部(殊に、根)の長さの増加促進が含まれる。植物体の根は、地上部への栄養、水分供給とともに、植物体自体を物理的に保持する、極めて重要な役割を担っている。つまり、根の長さが増加する(伸びる)ということは、例え、根の乾燥重量に差がない場合であっても、根の表面積の増大をもたらし、又は、土壌中での根の侵入体積(根の張り)を増加させるので、根を介しての植物体全体への栄養又は水分供給量が増大することを意味する。
(Plant growth promoting ability)
As used herein, a specific microorganism (e.g., bacterium) having the ability to promote plant growth means that when a plant is treated with the specific microorganism, the growth is promoted as compared to when the plant is not treated. The plant growth promotion referred to in the present invention includes, for example, an increase in the weight (or dry weight) of the entire plant body; an increase in the length or growth rate of the underground part (especially the root); increased root length or number; increased yield or quality of seeds, nuts or fruits; increased weight or quality per seed, seed or fruit; increased number or number of flower buds; One or more selected from the group consisting of an increase in the number of fruit set; an improvement in plant disease resistance, cold resistance, high temperature resistance, or salt tolerance. As an example of a specific embodiment, the plant growth-promoting ability referred to in the present invention includes an increase in the dry weight of the entire plant body or an increase in the length of the underground part (particularly, the root). The roots of a plant play an extremely important role of physically holding the plant itself as well as supplying nutrients and water to the above ground part. That is, an increase in root length (elongation) results in an increase in root surface area, or root penetration volume in soil, even if there is no difference in root dry weight. (root tension) is increased, which means that the amount of nutrients or water supplied to the entire plant body via the roots is increased.
本明細書において、特定の微生物で植物を「処理する」とは、具体的には、例えば、種子若しくは植物体(根、茎、葉、花、果実、種実等)に当該特定の微生物又は抽出物(死菌体又はその破砕物を含む)を接触させて保持又は栽培すること、又は、土壌中に当該特定の微生物又は抽出物を含有させ、当該土壌に種子又は植物体を接触させて保持又は栽培することが挙げられる。当該処理は、栽培の前に行われてもよいし、栽培中に行われてもよいし、保存・保管・輸送期間中に行われてもよい。
一実施形態では、当該処理は、例えば、微生物又はその抽出物を含む懸濁液を種子にしみこませる、又は種子を当該懸濁液につけ込む方法が挙げられる。
As used herein, "treating" a plant with a specific microorganism specifically means that, for example, seeds or plant bodies (roots, stems, leaves, flowers, fruits, seeds, etc.) are treated with the specific microorganisms or extracts. holding or cultivating substances (including dead cells or crushed products thereof) in contact with them, or containing said specific microorganisms or extracts in soil and holding seeds or plant bodies in contact with said soil Or to cultivate. The treatment may be performed before cultivation, during cultivation, or during preservation/storage/transportation.
In one embodiment, the treatment includes, for example, impregnating the seeds with a suspension containing the microorganism or extract thereof, or soaking the seeds in the suspension.
上記植物は、好ましくは種子植物であり、より好ましくはイネ科(Poaceae)植物である。イネ科植物としては、例えば、オオムギ、コムギ、ライムギ、エンバク等のムギ類植物、イネ、トウモロコシ、アワ、モロコシ等が挙げられる。中でも、ムギ類植物が好ましく、オオムギ又はコムギがより好ましく、オオムギが更に好ましい。 The plant is preferably a seed plant, more preferably a Poaceae plant. Examples of gramineous plants include wheat plants such as barley, wheat, rye and oat, rice, corn, millet, and sorghum. Among them, plants of the wheat family are preferred, barley or wheat is more preferred, and barley is even more preferred.
(細菌又はその変異体)
ルガモナス属(Rugamonas)は、バークホルデリア科(Burkholderiales)に属する。ルガモナス属の生物種としては、例えば、ルガモナス・アクアティカ(R. aquatica)、ルガモナス・リブリ(R. rivuli)、ルガモナス・ルブラ(R. rubra)が知られている。また、これらの基準株として、R. aquatica FT29W株、R. rivuli FT103W株、R. rubra ATCC 43154株などが知られている。
(bacteria or variants thereof)
The genus Rugamonas belongs to the Burkholderiales family. As species of the genus Rugamonas, for example, R. aquatica, R. rivuli, and R. rubra are known. In addition, R. aquatica FT29W strain, R. rivuli FT103W strain, R. rubra ATCC 43154 strain and the like are known as these type strains.
ルガモナス属の細菌としては、例えば、当該ルガモナス属に属する細菌又はその変異体のゲノム配列と、ルガモナス・アクアティカ(Rugamonas aquatica)FT29W株ゲノム配列(RefSeq assemblyアクセッション番号GCF_009380215.1)、ルガモナス・リブリ(Rugamonas rivuli)FT103W株ゲノム配列(RefSeq assemblyアクセッション番号GCF_009380165.1)及びルガモナス・ルブラ(Rugamonas rubra)ATCC 43154株ゲノム配列(RefSeq assemblyアクセッション番号GCF_900114705.1)との間の平均ヌクレオチド同一性(Average nucleotide identity, ANI)値が、それぞれ80%以上95%未満である、細菌が挙げられる。 Examples of bacteria belonging to the genus Rugamonas include, for example, the genome sequence of a bacterium belonging to the genus Rugamonas or a mutant thereof, the genome sequence of Rugamonas aquatica FT29W strain (RefSeq assembly accession number GCF_009380215.1), Rugamonas libri Average nucleotide identity between (Rugamonas rivuli) strain FT103W genome sequence (RefSeq assembly accession number GCF_009380165.1) and Rugamonas rubra strain ATCC 43154 genome sequence (RefSeq assembly accession number GCF_900114705.1) ( Bacteria with an average nucleotide identity (ANI) value of 80% or more and less than 95%, respectively.
ルガモナス属の細菌としては、例えば、当該ルガモナス属に属する細菌又はその変異体のゲノム配列と、ルガモナス・アクアティカ(Rugamonas aquatica)FT29W株ゲノム配列(RefSeq assemblyアクセッション番号GCF_009380215.1)、ルガモナス・リブリ(Rugamonas rivuli)FT103W株ゲノム配列(RefSeq assemblyアクセッション番号GCF_009380165.1)及びルガモナス・ルブラ(Rugamonas rubra)ATCC 43154株ゲノム配列(RefSeq assemblyアクセッション番号GCF_900114705.1)との間のデジタルDNA-DNAハイブリダイゼーション(dDDH)法によって得られるdDDH値が、例えば25%以上40%未満である、細菌が挙げられる。 Examples of bacteria belonging to the genus Rugamonas include, for example, the genome sequence of a bacterium belonging to the genus Rugamonas or a mutant thereof, the genome sequence of Rugamonas aquatica FT29W strain (RefSeq assembly accession number GCF_009380215.1), Rugamonas libri Digital DNA-DNA hybridization between (Rugamonas rivuli) strain FT103W genome sequence (RefSeq assembly accession number GCF_009380165.1) and Rugamonas rubra strain ATCC 43154 genome sequence (RefSeq assembly accession number GCF_900114705.1). Bacteria having a dDDH value obtained by a hybridization (dDDH) method of, for example, 25% or more and less than 40% are included.
ANI法及びdDDH法の詳細は、例えば、Int. J. Syst. Evol. Microbiol., 2007, Vol.57(Pt.1), pp.81-91に記載されている。 Details of the ANI method and the dDDH method are described, for example, in Int. J. Syst. Evol. Microbiol., 2007, Vol.57 (Pt.1), pp.81-91.
このようなANI値及びdDDH値の条件を満たす細菌の具体例として、本実施例の分離株であり新種の細菌であるRugamonas sp. R1株(NITE AP-03371)、Rugamonas sp. R57株(NITE AP-03372)、又はRugamonas sp. R64株(NITE AP-03373)が挙げられる。括弧内はそれぞれの菌株の独立行政法人製品評価技術基盤機構(NITE)特許微生物寄託センター(NPMD)の受領番号を示す(いずれの菌株も受領日は2021年1月29日)。 R1 (NITE AP-03371), Rugamonas sp. R57 (NITE AP-03371) and Rugamonas sp. AP-03372), or Rugamonas sp. R64 strain (NITE AP-03373). In parentheses are the receipt numbers of the National Institute of Technology and Evaluation (NITE) Patent Microorganisms Depository (NPMD) receipt number for each strain (the receipt date for all strains is January 29, 2021).
Rugamonas sp. R1株、Rugamonas sp. R57株、及びRugamonas sp. R64株の分離方法として、例えば下記の[植物生長促進能を有する細菌又はその変異体の分離方法]に記載した方法を用いることができる。 R1 strain, Rugamonas sp. R57 strain, and Rugamonas sp. can.
Rugamonas sp. R1株、Rugamonas sp. R57株、及びRugamonas sp. R64株はいずれも、例えばR2A培地(Reasoner D.J. et al. Appl. Environ. Microbiol., 1985, Vol.49, pp.1-7)又はその寒天を除いた液体培地によって培養して増殖させることができる。培養は好気条件下、例えば4~28℃で行うことができる。R2A培地には、必要に応じて、さらに例えば炭素源、窒素源、無機イオン、アミノ酸、ビタミン等が添加されてもよい。 Rugamonas sp. R1 strain, Rugamonas sp. R57 strain, and Rugamonas sp. Alternatively, it can be grown by culturing in a liquid medium without the agar. Cultivation can be performed under aerobic conditions, eg, at 4-28°C. For example, carbon sources, nitrogen sources, inorganic ions, amino acids, vitamins and the like may be added to the R2A medium as necessary.
R2A培地で培養して得られるコロニーの色は、Rugamonas sp. R1株は白色、Rugamonas sp. R57株及びRugamonas sp. R64株は青紫色である。 The color of colonies obtained by culturing on R2A medium is white for the Rugamonas sp. R1 strain and bluish purple for the Rugamonas sp. R57 and R64 strains.
Rugamonas sp. R1株、Rugamonas sp. R57株、及びRugamonas sp. R64株の16SリボソームRNA遺伝子配列(16S rRNA遺伝子配列)の配列番号を表1に示す。 Table 1 shows the sequence numbers of the 16S ribosomal RNA gene sequences (16S rRNA gene sequences) of Rugamonas sp. R1 strain, Rugamonas sp.
本明細書において、本発明のルガモナス属に属する細菌の「変異体」とは、表1に示す、本発明のルガモナス属に属する細菌のいずれか1種とのゲノム配列の同一性が、例えば98.7%以上、99%以上、99.9%以上、99.99%以上、又は99.999%以上のものを表す。 As used herein, a "mutant" of the bacterium belonging to the genus Rugamonas of the present invention means that the identity of the genome sequence with any one of the bacteria belonging to the genus Rugamonas of the present invention shown in Table 1 is 98.7, for example. % or more, 99% or more, 99.9% or more, 99.99% or more, or 99.999% or more.
当該変異体は、本発明のルガモナス属に属する細菌のいずれか1種との16S rRNA遺伝子全長の配列相同性が、例えば99.5%以上、99.9%以上又は100%であり得る。ここで、配列相同性は、NCBIのBLAST(https://blast.ncbi.nlm.nih.gov/)のblastn(塩基配列の場合)において、Align two or more sequencesを用いて、当該特定の配列をQuery Sequenceに比較する配列を入力し、デフォルトのパラメータでアラインメントを行って得られる「Identities」の百分率である。
The mutant may have, for example, 99.5% or more, 99.9% or more, or 100% sequence homology of the full-
本発明の細菌の変異体は、例えば、本発明の細菌に変異導入を行い、得られた変異体を下記の[細菌又はその変異体の分離方法]に記載した方法で分離することで得ることができる。
変異導入方法としては、例えばUV照射、X線又はガンマ線照射のような高エネルギーの電磁波による変異導入;N-メチル-N’-ニトロ-N-ニトロソグアニジン(NTG)、ブロモウラシル、エチルメタンスルホネート(EMS)又はアクリジン類のような変異剤による変異導入;遺伝子組み換え又はゲノム編集による変異導入などを使用することができる。
The mutant of the bacterium of the present invention can be obtained, for example, by mutagenizing the bacterium of the present invention and isolating the resulting mutant by the method described in [Method for isolating bacteria or its mutants] below. can be done.
Examples of mutagenesis methods include mutagenesis by high-energy electromagnetic waves such as UV irradiation, X-ray or gamma-ray irradiation; N-methyl-N'-nitro-N-nitrosoguanidine (NTG), bromouracil, ethyl methanesulfonate ( EMS) or mutagenesis using a mutating agent such as acridines; mutagenesis by gene recombination or genome editing;
(植物の根に共生する細菌又は変異体)
また、本発明のルガモナス属に属する細菌の変異体は、さらに植物の根に共生することができる、という特徴を有することが好ましい。本明細書において、微生物が植物の根に「共生することができる」とは、植物の根の内部に存在して、又は表面に密着して生育することができることを表す。微生物が共生していることは、例えば、植物の根を十分に水で洗浄した後の根に培地を加えて培養して、当該微生物が得られることで確認することができる。
(Bacteria or Mutants Living Symbiotically with Plant Roots)
Moreover, it is preferable that the mutant of the bacterium belonging to the genus Rugamonas of the present invention further has the characteristic of being able to live symbiotically with the roots of plants. As used herein, the phrase "a microorganism can live symbiotically with" a plant root means that it can exist inside the plant root or grow in close contact with the surface of the plant root. The symbiosis of microorganisms can be confirmed by, for example, obtaining the microorganisms by adding a culture medium to the roots of a plant after sufficiently washing them with water and culturing the roots.
[ルガモナス属に属する細菌又はその変異体を含有する組成物]
本発明は、上記の植物生長促進能を有するルガモナス属に属する細菌若しくはその変異体又はそれらの抽出物を含有する組成物を包含する。
[Composition containing a bacterium belonging to the genus Rugamonas or a mutant thereof]
The present invention encompasses a composition containing the aforementioned bacteria belonging to the genus Rugamonas, mutants thereof, or extracts thereof having the ability to promote plant growth.
本発明の組成物に用いられるルガモナス属に属する細菌又はその変異体は、例えばこれら細菌又はその変異体が増殖可能な培地で培養して増殖させたものである。培地及び培養条件は、これら細菌又はその変異体が増殖できるものであれば特に限定されない。例えば、上記の[ルガモナス属(Rugamonas)に属する細菌又はその変異体]に記載した、Rugamonas sp. R1株等が増殖可能な培地及び培養条件を用いることができる。増殖後の細菌又はその変異体は、適宜、洗浄、遠心分離、凍結、乾燥等の処理を経てもよい。 Bacteria belonging to the genus Rugamonas or mutants thereof used in the composition of the present invention are, for example, cultured and grown in a medium in which these bacteria or mutants thereof can grow. Media and culture conditions are not particularly limited as long as these bacteria or mutants thereof can grow. For example, the medium and culture conditions described in the above [Bacteria belonging to the genus Rugamonas or mutants thereof] that allow growth of the Rugamonas sp. R1 strain or the like can be used. The grown bacteria or mutants thereof may be appropriately subjected to treatments such as washing, centrifugation, freezing and drying.
上記細菌の抽出物は、細胞内画分、死菌体及びその破砕物からなる群より選ばれる1種以上を含み得る。抽出物は、例えば、上記の細菌又はその変異体を機械的破砕;凍結融解;超音波処理;酵素、界面活性剤等による化学的処理などにより破砕又は溶菌させ、必要に応じて、公知の遠心分離法、溶媒抽出法などを適宜組み合わせて得ることができる。抽出に際し、水、メタノール、エタノール、イソプロピルアルコール(IPA)、アセトン、酢酸エチル、ヘキサン、クロロホルム及び超臨界流体から選ばれる1種以上の溶媒を適宜用いることができる。 The above-mentioned bacterial extract may contain one or more selected from the group consisting of intracellular fractions, dead cells, and crushed products thereof. For example, the above-mentioned bacteria or mutants thereof are mechanically disrupted; freeze-thaw; It can be obtained by appropriately combining a separation method, a solvent extraction method, and the like. At the time of extraction, one or more solvents selected from water, methanol, ethanol, isopropyl alcohol (IPA), acetone, ethyl acetate, hexane, chloroform and supercritical fluids can be appropriately used.
本発明の組成物には、ルガモナス属に属する細菌又はその変異体の他に、さらに以下の(i)及び(ii)に列記した成分から選ばれる1種単独又は2種以上を含有してもよい。
(i)窒素、リン、カリウム、硫黄、カルシウム、マグネシウム、鉄、マンガン、ホウ素、銅、亜鉛、モリブデン又は塩素を含有する塩。
(ii)油かす類、骨粉類、腐葉土、家禽糞肥料、発酵残渣、植物性堆肥、汚泥堆肥等の有機質肥料成分、その他の土壌改良材。
In addition to bacteria belonging to the genus Rugamonas or variants thereof, the composition of the present invention may further contain one or more selected from the components listed in (i) and (ii) below. good.
(i) salts containing nitrogen, phosphorus, potassium, sulfur, calcium, magnesium, iron, manganese, boron, copper, zinc, molybdenum or chlorine;
(ii) Organic fertilizer components such as oil cakes, bone meal, humus, poultry manure, fermentation residue, vegetable compost, sludge compost, and other soil conditioners.
本発明の組成物は、例えば、植物を当該組成物で処理することにより、植物生長促進の用途に使用することができる。なお、当該組成物の形態としては、植物の生長を促進させるための組成物全般を意味し、例えば、植物用の生長促進剤、肥料(微生物肥料を含む)、保護剤、強化剤などを例示できる。
植物生長促進用途に使用する場合、本発明の組成物は、例えば、植物体(根、茎、葉、花、果実、種実等)又は種子の一部又は全部に直接又は間接的に付着させて、又は、植物体を栽培する土壌若しくは植物体に与える水、肥料、活力剤等に添加又は配合して使用することができる。中でも植物体の根若しくは種子に付着させるか、又は土壌に添加又は配合して使用されることが好ましい。
本発明の組成物は、例えば、植物体を栽培する土壌若しくは植物体に与える水、肥料、活力剤等に添加又は配合して、土壌改良の用途に使用することができる。
The composition of the present invention can be used for plant growth promotion applications, for example, by treating plants with the composition. The form of the composition means all compositions for promoting the growth of plants, and examples thereof include plant growth promoters, fertilizers (including microbial fertilizers), protective agents, strengthening agents, and the like. can.
When used for plant growth promotion, the composition of the present invention can be applied, for example, directly or indirectly to part or all of a plant (root, stem, leaf, flower, fruit, seed, etc.) or seed. Alternatively, it can be used by adding or blending with the soil in which the plant is cultivated or the water, fertilizer, activator, etc. given to the plant. Among them, it is preferable to attach it to the roots or seeds of the plant body, or to use it by adding or blending it to the soil.
The composition of the present invention can be used for soil improvement by adding or blending with, for example, the soil in which plants are cultivated or the water, fertilizer, activator, etc. given to plants.
上記植物は、好ましくはイネ科(Poaceae)植物である。イネ科植物としては、例えば、オオムギ、コムギ、ライムギ、エンバク等のムギ類植物、イネ、トウモロコシ、アワ、モロコシ等が挙げられる。中でも、ムギ類植物が好ましく、オオムギ又はコムギがより好ましく、オオムギが更に好ましい。 The plant is preferably a Poaceae plant. Examples of gramineous plants include wheat plants such as barley, wheat, rye and oat, rice, corn, millet, and sorghum. Among them, plants of the wheat family are preferred, barley or wheat is more preferred, and barley is even more preferred.
本発明の組成物中の、植物生長促進能を有するルガモナス属(Rugamonas)に属する細菌又はその変異体の生菌数は、例えば、10 CFU/g以上、好ましくは103 CFU/g以上であり、また1010CFU/g以下、107 CFU/g以下とすることができる。 The viable cell count of bacteria belonging to the genus Rugamonas or mutants thereof having the ability to promote plant growth in the composition of the present invention is, for example, 10 CFU/g or more, preferably 10 3 CFU/g or more. , or 10 10 CFU/g or less, or 10 7 CFU/g or less.
[植物の生産方法]
本発明は、上記の組成物で植物体又はその種子を処理することを含む、植物の生産方法を包含する。当該植物及び組成物の使用方法の具体例は、例えば上記の[ルガモナス属に属する細菌又はその変異体を含有する組成物]に記載されたものが挙げられる。
[Plant production method]
The present invention encompasses a method of producing plants comprising treating plants or seeds thereof with the compositions described above. Specific examples of the method of using the plant and composition include those described in the above [Composition containing bacteria belonging to the genus Lugamonas or mutants thereof].
本発明の植物の生産方法によれば、当該植物の植物体(根、茎、葉、花、果実、種実等)又は種子の生産量を増加させることができる。 According to the method for producing a plant of the present invention, it is possible to increase the production of the plant body (root, stem, leaf, flower, fruit, seed, etc.) or seed of the plant.
[細菌又はその変異体の分離方法]
本発明は、(a)オオムギの根に共生する細菌を培養すること、及び(b)前記細菌の植物生長促進能を有する細菌を選抜することを含む、植物生長促進能を有する細菌又はその変異体の分離方法を包含する。
[Method for isolating bacteria or mutants thereof]
The present invention provides a bacterium having plant growth-promoting ability or a mutation thereof, comprising (a) culturing a bacterium that grows symbiotically with barley roots, and (b) selecting a bacterium having plant growth-promoting ability of said bacterium. Including methods of body separation.
本発明の方法の細菌をサンプリングするオオムギの品種は特に限定されないが、例えば、はるな二条又は早木曽2号が挙げられる。また、当該オオムギの生育環境は、特に限定されないが、オオムギが安定して生育可能な土壌で栽培されていることが好ましい。例えば、長年(例えば、10年以上、好ましくは20年以上)にわたって同じ耕作形態でオオムギが栽培された土壌で栽培されたオオムギの根から、細菌をサンプリングすることができる。このような土壌は植物生長促進能を有する細菌の割合が多く、目的の細菌の分離に好適である。 The variety of barley to be sampled for bacteria in the method of the present invention is not particularly limited, but examples thereof include Haruna Nijo and Hayakiso No.2. In addition, although the environment in which the barley is grown is not particularly limited, it is preferable that the barley be cultivated in soil in which the barley can grow stably. For example, bacteria can be sampled from the roots of barley grown in soil in which barley has been grown in the same cultivation regime for many years (eg, 10 years or more, preferably 20 years or more). Such soil contains a large proportion of bacteria having the ability to promote plant growth, and is suitable for isolating the target bacteria.
オオムギの根に共生する細菌は、例えば、水で土を十分に洗い落とした後の根を直接培地に接触させて培養することにより分離することができる。又は、例えば、根を乳鉢ですりつぶし、生理食塩水を加え、適宜希釈して培地に広げ、4~28℃で培養することによりコロニーを形成させることができる。
培地は、平板培地又は液体培地を使用することができ、例えば、栄養寒天培地(NB)、R2A培地のような貧栄養培地、PYG(Peptone yeast glucose)培地、LB寒天培地、トリプチケースソイ寒天培地(TSA)、標準寒天培地(SPC)又は、それらの寒天を除いた培地などを使用することができる。一実施形態では、オオムギの根に共生する細菌の分離にはNB、培養と維持にはR2A培地が用いられる。
培養は、好気条件又は嫌気条件で行われるが、好ましくは好気条件である。培養温度は、通常、例えば、4℃以上、10℃以上、15℃以上、20℃以上、25℃以上、30℃以上又は35℃以上とすることができ、また、40℃以下、35℃以下、30℃以下又は25℃以下とすることができる。
培養時間は、適宜変更し得るが、例えば、20℃~30℃の場合、1~10日、好ましくは2~5日、より好ましくは2~3日である。
特定の実施形態では、培養時間は、例えば28℃の場合、2~3日である。
Bacteria that live symbiotically with barley roots can be isolated, for example, by culturing the roots after thoroughly washing off the soil with water and bringing the roots into direct contact with a medium. Alternatively, for example, roots can be ground in a mortar, added with physiological saline, diluted appropriately, spread on a medium, and cultured at 4 to 28°C to form colonies.
The medium can be a plate medium or a liquid medium, for example, nutrient agar medium (NB), oligotrophic medium such as R2A medium, PYG (Peptone yeast glucose) medium, LB agar medium, trypticase soy agar A medium (TSA), a standard agar medium (SPC), or a medium other than those agar can be used. In one embodiment, NB is used for isolation of barley root commensal bacteria and R2A medium is used for culture and maintenance.
Cultivation is performed under aerobic or anaerobic conditions, preferably under aerobic conditions. The culture temperature is usually, for example, 4°C or higher, 10°C or higher, 15°C or higher, 20°C or higher, 25°C or higher, 30°C or higher, or 35°C or higher, and 40°C or lower and 35°C or lower. , 30°C or less, or 25°C or less.
The culture time can be changed as appropriate, but for example, at 20°C to 30°C, it is 1 to 10 days, preferably 2 to 5 days, more preferably 2 to 3 days.
In certain embodiments, the culture time is 2-3 days, eg at 28°C.
培養した細菌は、適宜シングルコロニー化などにより単一クローンを分離してから、植物生長促進能を評価することが好ましい。 It is preferable to separate single clones from the cultured bacteria by single colonization or the like, and then evaluate the ability to promote plant growth.
特定の細菌の植物生長促進能の有無は、例えば、植物体(根、茎、葉、花、果実、種実等)又は種子を当該特定の細菌で処理して、生長促進が見られるかどうかで判定することができる。例えば、無処理の植物に対して、細菌で処理した植物に、植物体全体の重量(又は乾燥重量)の増加;地下部(殊に、根)の長さ又は生長速度の増加;地上部の長さ又は生長速度の増加;根の長さ又は数の増加;種子、種実又は果実の収量の増加又は品質の向上;種子、種実又は果実の1個当たりの重量の増加又は品質の向上;花芽の数の増加又は結実数の増加;植物病抵抗性、耐寒性、耐高温性又は耐塩性の向上からなる群より選ばれる1以上が認められる場合、植物生長促進能を有すると判定することができる。特定の実施形態では、無処理の植物に対して、細菌で処理した植物で、植物体全体の乾燥重量の増加又は地下部の生長速度の増加が認められる場合、植物生長促進能を有すると判定する。 Whether or not a specific bacterium has the ability to promote plant growth is, for example, whether plant bodies (roots, stems, leaves, flowers, fruits, seeds, etc.) or seeds are treated with the specific bacterium and growth is promoted. can judge. For example, an increase in total plant weight (or dry weight) in plants treated with bacteria relative to untreated plants; an increase in length or growth rate of underground parts (particularly roots); Increased length or growth rate; Increased length or number of roots; Increased yield or quality of seeds, nuts or fruits; Increased weight or quality per seed, seed or fruit; or an increase in the number of fruiting; when one or more selected from the group consisting of plant disease resistance, cold resistance, high temperature resistance, or salt tolerance is observed, it can be judged to have plant growth promoting ability. can. In a specific embodiment, plants treated with bacteria are determined to have plant growth-promoting ability when an increase in the dry weight of the entire plant body or an increase in the growth rate of the underground part is observed relative to untreated plants. do.
上記判定のための植物の栽培は、例えば、滅菌したバーミキュライト等の、無菌の土で行うことが好ましい。これにより、他の土壌微生物等が判定に及ぼす影響を抑えることができる。 Cultivation of plants for the determination is preferably carried out in sterile soil such as sterilized vermiculite. As a result, it is possible to suppress the influence of other soil microorganisms and the like on the determination.
植物生長促進能の有無の判定には、植物として、例えばオオムギの苗又は成体を使用することができ、一実施形態ではオオムギの幼苗が用いられる。また、細菌による処理法としては、例えば、細菌又はその抽出物を含む懸濁液を種子にしみこませる、又は種子を当該懸濁液につけ込む方法が挙げられる。より具体的な例としては、例えば、寒天培地に生育した菌体を回収し、生理食塩水に懸濁し、その懸濁液を種子にしみこませる、又は種子を懸濁液につけ込む方法が挙げられる。 For the determination of the presence or absence of plant growth promoting ability, for example, barley seedlings or adults can be used as plants, and in one embodiment, barley seedlings are used. Moreover, examples of the method of treatment with bacteria include a method of impregnating seeds with a suspension containing bacteria or an extract thereof, or a method of soaking seeds in the suspension. More specific examples include, for example, a method of collecting fungal cells grown on an agar medium, suspending them in physiological saline, and impregnating seeds with the suspension, or dipping the seeds into the suspension. .
本発明の細菌又はその変異体の分離方法では、(a)オオムギの根に共生する細菌を培養する工程より後に、さらに細菌としてルガモナス属に属する細菌を選別する工程を設けてもよい。ルガモナス属に属する細菌を選別する方法としては、例えば適切な選択培地によるスクリーニング、クローン株から得られるDNAのシーケンシング(例えば、16S rRNA遺伝子配列解析等)を使用することができる。 In the method for isolating bacteria or mutants thereof of the present invention, a step of selecting bacteria belonging to the genus Lugamonas may be further provided after the step of (a) culturing bacteria symbiotic with barley roots. Methods for selecting bacteria belonging to the genus Lugamonas include, for example, screening using an appropriate selective medium and sequencing of DNA obtained from clonal strains (eg, 16S rRNA gene sequence analysis, etc.).
本発明の細菌又はその変異体の分離方法は、植物生長促進能を有する細菌又は変異体を容易に分離して株を樹立することができ、特に、植物生長促進能を有するルガモナス属に属する細菌の分離に適する。 The method for isolating a bacterium or a mutant thereof of the present invention can easily isolate a bacterium or mutant having plant growth-promoting ability to establish a strain, and in particular, a bacterium belonging to the genus Rugamonas having plant growth-promoting ability. Suitable for separation of
[他の実施形態]
さらに、本発明は、下記の細菌又はその変異体、及びそれらを含む組成物を包含する。
[11]
配列番号2~68、配列番号70~75、及び配列番号77~106からなる群より選ばれるいずれかのヌクレオチド配列からなる16SリボソームRNA遺伝子をゲノム中に含み、植物生長促進能を有する、細菌又はその変異体。
[12]
[11]に記載の細菌及びその変異体から選ばれる少なくとも1種以上の細菌、又はその抽出物を含有する、組成物。
[13]
[12]に記載の組成物で植物体又はその種子を処理することを含む、植物生長促進方法。
[14]
[12]に記載の組成物を土壌に添加又は配合することを含む、土壌改良方法。
[15]
[12]に記載の組成物で、植物体又はその種子を処理することを含む、植物の生産方法。
[Other embodiments]
Furthermore, the present invention includes the following bacteria or variants thereof, and compositions containing them.
[11]
A bacterium comprising a 16S ribosomal RNA gene consisting of a nucleotide sequence selected from the group consisting of SEQ ID NOs: 2 to 68, SEQ ID NOs: 70 to 75, and SEQ ID NOs: 77 to 106 in its genome and having the ability to promote plant growth, or its mutant.
[12]
A composition comprising at least one bacterium selected from the bacterium and its mutants according to [11], or an extract thereof.
[13]
A method for promoting plant growth, which comprises treating a plant or its seeds with the composition of [12].
[14]
A method for improving soil, comprising adding or blending the composition according to [12] to soil.
[15]
A method for producing a plant, which comprises treating a plant body or its seed with the composition of [12].
上記の配列番号2~68、配列番号70~75、及び配列番号77~106からなる群より選ばれるいずれかのヌクレオチド配列からなる16SリボソームRNA遺伝子をゲノム中に含む細菌又はその変異体は、新規の16S rRNA遺伝子配列を有することから、新規の菌株である。 A bacterium comprising a 16S ribosomal RNA gene consisting of a nucleotide sequence selected from the group consisting of SEQ ID NOS: 2-68, SEQ ID NOS: 70-75, and SEQ ID NOS: 77-106 in its genome or a mutant thereof is novel It is a novel strain because it has the 16S rRNA gene sequence of
上記の細菌又はその変異体は、例えばR2A培地を用いて好気条件で培養することができる。培養温度は、通常、例えば10~40℃又は20℃~35℃である。 The above bacteria or mutants thereof can be cultured under aerobic conditions using, for example, R2A medium. The culture temperature is usually, for example, 10-40°C or 20-35°C.
上記の細菌又はその変異体もまた、植物生長促進能を有する。そのため、それらを含有する本発明の組成物は、植物生長促進や土壌改良等の用途に適し、植物の生産方法に使用することができる。 The above bacteria or mutants thereof also have plant growth promoting ability. Therefore, the composition of the present invention containing them is suitable for uses such as plant growth promotion and soil improvement, and can be used in plant production methods.
下記では本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例により何ら制限されるものではない。本実施例において使用する分子生物学的手順は、特に言及しない限り、Molecular Cloning: A Laboratory Manual (Fourth Edition)(Sambrookら、Cold Spring Harbour Laboratory Press,2012)を参照することができる。 EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these Examples. Molecular Cloning: A Laboratory Manual (Fourth Edition) (Sambrook et al., Cold Spring Harbor Laboratory Press, 2012), unless otherwise stated, for the molecular biology procedures used in this example.
[オオムギの根と根圏に生息する細菌叢のアンプリコン解析]
(1.根と根圏土壌のサンプリング)
岡山大学資源植物科学研究所の慣行区(施肥区)及び無施肥区の2圃場で栽培されたオオムギ2品種(はるな二条、早木曽2号)のそれぞれ3植物個体の根とその周りの土壌の細菌をアンプリコン解析の対象とした。各個体の根は、それらに付着する土ごと2019年1月~6月の異なる日(1月25日、2月15日、3月1日、4月12日、4月26日、5月17日、5月30日)に1回ずつ、計7回サンプリングした。上記2圃場の一方は施肥有り、もう一方は無しの状態で四半世紀以上にわたってイネ・オオムギ二毛作体系を継続しており、土壌がそれぞれの耕作形態に適応した状態にあると考えられる。
[Amplicon analysis of barley root and rhizosphere flora]
(1. Sampling of root and rhizosphere soil)
Roots and surrounding soil of three individual barley cultivars (Haruna Nijo, Hayakiso No. 2) cultivated in two fields of the Institute of Plant Science and Resources, Okayama University (fertilized area) and non-fertilized area. Bacteria were targeted for amplicon analysis. The roots of each individual were collected on different days from January to June 2019 (January 25, February 15, March 1, April 12, April 26, May 2019) along with the soil attached to them. 17th and May 30th), a total of 7 samples were taken. The rice and barley double-cropping system has been continued for more than a quarter of a century, with one field being fertilized and the other being non-fertilized.
(2.細菌サンプルの調製)
下記の方法により、各個体の根から細菌サンプル3画分を調製した。調製したサンプルの数は、2品種×2圃場×3個体×7日分×3画分=252サンプルである。
(1)根は、周りの土を手でふるい落として50 mLチューブにサンプリングした。1植物体の根に対し30~35 mLの蒸留水を加え、ボルテックスミキサーで5分間撹拌し、根を取り出し、別のチューブに移して35 mLの水を加えた。
(2)(1)で根を取り出した後の水(土壌懸濁水)は5,000 rpm、20℃で10分遠心し、上清を捨てた後に1 mLの蒸留水を加えて再懸濁し、水で分離可能な洗浄画分(Wash,W)とした。
(3)(1)で取り出した根は、超音波ホモジナイザーVC-505(家田貿易(株)製)で、テーパーマイクロチップを使用して30%出力で15秒超音波処理してから、上記と同じ条件で遠心分離し、沈殿した土を分離した。得られた土を1 mL蒸留水で懸濁し、超音波処理画分(Sonic,S)とした。さらに、超音波処理後の根は1 cm程度にカミソリで切り、根(Root,R)画分とした。得られた3画分は使用するまで-80℃保存した。
(2. Preparation of bacterial sample)
Three bacterial sample fractions were prepared from the roots of each individual by the following method. The number of samples prepared was 2 varieties x 2 fields x 3 individuals x 7 days x 3 fractions = 252 samples.
(1) Roots were sampled in 50 mL tubes after manually sieving the surrounding soil. 30 to 35 mL of distilled water was added to the roots of one plant body, stirred for 5 minutes with a vortex mixer, the roots were taken out, transferred to another tube, and 35 mL of water was added.
(2) The water (soil suspension water) after removing the roots in (1) is centrifuged at 5,000 rpm and 20°C for 10 minutes. The separated wash fraction (Wash, W) was obtained.
(3) The roots taken out in (1) are ultrasonically treated with an ultrasonic homogenizer VC-505 (manufactured by Ieda Trading Co., Ltd.) using a tapered microtip at 30% output for 15 seconds, then treated with the above. Centrifugation was performed under the same conditions to separate the sedimented soil. The obtained soil was suspended in 1 mL distilled water and used as a sonicated fraction (Sonic, S). Furthermore, the roots after ultrasonic treatment were cut into pieces of about 1 cm with a razor to obtain a root (Root, R) fraction. The 3 fractions obtained were stored at -80°C until use.
(3.細菌DNAサンプルの調製)
上記のR、W及びS画分のそれぞれ約300 mg程度の根及び土をそれぞれサンプルとし、Quick-DNA Fecal/Soil Microbe kit(Zymo Research社製)を用いて、キット添付のプロトコールに従って細菌DNAサンプルを調製した。
(3. Preparation of bacterial DNA sample)
Approximately 300 mg of each of the above R, W and S fractions of roots and soil were used as samples, respectively, and bacterial DNA samples were prepared using Quick-DNA Fecal/Soil Microbe kit (manufactured by Zymo Research) according to the protocol attached to the kit. was prepared.
(4.1st PCR)
得られた細菌DNAサンプルを、下記の条件で1st PCRして、細菌16S rRNA遺伝子のV3-V4領域(約500 bp)を増幅した。プライマーは(株)生物技研のプライマーを使用した。当該プライマーの配列は、(株)生物技研のウェブサイト(URL: https://gikenbio.com/pdf/samplepreparation_16S_V3V4.pdf)に公開されている。
<反応組成>
KOD DNA polymerase (TOYOBO) 0.1 μL
Primer F (V3V4f_MIX, 10 μM) 1 μL
Primer R (V3V4r_MIX, 10 μM) 1 μL
細菌DNAサンプル 5 μL(1 ng DNA)
水 残部
全量 25 μL
<反応条件>
94℃ 2分→(94℃ 30秒→55℃ 30秒→72℃ 30秒)×40サイクル→72℃ 5分
(4.1st PCR)
The obtained bacterial DNA sample was subjected to 1st PCR under the following conditions to amplify the V3-V4 region (approximately 500 bp) of the bacterial 16S rRNA gene. As primers, primers from Biotechnology Research Institute were used. The sequences of the primers are published on the website of Biotechnology, Inc. (URL: https://gikenbio.com/pdf/samplepreparation_16S_V3V4.pdf).
<Reaction composition>
KOD DNA polymerase (TOYOBO) 0.1 μL
Primer F (V3V4f_MIX, 10 μM) 1 μL
Primer R (V3V4r_MIX, 10 μM) 1 μL
5 μL of bacterial DNA sample (1 ng DNA)
water
25 μL total volume
<Reaction conditions>
94°
(5.DNAシーケンシング)
PCR産物を精製してから、下記の条件で2nd PCRでライブラリーを作製し、イルミナ社のMiSeqを用いてDNAシーケンシングした。これらの工程は(株)生物技研に委託して実施した。方法は、上記(株)生物技研ウェブサイトで開示されている。
(5. DNA sequencing)
After purifying the PCR product, a library was prepared by 2nd PCR under the following conditions, and DNA sequencing was performed using Illumina's MiSeq. These steps were entrusted to Biotechnology Research Institute. The method is disclosed on the website of the Biotechnology Institute Co., Ltd. mentioned above.
(6.シーケンス解析)
得られたデータをQIIME2.0で解析して細菌叢解析を行った。データベースはgg_13_8_99_v3v4-classifierを使用した。ノイズとキメラ配列を除き、真核生物由来のミトコンドリア、葉緑体の16S rRNA遺伝子配列を除くと、各サンプルのリード数は約4,200から46,000リードであった(平均18,308リード、SD 6244,n=252)。サンプルごとのリード数を図1に示した。
(6. Sequence analysis)
The obtained data were analyzed with QIIME2.0 to perform a bacterial flora analysis. The database used is gg_13_8_99_v3v4-classifier. Excluding noise and chimeric sequences, and excluding eukaryotic mitochondrial and
(7.結果)
16S rRNA遺伝子のV3-V4領域のアンプリコン解析の結果を図2に示した。根(R)画分に特異的な細菌群として、Janthinobacterium属、及びMethylibium属細菌が存在することが判明した。これらは根の周りの土(W画分及びS画分)にはほとんど検出されないことから、根の内部に存在する共生細菌であると考えられた。またオオムギの品種、施肥の有無はあまり影響しなかった。4月までの比較的気温が低い条件でJanthinobacterium属細菌の割合が多く、その後Methylibium属細菌の割合が多くなっていた。
(7. Results)
FIG. 2 shows the results of amplicon analysis of the V3-V4 region of the 16S rRNA gene. It was found that bacteria of the genus Janthinobacterium and bacteria of the genus Methylibium exist as a group of bacteria specific to the root (R) fraction. Since these were hardly detected in the soil around the roots (W fraction and S fraction), they were considered to be symbiotic bacteria existing inside the roots. Barley varieties and the presence or absence of fertilization had little effect. The ratio of Janthinobacterium genus bacteria was high under relatively low temperature conditions until April, and the ratio of Methylibium genus bacteria increased thereafter.
[オオムギの各器官に存在する細菌の分離]
2020年4月に、オオムギの根、茎、葉を乳鉢ですりつぶし、生理食塩水に懸濁し、順次希釈したものを栄養寒天培地(NB)及び0.5%メタノールを単一炭素源とし、30 μM 塩化ランタンを加えたミネラル培地(Front. Microbiol. 6:1185, doi: 10.3389/fmicb.2015.01185参照)に植菌し、28℃で3~4日間培養し、生育したコロニーを無差別に分離した。分離株は全てR2A培地(ベクトン・ディッキンソン社製)に生育したので維持にはR2A培地を使用した。最終的に、オオムギの根、茎、葉それぞれ60、26、21株の細菌が分離された。
[Isolation of bacteria present in each organ of barley]
In April 2020, barley roots, stems, and leaves were ground in a mortar, suspended in physiological saline, and serially diluted on nutrient agar (NB) and 0.5% methanol as a single carbon source, and 30 μM chloride. 6:1185, doi: 10.3389/fmicb.2015.01185), cultured at 28°C for 3 to 4 days, and grown colonies were randomly isolated. All the isolates grew on R2A medium (manufactured by Becton Dickinson), so R2A medium was used for maintenance. Finally, 60, 26, and 21 bacterial strains were isolated from barley roots, stems, and leaves, respectively.
[分離株の16S rRNA遺伝子配列の決定]
上記の分離された菌株について、下記の条件でコロニーPCRを行い、それぞれの菌株の16S rRNA遺伝子領域(約1.5 kbp)を増幅した。
<反応組成>
KOD DNA polymerase (TOYOBO) 0.1 μL
Eu8fプライマー(10 μM) 1 μL
Eu1492rプライマー(10 μM) 1 μL
Template DNA として、寒天培地上に生育した細菌コロニーを爪楊枝で拾った菌体
水 残部
全量 25 μL
<反応条件>
94℃ 2分→(94℃ 30秒→55℃ 30秒→72℃ 30秒)×25サイクル→72℃ 5分
[Determination of 16S rRNA gene sequences of isolates]
For the strains isolated above, colony PCR was performed under the following conditions to amplify the 16S rRNA gene region (about 1.5 kbp) of each strain.
<Reaction composition>
KOD DNA polymerase (TOYOBO) 0.1 μL
Eu8f primer (10 μM) 1 μL
Eu1492r primer (10 μM) 1 μL
As a template DNA, bacterial cells picked up with a toothpick from a bacterial colony grown on an agar medium
water
25 μL total volume
<Reaction conditions>
94°
次に、得られた増幅断片をDNAシーケンシングして、各菌株の16S rRNA遺伝子全長配列を決定した。上記の増幅及びDNAシーケンシングに使用したプライマーを表2に示した。
Next, the resulting amplified fragments were DNA-sequenced to determine the full-
次に、得られた各配列と最も相同性の高い菌株を、EzBioCloud(URL: https://www.ezbiocloud.net/)のデータベースを用いて同定した。同じ同定結果となった菌株は重複として取り除き、図3に示す106株、23属37種の菌株を分離した。各菌株の16S rRNA遺伝子配列の配列番号と最も相同性の高い菌株の同定結果は表3に示した。 Next, strains with the highest homology to each obtained sequence were identified using the database of EzBioCloud (URL: https://www.ezbiocloud.net/). Strains with the same identification result were removed as duplicates, and 106 strains of 23 genera and 37 species shown in Fig. 3 were isolated. Table 3 shows the SEQ ID NO of the 16S rRNA gene sequence of each strain and the identification results of the strain with the highest homology.
図3のリストから、Janthinobacterium属、Methylibium属に属する分離株は得られなかったが、根から得られた分離株に、Rugamonas属細菌と相同性の高い株が多いことが判明した。 From the list in FIG. 3, no isolates belonging to the genus Janthinobacterium or the genus Methylibium were obtained, but it was found that many of the isolates obtained from the roots were highly homologous to bacteria belonging to the genus Rugamonas.
そこで、Rugamonas属細菌と同定された分離株、Janthinobacterium属細菌及びその近縁属の細菌の基準株の16S rRNA遺伝子配列、さらにアンプリコン解析でJanthinobacterium属細菌由来と同定された配列を系統解析した。得られた系統樹(図4)から、下記の3点が明らかとなった。
(1)Rugamonasと同定された分離株は類縁菌とは異なる系統的位置に属する。
(2)アンプリコン解析でJanthinobacterium属細菌とされた配列は基準株のJanthinobacterium属細菌とは異なっており、分離されたRugamonas属細菌に近い。
(3)Rugamonas属細菌及びJanthinobacterium属細菌と近縁のDuganella属、Massilia属、Herminiimonas属及びPseudoduganella属の細菌とは、系統関係が必ずしも明らかではなく、同じ属名でも系統的に離れたものが多い。
Therefore, 16S rRNA gene sequences of isolates identified as Rugamonas, type strains of Janthinobacterium and related bacteria, and sequences identified as derived from Janthinobacterium by amplicon analysis were phylogenetically analyzed. The following three points were clarified from the obtained phylogenetic tree (Fig. 4).
(1) The isolate identified as Rugamonas belongs to a different phylogenetic position than related fungi.
(2) The sequence identified as a bacterium belonging to the genus Janthinobacterium by amplicon analysis is different from that of the type strain bacterium belonging to the genus Janthinobacterium, and is close to the isolated bacterium belonging to the genus Rugamonas.
(3) The phylogenetic relationship between bacteria belonging to the genus Duganella, Massilia, Herminiimonas, and Pseudoduganella, which are closely related to the genus Rugamonas and Janthinobacterium, is not necessarily clear, and many of them have the same genus name but are phylogenetically distant. .
さらに、アンプリコン解析でJanthinobacterium属細菌と同定された配列を、これらの基準株の16S rRNA遺伝子配列に対してBLASTプログラムによりヒットさせると、約50%の配列がRugamonas属細菌として分離された株の16S rRNA遺伝子配列と高い相同性を示した(図5)。 Furthermore, when the sequences identified as Janthinobacterium bacteria by amplicon analysis were hit by the BLAST program against the 16S rRNA gene sequences of these type strains, approximately 50% of the sequences were those of strains isolated as Rugamonas bacteria. It showed high homology with the 16S rRNA gene sequence (Fig. 5).
以上から、アンプリコン解析でJanthinobacterium属細菌として検出された配列の半分は、分離されたRugamonas属細菌及びその近縁種由来であったことが確認された。 From the above, it was confirmed that half of the sequences detected as bacteria of the genus Janthinobacterium by amplicon analysis were derived from the isolated bacteria of the genus Rugamonas and their related species.
[Rugamonas属分離株の形質の特徴及び配列解析]
分離されたRugamonas属細菌のうち、R1株、R57株及びR64株は系統的にそれぞれ離れていた。16S rRNA遺伝子全長配列を用いてEzBioCloudで得られる最も相同性の高い16S rRNA遺伝子を有する基準株とその相同性(塩基の同一性)の結果(2021年1月4日現在)は下記の通りであった。
Rugamonas sp. R1株: Rugamonas rubra ATCC43154(T) 98.97%
Rugamonas sp. R57株: Rugamonas aquatica FT29W(T) 98.48%
Rugamonas sp. R64株: Rugamonas rivuli FT103W(T) 99.38%
一般的に細菌16S rRNA遺伝子配列は98.6%以下であれば別種と判断される。しかし、上記の図4で示したように、これら既知近縁種の分類体系に関しては問題があり、異なる種においても16S rRNA遺伝子の相同性が高い。
[Characteristics and Sequence Analysis of Rugamonas Isolates]
Among the isolated Rugamonas bacteria, strains R1, R57 and R64 were phylogenetically distant from each other. The type strain with the most homologous 16S rRNA gene obtained from EzBioCloud using the full-
Rugamonas sp. R1 strain: Rugamonas rubra ATCC43154 (T) 98.97%
Rugamonas sp. R57 strain: Rugamonas aquatica FT29W(T) 98.48%
Rugamonas sp. R64 strain: Rugamonas rivuli FT103W(T) 99.38%
Generally, if the 16S rRNA gene sequence of a bacterium is 98.6% or less, it is judged to be a different species. However, as shown in FIG. 4 above, there is a problem with the classification system of these known closely related species, and the homology of 16S rRNA genes is high even in different species.
そこで、上記3分離株の近縁種と同定された3つのRugamonas属細菌基準株のR2A培地(28℃, 3~4日培養)で培養して得られるコロニーの性状を比較した。Rugamonas sp. R1は白色を呈した。また、Rugamonas sp. R57株及びRugamonas sp. R64株は、それらが産生するビオラセインにより青紫色のコロニーを呈した。一方、基準株であるR. rivuli及びR. aquaticaは薄い茶色(light brown)、R. rubraはピンク色のコロニーを呈することが知られている(Lu et al., Int. J. Syst. Evol. Microbiol., 2020, Vol.70, pp.3328-3334、及びAustin and Moss, J. Gen. Microbiol., 1986, Vol.142, pp.1899-1909)。よって、コロニー性状からも分離された3株は既知のRugamonas属細菌とは異なることが明らかとなった。 Therefore, we compared the properties of the colonies obtained by culturing in R2A medium (culturing at 28°C for 3-4 days) the 3 type strains of the genus Rugamonas, which were identified as closely related species to the above 3 isolates. Rugamonas sp. R1 was white. Rugamonas sp. R57 strain and Rugamonas sp. R64 strain exhibited bluish purple colonies due to violacein produced by them. On the other hand, the type strains R. rivuli and R. aquatica are known to exhibit light brown colonies, and R. rubra is known to exhibit pink colonies (Lu et al., Int. J. Syst. Evol. Microbiol., 2020, Vol.70, pp.3328-3334 and Austin and Moss, J. Gen. Microbiol., 1986, Vol.142, pp.1899-1909). Therefore, it was clarified that the isolated 3 strains were different from the known Rugamonas bacterium also from the colony characteristics.
また、上記3分離株のコロニーは、いずれも固く、寒天培地に張り付いており、白金耳で容易にコロニーを拾えないという特徴が見られた。 In addition, the colonies of the above three isolates were all hard and adhered to the agar medium, and were characterized by being difficult to pick up with a platinum loop.
上記3分離株をR2A液体培地で3日間28℃で培養して、ゲノムDNAを精製し、次世代シーケンシング(MiSeq)によって、それぞれのゲノム配列を決定した。決定したDNA配列の長さ、GC含量、タンパク質コーディング領域の数を表4に示す。 The above three isolates were cultured in R2A liquid medium for 3 days at 28°C to purify genomic DNA and determine their genomic sequences by next-generation sequencing (MiSeq). Table 4 shows the determined DNA sequence length, GC content, and number of protein-coding regions.
さらにゲノム配列同士の相同性を調べるデジタルDNA-DNAハイブリダイゼーション(dDDH)法及び平均ヌクレオチド同一性(Average nucleotide identity, ANI)法により分離株と基準株のゲノム配列の比較の結果を図6に示す。dDDH値は70%以上、ANI値は95%以上が同種の目安となる。分離株のdDDH値はそれぞれの分離株及び基準株に対して25~40%程度の相同性しか示さず、ANI値も81~90%しか示さなかったことから、分離した3株はそれぞれ異なる種であり、Rugamonas属の既知基準株のいずれとも異なる新種細菌であることが示された。 Figure 6 shows the results of comparing the genome sequences of the isolate and the reference strain using the digital DNA-DNA hybridization (dDDH) method and the average nucleotide identity (ANI) method, which examines homology between genome sequences. . A dDDH value of 70% or more and an ANI value of 95% or more are the criteria for the same species. The dDDH values of the isolates showed only about 25-40% homology to each isolate and the type strain, and the ANI values showed only 81-90%, indicating that the three isolated strains are different species. and was shown to be a new bacterium different from any of the known type strains of the genus Rugamonas.
[Rugamonas属分離株のオオムギ幼苗生長促進能の検証]
滅菌水を加えて湿らせたオートクレーブ滅菌したバーミキュライト約130 mLをアグリポットに入れ、1ポット当たりオオムギ(はるな二条)の種を8粒蒔いた。R2A液体培地で培養したRugamonas属細菌3株(Rugamonas sp. R1、Rugamonas sp. R57及びRugamonas sp. R64)を水で洗浄して再懸濁し、OD600=0.5としたものをそれぞれ10μLオオムギ種子に接種した。接種したオオムギを23℃で10~14時間の明暗条件で幼苗になるまで7日間栽培した。得られた幼苗の地上部及び地下部(根)の長さ、根の数を測定し、最後に苗の乾燥重量を測定した。各処理3つのポットを用いて行い、菌の接種をしていないものを対照とした。データは24株の生物学的反復(Biological replicate)として処理した。乾燥重量のみ、ポットごとにまとめて測定して3連のデータとした。One-Way ANOVA及びDunnett testにより対照区(Control)と統計比較した。
[Verification of ability of Rugamonas isolates to promote growth of barley seedlings]
About 130 mL of autoclave-sterilized vermiculite moistened with sterilized water was placed in an agripot, and 8 seeds of barley (Haruna Nijo) were sown per pot. Three Rugamonas strains (Rugamonas sp. R1, Rugamonas sp. R57 and Rugamonas sp. R64) cultured in R2A liquid medium were washed with water and resuspended to an OD 600 of 0.5. inoculated. The inoculated barley was cultivated at 23°C under light and dark conditions for 10 to 14 hours for 7 days until seedlings were formed. The lengths of the aboveground and underground parts (roots) and the number of roots of the obtained seedlings were measured, and finally the dry weight of the seedlings was measured. Three pots were used for each treatment, and a non-inoculated control was used. Data were processed as 24-strain Biological replicates. Only the dry weight was collectively measured for each pot and used as triplicate data. Statistically compared with the control group (Control) by One-Way ANOVA and Dunnett test.
根の長さ及び乾燥重量の結果を図7に示す。Rugamonas属分離株は、いずれも対照区よりも乾燥重量が増加していた。また、根の長さも対照区よりも長い傾向にあった。Rugamonas sp. R57及びRugamonas sp. R64は、特に顕著な根の生長促進能が認められた。 The root length and dry weight results are shown in FIG. All Rugamonas isolates had increased dry weight compared to the control plot. Also, the root length tended to be longer than that of the control plot. Rugamonas sp. R57 and Rugamonas sp. R64 were found to have particularly remarkable ability to promote root growth.
上記実施例全体から、オオムギの根に共生するRugamonas属細菌に、植物生長促進能を有する細菌種が複数種含まれることが明らかとなった。したがって、オオムギの根に特異的に存在するRugamonas属細菌を分離することによって、その分離菌の中から、植物の生長を促進する細菌を特に容易に分離することができると結論される。 From all of the above examples, it was revealed that bacteria of the genus Rugamonas that live symbiotically with barley roots include a plurality of species of bacteria that have the ability to promote plant growth. Therefore, it is concluded that by isolating bacteria of the genus Rugamonas that are specifically present in barley roots, bacteria that promote plant growth can be particularly easily isolated from the isolated bacteria.
[圃場試験]
(方法)
(1)オオムギ種子(はるな二条)を水で洗浄、さらに70%エタノールで3分洗浄、0.1% Tween 20を含む3%次亜塩素酸ナトリウム水溶液で20分処理、滅菌水で5回すすいで滅菌する。
(2)直径9cmのシャーレに15 mLの水を加え、殺菌した種子(1菌株あたり40粒)を浸す。そこにR2A寒天培地に3~4日、28°Cで培養した、配列番号1~106のいずれかのヌクレオチド配列で特定される16S rRNA遺伝子を有する細菌のコロニーをかき取って懸濁する。菌体は生育度に違いがあるので菌体量は必ずしも同じではないが、懸濁液としてOD600=0.3程度になる量とする。
(3)23°Cで一晩浸漬し、菌体懸濁液を取り除く。濾紙を引いた別の新しいシャーレに種子を移し滅菌水を5 mL加え、一晩23℃で一晩浸漬する。これで種子は発芽する。
(4)岡山大学資源植物科学研究所圃場の慣行区(施肥区)で50 m x 2列の面積を確保する。80 cmの区画に 8cmごとに千鳥状に10個植える。
(5)被検菌は36種類で1被検菌あたり3区画をそれぞれ離れた場所に設ける。コントロールは菌の処理をしていないものとする。
[Field test]
(Method)
(1) Wash barley seeds (Haruna Nijo) with water, wash with 70% ethanol for 3 minutes, treat with 3% sodium hypochlorite aqueous solution containing 0.1
(2) Add 15 mL of water to a petri dish with a diameter of 9 cm, and soak the sterilized seeds (40 seeds per strain). A bacterial colony having a 16S rRNA gene identified by any of the nucleotide sequences of SEQ ID NOs: 1 to 106, cultured on R2A agar medium for 3 to 4 days at 28°C, is scraped and suspended there. Although the amount of the cells is not necessarily the same because the growth rate of the cells differs, the amount should be such that the suspension will have an OD600 of about 0.3.
(3) Immerse at 23°C overnight and remove the cell suspension. Transfer the seeds to another new Petri dish lined with filter paper, add 5 mL of sterilized water, and soak overnight at 23°C. The seeds will now germinate.
(4) Secure an area of 50
(5) There are 36 types of bacteria to be tested, and 3 sections are provided at separate locations for each bacteria to be tested. Controls were not treated with bacteria.
上記試験に使用した細菌株のうちのいくつかの細菌で処理したオオムギは、コントロールに比べて、植物体全体の重量(又は乾燥重量)の増加;地下部(殊に、根)の長さ又は生長速度の増加;地上部の長さ又は生長速度の増加;根の長さ又は数の増加;種子、種実又は果実の収量の増加又は品質の向上;種子、種実又は果実の1個当たりの重量の増加又は品質の向上;花芽の数の増加又は結実数の増加;植物病抵抗性、耐寒性、耐高温性又は耐塩性の向上からなる群より選ばれる1以上を呈すると予想される。 Barley treated with some of the bacterial strains used in the above tests increased overall plant weight (or dry weight); Increased growth rate; Increased length or growth rate of aboveground parts; Increased length or number of roots; Increased yield or quality of seeds, seeds or fruits; Weight per seed, seed or fruit or quality; an increase in the number of flower buds or an increase in the number of fruit set; and an improvement in plant disease resistance, cold resistance, high temperature resistance, or salt tolerance.
(1)Rugamonas sp. R1
受領機関:独立行政法人製品評価技術基盤機構 特許微生物寄託センター
受領日:2021年1月29日
受領番号:NITE AP-03371
(2)Rugamonas sp. R57
受領機関:独立行政法人製品評価技術基盤機構 特許微生物寄託センター
受領日:2021年1月29日
受領番号:NITE AP-03372
(3)Rugamonas sp. R64
受領機関:独立行政法人製品評価技術基盤機構 特許微生物寄託センター
受領日:2021年1月29日
受領番号:NITE AP-03373
(1) Rugamonas sp. R1
Receiving organization: National Institute of Technology and Evaluation, Patent Microorganisms Depository Receipt date: January 29, 2021 Receipt number: NITE AP-03371
(2) Rugamonas sp. R57
Receiving organization: National Institute of Technology and Evaluation, Patent Microorganisms Depository Receipt date: January 29, 2021 Receipt number: NITE AP-03372
(3) Rugamonas sp. R64
Receiving organization: National Institute of Technology and Evaluation Patent Microorganisms Depositary Date of receipt: January 29, 2021 Receipt number: NITE AP-03373
Claims (10)
ルガモナス・アクアティカ(Rugamonas aquatica)FT29W株ゲノム配列(RefSeq assemblyアクセッション番号GCF_009380215.1)、ルガモナス・リブリ(Rugamonas rivuli)FT103W株ゲノム配列(RefSeq assemblyアクセッション番号GCF_009380165.1)及びルガモナス・ルブラ(Rugamonas rubra)ATCC 43154株ゲノム配列(RefSeq assemblyアクセッション番号GCF_900114705.1)との間の平均ヌクレオチド同一性(ANI)値が、それぞれ80%以上95%未満である、請求項1に記載の細菌又はその変異体。 a genome sequence of a bacterium belonging to the genus Rugamonas or a mutant thereof;
Rugamonas aquatica strain FT29W genome sequence (RefSeq assembly accession number GCF_009380215.1), Rugamonas rivuli strain FT103W genome sequence (RefSeq assembly accession number GCF_009380165.1) and Rugamonas rubra rubra) ATCC 43154 strain genome sequence (RefSeq assembly accession number GCF_900114705.1) average nucleotide identity (ANI) value is 80% or more and less than 95%, respectively, the bacterium or its Mutant.
(b)前記細菌の植物生長促進能を有する細菌を選抜すること
を含む、植物生長促進能を有する細菌又はその変異体の分離方法。 A method for isolating a bacterium having plant growth-promoting ability or a mutant thereof, comprising (a) culturing a bacterium that grows symbiotically with barley roots, and (b) selecting a bacterium having plant growth-promoting ability of said bacterium. .
5. A method for producing the composition according to claim 4, comprising the step of incorporating the bacterium selected in claim 8 or 9 or a variant thereof, or the step of extracting the bacterium or the variant thereof with a solvent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021015090A JP2022118516A (en) | 2021-02-02 | 2021-02-02 | Bacteria capable of promoting plant growth and method for isolating the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021015090A JP2022118516A (en) | 2021-02-02 | 2021-02-02 | Bacteria capable of promoting plant growth and method for isolating the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022118516A true JP2022118516A (en) | 2022-08-15 |
Family
ID=82840055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021015090A Pending JP2022118516A (en) | 2021-02-02 | 2021-02-02 | Bacteria capable of promoting plant growth and method for isolating the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022118516A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024024761A1 (en) | 2022-07-26 | 2024-02-01 | シャープ株式会社 | User equipment (ue) |
-
2021
- 2021-02-02 JP JP2021015090A patent/JP2022118516A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024024761A1 (en) | 2022-07-26 | 2024-02-01 | シャープ株式会社 | User equipment (ue) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9580363B2 (en) | Nitrogen-fixing bacterial inoculant for improvement of crop productivity and reduction of nitrous oxide emission | |
Posada et al. | Bioprospecting of aerobic endospore-forming bacteria with biotechnological potential for growth promotion of banana plants | |
Babu et al. | Analysing the colonisation of inoculated cyanobacteria in wheat plants using biochemical and molecular tools | |
KR101456171B1 (en) | Plant growth promotion by using bacterial strains isolated from roots of Miscanthus sacchariflorus | |
Pindi et al. | Plant growth regulation of Bt-cotton through Bacillus species | |
Wellner et al. | Diversity and biogeography of selected phyllosphere bacteria with special emphasis on Methylobacterium spp. | |
Gholamalizadeh et al. | Assessment of rice associated bacterial ability to enhance rice seed germination and rice growth promotion | |
Xiao-ying et al. | Effect of Bacillus subtilis and Pseudomonas fluorescens on growth of greenhouse tomato and rhizosphere microbial community | |
Maheshwari et al. | Sunn hemp (Crotalaria juncea) nodulating bacteria capable for high antagonistic potential and plant growth promotion attributes: sun hemp nodulating rhizobia | |
Fernandes et al. | Development of a real-time PCR assay for the detection and quantification of Gluconacetobacter diazotrophicus in sugarcane grown under field conditions | |
Da Silva et al. | Isolation of Pantoea ananatis from sugarcane and characterization of its potential for plant growth promotion | |
US11363820B2 (en) | Method for selecting plant symbiotic microbes, and microbial mixture | |
Izumi et al. | Characterisation of endobacterial communities in ectomycorrhizas by DNA-and RNA-based molecular methods | |
JP2022118516A (en) | Bacteria capable of promoting plant growth and method for isolating the same | |
Chen et al. | Screening, evaluation, and selection of yeasts with nitrogen fixation and ammonia production ability from the cherry tomato (Lycopersicon esculentum var. cerasiforme) rhizosphere as a potential bio-fertilizer | |
Senthilkumar et al. | Diversity and functional characterization of endophytic Methylobacterium isolated from banana cultivars of South India and its impact on early growth of tissue culture banana plantlets | |
KR100886749B1 (en) | Pseudomonas genus P7014 strain having growth promoting function and mushroom cultivation method using same | |
JP6236660B2 (en) | Plant growth promoter | |
Kuznetsova et al. | Isolation and identification of root nodule bacteria from guar Cyamopsis tetragonoloba (L.) Taub | |
WO2023233403A1 (en) | Bacterial composition and a method of using same | |
Aydin et al. | The Effect of Plant Growth Promoting Bacteria Strains on Yield and Some Quality Parameters of Eggplant (Solanum melongena L.) | |
Dhabhai et al. | Physiological and phylogenetic analysis of rhizobia isolated from Acacia nilotica L. | |
Rahayu et al. | Confirmation of endophytic microbes causing contamination in water spinach (Ipomoea aquatica Forssk.) tissue culture | |
Terakado‐Tonooka et al. | NifH gene expression and nitrogen fixation by diazotrophic endophytes in sugarcane and sweet potatoes | |
KR100991298B1 (en) | Biopesticides with Inhibiting Germination and Growth Inhibition of Seed Using Athrobacter Zoishi |