JP2022115528A - X-ray high voltage device and X-ray imaging device - Google Patents
X-ray high voltage device and X-ray imaging device Download PDFInfo
- Publication number
- JP2022115528A JP2022115528A JP2021012161A JP2021012161A JP2022115528A JP 2022115528 A JP2022115528 A JP 2022115528A JP 2021012161 A JP2021012161 A JP 2021012161A JP 2021012161 A JP2021012161 A JP 2021012161A JP 2022115528 A JP2022115528 A JP 2022115528A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- inverter
- circuit
- value
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003384 imaging method Methods 0.000 title claims description 14
- 239000003990 capacitor Substances 0.000 claims abstract description 38
- 238000010586 diagram Methods 0.000 description 16
- 238000012545 processing Methods 0.000 description 10
- 238000002591 computed tomography Methods 0.000 description 8
- 238000013459 approach Methods 0.000 description 6
- 238000013170 computed tomography imaging Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 238000009499 grossing Methods 0.000 description 4
- 230000010363 phase shift Effects 0.000 description 4
- 230000002123 temporal effect Effects 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Measurement Of Radiation (AREA)
- X-Ray Techniques (AREA)
- Inverter Devices (AREA)
Abstract
【課題】スイッチング損失を低減すること。【解決手段】 実施形態に係るX線高電圧装置は、インバータ、電圧発生回路及び制御回路を有する。インバータは、スイッチング素子と共振コンデンサとを含む共振回路を有する。電圧発生回路は、前記インバータへの入力直流電圧を発生する。制御回路は、前記入力直流電圧の電圧値が前記インバータのインバータ電流の電流値と前記共振回路の回路定数との乗算値を下回るように前記入力直流電圧を制御する。【選択図】 図2An object of the present invention is to reduce switching loss. SOLUTION: An X-ray high-voltage apparatus according to an embodiment has an inverter, a voltage generation circuit, and a control circuit. The inverter has a resonant circuit including a switching element and a resonant capacitor. A voltage generator circuit generates an input DC voltage to the inverter. The control circuit controls the input DC voltage so that the voltage value of the input DC voltage is lower than the product of the inverter current value of the inverter and the circuit constant of the resonance circuit. [Selection drawing] Fig. 2
Description
本明細書及び図面に開示の実施形態は、X線高電圧装置及びX線撮像装置に関する。 The embodiments disclosed in the specification and drawings relate to X-ray high voltage devices and X-ray imaging devices.
X線高電圧装置では、電源の小型化のため、電力損失及び発熱の低減が求められている。X線高電圧装置には、スイッチング素子を用いて直流電圧を交流電圧に変換するインバータを搭載する型式のものがある。スイッチング素子を用いたインバータでは、スイッチング素子のONとOFFとの切替に伴う電力損失や発熱等のスイッチング損失の低減が求められている。 In the X-ray high-voltage apparatus, power loss and heat generation are required to be reduced in order to downsize the power supply. Some types of X-ray high-voltage devices are equipped with an inverter that converts a DC voltage into an AC voltage using a switching element. Inverters using switching elements are required to reduce switching losses such as power loss and heat generation accompanying switching between ON and OFF of the switching elements.
本明細書及び図面に開示の実施形態が解決しようとする課題の一つは、スイッチング損失を低減することである。ただし、本明細書及び図面に開示の実施形態により解決しようとする課題は上記課題に限られない。後述する実施形態に示す各構成による各効果に対応する課題を他の課題として位置づけることもできる。 One of the problems to be solved by the embodiments disclosed in the specification and drawings is to reduce switching loss. However, the problems to be solved by the embodiments disclosed in this specification and drawings are not limited to the above problems. A problem corresponding to each effect of each configuration shown in the embodiments described later can be positioned as another problem.
実施形態に係るX線高電圧装置は、インバータ、電圧発生回路及び制御回路を有する。インバータは、スイッチング素子と共振コンデンサとを含む共振回路を有する。電圧発生回路は、前記インバータへの入力直流電圧を発生する。制御回路は、前記入力直流電圧の電圧値が前記インバータのインバータ電流の電流値と前記共振回路の回路定数との乗算値を下回るように前記入力直流電圧を制御する。 An X-ray high voltage device according to an embodiment has an inverter, a voltage generation circuit, and a control circuit. The inverter has a resonant circuit including a switching element and a resonant capacitor. A voltage generator circuit generates an input DC voltage to the inverter. The control circuit controls the input DC voltage so that the voltage value of the input DC voltage is lower than the multiplication value of the inverter current value of the inverter and the circuit constant of the resonance circuit.
以下、図面を参照しながら、X線高電圧装置及びX線撮像装置の実施形態について詳細に説明する。 Hereinafter, embodiments of an X-ray high voltage device and an X-ray imaging device will be described in detail with reference to the drawings.
本実施形態に係るX線高電圧装置は、X線撮像装置に搭載されている。本実施形態に係るX線撮像装置は、被検体にX線を照射して撮像を行い医用画像診断装置である。本実施形態に係るX線撮像装置は、X線コンピュータ断層撮影装置やX線診断装置に適用可能である。以下の説明では、本実施形態に係るX線撮像装置は、X線コンピュータ断層撮影装置であるとする。 An X-ray high-voltage device according to this embodiment is mounted in an X-ray imaging device. The X-ray imaging apparatus according to the present embodiment is a medical image diagnostic apparatus that irradiates a subject with X-rays and performs imaging. The X-ray imaging apparatus according to this embodiment can be applied to an X-ray computed tomography apparatus and an X-ray diagnostic apparatus. In the following description, it is assumed that the X-ray imaging apparatus according to this embodiment is an X-ray computed tomography apparatus.
X線コンピュータ断層撮影装置(CT装置)には、第3世代CT、第4世代CT等様々なタイプがあり、いずれのタイプでも本実施形態へ適用可能である。ここで、第3世代CTは、X線管と検出器とが一体として被検体の周囲を回転するRotate/Rotate-Typeである。第4世代CTは、リング状にアレイされた多数のX線検出素子が固定され、X線管のみが被検体の周囲を回転するStationary/Rotate-Typeである。 There are various types of X-ray computed tomography apparatuses (CT apparatuses), such as third-generation CT and fourth-generation CT, and any type can be applied to the present embodiment. Here, the third-generation CT is a Rotate/Rotate-Type in which the X-ray tube and the detector rotate around the subject as a unit. The fourth-generation CT is a Stationary/Rotate-Type in which a large number of X-ray detection elements arrayed in a ring are fixed and only the X-ray tube rotates around the subject.
図1は、本実施形態に係るX線コンピュータ断層撮影装置の構成例を示す図である。図1に示すように、X線コンピュータ断層撮影装置1は、架台10、寝台30及びコンソール40を有する。なお、図1では説明の都合上、架台10が複数描画されているが、実際は一台でもよいし、複数台でもよい。架台10は、被検体PをX線CT撮影するための構成を有するスキャン装置である。寝台30は、X線CT撮影の対象となる被検体Pを載置し、被検体Pを位置決めするための搬送装置である。コンソール40は、架台10を制御するコンピュータである。
FIG. 1 is a diagram showing a configuration example of an X-ray computed tomography apparatus according to this embodiment. As shown in FIG. 1, the X-ray computed
図1に示すように、架台10は、X線管11、X線検出器12、回転フレーム13、X線高電圧装置14、制御装置15、ウェッジ16、コリメータ17及びデータ収集回路(Data Acquisition System:DAS)18を有する。
As shown in FIG. 1, the
X線管11は、X線を被検体Pに照射する。X線管11は、熱電子を発生する陰極と、陰極から飛翔する熱電子を受けてX線を発生する陽極と、陰極と陽極とを保持する真空管とを含む。
The
X線検出器12は、X線管11から照射され被検体Pを通過したX線を検出し、検出されたX線の線量に対応した電気信号をデータ収集回路18に出力する。X線検出器12は、チャネル方向に複数のX線検出素子が配列されたX線検出素子列がスライス方向(列方向)に複数配列された構造を有する。X線検出器12は、例えば、グリッド、シンチレータアレイ及び光センサアレイを有する間接変換型の検出器が用いられる。
The
回転フレーム13は、X線管11とX線検出器12とを回転軸(Z軸)回りに回転可能に支持する円環状のフレームである。制御装置15により回転フレーム13が回転軸回りに回転することによりX線管11とX線検出器12とを回転軸回りに回転させる。
The rotating
X線高電圧装置14は、高電圧発生装置及びX線制御装置を有する。高電圧発生装置は、X線管11に印加する高電圧及びX線管11に供給するフィラメント電流を発生する。X線制御装置は、X線管11が照射するX線に応じた出力電圧の制御を行う。高電圧発生装置は、インバータ方式である。X線高電圧装置14は、架台10内の回転フレーム13に設けられてもよいし、架台10内の固定フレーム(図示しない)に設けられても構わない。
The X-ray
ウェッジ16は、X線管11から被検体Pへ照射されるX線の線量が予め定められた分布になるようにX線を減衰する。例えば、ウェッジ16としては、ウェッジフィルタ(wedge filter)やボウタイフィルタ(bow-tie filter)等のアルミニウム等の金属板が用いられる。コリメータ17は、ウェッジ16を透過したX線の照射範囲を限定する。コリメータ17は、X線を遮蔽する複数の鉛板をスライド可能に支持し、複数の鉛板により形成されるスリットの形態を調節する。なお、コリメータ17は、X線絞りと呼ばれる場合もある。
The
データ収集回路18は、X線検出器12により検出されたX線の線量に応じた電気信号をX線検出器12から読み出す。データ収集回路18は、読み出した電気信号を増幅し、ビュー期間に亘り電気信号を積分することにより当該ビュー期間に亘るX線の線量に応じたデジタル値を有する検出データを収集する。検出データは、投影データと呼ばれる。データ収集回路18は、例えば、投影データを生成可能な回路素子を搭載した特定用途向け集積回路(Application Specific Integrated Circuit:ASIC)により実現される。投影データは、非接触データ伝送装置等を介してコンソール40に伝送される。
The
なお、本実施形態では、積分型のX線検出器12及び積分型のX線検出器12が搭載されたX線コンピュータ断層撮影装置1を例として説明するが、本実施形態に係る技術は、光子計数型のX線検出器にも適用可能である。
In this embodiment, the integrating
制御装置15は、コンソール40の処理回路44の撮影制御に従いX線CT撮影を実行するためにX線高電圧装置14やデータ収集回路18を制御する。制御装置15は、プロセッサと、モータ及びアクチュエータ等の駆動機構とを有する。
The
寝台30は、基台31、支持フレーム32、天板33及び寝台駆動装置34を備える。基台31は、床面に設置される。基台31は、支持フレーム32を、床面に対して垂直方向(Y軸方向)に移動可能に支持する筐体である。支持フレーム32は、基台31の上部に設けられるフレームである。支持フレーム32は、天板33を回転軸(Z軸)に沿ってスライド可能に支持する。天板33は、被検体Pが載置される柔軟性を有する板である。寝台駆動装置34は、寝台30の筐体内に収容される。寝台駆動装置34は、被検体Pが載置された支持フレーム32と天板33とを移動させるための動力を発生するモータ又はアクチュエータである。寝台駆動装置34は、コンソール40等による制御に従い作動する。
The
コンソール40は、メモリ41、ディスプレイ42、入力インターフェース43及び処理回路44を有する。メモリ41とディスプレイ42と入力インターフェース43と処理回路44との間のデータ通信は、バス(BUS)を介して行われる。なお、コンソール40は架台10とは別体として説明するが、架台10にコンソール40又はコンソール40の各構成要素の一部が含まれてもよい。
メモリ41は、種々の情報を記憶するHard Disk Drive(HDD)やSolid State Drive(SSD)、集積回路記憶装置等の記憶装置である。メモリ41は、例えば、投影データや再構成画像データを記憶する。
The
ディスプレイ42は、各種の情報を表示する。例えば、ディスプレイ42は、処理回路44によって生成されたCT画像や、操作者からの各種操作を受け付けるためのGUI(Graphical User Interface)等を出力する。ディスプレイ42としては、種々の任意のディスプレイが、適宜、使用可能となっている。例えばディスプレイ42として、液晶ディスプレイ(Liquid Crystal Display:LCD)、Cathode Ray Tube(CRT)ディスプレイ、有機ELディスプレイ(Organic Electro Luminescence Display:OELD)又はプラズマディスプレイが使用可能である。ディスプレイ42として、プロジェクタが用いられてもよい。
The
入力インターフェース43は、ユーザからの各種の入力操作を受け付け、受け付けた入力操作を電気信号に変換して処理回路44に出力する。具体的には、入力インターフェース43は、マウス、キーボード、トラックボール、スイッチ、ボタン、ジョイスティック、タッチパッド及びタッチパネルディスプレイ等の入力機器に接続されている。また、入力インターフェース43に接続される入力機器は、ネットワーク等を介して接続された他のコンピュータに設けられた入力機器でもよい。入力インターフェース43は、マイクロフォンにより収集された音声信号を指示信号に変換する音声認識装置でもよい。
The input interface 43 receives various input operations from the user, converts the received input operations into electrical signals, and outputs the electrical signals to the
処理回路44は、入力インターフェース43から出力される入力操作の電気信号に応じてX線コンピュータ断層撮影装置1全体の動作を制御する。処理回路44は、制御装置15に対して指令を通知してX線CT撮影を行う。また、処理回路44は、X線検出器12からデータ収集回路18を介して収集した投影データに基づいてCT画像を再構成する。例えば、処理回路44は、ハードウェア資源として、CPU(Central Processing Unit)等のプロセッサを有する。
The
図2は、本実施形態に係るX線高電圧装置14の構例成を示す図である。図2に示すように、X線高電圧装置14は、商用電源51とX線管11とに接続されている。X線高電圧装置14は、商用電源51からの交流電圧を直流高電圧に変換し、X線管11に印加する。具体的には、X線高電圧装置14は、AC/DCコンバータ52、インバータ53、高圧トランス54、整流回路55、コンバータ駆動回路56、インバータ駆動回路57及び制御回路58を有する。
FIG. 2 is a diagram showing a configuration example of the X-ray
AC/DCコンバータ52の入力側は、商用電源51に接続されている。AC/DCコンバータ52は、商用電源51からの交流電圧を直流電圧に変換する。AC/DCコンバータ52の出力側はインバータ53の入力側に接続されている。AC/DCコンバータ52は電圧発生回路の一例である。また、AC/DCコンバータ52と商用電源51とを含めて電圧発生回路と呼ぶこともできる。電圧発生回路は、インバータ53の入力直流電圧を発生する。
The input side of AC/
インバータ53は、AC/DCコンバータ52からの入力直流電圧を出力交流電圧に変換する。インバータ53は、スイッチング素子と共振コンデンサとを含む共振回路を有する。スイッチング素子にインバータ駆動回路57から制御信号が供給されてオンとオフとが切り替えられる。スイッチング素子のオンとオフとの切替により、入力直流電圧が、商用電源51よりも高い周波数の出力交流電圧に変換される。インバータ53は、スイッチング素子に印加される制御信号にスイッチング素子間で位相差を与えることにより、インバータ53の出力交流電圧の電圧値が調整される位相シフト型インバータである。インバータ53の出力側は高圧トランス54の入力側に接続される。
高圧トランス54は、インバータ53からの出力交流電圧を昇圧する。高圧トランス54は、一次コイルと二次コイルと鉄心とを有する。一次コイルは一次巻線で巻かれ、二次コイルは二次巻線で巻かれている。一次コイルの入力側は、インバータ53の出力側に接続されている。一次コイルは、インバータ53からの交流電圧(一次電圧)の印加を受けて電磁誘導の原理により鉄心を介して二次コイルに交流電圧(二次電圧)を誘起する。一次巻線の巻数に対する二次巻線の巻数の比率に応じて一次電圧に対する二次電圧の増幅率が決定される。二次コイルの出力側は整流回路55の入力側に接続されている。
A high-
整流回路55は、高圧トランス54からの出力交流電圧を整流平滑して出力直流電圧に変換する。整流回路55は種々様々な構成が可能である。整流回路55は整流平滑のみを行う回路でもよいし、整流平滑に加え昇圧を行う回路でもよい。整流平滑のみを行う整流回路55としては、例えば、シリコン半導体を用いた高圧ダイオードであるシリコン整流器等が用いられればよい。整流平滑且つ昇圧を行う整流回路55としては、各々が高圧整流コンデンサと高圧ダイオードとを有する複数の回路が任意の方式で接続された多倍昇圧回路等が用いられる。整流回路55の出力側はX線管11に接続されている。整流回路55の出力直流電圧はX線管11に印加される。
The
X線管11は、熱電子を発生する陰極と、陰極から飛翔する熱電子を受けてX線を発生する陽極と、陰極と陽極とを保持する真空管とを含む。X線管11は、高圧ケーブルを介してX線高電圧装置14に接続されている。陰極と陽極との間には、整流回路55からの出力直流電圧が印加される。陰極と陽極との間に印加される電圧は管電圧と呼ばれる。管電圧の印加により陰極から陽極に向けて熱電子が飛翔する。陰極から陽極に向けて熱電子が飛翔することにより管電流が流れる。熱電子が陽極に衝突することによりX線が発生される。
The
コンバータ駆動回路56は、制御回路58からの制御信号に従いAC/DCコンバータ52を駆動してAC/DCコンバータ52の出力直流電圧、換言すれば、インバータ53への入力交流電圧を制御する。
インバータ駆動回路57は、制御回路58からの制御信号に従いインバータ53を駆動してインバータ53の出力交流電圧を制御する。具体的には、インバータ駆動回路57は、インバータ53に含まれる各スイッチング素子に制御信号を供給して各スイッチング素子のONとOFFとを切り替える。この際、インバータ駆動回路57は、各スイッチング素子に供給する制御信号間に位相差を与えて各スイッチング素子に制御信号を供給する。制御信号間の位相差を調整することにより、インバータ53からの出力交流電圧の電圧値が調整される。このようなスイッチング素子に供給する制御信号間の位相差によりインバータ53からの出力交流電圧の電圧値を調整することを位相シフト制御と呼ぶ。
制御回路58は、コンバータ駆動回路56とインバータ駆動回路57とを制御する。制御回路58は、負荷電圧の検出値、インバータ53を流れる電流(以下、インバータ電流と呼ぶ)の検出値、インバータ53への入力直流電圧の検出値、AC/DCコンバータ52への入力交流電流の検出値、AC/DCコンバータ52への入力交流電圧の検出値を取得する。負荷電圧の検出値、インバータ電流の検出値、インバータ53への入力直流電圧の検出値、AC/DCコンバータ52を流れる入力交流電流の検出値、AC/DCコンバータ52への入力交流電圧の検出値は、各々についての検出器により検出される。負荷電圧は、インバータ53により発生された電力の供給先である高圧トランス54、整流回路55及びX線管11に印加されている電圧の総称である。以下の実施形態において負荷電圧はX線管11の管電圧であるとする。
制御回路58は、負荷電圧の検出値、インバータ電流の検出値、インバータ53への入力直流電圧の検出値、AC/DCコンバータ52への入力交流電流の検出値、AC/DCコンバータ52への入力交流電圧の検出値に基づいて、管電圧検出値が管電圧設定値に近づくようにコンバータ駆動回路56とインバータ駆動回路57とを同期的に制御する。具体的には、制御回路58は、管電圧検出値と管電圧設定値とが一致するようにインバータ53への入力直流電圧を調整する。並行して、制御回路58は、インバータ53に含まれるスイッチング素子のONとOFFとの切替に伴い発生するスイッチング損失を低減するためソフトスイッチングを行うようにインバータ駆動回路57を制御する。ソフトスイッチングの効率を高めるため、制御回路58は、インバータ53への入力直流電圧の電圧値が、インバータ53を流れるインバータ電流の電流値とインバータ53に含まれる共振回路の回路定数との乗算値を下回るように、インバータ53への入力直流電圧を制御する。制御回路58は、デジタルフィードバック制御回路等の任意の回路により実現される。
The
次に、ソフトスイッチングの問題点について図3及び図4を参照しながら詳細に説明する。 Next, the problem of soft switching will be described in detail with reference to FIGS. 3 and 4. FIG.
図3は従来動作での高負荷時におけるインバータ53の回路構成に電流及び電圧を示す図であり、図4は従来動作での軽負荷時におけるインバータ53の回路構成に電流及び電圧を示す図である。高負荷時は負荷側に比較的高電圧を印加する場合であり、軽負荷時は負荷側に比較的低電圧を印加する場合である。なお図3及び図4においてAC/DCコンバータ52は簡易的な回路記号により表されている。
3 is a diagram showing the current and voltage in the circuit configuration of the
図3及び図4に示すように、AC/DCコンバータ52とインバータ53との間に直流バスコンデンサCinが設けられている。直流バスコンデンサCinにはAC/DCコンバータ52からの出力直流電圧VDCが印加され、電圧VDCの印加に伴い供給される電荷を蓄える。インバータ53は、例示的に、4個のアームを有する共振回路を有する。各アームは、並列接続されたスイッチング素子S1-S4、ダイオード及び共振コンデンサC1-C4を有する。インバータ53により発生された交流電圧が高圧トランス54により昇圧される。インバータ53の出力側はチョークコイルL1を介して高圧トランス54の入力側に接続されている。チョークコイルL1はインバータ電流の供給を受けてエネルギーを蓄積する。
As shown in FIGS. 3 and 4, a DC bus capacitor C in is provided between the AC/
ソフトスイッチングの方式としては、ゼロ電圧スイッチング(ZVS:Zero Voltage Switching)制御とゼロ電流スイッチング(ZCS:Zero Current Switching)制御とを利用することが可能である。ゼロ電圧スイッチング制御は、スイッチング素子と共振コンデンサとに電荷を出し入れすることで電圧を共振させ、スイッチング素子の電圧が略0となったタイミングでスイッチングを行うことにより、スイッチング損失を低減する。ゼロ電流スイッチング制御は、インバータ電流が略0となるタイミングでスイッチングを行うことにより、スイッチング損失を低減する。以下の説明においては、ゼロ電圧スイッチング制御が用いられるものとする。 Zero voltage switching (ZVS) control and zero current switching (ZCS) control can be used as soft switching methods. Zero-voltage switching control reduces switching loss by causing voltage to resonate by transferring electric charges to and from a switching element and a resonance capacitor, and performing switching when the voltage of the switching element becomes approximately zero. Zero-current switching control reduces switching loss by performing switching at the timing when the inverter current becomes substantially zero. In the following description, it is assumed that zero voltage switching control is used.
制御回路58は、スイッチング素子S1-S4に並列して接続された共振コンデンサC1-S4と、チョークコイルL1との並列共振を利用して、位相シフト制御によるゼロ電圧スイッチング制御を実行するようにインバータ駆動回路57を制御する。ゼロ電圧スイッチング制御では、スイッチング素子S1-S4各々をオンにする直前に設けたデッドタイムの間に、チョークコイルL1に蓄積されたエネルギーを利用して、共振コンデンサC1-S4に充電された電荷を引き抜く。この際、インバータ駆動回路57は、スイッチング素子S1とスイッチング素子S2とについて交互にONとOFFとを繰り返し、スイッチング素子S3とスイッチング素子S4とについて交互にONとOFFとを繰り返す。スイッチング素子S1-S4への制御信号をONにすることによりスイッチング素子S1-S4がONになる。スイッチング素子S1-S4がONに切り替えられるとき、共振コンデンサC1-S4に充電された電荷がチョークコイルL1のエネルギーを利用して放電される。スイッチング素子S1-S4がONに切り替えられるとき、共振コンデンサC1-S4は放電しているため、スイッチング素子S1-S4のコレクタ-エミッタ間電圧はゼロになっている。このため、ゼロ電圧スイッチングが達成される。
The
ゼロ電圧スイッチング制御を実現するための条件式(以下、ZVS条件式と呼ぶ)は、下記の数式により表すことができる。下記の数式中、Liはインバータ53内のチョークコイルL1等のインダクタのインダクタンス値であり、iはインバータ電流の電流値であり、Cはインバータ53に含まれる共振コンデンサの容量、VDCはインバータ53への入力直流電圧値である。ZVS条件式によれば、左辺に示すインダクタに蓄えられるエネルギーが共振コンデンサに蓄えられるエネルギーよりも大きいときにソフトスイッチングが実現される。なお、下記のZVS条件式は、スイッチング素子S3とスイッチング素子S4とを含むアームについての条件式である。スイッチング素子S1とスイッチング素子S2とを含むアームについてのZVS上限式は、下記の数式のC3とC4とをそれぞれC1とC2とに置き換えることにより得られる。
A conditional expression for realizing zero voltage switching control (hereinafter referred to as a ZVS conditional expression) can be expressed by the following formula. In the following formula, Li is the inductance value of the inductor such as the choke coil L1 in the
図5は、負荷電圧(管電圧)とインバータ電流との時間変化を示すグラフである。図5に示すように、負荷電圧は、立ち上がりから管電圧設定値に向けて上昇する。インバータ53からの出力交流電圧のパルス幅は、負荷電圧の立ち上がり時は比較的広いが、負荷電圧が定常状態に近づくにつれて狭くなり、定常状態になるとパルス幅は狭く一定になる。そのため、インバータ電流も負荷電圧の立ち上がりから上昇し、時刻t1にピークを向かえた後、定常状態に近づくにつれて小さくなり、時刻t2にて定常状態になると小さい値に収束する。
FIG. 5 is a graph showing temporal changes in load voltage (tube voltage) and inverter current. As shown in FIG. 5, the load voltage rises toward the tube voltage set value from the start. The pulse width of the output AC voltage from the
図5に示すように、図3に示す高負荷時(充電時)の場合、負荷側に電力を供給するためにインバータ53が動作し、インバータ53のインダクタに流れるインバータ電流の電流値iが大きく、共振コンデンサに電圧を蓄えるだけの十分なエネルギーをインダクタに蓄えることができる。この場合、左辺が右辺よりも大きくなり、ソフトスイッチングが実現される。一方、図4に示す軽負荷時(定常状態)の場合、インダクタに流れるインバータ電流の電流値iが小さく、共振コンデンサに電圧を蓄えるだけの十分なエネルギーをインダクタに蓄えることができない。この場合、左辺が右辺よりも小さくなり、ソフトスイッチングを達成することができない。 As shown in FIG. 5, when the load is high (during charging) shown in FIG. , enough energy can be stored in the inductor to store a voltage on the resonant capacitor. In this case, the left side becomes larger than the right side and soft switching is realized. On the other hand, when the load is light (steady state) shown in FIG. 4, the current value i of the inverter current flowing through the inductor is small, and the inductor cannot store enough energy to store the voltage in the resonant capacitor. In this case, the left side becomes smaller than the right side and soft switching cannot be achieved.
そこで、X線高電圧装置14は、負荷状況に応じてインバータ53への入力直流電圧を制御する。入力直流電圧を制御可能にするため、AC/DCコンバータ52としては、三相コンバータ整流回路が用いられる。
Therefore, the X-ray
図6は、三相コンバータ整流回路によるAC/DCコンバータ52の回路構成例を示す図である。図6に示すように、商用電源51からはU相、V相及びW相からなる三相交流がAC/DCコンバータ52の入力側に供給される。AC/DCコンバータ52は、各相について2対のアームを有する。各アームは、スイッチング素子と当該スイッチング素子S1-S6に逆並列に接続されたダイオードとを有する。3つのアームがブリッジ接続されている。AC/DCコンバータ52の出力側は直流バスコンデンサCinを介してインバータ53の入力側に接続されている。
FIG. 6 is a diagram showing a circuit configuration example of the AC/
AC/DCコンバータ52の出力直流電圧は、3個のアームの出力電圧の合成電圧により決定される。各アームの出力電圧は、一対のスイッチング素子各々のONとOFFとの切替により調整される。各スイッチング素子は、コンバータ駆動回路56からの制御信号の供給を受けてONとOFFとを切り替える。3個のアーム間でスイッチング素子のON時間を調整することにより、AC/DCコンバータ52の出力電圧の電圧値を調整することが可能である。3個のアームの出力電圧の合成電圧である出力直流電圧が直流バスコンデンサCinに印加される。
The output DC voltage of AC/
制御回路58は、直流バスコンデンサCinの直流バス電圧を制御する。具体的には、制御回路58は、インバータ53への入力直流電圧である直流バス電圧Vdcの検出値を取得し、直流バス電圧Vdcの検出値と目標値との差分値に応じた指令信号をコンバータ駆動回路56に供給する。コンバータ駆動回路56は、U相、V相及びW相各々の指令信号に応じて、各スイッチング素子S1-S6への制御信号を生成し、各スイッチング素子S1-S6に供給して各スイッチング素子S1-S6を駆動する。指令信号に応じて各スイッチング素子S1-S6を駆動することにより、直流バス電圧Vdcの検出値と目標値との差分値が大きい場合、直流バスコンデンサCinに印加する入力交流電圧を増大させ、差分値が小さい場合、直流バスコンデンサCinに印加する入力交流電圧を減少させることができる。このようにして、直流バスコンデンサCinの直流バス電圧Vdcを調整することが可能になる。
次に、本実施形態に係るX線高電圧装置14の動作例を実施例1と実施例2とに分けて説明する。
Next, an operation example of the X-ray high-
(実施例1)
図7は本実施形態に係る動作例での高負荷時におけるX線高電圧装置14の回路構成に電流及び電圧を示した図であり、図8は本実施形態に係る動作例での軽負荷時におけるX線高電圧装置14の回路構成に電流及び電圧を示した図である。図9は、本実施形態に係る動作例での負荷電圧、インバータ電流及びインバータ入力電圧の時間変化を示すグラフである。
(Example 1)
FIG. 7 is a diagram showing the current and voltage in the circuit configuration of the X-ray high-
制御回路58は、管電圧検出値が設定値Vsetに一致するように、コンバータ駆動回路56とインバータ駆動回路57とを制御する。並行して制御回路58は、負荷条件に応じて変化するインバータ電流とインバータ53への入力直流電圧である直流バス電圧とを検出し、それらを比較し、最適な直流バス電圧を得るためにコンバータ駆動回路56を制御する。
The
X線高電圧装置14の動作時において制御回路58は、負荷電圧(管電圧)の検出値が設定値Vsetに一致するように、コンバータ駆動回路56とインバータ駆動回路57とを制御する。CT撮像時において制御回路58は、インバータ53により発生された電力の供給先の負荷に印加されている負荷電圧の変化に応じて、軽負荷用制御と高負荷用制御とを切り替える。軽負荷用制御は、入力直流電圧(直流バス電圧)の電圧値が一定になるような入力直流電圧の制御である。高負荷用制御は、入力直流電圧(直流バス電圧)の電圧値が、インバータ53のインバータ電流値と共振回路の回路定数との乗算値を下回るような入力直流電圧の制御である。
During operation of the X-ray
制御回路58は、負荷電圧の検出値をモニタリングし、高負荷であるか軽負荷であるかを判定する。例えば、負荷電圧の検出値が設定値Vsetの80%等の所定割合以上に達する時点t1までは高負荷であると判定され、時点t1後は軽負荷であると判定される。また、制御回路58は、負荷電圧の変化に応じて変化するインバータ電流の検出値をモニタリングし、高負荷であるか軽負荷であるかを判定してもよい。例えば、インバータ電流の検出値がピーク値に到達する時点t1までは高負荷であると判定され、時点t1後は軽負荷であると判定される。なお、ピーク値に到達し且つピーク値に対して所定割合だけ検出値が下降した時点まで高負荷であると判定され、当該時点後は軽負荷であると判定されてもよい。また、ピーク値に到達した時点t1から所定時間が経過した時点まで高負荷であると判定され、当該時点後は軽負荷であると判定されてもよい。
The
高負荷であると判定された場合、制御回路58は、図7及び図9に示すように、インバータ53の入力直流電圧、すなわち、直流バスコンデンサCinの直流バス電圧Vdcが最大値Vmaxとなるようにコンバータ駆動回路56を制御する。より詳細には、制御回路58は、インバータ53への入力直流電圧である直流バス電圧Vdcの検出値を取得し、直流バス電圧Vdcの検出値と目標値Vmaxとの差分値に応じた指令信号をコンバータ駆動回路56に供給する。コンバータ駆動回路56は、U相、V相及びW相各々の指令信号に応じて、各スイッチング素子S1-S6への制御信号を生成して各スイッチング素子S1-S6を駆動する。指令信号に応じた各スイッチング素子S1-S6の駆動により、直流バス電圧Vdcの検出値と目標値Vmaxとの差分値が大きい場合、直流バスコンデンサCinに印加する入力交流電圧を増大させ、差分値が小さい場合、直流バスコンデンサCinに印加する入力交流電圧を減少させることができる。これにより、直流バス電圧Vdcを最大値Vmaxに維持することが可能になる。なお、最大値Vmaxは、管電圧設定値Vsetと管電流設定値との組合せに応じて予め設定される。
When the load is determined to be high, the
軽負荷であると判定された場合、制御回路58は、図8及び図9に示すように、インバータ53の入力電圧(直流バス電圧Vdc)が最大値Vmaxから下がるようにコンバータ駆動回路56を制御する。より詳細には、制御回路58は、インバータ電流の検出値と共振回路の回路定数との乗算値を下回るように、コンバータ駆動回路56を制御して直流バス電圧を制御する。例えば、インバータ電流の検出値と共振回路の回路定数とをZVS条件式に当てはめて左辺よりも右辺が小さくなる直流バス電圧Vdcの目標値を求める。すなわち、直流バス電圧Vdcの目標値は、インバータ電流の検出値とインバータ53内の共振回路の回路定数との乗算値を下回る値に設定される。回路定数は、上記ZVS条件式に示すように、スイッチングに係るスイッチング素子Cの容量とインダクタLiのインダクタンスとを含む。より詳細には、スイッチング素子S3及びS4でのスイッチングに関する最適な直流バス電圧の電圧値は、インバータ電流値iと、(Liのインダクタンス/(スイッチング素子S3に逆並列する共振コンデンサC3の容量とスイッチング素子S4に並列する共振コンデンサC4の容量との和))の平方根との乗算値よりも小さい値に設定される。すなわち、当該乗算値は、最適な直流バス電圧の電圧値の上限である。最適な直流バス電圧の電圧値の下限は、設定管電圧値及び設定管電流値を得ることが可能な直流バス電圧の最小値を下回らない値に設定されればよい。例えば、下限は、ユーザにより入力インターフェース43を介して、上記の範囲内で任意の値に設定されればよい。
When the load is determined to be light, the
直流バス電圧Vdcの目標値は、負荷状態が設定値Vsetに略到達又は近接しているときの直流バス電圧Vstaに設定される。コンバータ駆動回路56は、直流バス電圧Vdcが目標値Vstaに近づくようにAC/DCコンバータ52を駆動する。より詳細には、制御回路58は、インバータ53への入力直流電圧である直流バス電圧Vdcの検出値を取得し、直流バス電圧Vdcの検出値と目標値Vstaとの差分値に応じた指令信号をコンバータ駆動回路56に供給する。コンバータ駆動回路56は、U相、V相及びW相各々の指令信号に応じて、各スイッチング素子S1-S6への制御信号を生成して各スイッチング素子S1-S6を駆動する。指令信号に応じた各スイッチング素子S1-S6の駆動により、直流バス電圧Vdcの検出値と目標値Vstaとの差分値が大きい場合、直流バスコンデンサCinに印加する入力交流電圧を増大させ、差分値が小さい場合、直流バスコンデンサCinに印加する入力交流電圧を減少させることができる。これにより、直流バス電圧Vdcを目標値Vstaに移行することが可能になる。
The target value of the DC bus voltage V dc is set to the DC bus voltage V sta when the load condition substantially reaches or approaches the set value V set .
なお、インバータ53の入力電圧(直流バス電圧Vdc)最大値Vmaxから定常値Vstaに滑らかに移行させる場合、目標値は、最大値Vmaxから定常値Vstaへ徐々に減少するように数段階に分けて設定されてもよい。
When the input voltage (DC bus voltage V dc ) of the
上記の通り、実施例1によれば、負荷状態に応じて、入力直流電圧の電圧値がインバー53タのインバータ電流の電流値と共振回路の回路定数との乗算値を下回るように入力直流電圧(直流バス電圧)を制御する。これにより、負荷電圧が定常状態に達する軽負荷時においても、インダクタに蓄えられるエネルギーが共振コンデンサに蓄えられるエネルギーよりも大きくすることができるので、ソフトスイッチングを実現することが可能になる。
As described above, according to the first embodiment, according to the load state, the input DC voltage is adjusted so that the voltage value of the input DC voltage is lower than the multiplication value of the current value of the inverter current of the
(実施例2)
上記の通り、インバータ53のソフトスイッチングが困難になる条件は、負荷電圧が定常状態に達し、インバータ53のインバータ電流が減少したときである。負荷に印加される電圧の最大値と負荷に流れる最大電流値とは、それぞれ撮像条件の設定管電圧値と設定管電流値とに応じて決まっている。実施例2に係る制御回路58は、各撮像条件時にインバータ53に流れるインバータ電流値を事前データとして保持し、負荷電圧の検出値が設定管電圧値に一致したタイミングでコンバータ駆動回路56を制御し、事前データのインバータ電流値に応じたインバータ53の入力直流電圧(直流バス電圧)に調整する。
(Example 2)
As described above, the condition under which soft switching of the
図10は、撮像条件毎のインバータ電流値のテーブルの一例を示す図である。図に示すように、テーブルは、設定管電圧値[kv]と設定管電流値[mA]との組合せ毎に、インバータ電流の最大電流値「A」を関連付けている。例えば、設定管電圧値xkv且つ設定管電流値amAの組合せについては、インバータ53に流れる最大電流値(1)Aが関連付けられている。最大電流値は、設定管電圧値[kv]及び設定管電流値[mA]のもと負荷が定常状態になったときのインバータ電流値に規定される。テーブルは予め据付時やメンテナンス時等の任意時点において、設定管電圧値[kv]と設定管電流値[mA]との複数の組合せ毎について、インバータ電流の最大電流値を計測することにより生成される。
FIG. 10 is a diagram showing an example of a table of inverter current values for each imaging condition. As shown in the figure, the table associates the maximum current value "A" of the inverter current with each combination of the set tube voltage value [kv] and the set tube current value [mA]. For example, the combination of the set tube voltage value xkv and the set tube current value amA is associated with the maximum current value (1)A flowing through the
CT撮像時において制御回路58は、インバータ電流の検出値をモニタリングする。実施例2において制御回路58は、負荷電圧をモニタリングし、例えば、負荷管電圧値が設定管電圧値よりも低い場合、高負荷であると判定し、負荷管電圧値が設定管電圧値に到達した場合、軽負荷であると判定する。
During CT imaging, the
高負荷であると判定された場合、制御回路58は、実施例1と同様、設定管電圧値に対応する目標値Vmaxの直流バス電圧が直流バスコンデンサに印加されるようにコンバータ駆動回路56を制御してAC/DCコンバータ52を駆動する。
When it is determined that the load is high, the
軽負荷であると判定された場合、制御回路58は、設定管電圧値と設定管電流値とを取得し、設定管電圧値と設定管電流値との組合せを検索キーとしてテーブルを参照して、検索キーに関連付けられた最大電流値を特定する。制御回路58は、特定された最大電流値に応じてコンバータ駆動回路56を制御して、上記テーブルで特定された最大電流値とZVS条件式とで決定される直流バス電圧値になるようにAC/DCコンバータ52を駆動する。
If the load is determined to be light, the
実施例2に係る上記テーブルは、設定管電圧値[kv]と設定管電流値[mA]との組合せ毎に、インバータ電流の最大電流値「A」を関連付けているものとした。しかしながら、上記テーブルは、設定管電圧値[kv]と設定管電流値[mA]との組合せ毎に、直流バス電圧の目標値「V」を関連付けてもよい。目標値「V」は、インバータ電流の電流値と共振回路の回路定数との乗算値を下回る直流バス電圧値に設定される。この場合、制御回路58は、実施例1と同様、コンバータ駆動回路56を制御して、直流バス電圧Vdcが目標値Vstaに近づくようにAC/DCコンバータ52を駆動する。この方法によってもソフトスイッチングを実現することが可能である。
In the above table according to the second embodiment, each combination of the set tube voltage value [kv] and the set tube current value [mA] is associated with the maximum current value "A" of the inverter current. However, in the above table, the target value "V" of the DC bus voltage may be associated with each combination of the set tube voltage value [kv] and the set tube current value [mA]. The target value "V" is set to a DC bus voltage value lower than the product of the current value of the inverter current and the circuit constant of the resonant circuit. In this case,
上記の最大電流値又は直流バス電圧の目標値を関連付けたテーブルは、機械学習モデルや計算式で実現することも可能である。 The table that associates the maximum current value or the target value of the DC bus voltage can also be realized by a machine learning model or a calculation formula.
実施例1及び実施例2においてAC/DCコンバータ52は三相コンバータ整流回路であるとした。しかしながら、AC/DCコンバータ52は、三相コンバータ整流回路に限定されず、出力電圧(インバータ53の入力電圧)を調整可能な回路であれば、昇降圧チョッパ回路など如何なる回路でもよい。
In Examples 1 and 2, the AC/
AC/DCコンバータ52として力率改善回路が用いられてもよい。この場合、AC/DCコンバータ52は、AC/DCコンバータ52への入力交流電圧の電圧検出器と入力交流電流の電流検出器とを有する。制御回路58は、電圧検出器からの入力交流電圧の検出波形と電流検出器からの入力交流電流の検出波形との位相ズレをゼロにするようにコンバータ駆動回路56を介してAC/DCコンバータ52を制御する。これにより、直流バスコンデンサCinにおける容量性負荷が原因で生ずる力率悪化を改善することができる。
A power factor correction circuit may be used as the AC/
以上説明した少なくとも1つの実施形態によれば、スイッチング損失を低減することができる。 According to at least one embodiment described above, switching loss can be reduced.
上記説明において用いた「プロセッサ」という文言は、例えば、CPU、GPU、或いは、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC))、プログラマブル論理デバイス(例えば、単純プログラマブル論理デバイス(Simple Programmable Logic Device:SPLD)、複合プログラマブル論理デバイス(Complex Programmable Logic Device:CPLD)、及びフィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA))等の回路を意味する。プロセッサは記憶回路に保存されたプログラムを読み出し実行することで機能を実現する。なお、記憶回路にプログラムを保存する代わりに、プロセッサの回路内にプログラムを直接組み込むよう構成しても構わない。この場合、プロセッサは回路内に組み込まれたプログラムを読み出し実行することで機能を実現する。また、プログラムを実行するのではなく、論理回路の組合せにより当該プログラムに対応する機能を実現しても良い。なお、本実施形態の各プロセッサは、プロセッサごとに単一の回路として構成される場合に限らず、複数の独立した回路を組み合わせて1つのプロセッサとして構成し、その機能を実現するようにしてもよい。さらに、図1及び図2における複数の構成要素を1つのプロセッサへ統合してその機能を実現するようにしてもよい。 The term "processor" used in the above description includes, for example, CPU, GPU, or Application Specific Integrated Circuit (ASIC)), programmable logic device (for example, Simple Programmable Logic Device : SPLD), Complex Programmable Logic Device (CPLD), and Field Programmable Gate Array (FPGA)). The processor realizes its functions by reading and executing the programs stored in the memory circuit. It should be noted that instead of storing the program in the memory circuit, the program may be directly installed in the circuit of the processor. In this case, the processor implements its functions by reading and executing the program embedded in the circuit. Also, functions corresponding to the program may be realized by combining logic circuits instead of executing the program. Note that each processor of the present embodiment is not limited to being configured as a single circuit for each processor, and may be configured as one processor by combining a plurality of independent circuits to realize its function. good. Furthermore, multiple components in FIGS. 1 and 2 may be integrated into a single processor to implement its functions.
いくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、実施形態同士の組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 While several embodiments have been described, these embodiments are provided by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, changes, and combinations of embodiments can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and spirit of the invention, as well as the scope of the invention described in the claims and equivalents thereof.
11 X線管
14 X線高電圧装置
51 商用電源
52 AC/DCコンバータ
53 インバータ
54 高圧トランス
55 整流回路
56 コンバータ駆動回路
57 インバータ駆動回路
58 制御回路
11
Claims (9)
前記インバータへの入力直流電圧を発生する電圧発生回路と、
前記入力直流電圧の電圧値が前記インバータのインバータ電流の電流値と前記共振回路の回路定数との乗算値を下回るように前記入力直流電圧を制御する制御回路と、
を具備するX線高電圧装置。 an inverter having a resonant circuit including a switching element and a resonant capacitor;
a voltage generation circuit that generates an input DC voltage to the inverter;
a control circuit for controlling the input DC voltage so that the voltage value of the input DC voltage is lower than the multiplication value of the inverter current value of the inverter and the circuit constant of the resonance circuit;
An X-ray high voltage device comprising:
前記制御回路は、前記直流バス電圧を制御する、
請求項1記載のX線高電圧装置。 The voltage generation circuit generates, as the input DC voltage, a DC bus voltage to be applied to a DC bus capacitor provided between the voltage generation circuit and the inverter,
wherein the control circuit controls the DC bus voltage;
An X-ray high voltage apparatus according to claim 1.
複数の前記スイッチング素子各々に並列して前記共振コンデンサが設けられる、
請求項1記載のX線高電圧装置。 the inverter includes a plurality of the switching elements and a plurality of the resonance capacitors,
The resonance capacitor is provided in parallel with each of the plurality of switching elements,
An X-ray high voltage apparatus according to claim 1.
前記制御回路は、検出負荷電圧値と設定負荷電流値との組合せに対応する電流目標値に応じて前記電圧発生回路を制御する、
請求項1記載のX線高電圧装置。 further comprising a storage unit that stores a target current value flowing through the inverter for each combination of the load voltage value and the load current value;
The control circuit controls the voltage generation circuit according to a current target value corresponding to a combination of a detected load voltage value and a set load current value.
An X-ray high voltage apparatus according to claim 1.
前記X線管に高電圧を印加するX線高電圧装置と、
前記X線管から発生され被検体を透過したX線を検出するX線検出器と、
前記X線検出器からの出力信号に基づいて前記被検体に関するX線画像を生成する画像生成部と、を具備し、
前記X線高電圧装置は、
スイッチング素子と共振コンデンサとを含む共振回路を有するインバータと、
前記インバータへの入力直流電圧を発生する電圧発生回路と、
前記入力直流電圧の電圧値が前記インバータのインバータ電流の電流値と前記共振回路の回路定数との乗算値を下回るように前記入力直流電圧を制御する制御回路と、を備える、
X線撮像装置。 an X-ray tube for generating X-rays;
an X-ray high voltage device that applies a high voltage to the X-ray tube;
an X-ray detector for detecting X-rays generated from the X-ray tube and transmitted through a subject;
an image generator that generates an X-ray image of the subject based on an output signal from the X-ray detector;
The X-ray high voltage device is
an inverter having a resonant circuit including a switching element and a resonant capacitor;
a voltage generation circuit that generates an input DC voltage to the inverter;
a control circuit that controls the input DC voltage so that the voltage value of the input DC voltage is lower than the multiplication value of the inverter current value of the inverter and the circuit constant of the resonance circuit;
X-ray imaging device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021012161A JP2022115528A (en) | 2021-01-28 | 2021-01-28 | X-ray high voltage device and X-ray imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021012161A JP2022115528A (en) | 2021-01-28 | 2021-01-28 | X-ray high voltage device and X-ray imaging device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022115528A true JP2022115528A (en) | 2022-08-09 |
Family
ID=82747591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021012161A Pending JP2022115528A (en) | 2021-01-28 | 2021-01-28 | X-ray high voltage device and X-ray imaging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022115528A (en) |
-
2021
- 2021-01-28 JP JP2021012161A patent/JP2022115528A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9084335B2 (en) | High frequency power distribution unit for a CT system | |
US5602897A (en) | High-voltage power supply for x-ray tubes | |
JP2004103345A (en) | X-ray generating device and x-ray ct device using the same | |
JPWO2010053108A1 (en) | Phase shift type inverter circuit, X-ray high voltage apparatus, X-ray CT apparatus, and X-ray imaging apparatus using the same | |
JP2018023236A (en) | High-voltage generator and x-ray image diagnostic apparatus equipped with the same | |
JP2012040206A (en) | Medical diagnostic imaging device and tabletop movement unit | |
JP5570746B2 (en) | X-ray computed tomography system | |
JP2022115528A (en) | X-ray high voltage device and X-ray imaging device | |
JP6463913B2 (en) | High voltage equipment | |
JP7166789B2 (en) | X-ray diagnostic system and anode rotating coil drive | |
JP5685449B2 (en) | X-ray high voltage apparatus and X-ray CT apparatus | |
JP6479438B2 (en) | X-ray high voltage apparatus, X-ray computed tomography apparatus, and X-ray diagnostic apparatus | |
JP6139262B2 (en) | X-ray high voltage device | |
JP5089834B2 (en) | X-ray generator and X-ray CT apparatus using the same | |
JP2002034967A (en) | X-ray ct apparatus | |
JP5944665B2 (en) | Medical diagnostic equipment | |
EP2951915A1 (en) | Wide power range resonant coverter | |
JP6162108B2 (en) | Power conversion apparatus and X-ray imaging apparatus | |
EP1298780B1 (en) | X-ray generator and x-ray ct apparatus comprising the same | |
JP7034628B2 (en) | X-ray high voltage device and X-ray diagnostic imaging device | |
JP2025040857A (en) | X-ray CT apparatus, X-ray diagnostic apparatus, and method for controlling the X-ray diagnostic apparatus | |
JP5637697B2 (en) | X-ray high voltage apparatus, X-ray apparatus, and X-ray diagnostic apparatus using the same | |
JP6490911B2 (en) | X-ray computed tomography apparatus, X-ray high voltage apparatus, tube voltage generation method, and tube voltage generation program | |
JP6172923B2 (en) | X-ray diagnostic imaging equipment | |
JP5660763B2 (en) | X-ray CT system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20230106 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231218 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240731 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240806 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20241007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20241029 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20250106 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20250218 |