[go: up one dir, main page]

JP2022089476A - Device and method for discriminating concave-convex defects in workpiece, and program - Google Patents

Device and method for discriminating concave-convex defects in workpiece, and program Download PDF

Info

Publication number
JP2022089476A
JP2022089476A JP2020201895A JP2020201895A JP2022089476A JP 2022089476 A JP2022089476 A JP 2022089476A JP 2020201895 A JP2020201895 A JP 2020201895A JP 2020201895 A JP2020201895 A JP 2020201895A JP 2022089476 A JP2022089476 A JP 2022089476A
Authority
JP
Japan
Prior art keywords
work
dark
bright
illumination light
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020201895A
Other languages
Japanese (ja)
Other versions
JP7509016B2 (en
Inventor
慶郎 長井
Yoshio Nagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2020201895A priority Critical patent/JP7509016B2/en
Publication of JP2022089476A publication Critical patent/JP2022089476A/en
Application granted granted Critical
Publication of JP7509016B2 publication Critical patent/JP7509016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

To provide a device and a method for discriminating concave-convex defects, as well as a program that can discriminate whether a surface defect in a workpiece is a concave defect or a convex defect regardless of the shape of a measurement part, while at least one of the workpiece, illumination, and photographing means is made to relatively move by using only the illumination from one direction.SOLUTION: Photographing means 2 performs photographing while at least one of a workpiece 100, illumination light, and the photographing means is made to relatively move. Based on a plurality of images 20 including an image having a bright part 21 and images having dark parts 22, 23 obtained through the photographing, an approximate expression is calculated, the approximate expression representing the relationship between the position of a dark point 31 appearing in the bright part 21 as a surface defect in the workpiece, the positions of bright points 32 appearing in the dark parts 22, 23 as surface defects in the workpiece, an index indicating the relative position of the workpiece 100 to the illumination light or the photographing means 2, and the position(s) of either one or both of the bright points and the dark point. A concave-convex discrimination index indicating the relative positional relationship between the dark point 31 and the bright points 32 is calculated from the approximate expression, and whether the surface defect is concave or convex is determined based on the concave-convex discrimination index.SELECTED DRAWING: Figure 9

Description

この発明は、車体等のワークの塗装面等に生じている表面欠陥が凹欠陥か凸欠陥かを判別するワークの欠陥凹凸判別装置及び同方法並びにプログラムに関する。 The present invention relates to a defect unevenness discriminating device for a work, and a method and a program for discriminating whether a surface defect occurring on a painted surface or the like of a work such as a vehicle body is a concave defect or a convex defect.

例えば車体の塗装面の表面欠陥を検出して、欠陥部分を補修することが従来より行われているが、表面欠陥が凹欠陥なのか凸欠陥なのかによって、欠陥補修の方法が異なる。このため、単に表面欠陥を検出するのみならず、その表面欠陥が凹欠陥か凸欠陥かを判別することが要求されている。 For example, it has been conventionally performed to detect a surface defect on a painted surface of a vehicle body and repair the defective portion, but the method of repairing the defect differs depending on whether the surface defect is a concave defect or a convex defect. Therefore, it is required not only to detect surface defects but also to determine whether the surface defects are concave defects or convex defects.

このようなワークの表面欠陥が凹欠陥か凸欠陥かの判別方法として、特許文献1には、鋼材の表面欠陥を光学的に検出する表面欠陥検出方法であって、2つ以上の弁別可能な光源を利用して同一の検査対象部位に異なる方向から略同一の入射角度で鋼材の移動方向と直交する方向の線状照明光を連続照射して反射光による画像を取得し、取得した画像間で差分処理を行うことによって検査対象部位における表面欠陥を検出するとともに、取得した画像間で差分処理を行うことによって得られた画像の隣り合った明部及び暗部を抽出し、抽出された隣り合った明部及び暗部の位置関係と前記照明光の照射方向とから凹凸性の表面欠陥の有無を判定する方法が開示されている。 As a method for discriminating whether the surface defect of such a work is a concave defect or a convex defect, Patent Document 1 is a surface defect detecting method for optically detecting a surface defect of a steel material, and can discriminate between two or more. Using a light source, the same inspection target site is continuously irradiated with linear illumination light in a direction orthogonal to the moving direction of the steel material from different directions at substantially the same incident angle to acquire an image by reflected light, and between the acquired images. The surface defects in the inspection target part are detected by performing the difference processing in, and the adjacent bright and dark parts of the image obtained by performing the difference processing between the acquired images are extracted and adjacent to each other. A method for determining the presence or absence of uneven surface defects from the positional relationship between the bright and dark areas and the irradiation direction of the illumination light is disclosed.

また特許文献2には、平板に対して、並列する明暗の照明を照射し、ラインセンサーにて明暗の境界部を観察し、板を動かしながらラインセンサーで撮影した1次元の画像を順番に並べて2次元画像を合成し、凹欠陥部ないし凸欠陥部では明るいブロブと暗いブロブが隣接する画像を得て、その明暗の位置関係にて凹欠陥か凸欠陥かを判別する技術が開示されている。 Further, in Patent Document 2, a flat plate is irradiated with light and dark illuminations in parallel, the boundary between light and dark is observed with a line sensor, and one-dimensional images taken by the line sensor are arranged in order while moving the plate. A technique is disclosed in which a two-dimensional image is synthesized, an image in which a bright blob and a dark blob are adjacent to each other in a concave defect portion or a convex defect portion is obtained, and whether it is a concave defect or a convex defect is determined based on the positional relationship between the light and dark. ..

特許第6394514号公報Japanese Patent No. 6394514 米国特許第7105848号公報US Pat. No. 7,105,848

しかしながら、特許文献1に記載の技術では、2つ以上の弁別可能な光源を使用する必要があることから、装置が複雑化するという課題がある。 However, the technique described in Patent Document 1 has a problem that the apparatus becomes complicated because it is necessary to use two or more distinguishable light sources.

また、特許文献2に記載の技術では、ワークをラインセンサーで反射測定する場合、ワークが平面であっても測定部位によってうねりが生じたり、あるいは三次元の自由曲面であったりした場合には、欠陥そのものの測定ができないという課題がある。 Further, in the technique described in Patent Document 2, when the work is reflected and measured by a line sensor, even if the work is a flat surface, undulations occur depending on the measurement site, or the work is a three-dimensional free curved surface. There is a problem that the defect itself cannot be measured.

この発明はこのような技術的背景に鑑みてなされたものであって、ワークまたは照明または撮影手段の少なくともいずれかを相対的に移動させながら、1つの方向からの照明のみを使用し、しかも測定部位の形状に拘わらずワークの表面欠陥が凹欠陥か凸欠陥かを判別できるワークの欠陥凹凸判別装置及び同方法並びにプログラムを提供することを目的とする。 The present invention has been made in view of such a technical background, using only illumination from one direction and measuring while relatively moving at least one of the workpiece or illumination or imaging means. It is an object of the present invention to provide a work defect unevenness discrimination device capable of discriminating whether a work surface defect is a concave defect or a convex defect regardless of the shape of a portion, the same method, and a program.

上記目的は以下の手段によって達成される。
(1)ワークを照明光で照明する照明装置と、
撮影手段と、
ワークまたは照明光または撮影手段のうちの少なくともいずれかを他のものに対して相対的に移動させる移動手段と、
を備え、
前記移動手段によりワークまたは照明光または撮影手段のうちの少なくともいずれかを他のものに対して相対的に移動させながら、前記照明光で照明されたワークを前記撮影手段により撮影し、さらに、
前記撮影により得られた、照明光の照射部位に対応する明部を有する画像ないし照明光の非照射部位に対応する暗部を有する画像を含む複数の画像に基づいて、前記明部にワークの表面欠陥として現れる暗点の位置と、前記暗部にワークの表面欠陥として現れる明点の位置と、前記照明光または撮影手段に対するワークの相対位置を示す指標と明点ないし暗点のいずれかないし両方の位置との関係を表す近似式を算出する算出手段と、
前記算出手段により算出した近似式から、前記暗点と明点の相対位置関係を示す凹凸判別指数を計算し、その凹凸判別指数に基づいて前記表面欠陥の凹凸を判別する判別手段と、
を備えたことを特徴とするワークの欠陥凹凸判別装置。
(2)前記凹凸判別指数は、撮影前半または撮影後半のいずれか一方または両方において、暗点と明点が所定の位置関係にある回数を含む前項1に記載のワークの欠陥凹凸判別装置。
(3)前記凹凸判別指数は、撮影前半または撮影後半のいずれか一方または両方において、暗点と明点が所定の位置関係にある際の、暗点または明点の確からしさを示す指標を含んでいる前項1または2に記載のワークの欠陥凹凸判別装置。
(4)前記撮影手段ないし照明光に対するワークの相対的な移動方向に応じて前記凹凸判別指数の符号を変える前項1~3のいずれかに記載のワークの欠陥凹凸判別装置。
(5)前記撮影手段の光軸に対する撮影手段の回転角に応じて、画像上の暗点と明点の座標または画像を回転させる前項1~4のいずれかに記載のワークの欠陥凹凸判別装置。
(6)前記照明光ないし撮影手段に対するワークの相対位置を示す指標として、撮影フレーム番号、前記移動手段に備えられたロータリーエンコーダの回転数、測定時刻、照明光を移動させる場合の照明光の座標、撮影手段を移動させる場合の撮影手段の座標の少なくともいずれかを含む前項1~5のいずれかに記載のワークの欠陥凹凸判別装置。
(7)移動手段により、ワークまたはワークを照明する照明光または撮影手段のうちの少なくともいずれかを他のものに対して相対的に移動させながら、前記照明光で照明されたワークを撮影手段により撮影する撮影ステップと、
前記撮影ステップにより得られた、照明光の照射部位に対応する明部を有する画像と照明光の非照射部位に対応する暗部を有する画像を含む複数の画像に基づいて、前記明部にワークの表面欠陥として現れる暗点の位置と、前記暗部にワークの表面欠陥として現れる明点の位置と、前記照明光または撮影手段に対するワークの相対位置を示す指標と明点ないし暗点のいずれかないし両方の位置との関係を表す近似式を算出する算出ステップと、
前記算出ステップにより算出した近似式から、前記暗点と明点の相対位置関係を示す凹凸判別指数を計算し、その凹凸判別指数に基づいて前記表面欠陥の凹凸を判別する判別ステップと、
を備えたことを特徴とするワークの欠陥凹凸判別方法。
(8)前記凹凸判別指数は、撮影前半または撮影後半のいずれか一方または両方において、暗点と明点が所定の位置関係にある回数を含む前項7に記載のワークの欠陥凹凸判別方法。
(9)前記凹凸判別指数は、撮影前半または撮影後半のいずれか一方または両方において、暗点と明点が所定の位置関係にある際の、暗点または明点の確からしさを示す指標を含んでいる前項7または8に記載のワークの欠陥凹凸判別方法。
(10)前記撮影手段ないし照明光に対するワークの相対的な移動方向に応じて前記凹凸判別指数の符号を変える前項7~9のいずれかに記載のワークの欠陥凹凸判別方法。
(11)前記撮影手段の光軸に対する撮影手段の回転角に応じて、画像上の暗点と明点の座標または画像を回転させる前項7~10のいずれかに記載のワークの欠陥凹凸判別方法。
(12)前記照明光ないし撮影手段に対するワークの相対位置を示す指標として、撮影フレーム番号、前記移動手段に備えられたロータリーエンコーダの回転数、測定時刻、照明光を移動させる場合の照明光の座標、撮影手段を移動させる場合の撮影手段の座標の少なくともいずれかを含む前項7~11のいずれかに記載のワークの欠陥凹凸判別方法。
(13)移動手段により、ワークまたはワークを照明する照明光または撮影手段のうちの少なくともいずれかを他のものに対して相対的に移動させながら、前記照明光で照明されたワークを撮影手段により撮影することにより得られた、照明光の照射部位に対応する明部を有する画像ないし照明光の非照射部位に対応する暗部を有する画像を含む複数の画像に基づいて、前記明部にワークの表面欠陥として現れる暗点の位置と、前記暗部にワークの表面欠陥として現れる明点の位置と、前記照明光または撮影手段に対するワークの相対位置を示す指標と明点ないし暗点のいずれかないし両方の位置との関係を表す近似式を算出する算出ステップと、
前記算出ステップにより算出した近似式から、前記暗点と明点の相対位置関係を示す凹凸判別指数を計算し、その凹凸判別指数に基づいて前記表面欠陥の凹凸を判別する判別ステップと、
をコンピュータに実行させるためのプログラム。
(14)前記凹凸判別指数は、撮影前半または撮影後半のいずれか一方または両方において、暗点と明点が所定の位置関係にある回数を含む前項13に記載のプログラム。
(15)前記凹凸判別指数は、撮影前半または撮影後半のいずれか一方または両方において、暗点と明点が所定の位置関係にある際の、暗点または明点の確からしさを示す指標を含んでいる前項13または14に記載のプログラム。
(16)前記撮影手段ないし照明光に対するワークの相対的な移動方向に応じて前記凹凸判別指数の符号を変える前項13~15のいずれかに記載のプログラム。
(17)前記撮影手段の光軸に対する撮影手段の回転角に応じて、画像上の暗点と明点の座標または画像を回転させる前項13~16のいずれかに記載のプログラム。
(18)前記照明光ないし撮影手段に対するワークの相対位置を示す指標として、撮影フレーム番号、前記移動手段に備えられたロータリーエンコーダの回転数、測定時刻、照明光を移動させる場合の照明光の座標、撮影手段を移動させる場合の撮影手段の座標の少なくともいずれかを含む前項13~17のいずれかに記載のプログラム。
The above object is achieved by the following means.
(1) A lighting device that illuminates the work with illumination light,
Shooting means and
A means of transportation that moves at least one of the work or illumination light or the means of photography relative to the other.
Equipped with
The work illuminated by the illumination light is photographed by the photographing means while the work or the illumination light or at least one of the photographing means is relatively moved relative to the other by the moving means, and further.
Based on a plurality of images obtained by the imaging, including an image having a bright portion corresponding to an irradiated portion of the illumination light or an image having a dark portion corresponding to a non-irradiated portion of the illumination light, the surface of the work is formed on the bright portion. Both the position of the dark spot appearing as a defect, the position of the bright spot appearing as a surface defect of the work in the dark part, and the index indicating the relative position of the work with respect to the illumination light or the photographing means, and either the bright spot or the dark spot. A calculation method for calculating an approximate expression that expresses the relationship with the position,
From the approximate expression calculated by the calculation means, a concave-convex discrimination index indicating the relative positional relationship between the dark point and the bright point is calculated, and the discrimination means for discriminating the unevenness of the surface defect based on the unevenness discrimination index.
A device for determining the defect unevenness of a work, which is characterized by being equipped with.
(2) The defect unevenness discrimination device for a work according to item 1 above, wherein the unevenness discrimination index includes the number of times that a dark point and a bright point have a predetermined positional relationship in either one or both of the first half of shooting and the second half of shooting.
(3) The unevenness discrimination index includes an index indicating the certainty of the dark point or the bright point when the dark point and the bright point have a predetermined positional relationship in either one or both of the first half of the shooting and the second half of the shooting. The defect unevenness discrimination device for the work according to the above item 1 or 2.
(4) The defect unevenness discrimination apparatus for a work according to any one of the above items 1 to 3, wherein the sign of the unevenness discrimination index is changed according to the relative moving direction of the work with respect to the photographing means or the illumination light.
(5) The defect unevenness determination device for a work according to any one of 1 to 4 above, which rotates the coordinates of dark points and bright points on an image or the image according to the rotation angle of the photographing means with respect to the optical axis of the photographing means. ..
(6) As an index indicating the relative position of the work with respect to the illumination light or the photographing means, the photographing frame number, the rotation speed of the rotary encoder provided in the moving means, the measurement time, and the coordinates of the illumination light when the illumination light is moved. The device for determining defect unevenness of a work according to any one of 1 to 5 above, which includes at least one of the coordinates of the photographing means when the photographing means is moved.
(7) By the moving means, the work illuminated by the illumination light is moved by the photographing means while at least one of the illumination light or the photographing means for illuminating the work is relatively moved with respect to the other. The shooting steps to shoot and
Based on a plurality of images obtained by the photographing step, including an image having a bright portion corresponding to an illuminated portion of the illumination light and an image having a dark portion corresponding to a non-irradiated portion of the illumination light, the work is formed in the bright portion. Both the position of the dark spot appearing as a surface defect, the position of the bright spot appearing as a surface defect of the work in the dark part, and the index indicating the relative position of the work with respect to the illumination light or the photographing means, and either the bright spot or the dark spot. A calculation step to calculate an approximate expression that expresses the relationship with the position of
From the approximate expression calculated by the calculation step, a concave-convex discrimination index indicating the relative positional relationship between the dark point and the bright point is calculated, and a discrimination step for discriminating the unevenness of the surface defect based on the unevenness discrimination index.
A method for discriminating defects and unevenness of a work, which is characterized by being provided with.
(8) The defect unevenness discrimination method for a work according to item 7 above, wherein the unevenness discrimination index includes the number of times that a dark point and a bright point have a predetermined positional relationship in either one or both of the first half of shooting and the second half of shooting.
(9) The unevenness discrimination index includes an index indicating the certainty of the dark point or the bright point when the dark point and the bright point have a predetermined positional relationship in either one or both of the first half of the shooting and the second half of the shooting. The method for determining the defect unevenness of the work according to the above item 7 or 8.
(10) The method for determining defect unevenness of a work according to any one of items 7 to 9 above, wherein the sign of the unevenness discrimination index is changed according to the relative moving direction of the work with respect to the photographing means or the illumination light.
(11) The method for determining defect unevenness of a work according to any one of items 7 to 10 above, wherein the coordinates of dark and bright points on the image or the image is rotated according to the rotation angle of the photographing means with respect to the optical axis of the photographing means. ..
(12) As an index indicating the relative position of the work with respect to the illumination light or the photographing means, the photographing frame number, the rotation speed of the rotary encoder provided in the moving means, the measurement time, and the coordinates of the illumination light when the illumination light is moved. The method for determining defect unevenness of a work according to any one of items 7 to 11 above, which includes at least one of the coordinates of the photographing means when the photographing means is moved.
(13) By the moving means, the work illuminated by the illumination light is moved by the photographing means while at least one of the illumination light or the photographing means for illuminating the work is relatively moved with respect to the other. Based on a plurality of images obtained by photographing, including an image having a bright portion corresponding to an irradiated portion of illumination light or an image having a dark portion corresponding to a non-irradiated portion of illumination light, the work is formed in the bright portion. Both the position of the dark spot appearing as a surface defect, the position of the bright spot appearing as a surface defect of the work in the dark part, and the index indicating the relative position of the work with respect to the illumination light or the photographing means, and either the bright spot or the dark spot. A calculation step that calculates an approximate expression that expresses the relationship with the position of
From the approximate expression calculated by the calculation step, a concave-convex discrimination index indicating the relative positional relationship between the dark point and the bright point is calculated, and a discrimination step for discriminating the unevenness of the surface defect based on the unevenness discrimination index.
A program that lets your computer run.
(14) The program according to item 13 above, wherein the unevenness discrimination index includes the number of times that a dark point and a bright point have a predetermined positional relationship in either one or both of the first half of shooting and the second half of shooting.
(15) The unevenness discrimination index includes an index indicating the certainty of the dark point or the bright point when the dark point and the bright point have a predetermined positional relationship in either one or both of the first half of the shooting and the second half of the shooting. The program according to the preceding paragraph 13 or 14.
(16) The program according to any one of the preceding paragraphs 13 to 15, which changes the sign of the unevenness discrimination index according to the relative moving direction of the work with respect to the photographing means or the illumination light.
(17) The program according to any one of 13 to 16 above, which rotates the coordinates of dark and bright points on an image or the image according to the rotation angle of the photographing means with respect to the optical axis of the photographing means.
(18) As an index indicating the relative position of the work with respect to the illumination light or the photographing means, the photographing frame number, the rotation speed of the rotary encoder provided in the moving means, the measurement time, and the coordinates of the illumination light when the illumination light is moved. , The program according to any one of 13 to 17 in the preceding paragraph, which includes at least one of the coordinates of the photographing means when the photographing means is moved.

前項(1)(7)及び(13)に記載の発明によれば、移動手段により、ワークまたはワークを照明する照明光または撮影手段のうちの少なくともいずれかを他のものに対して相対的に移動させながら、照明光の照射部位に対応する明部を有する画像ないし照明光の非照射部位に対応する暗部を有する画像を含む複数の画像に基づいて、明部にワークの表面欠陥として現れる暗点の位置と、暗部にワークの表面欠陥として現れる明点の位置と、照明光または撮影手段に対するワークの相対位置を示す指標との関係を表す近似式が算出される。そして、算出された近似式から、暗点と明点の相対位置関係を示す凹凸判別指数が計算され、その凹凸判別指数に基づいて表面欠陥の凹凸が判別される。 According to the inventions described in the preceding paragraphs (1), (7) and (13), at least one of the work or the illumination light for illuminating the work or the photographing means is relatively relative to the other by means of transportation. Darkness that appears as a surface defect of the work in the bright part based on multiple images including an image having a bright part corresponding to the illuminated part of the illumination light or an image having a dark part corresponding to the non-irradiated part of the illumination light while moving. An approximate expression is calculated that expresses the relationship between the position of the point, the position of the bright point that appears as a surface defect of the work in the dark part, and the index indicating the relative position of the work with respect to the illumination light or the photographing means. Then, from the calculated approximate expression, an unevenness discrimination index indicating the relative positional relationship between the dark point and the bright point is calculated, and the unevenness of the surface defect is discriminated based on the unevenness discrimination index.

このように、ワークまたは照明光または撮影手段のうちの少なくともいずれかを他のものに対して相対的に移動させながら撮影を行うことができ、ワークを移動させながら撮影する場合にはワークの相対的な移動を停止して撮影する必要がないのに加えて、複数の方向からワークを照明するための複数の照明装置は不要で、1個の照明装置で良く、構成が簡素化される。しかも、ワークをラインセンサーで反射測定するものではないから、測定部位の表面形状に拘わらず、表面欠陥が凹欠陥か凸欠陥かの判別を行うことができる。 In this way, shooting can be performed while moving at least one of the work, the illumination light, and the shooting means relative to the other, and when shooting while moving the work, the work is relative to each other. In addition to the fact that it is not necessary to stop the movement and take a picture, a plurality of lighting devices for illuminating the work from a plurality of directions are not required, and one lighting device is sufficient, and the configuration is simplified. Moreover, since the work is not reflected and measured by the line sensor, it is possible to determine whether the surface defect is a concave defect or a convex defect regardless of the surface shape of the measurement site.

前項(2)(8)及び(14)に記載の発明によれば、撮影前半または撮影後半のいずれか一方または両方において、暗点と明点が所定の位置関係にある回数を含む凹凸判別指数により、簡素で正確な判別を行うことができる。 According to the inventions described in the preceding paragraphs (2), (8) and (14), the unevenness discrimination index including the number of times that the dark spot and the bright spot are in a predetermined positional relationship in either one or both of the first half of shooting and the second half of shooting. Therefore, simple and accurate discrimination can be performed.

前項(3)(9)及び(15)に記載の発明によれば、撮影前半または撮影後半のいずれか一方または両方において、暗点と明点が所定の位置関係にある際の、暗点または明点の確からしさを示す指標を含んでいるから、より精度の高い判別を行うことができる。 According to the inventions described in the preceding paragraphs (3), (9) and (15), the dark spot or the bright spot when the dark spot and the bright spot are in a predetermined positional relationship in either one or both of the first half of the shooting and the second half of the shooting. Since it includes an index showing the certainty of the bright point, it is possible to make a more accurate determination.

前項(4)(10)及び(16)に記載の発明によれば、撮影手段ないし照明光に対するワークの相対的な移動方向が変わっても、凹凸判別指数の符号を変えることで、正確な判別を行うことができる。 According to the inventions described in the preceding paragraphs (4), (10) and (16), even if the relative moving direction of the work with respect to the photographing means or the illumination light changes, accurate discrimination can be made by changing the sign of the unevenness discrimination index. It can be performed.

前項(5)(11)及び(17)に記載の発明によれば、撮影手段が自身の光軸に対して回転していても、その回転角に応じて、画像上の暗点と明点の座標または画像を回転させるから、正確な判別を行うことができる。 According to the inventions described in the preceding paragraphs (5), (11) and (17), even if the photographing means is rotated with respect to its own optical axis, dark spots and bright spots on the image are obtained according to the rotation angle. Accurate discrimination can be made by rotating the coordinates or image of.

前項(6)(12)及び(18)に記載の発明によれば、照明光ないし撮影手段に対するワークの相対位置を示す指標として、撮影フレーム番号、移動手段に備えられたロータリーエンコーダの回転数、測定時刻、照明光を移動させる場合の照明光の座標、撮影手段を移動させる場合の撮影手段の座標の少なくともいずれかを含むから、画像の明部に現れる暗点の位置と、画像の暗部に現れる明点の位置と、照明光に対するワークの相対位置を示す指標との関係を表す近似式の算出が容易となる。 According to the inventions described in the preceding paragraphs (6), (12) and (18), as an index indicating the relative position of the work with respect to the illumination light or the photographing means, the photographing frame number, the rotation speed of the rotary encoder provided in the moving means, and the rotation speed of the rotary encoder provided in the moving means. Since it includes at least one of the measurement time, the coordinates of the illumination light when moving the illumination light, and the coordinates of the photographing means when moving the photographing means, the position of the dark spot appearing in the bright part of the image and the dark part of the image It is easy to calculate an approximate expression that expresses the relationship between the position of the bright spot that appears and the index that indicates the relative position of the work with respect to the illumination light.

この発明の一実施形態に係るワークの欠陥凹凸判別装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the defect unevenness discriminating apparatus of the work which concerns on one Embodiment of this invention. 撮影手段によって撮影された画像の一例を示す図である。It is a figure which shows an example of the image photographed by the photographing means. (A)~(C)は、凸欠陥を有するワークが左から右に移動した場合の、撮影手段で撮影された画像(各図の左側の図)と、光学配置(各図の右側の図)を示す図である。(A) to (C) are images taken by the photographing means (the figure on the left side of each figure) and the optical arrangement (the figure on the right side of each figure) when the work having a convex defect moves from left to right. ). (D)~(F)は、図3(A)~(C)の続きである。(D) to (F) are continuations of FIGS. 3 (A) to 3 (C). (A)~(C)は、凹欠陥を有するワークが左から右に移動した場合の、撮影手段で撮影された画像(各図の左側の図)と、光学配置(各図の右側の図)を示す図である。(A) to (C) are images taken by the photographing means (the figure on the left side of each figure) and the optical arrangement (the figure on the right side of each figure) when the work having the concave defect moves from left to right. ). (D)~(F)は、図5(A)~(C)の続きである。(D) to (F) are continuations of FIGS. 5A to 5C. 凸欠陥について、各撮影フレーム番号と、画像の明部上で暗く映る暗点のX座標の関係を黒丸で表し、撮影フレーム番号と、暗部上で明るく映る明点のX座標の関係を白丸で表し、これらをプロットしたグラフである。For convex defects, the relationship between each shooting frame number and the X coordinate of the dark point that appears dark on the bright part of the image is represented by a black circle, and the relationship between the shooting frame number and the X coordinate of the bright point that appears bright on the dark part is represented by a white circle. It is a graph that represents and plots these. (A)~(F)は、図3(A)~(C)及び図4(D)~(F)の各画像から、矩形枠で画像を切り抜いた状態を説明するための図である。(A) to (F) are diagrams for explaining a state in which an image is cut out with a rectangular frame from each of the images of FIGS. 3 (A) to (C) and FIGS. 4 (D) to (F). 図8(A)~(F)で切り抜いた画像において、明部上に現れる暗点のX座標と、暗部上に現れる明点のX座標をそれぞれ求めて、撮影フレーム番号に対してそれぞれプロットしたグラフである。In the images cut out in FIGS. 8A to 8F, the X coordinate of the dark point appearing on the bright part and the X coordinate of the bright point appearing on the dark part were obtained and plotted against the shooting frame number. It is a graph. (A)~(F)は、図5(A)~(C)及び図6(D)~(F)の各画像から、矩形枠で画像を切り抜いた状態を説明するための図である。(A) to (F) are diagrams for explaining a state in which an image is cut out with a rectangular frame from each of the images of FIGS. 5 (A) to (C) and FIGS. 6 (D) to (F). 図8(A)~(F)で切り抜いた画像において、明部上に現れる暗点のX座標と、暗部上に現れる明点のX座標をそれぞれ求めて、撮影フレーム番号に対してそれぞれプロットしたグラフである。In the images cut out in FIGS. 8A to 8F, the X coordinate of the dark point appearing on the bright part and the X coordinate of the bright point appearing on the dark part were obtained and plotted against the shooting frame number. It is a graph. 図9のグラフにフレーム番号を付した図である。It is the figure which attached the frame number to the graph of FIG. 図9に対応するグラフであり、凸欠陥を有するワークが図1の右方向から左方向へ移動したときの、画像の明部上に現れる暗点のX座標と、暗部上に現れる明点のX座標をそれぞれ求めて、撮影フレーム番号に対してそれぞれプロットしたグラフである。It is a graph corresponding to FIG. 9, and is the X coordinate of the dark point appearing on the bright part of the image when the work having the convex defect moves from the right direction to the left direction of FIG. 1, and the bright point appearing on the dark part. It is a graph which obtained each X coordinate and plotted against the shooting frame number. 図11に対応するグラフであり、凹欠陥を有するワークが図1の右方向から左方向へ移動したときの、画像の明部上に現れる暗点のX座標と、暗部上に現れる明点のX座標をそれぞれ求めて、撮影フレーム番号に対してそれぞれプロットしたグラフである。It is a graph corresponding to FIG. 11, and is the X coordinate of the dark point appearing on the bright part of the image when the work having the concave defect moves from the right direction to the left direction of FIG. 1, and the bright point appearing on the dark part. It is a graph which obtained each X coordinate and plotted against the shooting frame number. 凸欠陥を有するワークの位置を固定し照明光を移動させた場合に得られる、暗点及び明点の座標とフレーム番号との関係を示すグラフである。It is a graph which shows the relationship between the coordinates of a dark point and a bright point, and a frame number, which is obtained when the position of a work having a convex defect is fixed and the illumination light is moved. 凹欠陥を有するワークの位置を固定し照明光を移動させた場合に得られる、暗点及び明点の座標とフレーム番号との関係を示すグラフである。It is a graph which shows the relationship between the coordinates of a dark point and a bright point, and a frame number, which is obtained when the position of a work having a concave defect is fixed and the illumination light is moved.

以下、この発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、この発明の一実施形態に係るワークの欠陥凹凸判別装置の構成例を示すブロック図である。 FIG. 1 is a block diagram showing a configuration example of a defect unevenness discriminating device for a work according to an embodiment of the present invention.

このワークの欠陥凹凸判別装置は、照明装置1と、撮影手段としてのカメラ2と、演算部3と、表示部4等を備えている。 The defect unevenness determination device of this work includes a lighting device 1, a camera 2 as a photographing means, a calculation unit 3, a display unit 4, and the like.

照明装置1は、移動手段としてのベルトコンベア(図示せず)により、製造ライン上を図1の矢印A方向に移動するワーク100に対して、一つの縞状の照明光により照明を行うものである。ワーク100が一定距離移動する毎に、照明装置1からワークに対して照明され、ワーク100にて反射した光をカメラ2にて逐次撮影する。 The lighting device 1 uses a belt conveyor (not shown) as a means of transportation to illuminate the work 100 moving in the direction of arrow A in FIG. 1 on the production line with a single striped illumination light. be. Every time the work 100 moves a certain distance, the work is illuminated by the lighting device 1 and the light reflected by the work 100 is sequentially photographed by the camera 2.

演算部3は、カメラ2で撮影された画像から、ワークの表面欠陥を検出すると共に、検出した表面欠陥が凹欠陥か凸欠陥かを判別するものである。演算部3は、表面欠陥の検出処理、凹欠陥か凸欠陥かの判別処理、その他の演算、制御を行うCPU3aと、CPU3aの動作プログラムや各種のデータを保持するROM3bと、CPU3aが動作プログラムに従って処理を実行する際の作業領域となるRAM3cと、ハードディスク装置等の記憶部(図示せず)等を備えている。演算部3は、専用の装置であっても良いし、汎用のパーソナルコンピュータによって構成されていても良い。 The calculation unit 3 detects surface defects of the work from the image taken by the camera 2 and determines whether the detected surface defects are concave defects or convex defects. The calculation unit 3 has a CPU 3a that performs surface defect detection processing, concave defect or convex defect discrimination processing, other calculations, and control, a ROM 3b that holds an operation program of the CPU 3a and various data, and a CPU 3a according to the operation program. It includes a RAM 3c, which is a work area for executing processing, and a storage unit (not shown) of a hard disk device or the like. The arithmetic unit 3 may be a dedicated device or may be configured by a general-purpose personal computer.

表示部4は、演算部3により実行された表面欠陥が凹欠陥か凸欠陥かの判別結果等を表示する。 The display unit 4 displays the determination result of whether the surface defect executed by the calculation unit 3 is a concave defect or a convex defect.

この実施形態では、車体表面のようにワーク表面にクリア塗装が施されていたり、金属光沢をもつような、表面が鏡面反射するワーク100を考える。 In this embodiment, consider a work 100 whose surface is specularly reflected, such as a work surface having a clear coating such as a vehicle body surface or having a metallic luster.

ワーク100の表面上に欠陥が存在しない場合、照明装置1からの照明光がワーク100の表面で鏡面反射した後、カメラ2にて撮影される。カメラ2からは、図2に示すような明帯部21の両側に暗帯部22、23が存在する縞模様の撮影画像20が得られる。撮影画像20における明帯部21は、照明装置1の縞状の光帯に対応し、換言すれば照明光の照射部位に対応する。暗帯部22、23は図1に示すように、照明装置1の両側の光帯が存在しない領域11、12に対応し、換言すれば照明光の非照射部位に対応する。 When there is no defect on the surface of the work 100, the illumination light from the lighting device 1 is specularly reflected on the surface of the work 100, and then the image is taken by the camera 2. From the camera 2, a photographed image 20 having a striped pattern in which dark band portions 22 and 23 are present on both sides of the bright band portion 21 as shown in FIG. 2 can be obtained. The bright band portion 21 in the captured image 20 corresponds to the striped light band of the lighting device 1, in other words, corresponds to the irradiation portion of the illumination light. As shown in FIG. 1, the dark band portions 22 and 23 correspond to the regions 11 and 12 where the light bands on both sides of the lighting device 1 do not exist, in other words, correspond to the non-irradiated portion of the illumination light.

ただし、明帯部21における暗帯部22、23との境界付近は、明帯部21の中央部よりも明るさが少し暗く映る。 However, the area near the boundary between the dark zone portions 22 and 23 in the bright zone portion 21 appears to be slightly darker than the central portion of the bright zone portion 21.

なお、この実施形態では発光領域が1箇所の照明装置1を使用しているが、例えば液晶ディスプレイ等を用いて縞状の複数の発光部と非発光部を交互に表示させた照明装置を使用しても良い。 In this embodiment, the lighting device 1 having one light emitting region is used, but for example, a lighting device in which a plurality of striped light emitting parts and non-light emitting parts are alternately displayed by using a liquid crystal display or the like is used. You may.

ワーク100の位置は、例えばワーク100を搭載しているベルトコンベアに装着したエンコーダーにて検出する。ワーク100が一定量移動するたびにエンコーダーからの信号よりトリガーを発生させて撮影を行うことで、ワーク100の表面の画像の位置が特定される。 The position of the work 100 is detected by, for example, an encoder mounted on a belt conveyor on which the work 100 is mounted. Each time the work 100 moves by a certain amount, a trigger is generated from a signal from the encoder to take a picture, whereby the position of the image on the surface of the work 100 is specified.

図1の例では、簡単のため平板のワーク100を示しているが、照明光による明帯部21と明帯部21に隣接する少なくとも一つの暗帯部22、23がカメラ2による撮影画像に含まれる範囲内の傾斜を持つワーク100であれば、例えば車体のような自由曲面でも構わない。 In the example of FIG. 1, the flat plate work 100 is shown for simplicity, but the bright band portion 21 due to the illumination light and at least one dark band portion 22 and 23 adjacent to the bright band portion 21 are captured by the camera 2. As long as the work 100 has an inclination within the included range, a free curved surface such as a vehicle body may be used.

次に、表面欠陥を有するワーク100が、図1の矢印Aのように左から右に移動した場合、カメラ2で撮影される画像20において表面欠陥がどのように現れるかを説明する。 Next, when the work 100 having a surface defect moves from left to right as shown by the arrow A in FIG. 1, how the surface defect appears in the image 20 captured by the camera 2 will be described.

表面欠陥が存在する場合、欠陥表面で照明光の反射方向が変わるため、欠陥が存在しない場合に較べて、異なる位置の照明装置1からの光がカメラ2の撮影面に入射する。 When a surface defect is present, the reflection direction of the illumination light changes on the defect surface, so that light from the illumination device 1 at a different position is incident on the photographing surface of the camera 2 as compared with the case where the defect is not present.

そのため、ワーク100の表面上に欠陥がある場合、欠陥部では欠陥周辺に比べて明るさが異なる画像が得られる。
<凸欠陥の場合>
図3(A)~(C)及び図4(D)~(F)に、凸欠陥110を有するワーク100が左から右に移動した場合の、カメラ2で撮影された画像20(各図の左側の図)と、そのときの光学配置(各図の右側の図)を示す。なお、図3(A)~(C)及び図4(D)~(F)の各撮影画像20において、便宜上、暗帯部22、23も明帯部21と同様に白色の状態で示しているが、実際には図2のように暗く現れる。図5以降においても同様である。
Therefore, when there is a defect on the surface of the work 100, an image having a brightness different from that around the defect can be obtained at the defective portion.
<In the case of convex defects>
In FIGS. 3A to 3C and FIGS. 4D to 4F, images 20 taken by the camera 2 when the work 100 having the convex defect 110 moves from left to right (in each figure). The left side figure) and the optical arrangement at that time (the right side figure of each figure) are shown. In each of the captured images 20 of FIGS. 3 (A) to 3 (C) and FIGS. 4 (D) to 4 (F), the dark band portions 22 and 23 are also shown in a white state like the bright band portion 21 for convenience. However, it actually appears dark as shown in Fig. 2. The same applies to FIGS. 5 and later.

図3(A)~(C)には、凸欠陥110のカメラ撮影面上の位置が、照明装置1の光帯の左エッジ部の映る位置付近に来た際の撮影画像20と光学配置が示されている。 3 (A) to 3 (C) show the captured image 20 and the optical arrangement when the position of the convex defect 110 on the camera photographing surface is near the position where the left edge portion of the light band of the lighting device 1 is reflected. It is shown.

図3(A)~(C)の測定系では、凸欠陥110が存在しない場合と比較して、右側の照明位置1aから出た光が凸欠陥110の右側斜面に反射してカメラ2に入射する。一方、凸欠陥110が存在しない場合と比較して、左側の照明位置1bから出た光は凸欠陥110の左側斜面に反射した後、カメラ2に入射する。 In the measurement systems of FIGS. 3A to 3C, the light emitted from the right illumination position 1a is reflected on the right slope of the convex defect 110 and incident on the camera 2 as compared with the case where the convex defect 110 does not exist. do. On the other hand, as compared with the case where the convex defect 110 does not exist, the light emitted from the illumination position 1b on the left side is reflected on the left slope of the convex defect 110 and then incident on the camera 2.

その結果、図3(A)~(C)の各左図に示すように、凸欠陥110の左側斜面は暗く暗点31として映り、右側斜面は明るく明点32として映る。なお、図3(A)~(C)及び図4以降の図において、暗点31を黒丸で、明点32を白丸でそれぞれ示している。 As a result, as shown in the left figures of FIGS. 3A to 3C, the left slope of the convex defect 110 is darkly reflected as a dark point 31, and the right slope is brightly reflected as a bright point 32. In FIGS. 3A to 3C and the drawings after FIG. 4, the dark spot 31 is indicated by a black circle and the bright spot 32 is indicated by a white circle.

図3(A)の位置に凸欠陥110がある場合には、凸欠陥110の左側斜面は、カメラ2の撮影面上では欠陥周辺の暗帯部22と同じ位の光量となるため、暗点31は暗帯部22に隠れて見えない。一方、凸欠陥110の右側斜面はカメラ2の撮影面上では欠陥周囲の暗帯部22と比べて明るいので、明点32は明るく光って見える。 When there is a convex defect 110 at the position of FIG. 3A, the left slope of the convex defect 110 has the same amount of light as the dark band portion 22 around the defect on the shooting surface of the camera 2, so that it is a dark spot. 31 is hidden behind the dark zone 22 and cannot be seen. On the other hand, since the right slope of the convex defect 110 is brighter on the shooting surface of the camera 2 than the dark zone portion 22 around the defect, the bright point 32 appears to shine brightly.

図3(B)の位置に凸欠陥110がある場合には、凸欠陥110の左側斜面は明帯部21が映っている位置にくるため、暗点31は欠陥周辺に比べて暗く映る。一方、凸欠陥110の右側斜面は照明中央部の一番明るい所から出た光が反射するのに対し、撮影面の欠陥周辺は光帯の左端部の映像が映っており、光帯中央部に比べて少し暗くなっている。そのため撮影面上では凸欠陥110の右側斜面は明点32として周辺に比べて明るく光って見える。 When there is a convex defect 110 at the position of FIG. 3B, the left slope of the convex defect 110 comes to the position where the bright band portion 21 is reflected, so that the dark spot 31 appears darker than the periphery of the defect. On the other hand, the right slope of the convex defect 110 reflects the light emitted from the brightest part in the central part of the illumination, while the image of the left end portion of the light band is reflected around the defect on the photographing surface, and the central part of the optical band. It is a little darker than. Therefore, on the photographing surface, the right slope of the convex defect 110 appears to shine brighter than the periphery as a bright point 32.

図3(C)の位置に凸欠陥110がある場合、凸欠陥110の右側斜面は、カメラ2の撮影面上では欠陥周辺の明帯部21と同じくらいの光量となるため、明点32は明帯部21に隠れて見えない。一方、凸欠陥110の左側斜面は、カメラ2の撮影面上では周囲の光帯が映っている部分に比べて暗いため、暗点31は暗く映る。 When there is a convex defect 110 at the position of FIG. 3C, the right slope of the convex defect 110 has the same amount of light as the bright band portion 21 around the defect on the shooting surface of the camera 2, so that the bright point 32 is It is hidden behind the bright band 21 and cannot be seen. On the other hand, since the left slope of the convex defect 110 is darker on the shooting surface of the camera 2 than the portion where the surrounding light band is reflected, the dark spot 31 appears dark.

図4(D)~(F)では、凸欠陥110のカメラ撮影面上の位置が、照明装置1の光帯の右エッジ部の映る位置付近に来た際の撮影画像20と光学配置が示されている。 4 (D) to 4 (F) show the captured image 20 and the optical arrangement when the position of the convex defect 110 on the camera photographing surface is near the position where the right edge portion of the light band of the lighting device 1 is reflected. Has been done.

図3(A)~(C)とは逆に、凸欠陥110の左側斜面が明るく映り、右側斜面が暗く映る。カメラ撮影面上の映り方も同様で、図4(D)では左側斜面に対応する明点32は周囲の明帯部21に隠れてしまい、右側斜面に対応する暗点31は周囲に比べて暗く映る。 Contrary to FIGS. 3A to 3C, the left slope of the convex defect 110 appears bright and the right slope appears dark. The appearance on the camera shooting surface is the same. In FIG. 4D, the bright point 32 corresponding to the left slope is hidden by the surrounding bright band portion 21, and the dark point 31 corresponding to the right slope is compared with the surroundings. It looks dark.

図4(E)では、凸欠陥110の左側斜面に対応する明点32は周囲に比べて明るく映り、右側斜面に対応する暗点31は暗く映る。 In FIG. 4E, the bright point 32 corresponding to the left slope of the convex defect 110 appears brighter than the surroundings, and the dark point 31 corresponding to the right slope appears dark.

図4(F)では、凸欠陥110の右側斜面に対応する暗点31は周囲の暗帯部23に隠れてしまい、左側斜面に対応する明点32は明るく映る。
<凹欠陥の場合>
図5(A)~(C)及び図6(D)~(F)に、凹欠陥120を有するワーク100が左から右に移動した場合の、カメラ2で撮影された画像(各図の左側の図)と、そのときの光学配置(各図の右側の図)を示す。
In FIG. 4 (F), the dark point 31 corresponding to the right slope of the convex defect 110 is hidden by the surrounding dark zone portion 23, and the bright point 32 corresponding to the left slope appears bright.
<In the case of concave defect>
In FIGS. 5A to 5C and FIGS. 6D to 6F, images taken by the camera 2 when the work 100 having the concave defect 120 moves from left to right (left side of each figure). The figure) and the optical arrangement at that time (the figure on the right side of each figure) are shown.

図5(A)~(C)では、凹欠陥120のカメラ撮影面上の位置が、照明装置1の光帯の左エッジ部の映る位置付近に来た際の撮影画像20と光学配置が示されている。 5 (A) to 5 (C) show the captured image 20 and the optical arrangement when the position of the concave defect 120 on the camera photographing surface is near the position where the left edge portion of the light band of the lighting device 1 is reflected. Has been done.

図5(A)~(C)の測定系では、凹欠陥120が存在しない場合と比較して、左側の照明位置1cから出た光が凹欠陥120の右側斜面に反射してカメラ2に入射する。一方、凹欠陥120が存在しない場合と比較して、右側の照明位置1dから出た光は凹欠陥120の左側斜面で反射した後、カメラ2に入射する。 In the measurement systems of FIGS. 5A to 5C, the light emitted from the illumination position 1c on the left side is reflected on the right slope of the concave defect 120 and incident on the camera 2 as compared with the case where the concave defect 120 does not exist. do. On the other hand, as compared with the case where the concave defect 120 does not exist, the light emitted from the illumination position 1d on the right side is reflected on the left slope of the concave defect 120 and then incident on the camera 2.

その結果、図5(A)~(C)の各左図に示すように、凹欠陥120の左側斜面は明るく明点32として映り、右側斜面は暗く暗点31として映る。 As a result, as shown in the left figures of FIGS. 5A to 5C, the left slope of the concave defect 120 is brightly reflected as a bright point 32, and the right slope is darkly reflected as a dark point 31.

図5(A)の位置に凹欠陥120がある場合には、凹欠陥120の右側斜面は、カメラ2の撮影面上では欠陥周辺の暗帯部22と同じ位の光量となるため、暗点31は暗帯部22に隠れて見えない。一方、凹欠陥120の左側斜面はカメラ2の撮影面上では欠陥周囲の暗帯部22と比べて明るいので、明点32は明るく光って見える。 When there is a concave defect 120 at the position of FIG. 5A, the right slope of the concave defect 120 has the same amount of light as the dark zone portion 22 around the defect on the shooting surface of the camera 2, so that it is a dark spot. 31 is hidden behind the dark zone 22 and cannot be seen. On the other hand, since the left slope of the concave defect 120 is brighter on the shooting surface of the camera 2 than the dark zone portion 22 around the defect, the bright point 32 appears to shine brightly.

図5(B)の位置に凹欠陥120がある場合には、凹欠陥120の右側斜面は明帯部21が映っている位置にくるため、暗点31は欠陥周辺に比べて暗く映る。一方、凹欠陥120の左側斜面は照明中央部の一番明るい所から出た光が反射するのに対し、撮影面の欠陥周辺は光帯の左端部の映像が映っており、光帯中央部に比べて少し暗くなっている。そのため撮影面上では凹欠陥120の左側斜面は明点32として周辺に比べて明るく光って見える。 When there is a concave defect 120 at the position of FIG. 5B, the right slope of the concave defect 120 comes to the position where the bright band portion 21 is reflected, so that the dark spot 31 appears darker than the periphery of the defect. On the other hand, the light emitted from the brightest part in the central part of the illumination is reflected on the left slope of the concave defect 120, while the image of the left end portion of the light band is reflected around the defect on the photographing surface, and the central part of the optical band. It is a little darker than. Therefore, on the photographing surface, the left slope of the concave defect 120 appears to shine brighter than the periphery as a bright point 32.

図5(C)の位置に凹欠陥120がある場合、凹欠陥120の左側斜面は、カメラ2の撮影面上では欠陥周辺の明帯部21と同じくらいの光量となるため、明点32は明帯部21に隠れて見えない。一方、凹欠陥120の右側斜面は、カメラ2の撮影面上では周囲の光帯が映っている部分に比べて暗いため、暗点31は暗く映る。 When there is a concave defect 120 at the position shown in FIG. 5C, the left slope of the concave defect 120 has the same amount of light as the bright band portion 21 around the defect on the shooting surface of the camera 2, so that the bright point 32 is It is hidden behind the bright band 21 and cannot be seen. On the other hand, since the right slope of the concave defect 120 is darker on the shooting surface of the camera 2 than the portion where the surrounding light band is reflected, the dark spot 31 appears dark.

図6(D)~(F)では、凹欠陥120のカメラ撮影面上の位置が、照明装置1の光帯の右エッジ部の映る位置付近に来た際の撮影画像20と光学配置が示されている。 6 (D) to 6 (F) show the captured image 20 and the optical arrangement when the position of the concave defect 120 on the camera photographing surface is near the position where the right edge portion of the light band of the lighting device 1 is reflected. Has been done.

図5(A)~(C)とは逆に、凹欠陥120の右側斜面が明るく映り、左側斜面が暗く映る。カメラ撮影面上の映り方も同様で、図6(D)では右側斜面に対応する明点32は周囲の明帯部21に隠れてしまい、左側斜面に対応する暗点31は周囲に比べて暗く映る。 Contrary to FIGS. 5A to 5C, the right slope of the concave defect 120 appears bright and the left slope appears dark. The appearance on the camera shooting surface is the same. In FIG. 6D, the bright point 32 corresponding to the right slope is hidden by the surrounding bright band portion 21, and the dark point 31 corresponding to the left slope is compared with the surroundings. It looks dark.

図6(E)では、凹欠陥120の右側斜面に対応する明点32は周囲に比べて明るく映り、左側斜面に対応する暗点31は暗く映る。 In FIG. 6E, the bright point 32 corresponding to the right slope of the concave defect 120 appears brighter than the surroundings, and the dark point 31 corresponding to the left slope appears dark.

図4(F)では、凸欠陥110の左側斜面に対応する暗点31は周囲の暗帯部23に隠れてしまい、右側斜面対応する明点32は明るく映る。
<凸欠陥か凹欠陥かの判別方法>
図3(B)、図4(E)または図5(B)、図6(E)の位置に欠陥110、120が映るタイミングで撮影ができれば、欠陥110、120の右側斜面による明点32または暗点31と左側斜面による暗点31または明点32が同時に測定でき、その相対位置関係にて凸欠陥か凹欠陥か判別することができる。
In FIG. 4 (F), the dark point 31 corresponding to the left slope of the convex defect 110 is hidden by the surrounding dark zone portion 23, and the bright point 32 corresponding to the right slope appears bright.
<Method of distinguishing between convex and concave defects>
If the images can be taken at the timing when the defects 110 and 120 appear at the positions of FIGS. 3 (B), 4 (E) or 5 (B) and 6 (E), the bright spot 32 or the bright spot 32 due to the right slope of the defects 110 and 120 or The dark point 31 and the dark point 31 or the bright point 32 due to the left slope can be measured at the same time, and it is possible to determine whether the defect is a convex defect or a concave defect based on the relative positional relationship.

しかし、実際に欠陥110、120がどの場所に存在するかは決まっておらず、一定の間隔で測定が行われた場合、暗点31と明点32の両方が同一の画像に映るタイミングで測定できることはまれである。 However, the location where the defects 110 and 120 actually exist is not determined, and when the measurement is performed at regular intervals, the measurement is performed at the timing when both the dark point 31 and the bright point 32 appear on the same image. What you can do is rare.

ほとんどの画像では図3(A)(C)、図4(D)(F)や図5(A)(C)、図6(D)(F)のように、暗点31か明点32のいずれか一方しか映っていない。 Most images have dark spots 31 or bright spots 32, as shown in FIGS. 3 (A) (C), 4 (D) (F), 5 (A) (C), and 6 (D) (F). Only one of them is shown.

そこで本実施形態では、照明光に対するワーク100の相対位置を示す指標として、画像番号である撮影フレーム番号(以下、単にフレーム番号ともいう)を適用し、暗点31の位置とフレーム番号の関係を直線近似することにより、同一フレーム番号の画像20における暗点31と明点32の相対位置関係を求め、この相対位置関係を基に凸欠陥110か凹欠陥120かを判別する。 Therefore, in the present embodiment, a shooting frame number (hereinafter, also simply referred to as a frame number), which is an image number, is applied as an index indicating the relative position of the work 100 with respect to the illumination light, and the relationship between the position of the dark spot 31 and the frame number is determined. By linear approximation, the relative positional relationship between the dark point 31 and the bright point 32 in the image 20 having the same frame number is obtained, and whether it is a convex defect 110 or a concave defect 120 is determined based on this relative positional relationship.

凸欠陥110について、各フレーム番号と、画像20の明帯部21上で暗く映る暗点31のX座標の関係を黒丸で表し、フレーム番号と、暗帯部22、23上で明るく映る明点32のX座標の関係を白丸で表し、これらを同一グラフにプロットすると、図7の様に直線L1に沿った配置となる。直線L1は各暗点31から算出された近似直線である。なお、図7のグラフにおいて、横軸はフレーム番号、縦軸は欠陥のX座標である。 For the convex defect 110, the relationship between each frame number and the X coordinate of the dark point 31 appearing dark on the bright band portion 21 of the image 20 is represented by a black circle, and the frame number and the bright point appearing brightly on the dark band portions 22 and 23 are represented by black circles. When the relationship between the X coordinates of 32 is represented by white circles and these are plotted on the same graph, the arrangement is along the straight line L1 as shown in FIG. The straight line L1 is an approximate straight line calculated from each dark point 31. In the graph of FIG. 7, the horizontal axis is the frame number and the vertical axis is the X coordinate of the defect.

なお図7では、凸欠陥110の右側斜面と左側斜面の間隔に比べて画像間の欠陥110の移動量が大きいので、差がわかりにくいグラフになる。 In FIG. 7, since the amount of movement of the defect 110 between the images is larger than the distance between the right slope and the left slope of the convex defect 110, the difference is difficult to understand.

画像毎に、凸欠陥110が撮影面上を何ピクセル移動するかについて、あらかじめおおよその値を求めておくことが可能である。 It is possible to obtain an approximate value in advance for how many pixels the convex defect 110 moves on the photographing surface for each image.

そこで、図8(A)~(F)に示すように、図3(A)~(C)及び図4(D)~(F)の各画像20から、あらかじめ求めたおおよその移動量だけずらしながら矩形枠で切り抜いた画像40a~40fを用いる。 Therefore, as shown in FIGS. 8A to 8F, the images 20 of FIGS. 3A to 3C and 4D to 4F are shifted by an approximate amount of movement obtained in advance. However, the images 40a to 40f cut out with a rectangular frame are used.

切り抜き画像40a~40fにおいて、明帯部21上に現れる暗点31のX座標と、暗帯部22、23上に現れる明点32のX座標をそれぞれ求めて、撮影フレーム番号に対してそれぞれプロットしたグラフを図9に示す。暗点31のX座標を黒丸で、明点32のX座標を白丸で表し、これらを同一グラフにプロットすると、暗点31から算出された近似直線L2に沿った配置となる。図9のグラフにおいても、横軸はフレーム番号、縦軸は欠陥のX座標である。図9のグラフは図7のグラフに比べて、明点32と暗点31の相対位置関係が見やすくなるので、以降、本グラフにて説明する。 In the cropped images 40a to 40f, the X coordinate of the dark point 31 appearing on the bright band portion 21 and the X coordinate of the bright point 32 appearing on the dark band portions 22 and 23 are obtained and plotted against the shooting frame number, respectively. The graph is shown in FIG. When the X coordinate of the dark point 31 is represented by a black circle and the X coordinate of the bright point 32 is represented by a white circle and these are plotted on the same graph, the arrangement is along the approximate straight line L2 calculated from the dark point 31. In the graph of FIG. 9, the horizontal axis is the frame number and the vertical axis is the X coordinate of the defect. Compared with the graph of FIG. 7, the graph of FIG. 9 makes it easier to see the relative positional relationship between the bright point 32 and the dark point 31, and will be described later in this graph.

凸欠陥110が暗帯部22、23に映っている場合には、暗点31は周囲に隠れて検出できないが、明帯部21に映っている暗点31の位置と、フレーム番号との関係を直線L2で近似することにより、暗帯部22、23における暗点31の位置が推定できる。 When the convex defect 110 is reflected in the dark zone portions 22 and 23, the dark spot 31 is hidden in the surroundings and cannot be detected, but the relationship between the position of the dark spot 31 reflected in the bright zone portion 21 and the frame number. By approximating with a straight line L2, the position of the dark point 31 in the dark zone portions 22 and 23 can be estimated.

明帯部21と左側の暗帯部22の境界部を含む撮影前半(測定前半)のように、凸欠陥110が画像20上の明帯部21の左エッジ近傍に存在する場合には、明点32のX座標の方が同一フレーム番号の画像20における暗点31のX座標より大きくなる。一方、明帯部21と右側の暗帯部23の境界部を含む撮影後半(測定後半)のように、凸欠陥110が画像20上の明帯部21の右エッジ近傍にある場合には、明点32のX座標の方が同一フレーム番号の画像20における暗点31のX座標より小さくなる。 When the convex defect 110 is present near the left edge of the bright band 21 on the image 20, as in the first half of shooting (first half of the measurement) including the boundary between the bright band 21 and the dark band 22 on the left side, it is bright. The X coordinate of the point 32 is larger than the X coordinate of the dark point 31 in the image 20 having the same frame number. On the other hand, when the convex defect 110 is near the right edge of the bright band 21 on the image 20, as in the latter half of shooting (second half of the measurement) including the boundary between the bright band 21 and the dark band 23 on the right side, the convex defect 110 is located near the right edge of the bright band 21 on the image 20. The X coordinate of the bright point 32 is smaller than the X coordinate of the dark point 31 in the image 20 having the same frame number.

つまり、凸欠陥120についての明点32のX座標は、撮影前半では近似直線L2より求まる同一フレーム番号の暗点31のX座標より大きく、撮影後半では近似直線L2より求まる同一フレーム番号の画像20の暗点31のX座標より小さい。 That is, the X coordinate of the bright point 32 for the convex defect 120 is larger than the X coordinate of the dark point 31 of the same frame number obtained from the approximate straight line L2 in the first half of shooting, and the image 20 of the same frame number obtained from the approximate straight line L2 in the latter half of shooting. It is smaller than the X coordinate of the dark point 31 of.

凸欠陥10の場合と同様に凹欠陥120についても、図10(A)~(F)に示すように、図5(A)~(C)及び図6(D)~(F)の各画像20から、あらかじめ求めたおおよその移動量だけずらしながら矩形枠で切り抜いた画像41a~41fを用いて説明する。 As in the case of the convex defect 10, the concave defect 120 also has the images of FIGS. 5 (A) to 5 (C) and FIGS. 6 (D) to 6 (F) as shown in FIGS. 10 (A) to 10 (F). From No. 20, the images 41a to 41f cut out with a rectangular frame while shifting by the approximate movement amount obtained in advance will be described.

切り抜き画像41a~41fにおいて、明帯部21上に映る暗点31のX座標と、暗帯部22、23上に映る明点32のX座標をそれぞれ求めて、撮影フレーム番号に対してそれぞれプロットしたグラフを図11に示す。直線L3は各暗点31を基に算出された近似直線であり、図11のグラフの横軸はフレーム番号、縦軸は欠陥のX座標である。 In the cropped images 41a to 41f, the X coordinate of the dark point 31 reflected on the bright band portion 21 and the X coordinate of the bright point 32 reflected on the dark band portions 22 and 23 are obtained and plotted against the shooting frame number, respectively. The graph is shown in FIG. The straight line L3 is an approximate straight line calculated based on each dark point 31, the horizontal axis of the graph in FIG. 11 is the frame number, and the vertical axis is the X coordinate of the defect.

凹欠陥120では、明点32のX座標は、撮影前半(測定前半)では近似直線L3で求まる同一フレーム番号の画像20における暗点31のX座標より小さく、撮影後半(測定後半)では近似直線L3で求まる同一フレーム番号の画像20における暗点31のX座標より大きい。 In the concave defect 120, the X coordinate of the bright point 32 is smaller than the X coordinate of the dark point 31 in the image 20 having the same frame number obtained by the approximate straight line L3 in the first half of shooting (first half of measurement), and the approximate straight line in the second half of shooting (second half of measurement). It is larger than the X coordinate of the dark point 31 in the image 20 having the same frame number obtained by L3.

暗点31及び明点32のフレームごとのX座標の変化量は、図8、図10の切り抜き画像40a~40f、41a~41fにおける凸欠陥110または凹欠陥120の大まかな移動量を補正した残りの凸欠陥110または凹欠陥120のフレームごとの移動量を表している。 The amount of change in the X coordinate for each frame of the dark point 31 and the bright point 32 is the remainder after correcting the rough movement amount of the convex defect 110 or the concave defect 120 in the cutout images 40a to 40f and 41a to 41f of FIGS. 8 and 10. It represents the amount of movement of the convex defect 110 or the concave defect 120 for each frame.

暗点31及び明点32の残存移動量の影響を除去するため、暗点31のX座標に対して近似直線(図9のL2、図11のL3)を算出し、同一フレーム番号における明点32と暗点31との相対位置関係を調べる。 In order to remove the influence of the remaining movement amount of the dark point 31 and the bright point 32, an approximate straight line (L2 in FIG. 9 and L3 in FIG. 11) is calculated with respect to the X coordinate of the dark point 31, and the bright point at the same frame number. The relative positional relationship between 32 and the scotoma 31 is examined.

暗帯部22、23に凸欠陥110または凹欠陥120が映っている場合、凸欠陥110または凹欠陥120の暗点31は周囲に隠れて検出できない。しかし明帯部21に現れる暗点31の座標を直線近似することにより、暗帯部22、23に凸欠陥110または凹欠陥120が映っている画像における暗点31の座標を求めることができる。 When the convex defect 110 or the concave defect 120 is reflected in the dark band portions 22 and 23, the dark spot 31 of the convex defect 110 or the concave defect 120 is hidden in the surroundings and cannot be detected. However, by linearly approximating the coordinates of the dark point 31 appearing in the bright band portion 21, the coordinates of the dark point 31 in the image in which the convex defect 110 or the concave defect 120 is reflected in the dark band portions 22 and 23 can be obtained.

明点32が検出される画像における暗点31の位置は,近似直線L2、L3上の同一フレーム番号の画像20におけるX座標を計算することによって求めることができる。 The position of the dark point 31 in the image in which the bright point 32 is detected can be obtained by calculating the X coordinate in the image 20 having the same frame number on the approximate straight lines L2 and L3.

その結果、同一フレーム番号の画像20で観測される暗点31と明点32との相対位置関係を求めることができ、凸欠陥110か凹欠陥12かを判別することができる。
<判別指標>
凸欠陥110か凹欠陥120かの具体的な判別指標(以下、凹凸判別指標ともいう)について説明する。
As a result, the relative positional relationship between the dark point 31 and the bright point 32 observed in the image 20 having the same frame number can be obtained, and it is possible to determine whether the convex defect 110 or the concave defect 12.
<Discrimination index>
A specific index for discriminating between the convex defect 110 and the concave defect 120 (hereinafter, also referred to as an unevenness discriminating index) will be described.

欠陥位置に最初に照明装置1の光帯のエッジがかかる撮影フレーム番号(この例では図8(B)の切り抜き画像40bまたは図10(B)の切り抜き画像41bのフレーム番号)を画像から求めておく。ここでは、図8(B)の切り抜き画像40bまたは図10(B)の切り抜き画像41bのフレーム番号を、「NoEdgeStart」とする。同様に、最後に光帯のエッジがかかる撮影フレーム番号(この例では図8(E)の切り抜き画像40eまたは図10(E)の切り抜き画像41eのフレーム番号)を画像から求めておく。ここでは、図8(E)の切り抜き画像40eまたは図10(E)の切り抜き画像41eのフレーム番号を、「NoEdgeEnd」とする。 The shooting frame number (in this example, the frame number of the cutout image 40b of FIG. 8B or the frame number of the cutout image 41b of FIG. 10B) in which the edge of the light band of the lighting device 1 is first applied to the defect position is obtained from the image. back. Here, the frame number of the cutout image 40b of FIG. 8B or the cutout image 41b of FIG. 10B is referred to as "NoEdge Start". Similarly, the photographing frame number (in this example, the frame number of the cut-out image 40e of FIG. 8 (E) or the cut-out image 41e of FIG. 10 (E)) to which the edge of the light band is applied is obtained from the image. Here, the frame number of the cut-out image 40e of FIG. 8 (E) or the cut-out image 41e of FIG. 10 (E) is referred to as "NoEdgeEnd".

図12に示すように、おおよそNoEdgeStart~NoEdgeEndのフレーム番号の画像20において明帯部21中に暗点31が現れる。また、おおよそNoStart~NoEdgeStartおよびNoEdgeEnd~NoEndのフレーム番号の画像20において暗帯部22、23中に明点32が現れる。なおフレーム番号「NoStart」は評価開始画像のフレーム番号、「NoEnd」は評価終了画像のフレーム番号を表す。また中央の画像のフレーム番号を「NoCenter」とすると、
NoCenter=(NoEdgeStart+NoEgdeEnd)/2・・・(1)
となる。
As shown in FIG. 12, a dark spot 31 appears in the bright band portion 21 in the image 20 having a frame number of approximately NoEdgeStart to NoEdgeEnd. Further, in the images 20 having frame numbers of NoStart to NoEdgeStart and NoEdgeEnd to NoEnd, bright spots 32 appear in the dark bands 22 and 23. The frame number "NoStart" represents the frame number of the evaluation start image, and "NoEnd" represents the frame number of the evaluation end image. If the frame number of the image in the center is "No Center",
NoCenter = (NoEdgeStart + NoEgdeEnd) / 2 ... (1)
Will be.

凹凸判別指標の一例としては、測定前半(NoStart~NoCenter)において暗点31の近似直線L2、L3の上側にある明点32の数から下側にある明点32の数を引いたものと、測定後半(NoCenter~NoEnd)において近似直線の下側にある明点32の数から上側にある明点32の数を引いたものとの合計が挙げられる。 As an example of the unevenness discrimination index, in the first half of the measurement (No Start to No Center), the number of bright points 32 on the upper side of the approximate straight lines L2 and L3 of the dark point 31 is subtracted from the number of bright points 32 on the lower side. In the latter half of the measurement (No Center to No End), the total of the number of bright points 32 on the lower side of the approximate straight line minus the number of bright points 32 on the upper side can be mentioned.

i番目のフレーム番号の画像20における明点32のX座標をXwihte(i)、近似直線L2、L3で求まるi番目のフレーム番号の画像20における暗点31のX座標をXblack(i)とし、測定前半のi番目のフレーム番号の画像において、明点32と暗点31の位置関係を表す指数をn(i)を(2)式で表す。 The X coordinate of the bright point 32 in the image 20 of the i-th frame number is Xwihte (i), and the X coordinate of the dark point 31 in the image 20 of the i-th frame number obtained by the approximate straight lines L2 and L3 is Xblack (i). In the image of the i-th frame number in the first half of the measurement, the exponent representing the positional relationship between the bright point 32 and the dark point 31 is expressed by equation (2) for n (i).

Figure 2022089476000002
Figure 2022089476000002

上記(2)式では、Xwihte(i)>Xblack(i)のときn(i)を+1、Xwihte(i)<Xblack(i)のときn(i)を-1とすることを示している。 In the above equation (2), it is shown that n (i) is +1 when Xwihte (i)> Xblack (i) and n (i) is -1 when Xwihte (i) <Xblack (i). ..

また、測定後半のi番目のフレームにおいて明点32と暗点31の位置関係を表す指数をn(i)を(3)式で表す。 Further, in the i-th frame in the latter half of the measurement, the exponent representing the positional relationship between the bright point 32 and the dark point 31 is expressed by Eq. (3) for n (i).

Figure 2022089476000003
Figure 2022089476000003

凹凸判別指数H0は(4)式にて表される。 The unevenness discrimination index H0 is expressed by the equation (4).

Figure 2022089476000004
Figure 2022089476000004

判別指標H0が正であれば凸欠陥110、負であれば凹欠陥120と判別することができる。 If the discrimination index H0 is positive, it can be discriminated as a convex defect 110, and if it is negative, it can be discriminated as a concave defect 120.

このように、明帯部21の両側に暗帯部22、23を有する画像20を用い、明帯部21と一方の暗帯部22との境界部を含む測定前半、または明帯部21と他方の暗帯部23との境界部を含む測定後半のいずれか一方または両方において、暗点31と明点32が所定の位置関係にある回数を含む凹凸判別指数により、簡素で正確な判別を行うことができる。 As described above, the image 20 having the dark band portions 22 and 23 on both sides of the bright band portion 21 is used, and the first half of the measurement including the boundary portion between the bright band portion 21 and the one dark band portion 22 or the bright band portion 21. Simple and accurate discrimination is performed by the unevenness discrimination index including the number of times that the dark spot 31 and the bright spot 32 are in a predetermined positional relationship in either one or both of the latter half of the measurement including the boundary portion with the other dark band portion 23. It can be carried out.

また、単に近似直線L2、L3の上または下に存在する明点32の数を計数するのではなく、明点32の確からしさを示す指標を重みとして積算したものを、判別指標としても良い。 Further, instead of simply counting the number of bright points 32 existing above or below the approximate straight lines L2 and L3, an index indicating the certainty of the bright points 32 may be integrated as a weight as a discrimination index.

具体的には、確からしさを示す指標として、検出された明点32の面積S(i)を重みとして積算した(5)式の判別指標H1や、明点32と周辺との輝度差abs(ΔL(i)) を重みとして積算した(6)式の判別指標H2や、切り抜き画像40a~40f、41a~41fの中心から明点32の中心までの距離d(i) を重みとして積算した(7)式の判別指標H3を用いても良い。なお(7)式におけるDは画像中央から最も離れた画素までの距離である。あるいはこれらを積算した(8)式でも良い。 Specifically, as an index showing the certainty, the discrimination index H1 of the equation (5) obtained by integrating the area S (i) of the detected bright point 32 as a weight, and the brightness difference abs (brightness difference abs) between the bright point 32 and the periphery. The discrimination index H2 of the equation (6), which is integrated with ΔL (i)) as a weight, and the distance d (i) from the center of the cutout images 40a to 40f and 41a to 41f to the center of the bright point 32 are integrated as weights ( 7) The discrimination index H3 in the equation may be used. Note that D in equation (7) is the distance from the center of the image to the farthest pixel. Alternatively, the equation (8) in which these are integrated may be used.

このような確からしさを示す指標を組み込むことにより、一層精度の高い判別を行うことができる。 By incorporating an index showing such certainty, it is possible to perform discrimination with higher accuracy.

Figure 2022089476000005
Figure 2022089476000005

上記実施形態の判別方法では、暗点31のX座標とフレーム番号の関係を直線近似した例を示したが、逆に、測定前半の明点32の位置とフレーム番号との関係を直線近似し、測定前半の暗点31位置と、近似直線より求まる同一フレーム番号の画像20における明点32の位置との相対位置関係から凹欠陥120か凸欠陥110かを判別してもよい。 In the discrimination method of the above embodiment, an example in which the relationship between the X coordinate of the dark point 31 and the frame number is linearly approximated is shown, but conversely, the relationship between the position of the bright point 32 in the first half of the measurement and the frame number is linearly approximated. , The concave defect 120 or the convex defect 110 may be determined from the relative positional relationship between the dark point 31 position in the first half of the measurement and the bright point 32 position in the image 20 having the same frame number obtained from the approximate straight line.

同様に、測定後半の明点32の位置とフレーム番号との関係を直線近似し、測定後半の暗点31の位置と、近似直線より求まる同一フレーム番号の画像20における明点32の位置との相対位置関係から、凹欠陥120か凸欠陥110かを判別してもよい。 Similarly, the relationship between the position of the bright point 32 in the latter half of the measurement and the frame number is linearly approximated, and the position of the dark point 31 in the latter half of the measurement and the position of the bright point 32 in the image 20 having the same frame number obtained from the approximate straight line. It may be determined whether it is a concave defect 120 or a convex defect 110 from the relative positional relationship.

明点32の位置とフレーム番号との関係を直線近似する場合も、暗点31の位置とフレーム番号との関係を直線近似する場合と同様に、暗点31の確からしさを示す指標を重みとして積算しても良い。 When the relationship between the position of the bright point 32 and the frame number is linearly approximated, the index indicating the certainty of the dark point 31 is used as a weight, as in the case of linearly approximating the relationship between the position of the dark point 31 and the frame number. You may add up.

さらに他の判別方法として、測定前半の明点32の位置とフレーム番号との関係を直線近似し、測定前半の暗点31の位置とフレーム番号との関係を直線近似し、その2本の直線のどちらが上にあるかで凹欠陥120か凸欠陥110かを判別してもよい。 As yet another discrimination method, the relationship between the position of the bright point 32 in the first half of the measurement and the frame number is linearly approximated, the relationship between the position of the dark point 31 in the first half of the measurement and the frame number is linearly approximated, and the two straight lines are used. It may be determined whether it is a concave defect 120 or a convex defect 110 depending on which of the two is on the top.

同様に、測定後半の明点32の位置とフレーム番号との関係を直線近似し、測定後半の暗点31の位置とフレーム番号との関係を直線近似し、その2本の直線のどちらが上にあるかで凹欠陥120か凸欠陥110かを判別してもよい。 Similarly, the relationship between the position of the bright point 32 in the latter half of the measurement and the frame number is linearly approximated, the relationship between the position of the dark point 31 in the latter half of the measurement and the frame number is linearly approximated, and which of the two straight lines is on top. It may be determined whether it is a concave defect 120 or a convex defect 110.

なお、各グラフの横軸、つまり照明光に対するワーク100の位置を示す指標をフレーム番号としたが、ワーク100が載っているベルトコンベアの動きを検出するエンコーダーの回転数で求まるワーク100の位置を横軸としても良い。あるいは測定時刻を横軸としても良い。 The horizontal axis of each graph, that is, an index indicating the position of the work 100 with respect to the illumination light is used as the frame number, but the position of the work 100 obtained by the rotation speed of the encoder that detects the movement of the belt conveyor on which the work 100 is mounted is used. It may be the horizontal axis. Alternatively, the measurement time may be the horizontal axis.

また、凸欠陥110を有するワーク100が、カメラ2に対して図1の矢印Aで示すように左方から右方へ移動する場合は、前述したように、図3(A)→(B)→(C)→図4(D)→(E)→(F)の順で画像が得られる。一方、ワーク100が逆方向即ち図1の右方から左方向に移動する場合、図4(F)→(E)→(D)→図3(C)→(B)→(A)の順で画像が得られる。 Further, when the work 100 having the convex defect 110 moves from the left to the right with respect to the camera 2 as shown by the arrow A in FIG. 1, as described above, FIG. 3 (A) → (B). Images are obtained in the order of → (C) → FIG. 4 (D) → (E) → (F). On the other hand, when the work 100 moves in the opposite direction, that is, from the right side to the left side of FIG. 1, the order is FIG. 4 (F) → (E) → (D) → FIG. 3 (C) → (B) → (A). You can get the image with.

撮影フレーム番号と明帯部21内の暗点31のX座標との関係、及びフレーム番号と暗帯部22、23内の明点32のX座標との関係は、ワーク100が順方向に移動する場合には図9のような関係になるが、ワーク100が逆方向に移動する場合には図13のようになる。即ち、同一フレーム番号の画像20における明点32と暗点31の相対位置関係が逆になる。直線L5は明帯部21内の暗点31の近似直線である。 The work 100 moves in the forward direction regarding the relationship between the shooting frame number and the X coordinate of the dark point 31 in the bright band portion 21, and the relationship between the frame number and the X coordinate of the bright point 32 in the dark band portions 22 and 23. In this case, the relationship is as shown in FIG. 9, but when the work 100 moves in the opposite direction, the relationship is as shown in FIG. That is, the relative positional relationship between the bright spot 32 and the dark spot 31 in the image 20 having the same frame number is reversed. The straight line L5 is an approximate straight line of the dark point 31 in the bright band portion 21.

同様に、凹欠陥120を有するワーク100が順方向に移動する場合には、図5(A)→(B)→(C)→図6(D)→(E)→(F)の順で画像が得られる。一方、ワーク100が逆方向に移動する場合、図6(F)→(E)→(D)→図5(C)→(B)→(A)の順で画像が得られる。この場合、フレーム番号と明帯部21内の暗点31のX座標との関係、及びフレーム番号と暗帯部22、23内の明点32のX座標との関係は、ワーク100が順方向に移動する場合には図11のような関係になるが、ワーク100が逆方向に移動する場合には図14のようになる。凹欠陥120の場合も同様に、同一フレーム番号の画像における明点32と暗点31の相対位置関係が逆になる。直線L6は明帯部21内の暗点31の近似直線である。 Similarly, when the work 100 having the concave defect 120 moves in the forward direction, the order is FIG. 5 (A) → (B) → (C) → FIG. 6 (D) → (E) → (F). An image is obtained. On the other hand, when the work 100 moves in the opposite direction, an image is obtained in the order of FIG. 6 (F) → (E) → (D) → FIG. 5 (C) → (B) → (A). In this case, the work 100 is in the forward direction regarding the relationship between the frame number and the X coordinate of the dark point 31 in the bright band portion 21 and the relationship between the frame number and the X coordinate of the bright point 32 in the dark band portions 22 and 23. When moving to, the relationship is as shown in FIG. 11, but when the work 100 moves in the opposite direction, the relationship is as shown in FIG. Similarly, in the case of the concave defect 120, the relative positional relationship between the bright point 32 and the dark point 31 in the image having the same frame number is reversed. The straight line L6 is an approximate straight line of the dark point 31 in the bright band portion 21.

そこで、あらかじめカメラ2とワーク100の移動方向の関係を校正しておき、移動方向が順方向であるか逆方向であるかによって判別指標H0~H3の符号を反転させるのが良い。このような構成とすることにより、カメラ2に対するワーク100の移動方向が変わっても、凹凸判別指数の符号を変えることで、正確な判別を行うことができる。 Therefore, it is preferable to calibrate the relationship between the moving directions of the camera 2 and the work 100 in advance and invert the codes of the discrimination indexes H0 to H3 depending on whether the moving direction is the forward direction or the reverse direction. With such a configuration, even if the moving direction of the work 100 with respect to the camera 2 changes, accurate discrimination can be performed by changing the sign of the unevenness discrimination index.

さらに、カメラ2が自身の光軸周りにθ回転して取り付けられている場合、画像が―θ回転する。その場合は明帯部21にある暗点31ないし暗帯部22、23にある明点32の座標 (X,Y)を求めておき、下記(9)式にてθ回転させた座標(X’,Y’)を求める。X座標として回転後の座標X’を適用し、凹欠陥120か凸欠陥110かの判別を行う。カメラ2の回転角θはあらかじめ校正時に求めておく。画像をθ回転してから明点32ないし暗点31の座標を求めても良い。 Further, when the camera 2 is attached by being rotated by θ around its own optical axis, the image is rotated by −θ. In that case, the coordinates (X, Y) of the dark point 31 in the bright band portion 21 or the bright point 32 in the dark zone portions 22 and 23 are obtained, and the coordinates (X) rotated by θ by the following equation (9) are obtained. ', Y') is calculated. The rotated coordinate X'is applied as the X coordinate, and it is determined whether the defect is the concave defect 120 or the convex defect 110. The rotation angle θ of the camera 2 is obtained in advance at the time of calibration. After rotating the image by θ, the coordinates of the bright point 32 or the dark point 31 may be obtained.

Figure 2022089476000006
Figure 2022089476000006

このような構成により、カメラ2が自身の光軸に対して回転していても、その回転角に応じて、画像20上の暗点31と明点32の座標または画像を回転させるから、正確な判別を行うことができる。 With such a configuration, even if the camera 2 is rotated with respect to its own optical axis, the coordinates or the image of the dark point 31 and the bright point 32 on the image 20 are rotated according to the rotation angle, so that the accuracy is correct. It is possible to make a distinction.

以上説明したように、この実施形態では、ワーク100をカメラ2とワーク100を照明する照明光に対して相対的に移動させながら撮影を行うことができ、ワーク100の相対的な移動を停止して撮影する必要がないのに加えて、複数の方向からワークを照明するための複数の照明装置は不要で、1個の照明装置1で良く、構成が簡素化される。しかも、ワーク100をラインセンサーで反射測定するものではないから、測定部位の表面形状に拘わらず、表面欠陥が凹欠陥か凸欠陥かの判別を行うことができる。 As described above, in this embodiment, the work 100 can be photographed while being relatively moved with respect to the illumination light illuminating the camera 2 and the work 100, and the relative movement of the work 100 is stopped. In addition to the fact that it is not necessary to take a picture of the work, a plurality of lighting devices for illuminating the work from a plurality of directions are not required, and one lighting device 1 is sufficient, and the configuration is simplified. Moreover, since the work 100 is not measured for reflection by a line sensor, it is possible to determine whether the surface defect is a concave defect or a convex defect regardless of the surface shape of the measurement site.

以上の実施形態では、照明装置1とカメラ2の配置が固定で、ワーク100が相対的に移動する例にて、表面欠陥の凹凸を判別をする手法を説明してきた。 In the above embodiment, the method of discriminating the unevenness of the surface defect has been described in the example in which the arrangement of the lighting device 1 and the camera 2 is fixed and the work 100 moves relatively.

しかし、本手法はカメラ2とワーク100が固定で、照明装置1の縞状の照明光が相対的に移動する場合でも適用可能である。この場合、照明装置1自体を移動させても良いし、照明装置1を液晶表示装置等で構成し、表示面上で縞状の照明パターンを移動させても良い。また、ワーク100と照明光の両方を速度差をもって移動させても良く、要はワーク100と照明光の少なくとも一方を他方に対して相対的に移動させれば良い。 However, this method can be applied even when the camera 2 and the work 100 are fixed and the striped illumination light of the illumination device 1 moves relatively. In this case, the lighting device 1 itself may be moved, or the lighting device 1 may be configured by a liquid crystal display device or the like, and the striped lighting pattern may be moved on the display surface. Further, both the work 100 and the illumination light may be moved with a speed difference, and in short, at least one of the work 100 and the illumination light may be moved relative to the other.

ワーク100の位置が固定で照明光が移動する場合、欠陥位置が固定であるため、暗点31及び明点32の座標とフレーム番号との関係は、凸欠陥110では図15のグラフのようになり、凹欠陥120では図16のグラフのようになる。明帯部21に現れる暗点31の座標とフレーム番号との関係を直線L7、L8で近似して、測定前半におよび後半における明点32と暗点31の相対位置関係を求め、表面欠陥の凹凸を判別することが可能である。 When the position of the work 100 is fixed and the illumination light moves, the defect position is fixed. Therefore, the relationship between the coordinates of the dark point 31 and the bright point 32 and the frame number is as shown in the graph of FIG. 15 for the convex defect 110. Therefore, the concave defect 120 is as shown in the graph of FIG. The relationship between the coordinates of the dark point 31 appearing in the bright band 21 and the frame number is approximated by straight lines L7 and L8, and the relative positional relationship between the bright point 32 and the dark point 31 in the first half and the second half of the measurement is obtained. It is possible to discriminate unevenness.

この場合、図15及び図16のグラフの横軸はフレーム番号であっても良いし、縞状の照明光の位置(座標)であってもよい。 In this case, the horizontal axis of the graphs of FIGS. 15 and 16 may be the frame number or the position (coordinates) of the striped illumination light.

あるいは、照明装置1とワーク100が固定で、カメラ2を移動させても良い。この場合、図15及び図16のグラフの横軸はフレーム番号であっても良いし、カメラ2の位置(座標)であってもよい。 Alternatively, the lighting device 1 and the work 100 may be fixed and the camera 2 may be moved. In this case, the horizontal axis of the graphs of FIGS. 15 and 16 may be the frame number or the position (coordinates) of the camera 2.

1 照明装置
2 カメラ
3 演算部
3a CPU
3b ROM
3c RAM
4 表示部
20 画像
21 明帯部
22、23 暗帯部
31 暗点
32 明点
40a~40f 切り抜き画像
41a~41f 切り抜き画像
100 ワーク
110 凸欠陥
120 凹欠陥
1 Lighting device 2 Camera 3 Calculation unit 3a CPU
3b ROM
3c RAM
4 Display 20 Image 21 Bright band 22, 23 Dark band 31 Dark point 32 Bright point 40a-40f Cutout image 41a-41f Cutout image 100 Work 110 Convex defect 120 Concave defect

Claims (18)

ワークを照明光で照明する照明装置と、
撮影手段と、
ワークまたは照明光または撮影手段のうちの少なくともいずれかを他のものに対して相対的に移動させる移動手段と、
を備え、
前記移動手段によりワークまたは照明光または撮影手段のうちの少なくともいずれかを他のものに対して相対的に移動させながら、前記照明光で照明されたワークを前記撮影手段により撮影し、さらに、
前記撮影により得られた、照明光の照射部位に対応する明部を有する画像ないし照明光の非照射部位に対応する暗部を有する画像を含む複数の画像に基づいて、前記明部にワークの表面欠陥として現れる暗点の位置と、前記暗部にワークの表面欠陥として現れる明点の位置と、前記照明光または撮影手段に対するワークの相対位置を示す指標と明点ないし暗点のいずれかないし両方の位置との関係を表す近似式を算出する算出手段と、
前記算出手段により算出した近似式から、前記暗点と明点の相対位置関係を示す凹凸判別指数を計算し、その凹凸判別指数に基づいて前記表面欠陥の凹凸を判別する判別手段と、
を備えたことを特徴とするワークの欠陥凹凸判別装置。
A lighting device that illuminates the work with illumination light,
Shooting means and
A means of transportation that moves at least one of the work or illumination light or the means of photography relative to the other.
Equipped with
The work illuminated by the illumination light is photographed by the photographing means while the work or the illumination light or at least one of the photographing means is relatively moved relative to the other by the moving means, and further.
Based on a plurality of images obtained by the imaging, including an image having a bright portion corresponding to an irradiated portion of the illumination light or an image having a dark portion corresponding to a non-irradiated portion of the illumination light, the surface of the work is formed on the bright portion. Both the position of the dark spot appearing as a defect, the position of the bright spot appearing as a surface defect of the work in the dark part, and the index indicating the relative position of the work with respect to the illumination light or the photographing means, and either the bright spot or the dark spot. A calculation method for calculating an approximate expression that expresses the relationship with the position,
From the approximate expression calculated by the calculation means, a concave-convex discrimination index indicating the relative positional relationship between the dark point and the bright point is calculated, and the discrimination means for discriminating the unevenness of the surface defect based on the unevenness discrimination index.
A device for determining the defect unevenness of a work, which is characterized by being equipped with.
前記凹凸判別指数は、撮影前半または撮影後半のいずれか一方または両方において、暗点と明点が所定の位置関係にある回数を含む請求項1に記載のワークの欠陥凹凸判別装置。 The defect unevenness discrimination device for a work according to claim 1, wherein the unevenness discrimination index includes the number of times that a dark point and a bright point have a predetermined positional relationship in either one or both of the first half of shooting and the second half of shooting. 前記凹凸判別指数は、撮影前半または撮影後半のいずれか一方または両方において、暗点と明点が所定の位置関係にある際の、暗点または明点の確からしさを示す指標を含んでいる請求項1または2に記載のワークの欠陥凹凸判別装置。 The unevenness discrimination index includes an index indicating the certainty of the dark point or the bright point when the dark point and the bright point are in a predetermined positional relationship in either one or both of the first half of the shooting and the second half of the shooting. Item 2. The device for determining defect unevenness of the work according to Item 1 or 2. 前記撮影手段ないし照明光に対するワークの相対的な移動方向に応じて前記凹凸判別指数の符号を変える請求項1~3のいずれかに記載のワークの欠陥凹凸判別装置。 The defect unevenness discrimination apparatus for a work according to any one of claims 1 to 3, wherein the sign of the unevenness discrimination index is changed according to the relative moving direction of the work with respect to the photographing means or the illumination light. 前記撮影手段の光軸に対する撮影手段の回転角に応じて、画像上の暗点と明点の座標または画像を回転させる請求項1~4のいずれかに記載のワークの欠陥凹凸判別装置。 The defect unevenness determination device for a work according to any one of claims 1 to 4, wherein the coordinates of the dark point and the bright point on the image or the image is rotated according to the rotation angle of the photographing means with respect to the optical axis of the photographing means. 前記照明光ないし撮影手段に対するワークの相対位置を示す指標として、撮影フレーム番号、前記移動手段に備えられたロータリーエンコーダの回転数、測定時刻、照明光を移動させる場合の照明光の座標、撮影手段を移動させる場合の撮影手段の座標の少なくともいずれかを含む請求項1~5のいずれかに記載のワークの欠陥凹凸判別装置。 As an index indicating the relative position of the work with respect to the illumination light or the photographing means, the photographing frame number, the rotation speed of the rotary encoder provided in the moving means, the measurement time, the coordinates of the illumination light when the illumination light is moved, and the photographing means. The defect unevenness determination device for a work according to any one of claims 1 to 5, which includes at least one of the coordinates of the photographing means in the case of moving the image. 移動手段により、ワークまたはワークを照明する照明光または撮影手段のうちの少なくともいずれかを他のものに対して相対的に移動させながら、前記照明光で照明されたワークを撮影手段により撮影する撮影ステップと、
前記撮影ステップにより得られた、照明光の照射部位に対応する明部を有する画像ないし照明光の非照射部位に対応する暗部を有する画像を含む複数の画像に基づいて、前記明部にワークの表面欠陥として現れる暗点の位置と、前記暗部にワークの表面欠陥として現れる明点の位置と、前記照明光または撮影手段に対するワークの相対位置を示す指標と明点ないし暗点のいずれかないし両方の位置との関係を表す近似式を算出する算出ステップと、
前記算出ステップにより算出した近似式から、前記暗点と明点の相対位置関係を示す凹凸判別指数を計算し、その凹凸判別指数に基づいて前記表面欠陥の凹凸を判別する判別ステップと、
を備えたことを特徴とするワークの欠陥凹凸判別方法。
Taking a picture of the work illuminated by the illumination light while moving at least one of the work or the illumination light for illuminating the work or the photographing means relative to the other by the moving means. Steps and
Based on a plurality of images obtained by the photographing step, including an image having a bright portion corresponding to an irradiated portion of the illumination light or an image having a dark portion corresponding to a non-irradiated portion of the illumination light, the work is formed in the bright portion. Both the position of the dark spot appearing as a surface defect, the position of the bright spot appearing as a surface defect of the work in the dark part, and the index indicating the relative position of the work with respect to the illumination light or the photographing means, and either the bright spot or the dark spot. A calculation step to calculate an approximate expression that expresses the relationship with the position of
From the approximate expression calculated by the calculation step, a concave-convex discrimination index indicating the relative positional relationship between the dark point and the bright point is calculated, and a discrimination step for discriminating the unevenness of the surface defect based on the unevenness discrimination index.
A method for discriminating defects and unevenness of a work, which is characterized by being provided with.
前記凹凸判別指数は、撮影前半または撮影後半のいずれか一方または両方において、暗点と明点が所定の位置関係にある回数を含む請求項7に記載のワークの欠陥凹凸判別方法。 The defect unevenness discrimination method for a work according to claim 7, wherein the unevenness discrimination index includes the number of times that a dark point and a bright point have a predetermined positional relationship in either one or both of the first half of shooting and the second half of shooting. 前記凹凸判別指数は、撮影前半または撮影後半のいずれか一方または両方において、暗点と明点が所定の位置関係にある際の、暗点または明点の確からしさを示す指標を含んでいる請求項7または8に記載のワークの欠陥凹凸判別方法。 The unevenness discrimination index includes an index indicating the certainty of the dark point or the bright point when the dark point and the bright point have a predetermined positional relationship in either one or both of the first half of the shooting and the second half of the shooting. Item 7. The method for determining defect unevenness of a work according to Item 7 or 8. 前記撮影手段ないし照明光に対するワークの相対的な移動方向に応じて前記凹凸判別指数の符号を変える請求項7~9のいずれかに記載のワークの欠陥凹凸判別方法。 The method for determining defect unevenness of a work according to any one of claims 7 to 9, wherein the sign of the unevenness discrimination index is changed according to the relative moving direction of the work with respect to the photographing means or the illumination light. 前記撮影手段の光軸に対する撮影手段の回転角に応じて、画像上の暗点と明点の座標または画像を回転させる請求項7~10のいずれかに記載のワークの欠陥凹凸判別方法。 The method for determining defect unevenness of a work according to any one of claims 7 to 10, wherein the coordinates of the dark point and the bright point on the image or the image is rotated according to the rotation angle of the photographing means with respect to the optical axis of the photographing means. 前記照明光ないし撮影手段に対するワークの相対位置を示す指標として、撮影フレーム番号、前記移動手段に備えられたロータリーエンコーダの回転数、測定時刻、照明光を移動させる場合の照明光の座標、撮影手段を移動させる場合の撮影手段の座標の少なくともいずれかを含む請求項7~11のいずれかに記載のワークの欠陥凹凸判別方法。 As an index indicating the relative position of the work with respect to the illumination light or the photographing means, the photographing frame number, the rotation speed of the rotary encoder provided in the moving means, the measurement time, the coordinates of the illumination light when the illumination light is moved, and the photographing means. The method for determining defect unevenness of a work according to any one of claims 7 to 11, which includes at least one of the coordinates of the photographing means when moving the light. 移動手段により、ワークまたはワークを照明する照明光または撮影手段のうちの少なくともいずれかを他のものに対して相対的に移動させながら、前記照明光で照明されたワークを撮影手段により撮影することにより得られた、照明光の照射部位に対応する明部を有する画像ないし照明光の非照射部位に対応する暗部を有する画像を含む複数の画像に基づいて、前記明部にワークの表面欠陥として現れる暗点の位置と、前記暗部にワークの表面欠陥として現れる明点の位置と、前記照明光または撮影手段に対するワークの相対位置を示す指標と明点ないし暗点のいずれかないし両方の位置との関係を表す近似式を算出する算出ステップと、
前記算出ステップにより算出した近似式から、前記暗点と明点の相対位置関係を示す凹凸判別指数を計算し、その凹凸判別指数に基づいて前記表面欠陥の凹凸を判別する判別ステップと、
をコンピュータに実行させるためのプログラム。
By moving, the work or the work illuminated by the illumination light is photographed by the photographing means while moving at least one of the illumination light or the photographing means for illuminating the work relative to the other. Based on a plurality of images including an image having a bright portion corresponding to an illuminated portion of illumination light or an image having a dark portion corresponding to a non-irradiated portion of illumination light, the bright portion is used as a surface defect of a work. The position of the dark spot that appears, the position of the bright spot that appears as a surface defect of the work in the dark part, and the position of both the index indicating the relative position of the work with respect to the illumination light or the photographing means and the bright spot or the dark spot. And the calculation step to calculate the approximate expression that expresses the relationship between
From the approximate expression calculated by the calculation step, a concave-convex discrimination index indicating the relative positional relationship between the dark point and the bright point is calculated, and a discrimination step for discriminating the unevenness of the surface defect based on the unevenness discrimination index.
A program that lets your computer run.
前記凹凸判別指数は、撮影前半または撮影後半のいずれか一方または両方において、暗点と明点が所定の位置関係にある回数を含む請求項13に記載のプログラム。 The program according to claim 13, wherein the unevenness discrimination index includes the number of times that a dark point and a bright point have a predetermined positional relationship in either one or both of the first half of shooting and the second half of shooting. 前記凹凸判別指数は、撮影前半または撮影後半のいずれか一方または両方において、暗点と明点が所定の位置関係にある際の、暗点または明点の確からしさを示す指標を含んでいる請求項13または14に記載のプログラム。 The unevenness discrimination index includes an index indicating the certainty of the dark point or the bright point when the dark point and the bright point are in a predetermined positional relationship in either one or both of the first half of the shooting and the second half of the shooting. Item 13. The program according to item 13. 前記撮影手段ないし照明光に対するワークの相対的な移動方向に応じて前記凹凸判別指数の符号を変える請求項13~15のいずれかに記載のプログラム。 The program according to any one of claims 13 to 15, wherein the sign of the unevenness discrimination index is changed according to the relative moving direction of the work with respect to the photographing means or the illumination light. 前記撮影手段の光軸に対する撮影手段の回転角に応じて、画像上の暗点と明点の座標または画像を回転させる請求項13~16のいずれかに記載のプログラム。 The program according to any one of claims 13 to 16, wherein the coordinates of the dark point and the bright point on the image or the image is rotated according to the rotation angle of the photographing means with respect to the optical axis of the photographing means. 前記照明光ないし撮影手段に対するワークの相対位置を示す指標として、撮影フレーム番号、前記移動手段に備えられたロータリーエンコーダの回転数、測定時刻、照明光を移動させる場合の照明光の座標、撮影手段を移動させる場合の撮影手段の座標の少なくともいずれかを含む請求項13~17のいずれかに記載のプログラム。 As an index indicating the relative position of the work with respect to the illumination light or the photographing means, the photographing frame number, the rotation speed of the rotary encoder provided in the moving means, the measurement time, the coordinates of the illumination light when the illumination light is moved, and the photographing means. The program according to any one of claims 13 to 17, which includes at least one of the coordinates of the photographing means when moving the light.
JP2020201895A 2020-12-04 2020-12-04 Workpiece defect unevenness detection device, method, and program Active JP7509016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020201895A JP7509016B2 (en) 2020-12-04 2020-12-04 Workpiece defect unevenness detection device, method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020201895A JP7509016B2 (en) 2020-12-04 2020-12-04 Workpiece defect unevenness detection device, method, and program

Publications (2)

Publication Number Publication Date
JP2022089476A true JP2022089476A (en) 2022-06-16
JP7509016B2 JP7509016B2 (en) 2024-07-02

Family

ID=81989163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020201895A Active JP7509016B2 (en) 2020-12-04 2020-12-04 Workpiece defect unevenness detection device, method, and program

Country Status (1)

Country Link
JP (1) JP7509016B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6531184B2 (en) 2016-01-08 2019-06-12 株式会社Screenホールディングス Defect detection apparatus and defect detection method

Also Published As

Publication number Publication date
JP7509016B2 (en) 2024-07-02

Similar Documents

Publication Publication Date Title
ES2389525T3 (en) Procedure and device for mechanical cutting of plate parts
ES2910068T3 (en) Mobile and automated device for the detection and classification of damage to the bodywork of a vehicle
ES2942266T3 (en) Surface Defect Detection Method and Surface Defect Detection Device
EP2102587B1 (en) Method of automated quantitative analysis of distortion shaped vehicle glass by reflected optical imaging
ES2630736B1 (en) SYSTEM AND METHOD OF DETECTION OF DEFECTS IN SPECULAR OR SEMI-SPECULAR SURFACES THROUGH PHOTOGRAMETRIC PROJECTION
JP4673733B2 (en) Surface inspection apparatus and surface inspection method
CN105960569B (en) The method of three-dimension object is checked using two dimensional image processing
EP2402740A1 (en) Tool wear quantification system and method
CN105102925A (en) Three-dimensional coordinate scanner and method of operation
JP5728699B2 (en) Surface inspection apparatus, surface inspection method, and surface inspection program
CN107084663A (en) Location determining method, measurement apparatus and measuring system
WO2019212042A1 (en) Screw shape measuring device and measuring method
CN110231352A (en) Image testing device, image checking method and image inspection program
JP6482710B1 (en) Appearance inspection apparatus and inspection system
US20180367722A1 (en) Image acquisition device and image acquisition method
JP6584454B2 (en) Image processing apparatus and method
JP2019082452A (en) Image generation method, image generation device, and defect determination method using the same
CN100340840C (en) Method and device for optical shape measurement or evaluation
JP7509016B2 (en) Workpiece defect unevenness detection device, method, and program
US10161879B1 (en) Measurement of thickness, surface profile, and optical power of a transparent sheet
JP7444171B2 (en) Surface defect discrimination device, appearance inspection device and program
EP1351033B1 (en) Side lit 3D edge location
Sills et al. Defect identification on specular machined surfaces
JP2008070343A (en) Position measuring system
JP7443162B2 (en) Inspection equipment and inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230926

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240603

R150 Certificate of patent or registration of utility model

Ref document number: 7509016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150