[go: up one dir, main page]

JP2022089651A - 光検出装置および測距装置 - Google Patents

光検出装置および測距装置 Download PDF

Info

Publication number
JP2022089651A
JP2022089651A JP2020202216A JP2020202216A JP2022089651A JP 2022089651 A JP2022089651 A JP 2022089651A JP 2020202216 A JP2020202216 A JP 2020202216A JP 2020202216 A JP2020202216 A JP 2020202216A JP 2022089651 A JP2022089651 A JP 2022089651A
Authority
JP
Japan
Prior art keywords
light receiving
semiconductor substrate
photodetector
semiconductor
receiving portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020202216A
Other languages
English (en)
Inventor
淳貴 鈴木
Junki Suzuki
悠介 大竹
Yusuke Otake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Semiconductor Solutions Corp
Original Assignee
Sony Semiconductor Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Semiconductor Solutions Corp filed Critical Sony Semiconductor Solutions Corp
Priority to JP2020202216A priority Critical patent/JP2022089651A/ja
Priority to CN202180080131.3A priority patent/CN116568991A/zh
Priority to PCT/JP2021/041707 priority patent/WO2022118635A1/ja
Publication of JP2022089651A publication Critical patent/JP2022089651A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F30/00Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
    • H10F30/20Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
    • H10F30/21Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
    • H10F30/22Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
    • H10F30/225Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/10Integrated devices
    • H10F39/12Image sensors

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

【課題】暗電流の発生を低減することが可能な光検出装置および測距装置を提供する。【解決手段】光検出装置1は、対向する第1の面11S1および第2の面11S2を有すると共に、複数の画素Pがアレイ状に配置された画素アレイ部を有する半導体基板21と、画素P毎に半導体基板21の第1の面側11S1に埋め込み形成され、受光量に応じたキャリアを光電変換により生成すると共に、半導体基板21よりもバンドギャップが狭い半導体からなる受光部13と、半導体基板21の第1の面11S1と略同一面を形成する受光部13の表面近傍に設けられ、受光部13において生成されたキャリアをアバランシェ増倍すると共に、半導体基板21よりもバンドギャップが狭い半導体からなる増倍部14とを備える。【選択図】図1

Description

本開示は、例えば、アバランシェフォトダイオードを用いた光検出装置およびこれを備えた測距装置に関する。
例えば、特許文献1では、画素毎にアバランシェフォトダイオードが設けられ、アバランシェフォトダイオードの周囲を囲う半導体領域を設けることにより隣り合う画素間を分離する光検出器が開示されている。
国際公開第2018/074530号
ところで、測距装置を構成する光検出装置では、暗電流の発生の低減が求められている。
暗電流の発生を低減することが可能な光検出装置および測距装置を提供することが望ましい。
本開示の一実施形態の光検出装置は、対向する第1の面および第2の面を有すると共に、複数の画素がアレイ状に配置された画素アレイ部を有する半導体基板と、画素毎に半導体基板の第1の面側に埋め込み形成され、受光量に応じたキャリアを光電変換により生成すると共に、半導体基板よりもバンドギャップが狭い半導体からなる受光部と、半導体基板の第1の面と略同一面を形成する受光部の表面近傍に設けられ、受光部において生成されたキャリアをアバランシェ増倍すると共に、半導体基板よりもバンドギャップが狭い半導体からなる増倍部とを備えたものである。
本開示の一実施形態の測距装置は、光学系と、光検出装置と、光検出装置の出力信号から測定対象物までの距離を算出する信号処理回路とを備えたものであり、光検出装置として、上記本開示の一実施形態の光検出装置を有する。
本開示の一実施形態の光検出装置および一実施形態の測距装置では、対向する第1の面および第2の面を有する半導体基板の第1の面側に埋め込み形成された受光部と、半導体基板の第1の面と略同一面を形成する受光部の表面近傍に設けられた増倍部とを、それぞれ半導体基板よりもバンドギャップが狭い半導体を用いて形成することにより、受光部と増倍部との界面における格子不整合を緩和する。
本開示の実施の形態に係る光検出装置の構成の一例を表す断面模式図である。 図1に示した光検出装置の画素アレイ部の構成の一例を表す平面模式図である。 図1に示した光検出装置の概略構成の一例を表すブロック図である。 図1に示した光検出装置の単位画素の等価回路図の一例である。 図1に示した光検出装置の単位画素の平面構成の他の例を表す平面模式図である。 図1に示した光検出装置の単位画素の平面構成の他の例を表す平面模式図である。 図1に示した光検出装置の単位画素の平面構成の他の例を表す平面模式図である。 本開示の変形例1に係る光検出装置の構成の一例を表す断面模式図である。 本開示の変形例1に係る光検出装置の構成の他の例を表す断面模式図である。 本開示の変形例1に係る光検出装置の構成の他の例を表す断面模式図である。 本開示の変形例2に係る光検出装置の構成の一例を表す断面模式図である。 本開示の変形例3に係る光検出装置の構成の一例を表す断面模式図である。 本開示の変形例4に係る光検出装置の構成の一例を表す断面模式図である。 本開示の変形例5に係る光検出装置の構成の一例を表す断面模式図である。 本開示の変形例6に係る光検出装置の構成の一例を表す断面模式図である。 本開示の変形例6に係る光検出装置の構成の他の例を表す断面模式図である。 本開示の変形例7に係る光検出装置の構成の一例を表す断面模式図である。 本開示の変形例8に係る光検出装置の構成の一例を表す断面模式図である。 本開示の変形例9に係る光検出装置の構成の一例を表す断面模式図である。 本開示の変形例10に係る光検出装置の構成の一例を表す断面模式図である。 本開示の変形例10に係る光検出装置の構成の他の例を表す断面模式図である。 図1等に示した光検出装置を用いた電子機器の一例を表す機能ブロック図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。
以下、本開示における実施の形態について、図面を参照して詳細に説明する。以下の説明は本開示の一具体例であって、本開示は以下の態様に限定されるものではない。また、本開示は、各図に示す各構成要素の配置や寸法、寸法比等についても、それらに限定されるものではない。なお、説明する順序は、下記の通りである。
1.実施の形態(受光部および増倍部がSi基板よりもバンドギャップが狭い材料によけ形成された光検出装置)
1-1.光検出装置の構成
1-2.光検出装置の製造方法
1-3.作用・効果
2.変形例
2-1.変形例1(受光部の外縁にn型拡散領域を設けた例)
2-2.変形例2(増倍部の周囲にガードリングを設けた例)
2-3.変形例3(受光部上および増倍部上にそれぞれコンタクト電極を設けた例)
2-4.変形例4(受光部上に増倍部を設けた例)
2-5.変形例5(増倍部の側面を傾斜面とした例)
2-6.変形例6(増倍部を小さくした例)
2-7.変形例7(半導体基板と受光部との間にバッファ層を設けた例)
2-8.変形例8(多層配線層の受光素子と対向する位置に光反射層を設けた例)
2-9.変形例9(半導体基板の光入射面に凹凸構造を設けた例)
2-10.変形例10(画素分離部の構成の他の例)
3.適用例
4.応用例
<1.実施の形態>
図1は、本開示の一実施の形態に係る光検出装置(光検出装置1)の断面構成の一例を模式的に表したものである。図2は、図1に示した光検出装置1の画素アレイ部100Aの平面構成の一例を模式的に表したものである。図3は、図1に示した光検出装置1の概略構成を表したブロック図であり、図4は、図1に示した光検出装置1の単位画素Pの等価回路の一例を表したものである。光検出装置1は、例えば、ToF(Time-of-Flight)法により距離計測を行う距離画像センサ(後述の距離画像装置1000、図20参照)やイメージセンサ等に適用されるものである。
(1-1.光検出装置の構成)
光検出装置1は、例えば、複数の単位画素Pが行方向および列方向にアレイ状に配置された画素アレイ部100Aを有している。光検出装置1は、図3に示したように、画素アレイ部100Aと共にバイアス電圧印加部110を有している。バイアス電圧印加部110は、画素アレイ部100Aの単位画素P毎にバイアス電圧を印加するものである。本実施の形態では、正孔を信号電荷として読み出す場合について説明する。
単位画素Pは、図4に示したように、例えば、受光素子12と、インバータ120と、N型MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)130,140と、P型MOSFET150と、バッファ回路160とを有している。
受光素子12は、入射された光を光電変換により電気信号に変換して出力する。付帯的には、受光素子12は、入射された光(フォトン)を光電変換により電気信号に変換し、フォトンの入射に応じたパルスを出力する。受光素子12は、例えばSPAD素子であり、SPAD素子は、例えば、カソードにアバランシェ増倍が発生する大きな正電圧が印加されると、1フォトンの入射に応じて発生した電子がアバランシェ増倍を生じ、大電流が流れる特性を有している。受光素子12は、例えば、カソードが受光素子12の降伏電圧に対応する電圧Vopの電源に接続され、アノードが電流源となるN型MOSFET130に接続されている。
N型MOSFET130のソースは、接地電位GNDに接続されている。ここで、電圧Vopは、受光素子12の降伏電圧である電圧Vbdに、過剰バイアス電圧Veを加算した電圧である。N型MOSFET130のゲートには、基準電圧Vrefが入力される。N型MOSFET130は、接地電位GNDおよび基準電圧Vrefに応じた電流をドレインから出力する電流源である。
受光素子12のアノードはN型MOSFET130のドレインと接続されており、その接続点から取り出された電圧Vanが、インバータ120に入力される。インバータ120は、入力された電圧Vanに対して例えば判定を行い、当該電圧Vanが閾値電圧Vthを正方向または負方向に超える毎に反転する信号Vinvを出力する。インバータ120から出力された信号Vinvは、例えばバッファ回路160を介して、信号Vplsとして出力される。
受光素子12のアノードとN型MOSFET130のドレインとが接続される接続点は、さらに、N型MOSFET140のドレインと、P型MOSFET150のドレインとが接続されている。P型MOSFET150はソースが過剰バイアス電圧Veに対応する電源電圧VDDに接続され、ゲートに信号STBYが入力される。信号STBYがロー状態でP型MOSFET150のソース-ドレイン間がオン状態となり、受光素子12のアノードの電圧Vanが強制的に電圧VDDとされる。これにより、受光素子12のカソード-アノード間の電圧VCTH-ANが電圧Vbdとされる。
N型MOSFET140のソースは接地電位GNDに接続されている。N型MOSFET140のゲートには、インバータ120から出力された信号Vinvが制御信号Vctrlとして入力される。N型MOSFET140は、信号Vinv、即ち、制御信号Vctrlがハイ状態でオン状態となり、受光素子12のアノードを接地電位GNDに接続する。
光検出装置1は、例えば、センサ基板10の表面側(例えば、センサ基板10を構成する半導体基板11の表面(第1面11S1)側)にロジック基板20が積層され、センサ基板10の裏面側(例えば、センサ基板10を構成する半導体基板11の裏面(第2面11S2))から光を受光する、所謂裏面照射型の光検出装置である。本実施の形態の光検出装置1は、半導体基板11の第1面11S1側に受光素子12を構成する受光部13が埋め込み形成され、受光部13の表面13S1近傍、具体的には、受光部13内部の表面13S1に、受光部13と共に受光素子12を構成する増倍部14が形成され、それぞれが半導体基板11よりもバンドギャップが狭い半導体を用いて形成されたものである。
センサ基板10は、例えば、シリコン基板で構成された半導体基板11と、多層配線層18とを有している。半導体基板11は、対向する第1面11S1および第2面11S2を有し、第1面11S1に受光素子12が単位画素P毎に埋め込み形成されている。
受光素子12は、上述したように、高電界領域によりキャリアをアバランシェ増倍させる増倍領域(アバランシェ増倍領域)を有するものであり、例えば、カソードに大きな正電圧を印加することによってアバランシェ増倍領域(空乏層)を形成し、1フォトンの入射で発生する電子をアバランシェ増倍させることが可能なSPAD素子である。
受光素子12は、例えば、受光部13と、増倍部14とを有している。受光部13および増倍部14は、それぞれ、上記のように半導体基板11よりもバンドギャップが狭い半導体によって形成されている。具体的には、受光部13および増倍部14は、ゲルマニウム(Ge)またはシリコン(Si)とゲルマニウム(Ge)との化合物半導体(例えば、シリコンゲルマニウム(SiGe))を用いて形成されている。
受光部13は、半導体基板11の第2面11S2側から入射した光を吸収し、その受光量に応じたキャリアを生成する光電変換機能を有するものである。受光部13は、例えば半導体基板11の第1面11S1側に埋め込み形成され、その表面13S1は、例えば半導体基板11の第1面11S1を略同一面を形成している。受光部13は、例えば、不純物濃度がn型に制御されたn型半導体領域(n)131によって構成されている。受光部13において生成されたキャリア(電子)は、ポテンシャル勾配によって増倍部14へ転送される。
増倍部14は、受光部13において生成されたキャリア(電子)をアバランシェ増倍する。増倍部14は、例えば、受光部13の表面13S1近傍に設けられた、例えば、不純物濃度がp型に制御されたp型半導体領域(p)141によって構成されている。
受光部13の表面13S1には、さらに、カソードと電気的に接続されるn型コンタクト電極15が設けられている。n型コンタクト電極15は、例えば、n型半導体領域131よりも不純物濃度の高いn型半導体領域(n++)151によって構成されており、例えば、平面視において、所定の間隔を空けて増倍部14の周囲に連続して形成されている。増倍部14の表面14S1には、アノードと電気的に接続されるp型コンタクト電極16が設けられている。p型コンタクト電極16は、例えば、p型半導体領域141よりも不純物濃度の高いp型半導体領域(p++)161によって構成されており、例えば、平面視において、増倍部14の略中央に形成されている。
受光素子12では、受光部13を構成するn型半導体領域131と、増倍部14を構成するp型半導体領域141との接合部にアバランシェ増倍領域12Xが形成される。アバランシェ増倍領域12Xは、カソードに印加される大きな正電圧によってn型半導体領域131およびp型半導体領域141の境界面に形成される高電界領域(空乏層)である。アバランシェ増倍領域12Xでは、受光素子12に入射する1フォトンで発生する電子(e)が増倍される。
なお、図2では、略矩形状の平面形状を有する受光部13の内側に、同様に略矩形状の増倍部14およびp型コンタクト電極16、同様に略矩形状の外径を有する枠状のn型コンタクト電極15を増倍部14の周囲に設けた例を示したが、増倍部14、n型コンタクト電極15およびp型コンタクト電極16の形状はこれに限定されるものではない。例えば、増倍部14およびp型コンタクト電極16は、図5Aに示したように矩形以外の多角形状を有していてもよい。特に画素サイズが小さい場合には、横方向(例えば、XY平面方向)のエッジ電界緩和の観点から、図5Bに示したように、増倍部14およびp型コンタクト電極16は円形状とすることが好ましい。更に、画素サイズが小さい場合には、図5Cに示したように、n型コンタクト電極15を受光部13の四隅に断続的に設けるようにしてもよい。これにより、増倍部14以外の領域での意図しないブレイクダウンが低減される。
半導体基板11には、さらに、画素分離部17が設けられている。画素分離部17は、隣り合う単位画素Pの間を電気的および/または光学的に分離するものであり、例えば画素アレイ部100Aに格子状に設けられている。画素分離部17は、例えば、半導体基板11の第1面11S1と第2面11S2との間を延伸する遮光膜17Aと、遮光膜17Aと半導体基板11との間に設けられた絶縁膜17Bとから構成されている。遮光膜17Aは、例えば、遮光性を有する導電材料を用いて形成されている。このような材料としては、例えば、タングステン(W)、銀(Ag)、銅(Cu)、アルミニウム(Al)またはAlと銅(Cu)との合金等が挙げられる。絶縁膜17Bは、例えば、シリコン酸化(SiO)膜等を用いて形成されている。
半導体基板11の光入射面(第2面11S2)とは反対側の第1面11S1に多層配線層18が設けられている。多層配線層18では、1または複数の配線からなる配線層181,182が層間絶縁層183を間に積層されている。配線層181,182は、例えば、半導体基板11や受光素子12に印加する電圧を供給したり、受光素子12において発生したキャリアを取り出すためのものである。配線層181と配線層182とはビアV2を介して電気的に接続されており、配線層181の一部の配線はさらにビアV1を介してn型コンタクト電極15やp型コンタクト電極16と電気的に接続されている。層間絶縁層183の、半導体基板11側とは反対側の表面(多層配線層18の表面18S1)には、複数のパッド電極184が埋め込まれている。複数のパッド電極184は、配線層182の一部の配線とビアV3を介して電気的に接続されている。なお、図1では、多層配線層18内に2つの配線層181,182が形成されている例を示したが、多層配線層18内の配線層の総数は限定されず、単層でもよいし、あるいは3層以上の配線層が形成されていてもよい。
層間絶縁層183は、例えば、酸化シリコン(SiO)、TEOS、窒化シリコン(SiN)および酸窒化シリコン(SiO)等のうちの1種よりなる単層膜、あるいはこれらのうちの2種以上よりなる積層膜により構成されている。
配線層181,182は、例えば、アルミニウム(Al)、銅(Cu)またはタングステン(W)等を用いて形成されている。
パッド電極184は、ロジック基板20との接合面(多層配線層18の表面18S1)に露出しており、例えば、ロジック基板20との接続に用いられるものである。パッド電極184は、例えば、銅(Cu)を用いて形成されている。
ロジック基板20は、例えば、シリコン基板で構成された半導体基板21と、多層配線層22とを有している。ロジック基板20には、例えば、上述したバイアス電圧印加部110や、例えば単位画素P毎に設けられるインバータ120、N型MOSトFET130,140、P型MOSFET150およびバッファ回路160等が設けられている。
多層配線層22は、インバータ120、N型MOSトFET130,140、P型MOSFET150およびバッファ回路160を構成するトランジスタのゲート配線221と、1または複数の配線を含む配線層222,223,224,225とが層間絶縁層226を間に、半導体基板21側から順に積層されている。層間絶縁層226の、半導体基板21側とは反対側の表面(多層配線層22の表面22S1)には、複数のパッド電極227が埋め込まれている。複数のパッド電極227は、配線層225の一部の配線とビアV4を介してと電気的に接続されている。
層間絶縁層117は、層間絶縁層183と同様に、例えば、酸化シリコン(SiO)、TEOS、窒化シリコン(SiN)および酸窒化シリコン(SiO)等のうちの1種よりなる単層膜、あるいはこれらのうちの2種以上よりなる積層膜により構成されている。
ゲート配線221および配線層222,223,224,225は、配線層181,182と同様に、例えば、アルミニウム(Al)、銅(Cu)またはタングステン(W)等を用いて形成されている。
パッド電極227は、センサ基板10との接合面(多層配線層22の表面22S1)に露出しており、例えば、センサ基板10との接続に用いられるものである。パッド電極227は、パッド電極184と同様に、例えば、銅(Cu)を用いて形成されている。
光検出装置1では、パッド電極184とパッド電極227との間で、例えばCuCu接合がなされている。これにより、受光素子12のカソードは、ロジック基板20側に設けられた受光素子12の降伏電圧に対応する電圧Vopの電源と電気的に接続され、受光素子12のアノードは、ロジック基板20側に設けられた電流源となるN型MOSFET130と電気的に接続される。
半導体基板11の光入射面(第2面11S2)側には、例えば、パッシベーション膜(図示せず)を介してマイクロレンズ31が、例えば単位画素P毎に設けられている。また、隣り合うマイクロレンズ31の間には、遮光部32が設けられている。
マイクロレンズ31は、その上方から入射した光を受光素子12へ集光させるものであり、例えば、酸化シリコン(SiO)等を用いて形成されている。
遮光部32は、隣接画素間における斜入射光のクロストークを抑えるものである。遮光部32は、例えば、画素アレイ部100Aにおいて隣り合う単位画素Pの間に設けられ、例えば、画素分離部17と同様に、画素アレイ部100Aに格子状に設けられている。遮光部32は、遮光膜17Aと同様に、遮光性を有する導電材料を用いて形成されている。具体的には、タングステン(W)、銀(Ag)、銅(Cu)、アルミニウム(Al)またはAlと銅(Cu)との合金等を用いて形成されている。
(1-2.光検出装置の製造方法)
光検出装置1は、例えば、次のようにして製造することができる。まず、シリコン基板からなる半導体基板11の第1面11S1に、単位画素P毎に所定の深さを有する開口を形成する。この際、例えば、シリコン基板としてSOI基板等の材質が異なる2層以上の半導体基板を用いることにより、層内のSiO層がストッパとなって開口の深さを制御することができる。続いて、例えば有機金属気相成長(Metal Organic Chemical Vapor Deposition :MOCVD)法等のエピタキシャル結晶成長法により、開口内に、例えば、ゲルマニウム(Ge)またはシリコンゲルマニウム(SiGe)からなる半導体層を形成する。次に、例えばCMP(Chemical Mechanical Polishing)により、半導体層の表面を平坦化した後、イオン注入により、半導体層にp型またはn型の不純物濃度を制御し、n型半導体領域131(受光部13),151(n型コンタクト電極)およびp型半導体領域141(増倍部14),161(p型コンタクト電極16)を形成する。
続いて、半導体基板11の第1面11S1に、例えば、酸化シリコン(SiO)等の酸化膜または(SiN)等の窒化膜をハードマスクとしてパターニングした後、エッチングにより、例えば半導体基板11を貫通する貫通孔を形成する。次に、貫通孔内に、例えばCVD(Chemical Vapor Deposition)法、PVD(Physical Vapor Deposition)法、ALD(Atomic Layer Deposition)法または蒸着法等により絶縁膜17Bおよび遮光膜17Aを順に成膜する。続いて、例えばCMPにより、ハードマスクをストッパとして半導体基板11の第1面11S1に成膜された遮光膜17Aおよび絶縁膜17Bを除去した後、半導体基板11の第1面11S1上に多層配線層18を形成する。その後、別途作成したロジック基板20を貼り合わせる。このとき、多層配線層18の接合面(表面18S1)に露出した複数のパッド電極184と、ロジック基板20側の多層配線層22の接合面(表面22S)に露出した複数のパッド部217とがCuCu接合される。続いて、半導体基板11の第2面11S2を、例えばCMPにより研磨した後、パッシベーション膜、遮光部32およびマイクロレンズ31を順に形成する。これにより、図1に示した光検出装置1が完成する。
(1-3.作用・効果)
本実施の形態の光検出装置1は、半導体基板11の第1面11S1側に埋め込み形成された受光部13と、半導体基板11の第1面11S1と略同一面を形成する受光部13の表面13S1に設けられた増倍部14とを、それぞれ半導体基板11よりもバンドギャップが狭い半導体(例えば、ゲルマニウム(Ge)またはシリコン(Si)とゲルマニウム(Ge)との化合物半導体)を用いて形成し、受光部13と増倍部14との界面における格子不整合を緩和した。以下、これについて説明する。
近年、光検出装置として、ToF法により距離計測を行う距離画像センサが注目されている。距離画像センサは、複数の画素が行列状に配置された画素アレイ部を備えており、画素の寸法や画素構造によってデバイス全体の効率が決まる。
ところで、アバランシェフォトダイオード素子を単位画素P毎に有する光検出装置において近赤外光に対する高度を向上させる方法としては、アバランシェ領域が形成される半導体層の厚さを厚くすることが考えられる。しかしながら、半導体層を厚くすると、タイミングジッタ特性が劣化する虞がある。
上記光検出装置において近赤外光に対する高度を向上させる他の方法としては、バンドギャップの狭い半導体を用いて受光部を形成することが考えられる。例えば、受光部を低バンドギャップ半導体である、例えばゲルマニウム(Ge)を用いて形成し、シリコン基板との接合部にアバランシェ増倍領域を形成する。しかしながら、ヘテロ接合部にアバランシェ増倍領域を形成した場合、格子不整合によって接合界面に暗電流が増加する虞がある。
これに対して、本実施の形態では、半導体基板11の第1面11S1側に埋め込み形成される受光部13および増倍部14を、半導体基板11よりもバンドギャップが狭い半導体(例えば、ゲルマニウム(Ge)またはシリコン(Si)とゲルマニウム(Ge)との化合物半導体)を用いて形成するようにした。これにより、受光部13と増倍部14との界面における格子不整合が緩和される。
以上により、本実施の形態の光検出装置1では、受光部13および増倍部14を共に、半導体基板11よりもバンドギャップが狭い、例えば、ゲルマニウム(Ge)またはシリコン(Si)とゲルマニウム(Ge)との化合物半導体を用いて形成するようにしたので、受光部13と増倍部14との界面における暗電流の発生を低減することが可能となる。
また、本実施の形態の光検出装置1では、受光部13および増倍部14からなる受光素子12を、低バンドギャップ半導体であるゲルマニウム(Ge)やシリコン(Si)とゲルマニウム(Ge)との化合物半導体(例えば、シリコンゲルマニウム(SiGe))を用いて形成するようにしたので、シリコン(Si)を用いた場合と比較して、近赤外光に対する感度が向上する分、受光部13の厚みを削減することができる。よって、タイミングジッタ特性を改善することが可能となる。
次に、本開示の変形例1~10ならびに適用例および応用例について説明する。以下では、上記実施の形態と同様の構成要素については同一の符号を付し、適宜その説明を省略する。
<2.変形例>
(2-1.変形例1)
図6は、本開示の変形例1に係る光検出装置(光検出装置1A)の断面構成の一例を模式的に表したものである。光検出装置1Aは、例えば上記実施の形態と同様に、ToF法により距離計測を行う距離画像センサ(距離画像装置1000)やイメージセンサ等に適用されるものである。本変形例の光検出装置1Aは、受光部13の半導体基板11近傍にn型半導体領域131よりも不純物濃度の高いn型半導体領域(n)132を設けた点が、上記実施の形態とは異なる。このn型半導体領域132が、本開示の「第3半導体領域」の一具体例に相当する。
光検出装置1Aでは、n型半導体領域131よりも不純物濃度の高いn型半導体領域132は、上記のように、受光部13の半導体基板11近傍、具体的には、受光部13の周縁部に設けられている。本変形例では、カソードに接続されるn型コンタクト電極15は、このn型半導体領域132に形成されている。
これにより、半導体基板11近傍、即ち、受光部13の側面部および増倍部14とは反対側の底面部に選択的にカソード電位を印加できるようになり、受光部13の周縁部と、受光部13の表面13S1の平面視において略中央に形成された増倍部14との間にポテンシャル勾配が形成される。よって、光電変換によって受光部13に生成されたキャリア(電子)を効率よく増倍部14へ転送することが可能となる。よって、上記実施の形態の効果に加えて、タイミングジッタ特性をさらに改善することが可能となる。
なお、本変形例では、図6に示したように、n型半導体領域131よりも不純物濃度の高く、且つ、均質な不純物濃度を有するn型半導体領域132を受光部13の半導体基板11近傍に設けた例を示したが、受光部13の半導体基板11近傍には、異なる不純物濃度または異なる不純物種を有するn型半導体領域を形成するようにしてもよい。
具体的には、例えば、図7に示したように、受光部13の側面部にn型半導体領域131よりも不純物濃度の高いn型半導体領域(n)132を形成し、受光部13の底面部にn型半導体領域132よりもさらに不純物濃度の高いn型半導体領域(n++)133を設けるようにしてもよい。このように、受光部13の底面部にさらに不純物濃度の高いn型半導体領域133を設けることにより、光電変換によって受光部13に生成されたキャリア(電子)をさらに効率よく増倍部14へ転送することが可能となる。
更に、n型半導体領域132によって、または、n型半導体領域132とn型半導体領域133とによって囲まれるn型半導体領域131には、例えば、図8に示したように、半導体基板11の第2面11S2側から第1面11S1に向かって不純物濃度が連続または段階的に低下する不純物濃度勾配を形成するようにしてもよい。これによっても、光電変換によって受光部13に生成されたキャリアを効率よく増倍部14へ転送することが可能となる。
(2-2.変形例2)
図9は、本開示の変形例2に係る光検出装置(光検出装置1B)の断面構成の一例を模式的に表したものである。光検出装置1Bは、例えば上記実施の形態と同様に、ToF法により距離計測を行う距離画像センサ(距離画像装置1000)やイメージセンサ等に適用されるものである。本変形例の光検出装置1Bは、平面視において、増倍部14を構成するp型半導体領域141の周囲にp型半導体領域141よりも不純物濃度の低いp型半導体領域(p)142を設けた点が、上記実施の形態とは異なる。このp型半導体領域142が、本開示の「第4半導体領域」の一具体例に相当する。
p型半導体領域142は、ガードリングとして機能するものである。このp型半導体領域142を、増倍部14を構成するp型半導体領域141の周囲に設けることにより、エッジ電界が緩和される。また、アバランシェ増倍領域12Xは、p型半導体領域142の内側のp型半導体領域141に選択的に形成されるようになる。
このように、本変形例では、増倍部14の側面に沿ってガードリング構造を設けるようにしたので、上記実施の形態の効果に加えて、意図しないブレイクダウンを低減することが可能となる。
(2-3.変形例3)
図10は、本開示の変形例3に係る光検出装置(光検出装置1C)の断面構成の一例を模式的に表したものである。光検出装置1Cは、例えば上記実施の形態と同様に、ToF法により距離計測を行う距離画像センサ(距離画像装置1000)やイメージセンサ等に適用されるものである。本変形例の光検出装置1Cは、n型コンタクト電極15およびp型コンタクト電極16を、受光部13上および増倍部14上にそれぞれ設けた点が、上記実施の形態とは異なる。
本変形例のn型コンタクト電極15およびp型コンタクト電極16は、例えば、エピタキシャル結晶成長法により形成されたエピタキシャル層として、受光部13および増倍部14を構成する半導体層上に形成したものである。
このように、本変形例では、受光部13上および増倍部14上に、それぞれ、例えばエピタキシャル層からなるn型コンタクト電極15およびp型コンタクト電極16を設けるようにした。これにより、上記実施の形態のように、受光部13の表面13S1および増倍部14の表面14S1、換言すると、受光部13および増倍部14を構成する半導体層内にn型コンタクト電極15およびp型コンタクト電極16を設けた場合と比較して、エッジ耐圧が向上する。よって、上記実施の形態の効果に加えて、意図しないブレイクダウンを低減することが可能となる。
(2-4.変形例4)
図11は、本開示の変形例4に係る光検出装置(光検出装置1D)の断面構成の一例を模式的に表したものである。光検出装置1Dは、例えば上記実施の形態と同様に、ToF法により距離計測を行う距離画像センサ(距離画像装置1000)やイメージセンサ等に適用されるものである。本変形例の光検出装置1Dは、受光部13上に増倍部14を設けた点が、上記実施の形態とは異なる。
本変形例の増倍部14は、例えば、エピタキシャル結晶成長法により形成されたエピタキシャル層として、受光部13の表面13S1上、即ち、受光部13を構成する半導体層上に形成されたものである。
このように、本変形例では、受光部13上に増倍部14を設けるようにした。これにより、上記実施の形態のように、受光部13内の表面13S1近傍に増倍部14を設けた場合と比較して、受光部13に設けられるn型コンタクト電極15と、増倍部14に設けられるp型コンタクト電極16との距離が離れるため、エッジ電界が緩和される。よって、上記実施の形態の効果に加えて、意図しないブレイクダウンを低減することが可能となる。
(2-5.変形例5)
図12は、本開示の変形例5に係る光検出装置(光検出装置1E)の断面構成の一例を模式的に表したものである。光検出装置1Eは、例えば上記実施の形態と同様に、ToF法により距離計測を行う距離画像センサ(距離画像装置1000)やイメージセンサ等に適用されるものである。増倍部14の側面14S3は傾斜面となっていてもよい。具体的には、増倍部14は、表面14S1と側面14S3との成す角が鋭角となるように側面14S3が傾斜していてもよい。
(2-6.変形例6)
図13は、本開示の変形例6に係る光検出装置(光検出装置1F)の断面構成の一例を模式的に表したものである。光検出装置1Fは、例えば上記実施の形態と同様に、ToF法により距離計測を行う距離画像センサ(距離画像装置1000)やイメージセンサ等に適用されるものである。増倍部14および受光部13を構成するn型半導体領域131と、増倍部14を構成するp型半導体領域141との接合部に形成されるアバランシェ増倍領域12Xの大きさは限定されるものではない。
上記実施の形態では、受光部13および増倍部14を低バンドギャップ半導体であるゲルマニウム(Ge)やシリコン(Si)とゲルマニウム(Ge)との化合物半導体(例えば、シリコンゲルマニウム(SiGe))を用いて形成するようにした。このため、本変形例の光検出装置1Fのように、電界が高い増倍部14の体積を削減することにより、トンネル電流を低減することが可能となる。
また、図14に示したように、上記変形例4と組み合わせて受光部13の表面13S1上に増倍部14を設けた場合には、意図しないブレイクダウンを低減することが可能となる。
(2-7.変形例7)
図15は、本開示の変形例7に係る光検出装置(光検出装置1G)の断面構成の一例を模式的に表したものである。光検出装置1Gは、例えば上記実施の形態と同様に、ToF法により距離計測を行う距離画像センサ(距離画像装置1000)やイメージセンサ等に適用されるものである。本変形例の光検出装置1Gは、半導体基板11と受光部13との間にバッファ層19を設けた点が、上記実施の形態とは異なる。
バッファ層19は、半導体基板11と受光部13との界面の格子不整合を緩和するためのものである。バッファ層19は、例えば、半導体基板11を構成するシリコン基板の格子定数と、受光部13を構成するゲルマニウム(Ge)やシリコン(Si)とゲルマニウム(Ge)との化合物半導体(例えば、シリコンゲルマニウム(SiGe))の格子定数との間の格子定数を有する半導体によって形成することができる。具体的には、例えば、バッファ層19は、例えば、単一乃至複数のシリコン(Si)とゲルマニウム(Ge)との濃度比率を変えたシリコンゲルマニウム(SiGe)層によって形成されている。これにより、シリコン(Si)とゲルマニウム(Ge)との間の格子不整合を緩和することができる。バッファ層19は、例えば、エピタキシャル結晶成長法によって形成することができる。
このように、本変形例では、半導体基板11と受光部13との間に、それぞれの格子定数の間の格子定数を有する半導体からなるバッファ層19を設けるようにしたので、半導体基板11と受光部13との界面における暗電流の発生を低減することが可能となる。
(2-8.変形例8)
図16は、本開示の変形例8に係る光検出装置(光検出装置1H)の断面構成の一例を模式的に表したものである。光検出装置1Hは、例えば上記実施の形態と同様に、ToF法により距離計測を行う距離画像センサ(距離画像装置1000)やイメージセンサ等に適用されるものである。本変形例の光検出装置1Hは、層間絶縁層183内に設けられた、複数の配線層181,182の一部の配線(例えば、配線181A)を受光素子12と対向するようにXY平面方向に延在形成した点が、上記実施の形態とは異なる。この配線181Aが、本開示の「光反射部」の一具体例に相当する。
このように、本変形例では、多層配線層18を構成する複数の配線層181,182の一部の配線(例えば、配線181A)を利用して、受光素子12と対向する位置に光反射部を設けるようにした。これにより、受光部13において吸収されずに多層配線層18に透過した光が配線181Aによって反射されて受光部13に再入射するようになる。よって、上記実施の形態の効果に加えて、感度をさらに向上させることが可能となる。
(2-9.変形例9)
図17は、本開示の変形例9に係る光検出装置(光検出装置1I)の断面構成の一例を模式的に表したものである。光検出装置1Iは、例えば上記実施の形態と同様に、ToF法により距離計測を行う距離画像センサ(距離画像装置1000)やイメージセンサ等に適用されるものである。本変形例の光検出装置1Iは、半導体基板11の第2面11S2に凹凸構造を設けた点が、上記実施の形態とは異なる。
このように、本変形例では、光入射面である半導体基板11の第2面11S2に凹凸構造を設けるようにしたので、受光部13に入射する光が乱反射され、受光部13に入射する光量が2次元平面において均質化される。よって、上記実施の形態の効果に加えて、感度をさらに向上させることが可能となる。
(2-10.変形例10)
図18は、本開示の変形例10に係る光検出装置(光検出装置1J)の断面構成の一例を模式的に表したものである。光検出装置1Jは、例えば上記実施の形態と同様に、ToF法により距離計測を行う距離画像センサ(距離画像装置1000)やイメージセンサ等に適用されるものである。本変形例の光検出装置1Jは、半導体基板11を支持基板(成長基板)として、半導体基板11の第1面11S1の全面に、例えば、エピタキシャル結晶成長法により、ゲルマニウム(Ge)やシリコン(Si)とゲルマニウム(Ge)との化合物半導体(例えば、シリコンゲルマニウム(SiGe))からなる半導体層41を形成し、隣り合う単位画素Pの間に、上記実施の形態における画素分離部17に代えて、pウェル411を設けた点が上記実施の形態とは異なる。
このように、本変形例では、半導体基板11の第1面11S1の全面に、例えば、ゲルマニウム(Ge)またはシリコンゲルマニウム(SiGe)からなる半導体層41を形成し、隣り合う単位画素Pの間にpウェル411を設け、これを隣り合う単位画素Pを電気的に分離する分離部とした。これにより、上記実施の形態のように、遮光膜17Aと絶縁膜17Bとからなる画素分離部17を設けた場合と比較して、受光部13の面積を拡大することができる。よって、上記実施の形態の効果に加えて、感度を向上させることが可能となる。
なお、図19に示したように、半導体基板11の隣り合う単位画素Pの間に設けられる画素分離部17を省略するようにしてもよい。これにより、受光部13の面積を拡大できるようになり、感度を向上させることが可能となる。
<3.適用例>
図20は、上記実施の形態および変形例1~10に係る光検出装置(例えば、光検出装置1)を備えた電子機器としての距離画像装置1000の概略構成の一例を表したものである。この距離画像装置1000が、本開示の「測距装置」の一具体例に相当する。
距離画像装置1000は、例えば、光源装置1100と、光学系1200と、光検出装置1と、画像処理回路1300と、モニタ1400と、メモリ1500とを有している。
距離画像装置1000は、光源装置1100から照射対象物2000に向かって投光され、照射対象物2000の表面で反射された光(変調光やパルス光)を受光することにより、照射対象物2000までの距離に応じた距離画像を取得することができる。
光学系1200は、1枚または複数枚のレンズを有して構成され、照射対象物2000からの像光(入射光)を光検出装置1に導き、光検出装置1の受光面(センサ部)に結像させる。
画像処理回路1300は、光検出装置1から供給された距離信号に基づいて距離画像を構築する画像処理を行い、その画像処理により得られた距離画像(画像データ)は、モニタ1400に供給されて表示されたり、メモリ1500に供給されて記憶(記録)されたりする。
このように構成された距離画像装置1000では、上述した光検出装置(例えば、光検出装置1)を適用することで、安定性の高い単位画素Pからの受光信号のみに基づいて照射対象物2000までの距離を演算し、精度の高い距離画像を生成することが可能となる。即ち、距離画像装置1000は、より正確な距離画像を取得することができる。
<4.応用例>
(移動体への応用例)
本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット、建設機械、農業機械(トラクター)などのいずれかの種類の移動体に搭載される装置として実現されてもよい。
図21は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図21に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図21の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
図22は、撮像部12031の設置位置の例を示す図である。
図22では、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
なお、図22には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
以上、実施の形態および変形例1~10ならびに適用例および応用例を挙げて説明したが、本開示内容は上記実施の形態等に限定されるものではなく、種々変形が可能である。例えば、上記実施の形態等では、正孔を信号電荷として用いた例を示したが、電子を信号電荷としてもよい。
また、上記実施の形態等では、カソードに負電位が印加される例を示したが、アノードとカソードとの間に逆バイアスを印加することでアバランシェ増倍が起きるような状態であれば、それぞれの電位は限定されない。
また、上記実施の形態等において説明した効果は一例であり、他の効果であってもよいし、更に他の効果を含んでいてもよい。
なお、本開示は、以下のような構成であってもよい。以下の構成の本技術によれば、対向する第1の面および第2の面を有する半導体基板の第1の面側に埋め込み形成された受光部と、半導体基板の第1の面と略同一面を形成する受光部の表面近傍に設けられた増倍部とを、それぞれ半導体基板よりもバンドギャップが狭い半導体を用いて形成するようにした。これにより、受光部と増倍部との界面における格子不整合が緩和され、暗電流の発生を低減することが可能となる。
(1)
対向する第1の面および第2の面を有すると共に、複数の画素がアレイ状に配置された画素アレイ部を有する半導体基板と、
前記画素毎に前記半導体基板の前記第1の面側に埋め込み形成され、受光量に応じたキャリアを光電変換により生成すると共に、前記半導体基板よりもバンドギャップが狭い半導体からなる受光部と、
前記半導体基板の前記第1の面と略同一面を形成する前記受光部の表面近傍に設けられ、前記受光部において生成されたキャリアをアバランシェ増倍すると共に、前記半導体基板よりもバンドギャップが狭い前記半導体からなる増倍部と
を備えた光検出装置。
(2)
前記増倍部は、前記受光部の内部または前記受光部上に設けられている、前記(1)に記載の光検出装置。
(3)
前記受光部は第1の導電型を有する第1半導体領域により形成され、
前記増倍部は第2の導電型を有する第2半導体領域により形成され、
前記第1半導体領域と前記第2半導体領域との界面にアバランシェ増倍領域が形成される、前記(1)または(2)に記載の光検出装置。
(4)
前記受光部は、前記半導体基板の近傍に前記第1半導体領域よりも不純物濃度の高い前記第1の導電型の第3半導体領域をさらに有する、前記(3)に記載の光検出装置。
(5)
前記第3半導体領域は、前記受光部の側面部と前記半導体基板の前記第2の面に面する底部とで異なる不純物濃度または不純物種を有している、前記(4)に記載の光検出装置。
(6)
前記受光部は、前記半導体基板の前記第2の面側から前記第1の面側に向かって連続または段階的に不純物濃度が低下する不純物濃度勾配を有している、前記(1)乃至(5)のうちのいずれか1つに記載の光検出装置。
(7)
前記受光部の内部に形成された前記増倍部の側面に沿って設けられ、前記増倍部のエッジ電界を緩和するガードリングをさらに有する、前記(3)乃至(6)のうちのいずれか1つに記載の光検出装置。
(8)
前記ガードリングは、前記増倍部を形成する前記第2半導体領域と同じ導電型を有すると共に、前記第2半導体領域よりも不純物濃度の低い第4半導体領域により形成されている、前記(7)に記載の光検出装置。
(9)
前記受光部と電気的に接続される第1電極および前記増倍部と電気的に接続される第2電極をさらに有し、
前記第1電極は、前記受光部の表面近傍に設けられた前記第1の導電型を有する第1コンタクト電極を介して前記受光部と電気的に接続され、
前記第2電極は、前記増倍部の表面近傍に設けられた前記第2の導電型を有する第2コンタクト電極を介して前記増倍部と電気的に接続されている、前記(3)乃至(8)のうちのいずれか1つに記載の光検出装置。
(10)
前記第1コンタクト電極は、前記受光部の内部または前記受光部上に設けられ、
前記第2コンタクト電極は、前記増倍部の内部または前記増倍部上に設けられている、前記(9)に記載の光検出装置。
(11)
前記第1コンタクト電極は、平面視において前記増倍部の周囲に連続または断続的に設けられている、前記(9)または(10)に記載の光検出装置。
(12)
前記増倍部は、平面視において多角形状または円形状を有している、前記(1)乃至(11)のうちのいずれか1つに記載の光検出装置。
(13)
前記増倍部の側面は傾斜している、前記(1)乃至(12)のうちのいずれか1つに記載の光検出装置。
(14)
前記半導体基板と前記受光部との間に、前記半導体基板を構成する半導体の格子定数と、前記受光部を構成する半導体の格子定数との間の格子定数を有する半導体からなるバッファ層をさらに有する、前記(1)乃至(13)のうちのいずれか1つに記載の光検出装置。
(15)
前記半導体基板は、前記複数の画素をそれぞれ区画する分離部をさらに有する、前記(1)乃至(4)のうちのいずれか1つに記載の光検出装置。
(16)
前記分離部は遮光性を有する導電膜と、前記導電膜と前記半導体基板との間に設けられた絶縁膜とから構成されている、前記(15)に記載の光検出装置。
(17)
前記分離部は前記受光部とは異なる導電型の半導体領域によって形成されている、前記(15)に記載の光検出装置。
(18)
前記半導体は、ゲルマニウムまたはシリコンゲルマニウムである、前記(1)乃至(17)のうちのいずれか1つに記載の光検出装置。
(19)
前記半導体基板はシリコン基板である、前記(1)乃至(18)のうちのいずれか1つに記載の光検出装置。
(20)
光学系と、光検出装置と、前記光検出装置の出力信号から測定対象物までの距離を算出する信号処理回路とを備え、
前記光検出装置は、
対向する第1の面および第2の面を有すると共に、複数の画素がアレイ状に配置された画素アレイ部を有する半導体基板と、
前記画素毎に前記半導体基板の前記第1の面側に埋め込み形成され、受光量に応じたキャリアを光電変換により生成すると共に、前記半導体基板よりもバンドギャップが狭い半導体からなる受光部と、
前記半導体基板の前記第1の面と略同一面を形成する前記受光部の表面近傍に設けられ、前記受光部において生成されたキャリアをアバランシェ増倍すると共に、前記半導体基板よりもバンドギャップが狭い前記半導体からなる増倍部と
を有する測距装置。
1,1A,1B,1C,1D,1E,1F,1G,1H,1I,1J…光検出装置、10…センサ基板、11,21…半導体基板、12…受光素子、12X…アバランシェ増倍領域、13…受光部、14…増倍部、15…n型コンタクト電極、16…p型コンタクト電極、17…画素分離部、17A…遮光膜、17B…絶縁膜、18,22…多層配線層、19…バッファ層、20…ロジック基板、31…マイクロレンズ、32…遮光部、41…半導体層、100A…画素アレイ部、1000…距離画像装置。

Claims (20)

  1. 対向する第1の面および第2の面を有すると共に、複数の画素がアレイ状に配置された画素アレイ部を有する半導体基板と、
    前記画素毎に前記半導体基板の前記第1の面側に埋め込み形成され、受光量に応じたキャリアを光電変換により生成すると共に、前記半導体基板よりもバンドギャップが狭い半導体からなる受光部と、
    前記半導体基板の前記第1の面と略同一面を形成する前記受光部の表面近傍に設けられ、前記受光部において生成されたキャリアをアバランシェ増倍すると共に、前記半導体基板よりもバンドギャップが狭い前記半導体からなる増倍部と
    を備えた光検出装置。
  2. 前記増倍部は、前記受光部の内部または前記受光部上に設けられている、請求項1に記載の光検出装置。
  3. 前記受光部は第1の導電型を有する第1半導体領域により形成され、
    前記増倍部は第2の導電型を有する第2半導体領域により形成され、
    前記第1半導体領域と前記第2半導体領域との界面にアバランシェ増倍領域が形成される、請求項1に記載の光検出装置。
  4. 前記受光部は、前記半導体基板の近傍に前記第1半導体領域よりも不純物濃度の高い前記第1の導電型の第3半導体領域をさらに有する、請求項3に記載の光検出装置。
  5. 前記第3半導体領域は、前記受光部の側面部と前記半導体基板の前記第2の面に面する底部とで異なる不純物濃度または不純物種を有している、請求項4に記載の光検出装置。
  6. 前記受光部は、前記半導体基板の前記第2の面側から前記第1の面側に向かって連続または段階的に不純物濃度が低下する不純物濃度勾配を有している、請求項1に記載の光検出装置。
  7. 前記受光部の内部に形成された前記増倍部の側面に沿って設けられ、前記増倍部のエッジ電界を緩和するガードリングをさらに有する、請求項3に記載の光検出装置。
  8. 前記ガードリングは、前記増倍部を形成する前記第2半導体領域と同じ導電型を有すると共に、前記第2半導体領域よりも不純物濃度の低い第4半導体領域により形成されている、請求項7に記載の光検出装置。
  9. 前記受光部と電気的に接続される第1電極および前記増倍部と電気的に接続される第2電極をさらに有し、
    前記第1電極は、前記受光部の表面近傍に設けられた前記第1の導電型を有する第1コンタクト電極を介して前記受光部と電気的に接続され、
    前記第2電極は、前記増倍部の表面近傍に設けられた前記第2の導電型を有する第2コンタクト電極を介して前記増倍部と電気的に接続されている、請求項3に記載の光検出装置。
  10. 前記第1コンタクト電極は、前記受光部の内部または前記受光部上に設けられ、
    前記第2コンタクト電極は、前記増倍部の内部または前記増倍部上に設けられている、請求項9に記載の光検出装置。
  11. 前記第1コンタクト電極は、平面視において前記増倍部の周囲に連続または断続的に設けられている、請求項9に記載の光検出装置。
  12. 前記増倍部は、平面視において多角形状または円形状を有している、請求項1に記載の光検出装置。
  13. 前記増倍部の側面は傾斜している、請求項1に記載の光検出装置。
  14. 前記半導体基板と前記受光部との間に、前記半導体基板を構成する半導体の格子定数と、前記受光部を構成する半導体の格子定数との間の格子定数を有する半導体からなるバッファ層をさらに有する、請求項1に記載の光検出装置。
  15. 前記半導体基板は、前記複数の画素をそれぞれ区画する分離部をさらに有する、請求項1に記載の光検出装置。
  16. 前記分離部は遮光性を有する導電膜と、前記導電膜と前記半導体基板との間に設けられた絶縁膜とから構成されている、請求項15に記載の光検出装置。
  17. 前記分離部は前記受光部とは異なる導電型の半導体領域によって形成されている、請求項15に記載の光検出装置。
  18. 前記半導体は、ゲルマニウムまたはシリコンゲルマニウムである、請求項1に記載の光検出装置。
  19. 前記半導体基板はシリコン基板である、請求項1に記載の光検出装置。
  20. 光学系と、光検出装置と、前記光検出装置の出力信号から測定対象物までの距離を算出する信号処理回路とを備え、
    前記光検出装置は、
    対向する第1の面および第2の面を有すると共に、複数の画素がアレイ状に配置された画素アレイ部を有する半導体基板と、
    前記画素毎に前記半導体基板の前記第1の面側に埋め込み形成され、受光量に応じたキャリアを光電変換により生成すると共に、前記半導体基板よりもバンドギャップが狭い半導体からなる受光部と、
    前記半導体基板の前記第1の面と略同一面を形成する前記受光部の表面近傍に設けられ、前記受光部において生成されたキャリアをアバランシェ増倍すると共に、前記半導体基板よりもバンドギャップが狭い前記半導体からなる増倍部と
    を有する測距装置。



JP2020202216A 2020-12-04 2020-12-04 光検出装置および測距装置 Pending JP2022089651A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020202216A JP2022089651A (ja) 2020-12-04 2020-12-04 光検出装置および測距装置
CN202180080131.3A CN116568991A (zh) 2020-12-04 2021-11-12 光检测装置及测距装置
PCT/JP2021/041707 WO2022118635A1 (ja) 2020-12-04 2021-11-12 光検出装置および測距装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020202216A JP2022089651A (ja) 2020-12-04 2020-12-04 光検出装置および測距装置

Publications (1)

Publication Number Publication Date
JP2022089651A true JP2022089651A (ja) 2022-06-16

Family

ID=81853122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020202216A Pending JP2022089651A (ja) 2020-12-04 2020-12-04 光検出装置および測距装置

Country Status (3)

Country Link
JP (1) JP2022089651A (ja)
CN (1) CN116568991A (ja)
WO (1) WO2022118635A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024169356A (ja) * 2023-05-24 2024-12-05 フィルスト ゼンザー アーゲー 受光素子およびその組立方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025046679A1 (ja) * 2023-08-28 2025-03-06 ソニーセミコンダクタソリューションズ株式会社 光検出装置および測距装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4131191B2 (ja) * 2003-04-11 2008-08-13 日本ビクター株式会社 アバランシェ・フォトダイオード
JP5437791B2 (ja) * 2006-04-25 2014-03-12 コーニンクレッカ フィリップス エヌ ヴェ (Bi)CMOSプロセスによるアバランシェフォトダイオードの製造方法
KR102609644B1 (ko) * 2015-12-03 2023-12-05 소니 세미컨덕터 솔루션즈 가부시키가이샤 고체 촬상 소자 및 촬상 장치
EP3516692B1 (en) * 2016-09-23 2022-02-16 Apple Inc. Stacked backside illuminated spad array
JP7058479B2 (ja) * 2016-10-18 2022-04-22 ソニーセミコンダクタソリューションズ株式会社 光検出器
JP7055544B2 (ja) * 2016-11-29 2022-04-18 ソニーセミコンダクタソリューションズ株式会社 センサチップおよび電子機器
JP6961714B2 (ja) * 2017-04-04 2021-11-05 アーティラックス・インコーポレイテッド 高速光感知装置iii
TWI745583B (zh) * 2017-04-13 2021-11-11 美商光程研創股份有限公司 鍺矽光偵測裝置
CN113851499A (zh) * 2018-03-30 2021-12-28 松下知识产权经营株式会社 光检测器
JP2020149987A (ja) * 2019-03-11 2020-09-17 ソニーセミコンダクタソリューションズ株式会社 光検出器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024169356A (ja) * 2023-05-24 2024-12-05 フィルスト ゼンザー アーゲー 受光素子およびその組立方法

Also Published As

Publication number Publication date
WO2022118635A1 (ja) 2022-06-09
CN116568991A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
JP7445397B2 (ja) 受光素子および電子機器
TWI872166B (zh) 受光元件及測距系統
CN113519067B (zh) 传感器芯片和测距装置
WO2020189082A1 (ja) センサチップ、電子機器、及び測距装置
EP4053520A1 (en) Light receiving element, ranging module, and electronic instrument
JP2022113371A (ja) 光検出装置
WO2022118635A1 (ja) 光検出装置および測距装置
JP2020035916A (ja) 撮像装置および電子機器
US20230352512A1 (en) Imaging element, imaging device, electronic equipment
EP4053519B1 (en) Light receiving element, ranging module, and electronic device
US20240210529A1 (en) Photodetector and distance measurement apparatus
JP2023059071A (ja) 光検出装置および測距装置
TW202320353A (zh) 光檢測裝置及電子機器
US20240072080A1 (en) Light detection device and distance measurement apparatus
US20250120213A1 (en) Photodetection device and method of manufacturing photodetection device
US20250072140A1 (en) Photodetection device
WO2024004222A1 (ja) 光検出装置およびその製造方法
US20250199137A1 (en) Photodetector and distance measurement apparatus
WO2025088776A1 (ja) 受光素子、測距システム