[go: up one dir, main page]

JP2022085606A - Mold - Google Patents

Mold Download PDF

Info

Publication number
JP2022085606A
JP2022085606A JP2020197372A JP2020197372A JP2022085606A JP 2022085606 A JP2022085606 A JP 2022085606A JP 2020197372 A JP2020197372 A JP 2020197372A JP 2020197372 A JP2020197372 A JP 2020197372A JP 2022085606 A JP2022085606 A JP 2022085606A
Authority
JP
Japan
Prior art keywords
mass
molded product
alumina
parts
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020197372A
Other languages
Japanese (ja)
Inventor
泰 小野
Yasushi Ono
弘樹 森田
Hiroki Morita
賢 米内山
Masaru Yonaiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2020197372A priority Critical patent/JP2022085606A/en
Priority to KR1020237018118A priority patent/KR20230096082A/en
Priority to CN202180075486.3A priority patent/CN116406436A/en
Priority to PCT/JP2021/032545 priority patent/WO2022113465A1/en
Publication of JP2022085606A publication Critical patent/JP2022085606A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/52Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21JFIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
    • D21J1/00Fibreboard
    • D21J1/16Special fibreboard
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Thermal Insulation (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

To provide a shaped body having both flexibility and shape retainability.SOLUTION: A shaped product comprises an alumina-containing alumina fiber, an inorganic binder, and a surfactant, in which the content of the alumina is 70 mass% or more.SELECTED DRAWING: None

Description

本発明は、成形体に関する。 The present invention relates to a molded product.

通常、工業炉等の炉の内部には、熱容量および熱伝導率が低い炉材(断熱材)が設けられている。炉内において、被焼成物からリチウムガスやナトリウムガスなどのアルカリガスが発生する場合があるが、このアルカリガスにより炉材が損耗しやすいという問題がある。そこで、炉材として、耐久性に優れ得るアルミナを含む無機質成形体が提案されている(特許文献1を参照)。 Normally, a furnace material (heat insulating material) having a low heat capacity and thermal conductivity is provided inside a furnace such as an industrial furnace. Alkaline gas such as lithium gas and sodium gas may be generated from the object to be fired in the furnace, but there is a problem that the furnace material is easily worn by this alkaline gas. Therefore, as a furnace material, an inorganic molded body containing alumina, which can be excellent in durability, has been proposed (see Patent Document 1).

上記炉材は、高強度で剛性を有するが、炉への施工時に(例えば、炉の曲面形状に沿わせる際に)、柔軟性が求められる場合がある。一方で、炉の使用時の振動等により形状が崩れないよう、炉材には保形性(具体的には、加熱後の保形性)も求められる。 Although the above-mentioned furnace material has high strength and rigidity, flexibility may be required at the time of construction in the furnace (for example, when following the curved surface shape of the furnace). On the other hand, the furnace material is also required to have shape retention (specifically, shape retention after heating) so that the shape does not collapse due to vibration during use of the furnace.

特許第5203920号公報Japanese Patent No. 5203920

本発明は、上記課題を解決するためになされたものであり、柔軟性と保形性とを兼ね備えた成形体の提供を目的の1つとする。 The present invention has been made to solve the above problems, and one of the objects of the present invention is to provide a molded body having both flexibility and shape retention.

本発明の1つの局面によれば、成形体が提供される。この成形体は、アルミナを含むアルミナ質繊維と、無機バインダーと、界面活性剤と、を含み、上記アルミナの含有量が70質量%以上である。 According to one aspect of the invention, a molded body is provided. This molded product contains an alumina fiber containing alumina, an inorganic binder, and a surfactant, and the content of the alumina is 70% by mass or more.

1つの実施形態においては、上記成形体の密度は80kg/m以上200kg/m以下である。 In one embodiment, the density of the molded product is 80 kg / m 3 or more and 200 kg / m 3 or less.

1つの実施形態においては、上記成形体の30%圧縮復元率は85%以上である。 In one embodiment, the 30% compression restoration rate of the molded product is 85% or more.

1つの実施形態においては、上記成形体の1600℃の収縮率は3%以下である。 In one embodiment, the shrinkage of the molded product at 1600 ° C. is 3% or less.

1つの実施形態においては、上記成形体は有機バインダーを含む。 In one embodiment, the molded product comprises an organic binder.

1つの実施形態においては、上記無機バインダーの含有量は5質量%以下である。 In one embodiment, the content of the inorganic binder is 5% by mass or less.

1つの実施形態においては、上記無機バインダーの含有量は1質量%以上である。 In one embodiment, the content of the inorganic binder is 1% by mass or more.

1つの実施形態においては、上記界面活性剤はカチオン性界面活性剤を含む。 In one embodiment, the surfactant comprises a cationic surfactant.

1つの実施形態においては、上記成形体はリフラクトリーセラミックファイバーを実質的に含まない。 In one embodiment, the molded product is substantially free of refractory ceramic fibers.

1つの実施形態においては、上記成形体は高分子凝集剤を含む。 In one embodiment, the molded product comprises a polymer flocculant.

1つの実施形態においては、上記記高分子系凝集剤は第一高分子凝集剤および第二高分子凝集剤を含む。 In one embodiment, the above-mentioned polymer-based flocculants include a first polymer flocculant and a second polymer flocculant.

1つの実施形態においては、上記成形体はアルミナを含むアルミナ質粒子を含み、上記アルミナ質繊維を30質量部以上70質量部以下、上記アルミナ質粒子を30質量部以上70質量部以下、上記界面活性剤を0.1質量部以上10質量部以下の割合で含む。 In one embodiment, the molded body contains alumina particles containing alumina, 30 parts by mass or more and 70 parts by mass or less of the alumina fiber, 30 parts by mass or more and 70 parts by mass or less of the alumina particles, and the interface. The activator is contained in a proportion of 0.1 parts by mass or more and 10 parts by mass or less.

1つの実施形態においては、上記成形体はアルミナを含むアルミナ質粒子を実質的に含まず、上記アルミナ質繊維を80質量部以上120質量部以下、上記アルミナ質粒子を5質量部以下、上記界面活性剤を0.1質量部以上10質量部以下の割合で含む。 In one embodiment, the molded body does not substantially contain alumina particles containing alumina, 80 parts by mass or more and 120 parts by mass or less of the alumina fiber, 5 parts by mass or less of the alumina particles, and the interface. The activator is contained in a proportion of 0.1 parts by mass or more and 10 parts by mass or less.

本発明によれば、柔軟性と保形性とを兼ね備えた成形体を提供することができる。 According to the present invention, it is possible to provide a molded body having both flexibility and shape retention.

以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.

A.成形体
本発明の1つ実施形態における成形体は、アルミナ質繊維と、無機バインダーと、界面活性剤とを含む。
A. Molded Body The molded body in one embodiment of the present invention contains an alumina fiber, an inorganic binder, and a surfactant.

A-1.アルミナ質繊維
上記アルミナ質繊維は、アルミナ(代表的には、αアルミナ)を含む。アルミナ質繊維のアルミナの含有量は、好ましくは80質量%以上、さらに好ましくは90質量%以上、特に好ましくは95質量%以上である。このような含有量によれば、例えば、耐アルカリ性や耐還元雰囲気に優れ得る。
A-1. Alumina fiber The alumina fiber contains alumina (typically α-alumina). The alumina content of the alumina fiber is preferably 80% by mass or more, more preferably 90% by mass or more, and particularly preferably 95% by mass or more. According to such a content, for example, alkali resistance and a reduction-resistant atmosphere can be excellent.

アルミナ質繊維は、アルミナ以外の他の成分を含み得る。他の成分としては、例えば、シリカ、ジルコニアが挙げられる。 Aluminous fibers may contain components other than alumina. Examples of other components include silica and zirconia.

アルミナ質繊維の平均長さは、好ましくは100μm~100000μm、さらに好ましくは1000μm~80000μm、特に好ましくは3000μm~50000μmである。アルミナ質繊維の繊維径(直径)は、代表的には3μm~12μmであり、好ましくは3μm~10μmである。アルミナ質繊維のアスペクト比(長さ/直径)は、代表的には25以上である。 The average length of the alumina fiber is preferably 100 μm to 100,000 μm, more preferably 1000 μm to 80,000 μm, and particularly preferably 3000 μm to 50,000 μm. The fiber diameter (diameter) of the alumina-based fiber is typically 3 μm to 12 μm, preferably 3 μm to 10 μm. The aspect ratio (length / diameter) of the alumina-based fiber is typically 25 or more.

上記アルミナの結晶化度は、成形体に求められる特性に応じて選定すればよく、アルミナの結晶化度が異なる2種類以上のアルミナ質繊維を組み合わせて用いてもよい。アルミナ質繊維に含まれるアルミナの結晶化度は、例えば、30%未満、好ましくは20%未満であってもよい。これらの範囲の結晶化度は、例えば、得られる成形体の柔軟性の向上に寄与し得る。また、アルミナ質繊維に含まれるアルミナの結晶化度は、例えば、30%以上、好ましくは40%以上であってもよい。これらの範囲の結晶化度は、例えば、得られる成形体の加熱収縮率や耐アルカリ性の向上に寄与し得る。 The crystallinity of the alumina may be selected according to the characteristics required for the molded product, and two or more types of alumina fibers having different crystallinities of alumina may be used in combination. The crystallinity of alumina contained in the alumina fiber may be, for example, less than 30%, preferably less than 20%. Crystallinity in these ranges can contribute, for example, to improving the flexibility of the resulting molded product. Further, the crystallinity of alumina contained in the alumina fiber may be, for example, 30% or more, preferably 40% or more. The crystallinity in these ranges can contribute to, for example, improvement of the heat shrinkage rate and alkali resistance of the obtained molded product.

A-2.無機バインダー
上記無機バインダーは、任意の適切な無機化合物で形成され得る。具体例としては、無機バインダーは、シリカ、ジルコニア、チタニア、アルミナ、ベントナイト等で形成される。これらは、単独で、または、2種以上組み合わせて用いられ得る。これらの中でも、シリカが好ましく用いられる。得られる成形体の保形性(具体的には、加熱後の保形性)により優れ得るからである。
A-2. Inorganic Binder The inorganic binder can be formed of any suitable inorganic compound. As a specific example, the inorganic binder is formed of silica, zirconia, titania, alumina, bentonite and the like. These can be used alone or in combination of two or more. Among these, silica is preferably used. This is because the shape-retaining property of the obtained molded product (specifically, the shape-retaining property after heating) can be improved.

成形体における無機バインダーの含有量は、例えば10質量%以下であり、好ましくは5質量%以下、さらに好ましくは3.5質量%以下である。このような含有量によれば、得られる成形体の柔軟性がさらに優れ得る。一方、成形体における無機バインダーの含有量は、例えば0.1質量%以上であり、好ましくは0.5質量%以上、さらに好ましくは1質量%以上である。このような含有量によれば、得られる成形体の保形性(具体的には、加熱後の保形性)がさらに優れ得る。 The content of the inorganic binder in the molded product is, for example, 10% by mass or less, preferably 5% by mass or less, and more preferably 3.5% by mass or less. With such a content, the flexibility of the obtained molded product can be further improved. On the other hand, the content of the inorganic binder in the molded product is, for example, 0.1% by mass or more, preferably 0.5% by mass or more, and more preferably 1% by mass or more. According to such a content, the shape-retaining property (specifically, the shape-retaining property after heating) of the obtained molded product can be further excellent.

A-3.界面活性剤
上記界面活性剤としては、任意の適切な界面活性剤が用いられ得る。界面活性剤としては、例えば、アニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤、非イオン性界面活性剤挙げられる。これらは、単独で、または、2種以上組み合わせて用いられ得る。これらの中でも、カチオン性界面活性剤及び/又は両性界面活性剤が好ましく、さらに好ましくはカチオン性界面活性剤が用いられる。得られる成形体の柔軟性が極めて優れ得るからである。具体的には、後述の成形体の製造に際し、水中で負に帯電し得るアルミナ(特に、アルミナ質繊維)に、良好に定着し得るからである。
A-3. Surfactant As the surfactant, any suitable surfactant can be used. Examples of the surfactant include anionic surfactant, cationic surfactant, amphoteric surfactant, and nonionic surfactant. These can be used alone or in combination of two or more. Among these, a cationic surfactant and / or an amphoteric surfactant is preferable, and a cationic surfactant is more preferably used. This is because the flexibility of the obtained molded product can be extremely excellent. Specifically, this is because it can be satisfactorily fixed to alumina (particularly, alumina fiber) that can be negatively charged in water during the production of the molded product described later.

上記カチオン性界面活性剤の具体例としては、第4級アンモニウム塩型、アルキルアミン塩型、ピリジニウム塩型のカチオン性界面活性剤が挙げられる。第4級アンモニウム塩型のカチオン性界面活性剤としては、例えば、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルベンザルコニウム塩、N,N-ジアルキロイルオキシエチル-N-メチル,N-ヒドロキシエチルアンモニウム塩が挙げられる。アルキルアミン塩型のカチオン性界面活性剤としては、例えば、モノアルキルアミン塩、ジアルキルアミン塩、トリアルキルアミン塩等が挙げられる。ピリジニウム塩型のカチオン性界面活性剤としては、例えば、アルキルピリジニウム塩が挙げられる。 Specific examples of the above-mentioned cationic surfactant include quaternary ammonium salt type, alkylamine salt type, and pyridinium salt type cationic surfactants. Examples of the quaternary ammonium salt type cationic surfactant include an alkyltrimethylammonium salt, a dialkyldimethylammonium salt, an alkylbenzalconium salt, N, N-dialkyloxyethyl-N-methyl, and N-hydroxy. Ethylammonium salt can be mentioned. Examples of the alkylamine salt type cationic surfactant include monoalkylamine salts, dialkylamine salts, trialkylamine salts and the like. Examples of the pyridinium salt-type cationic surfactant include an alkylpyridinium salt.

また、上記カチオン性界面活性剤としては、例えば、ステアリン酸ジエチルアミノエチルアミド、ステアリン酸ジメチルアミノエチルアミド、パルミチン酸ジエチルアミノエチルアミド、パルミチン酸ジメチルアミノエチルアミド、ミリスチン酸ジエチルアミノエチルアミド、ミリスチン酸ジメチルアミノエチルアミド、ベヘニン酸ジエチルアミノエチルアミド、ベヘニン酸ジメチルアミノエチルアミド、ステアリン酸ジエチルアミノプロピルアミド、ステアリン酸ジメチルアミノプロピルアミド、パルミチン酸ジエチルアミノプロピルアミド、パルミチン酸ジメチルアミノプロピルアミド、ミリスチン酸ジエチルアミノプロピルアミド、ミリスチン酸ジメチルアミノプロピルアミド、ベヘニン酸ジエチルアミノプロピルアミド、ベヘニン酸ジメチルアミノプロピルアミド等のアミドアミン化合物が挙げられる。これらは、単独で、または、2種以上組み合わせて用いられ得る。 Examples of the cationic surfactant include stearate diethylaminoethylamide, stearate dimethylaminoethylamide, palmitate diethylaminoethylamide, palmitate dimethylaminoethylamide, myristinate diethylaminoethylamide, and myristine dimethylaminoethyl. Amide, behenic acid diethylaminoethylamide, behenic acid dimethylaminoethylamide, stearate diethylaminopropylamide, stearate dimethylaminopropylamide, palmitic acid diethylaminopropylamide, palmitate dimethylaminopropylamide, myristic acid diethylaminopropylamide, myristate dimethyl Examples thereof include amide amine compounds such as aminopropylamide, behenic acid diethylaminopropylamide and behenic acid dimethylaminopropylamide. These can be used alone or in combination of two or more.

上記両性界面活性剤の具体例としては、ベタイン型、イミダゾリン型、アミノ酸型、アミンオキシド型の両性界面活性剤が挙げられる。ベタイン型の両性界面活性剤としては、例えば、アルキルベタイン、脂肪酸アミドプロピルベタイン、ラウリルヒドロキシスルホベタイン、アルキルヒドロキシスルホベタイン、レシチン、水添レシチンが挙げられる。イミダゾリン型の両性界面活性剤としては、例えば、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン、2-アルキル-1-(2-ヒド
ロキシエチル)イミダゾリニウム-1-アセテート、ウンデシルヒドロキシエチルイミダゾリニウムベタインナトリウムが挙げられる。アミノ酸型の両性界面活性剤としては、例えば、アルキルジエチレントリアミノ酢酸塩、アルキルオキシヒドロキシプロピルアルギニン塩酸塩、ラウリルアミノジ酢酸ナトリウム、ジヒドロキシアルキルメチルグリシン、ラウリルジアミノエチルグリシンナトリウム、ラウリミノジプロピオン酸、N-[3-アルキルオキシ-2-ヒドロキシプロピル]-L-アルギニン塩酸塩、アルキルアミノジプロピオン酸ナトリウムが挙げられる。アミンオキシド型の両性界面活性剤としては、例えば、アルキルジメチルアミンオキシドが挙げられる。これらは、単独で、または、2種以上組み合わせて用いられ得る。
Specific examples of the amphoteric tenside include betaine-type, imidazoline-type, amino acid-type, and amine oxide-type amphoteric tenside agents. Examples of the betaine-type amphoteric surfactant include alkyl betaine, fatty acid amide propyl betaine, lauryl hydroxysulfobetaine, alkyl hydroxysulfobetaine, lecithin, and hydrogenated lecithin. Examples of the imidazoline-type amphoteric tenside agent include 2-alkyl-N-carboxymethyl-N-hydroxyethyl imidazolinium betaine, 2-alkyl-1- (2-hydroxyethyl) imidazolinium-1-acetate, and the like. Undecyl hydroxyethyl imidazolinium betaine sodium can be mentioned. Examples of the amino acid type amphoteric surfactant include alkyldiethylenetriaminoacetate, alkyloxyhydroxypropylarginine hydrochloride, sodium laurylaminodiacetate, dihydroxyalkylmethylglycine, lauryldiaminoethylglycine sodium, lauriminodipropionic acid, and N. -[3-alkyloxy-2-hydroxypropyl] -L-arginine hydrochloride, sodium alkylaminodipropionate can be mentioned. Examples of the amine oxide type amphoteric surfactant include alkyldimethylamine oxide. These can be used alone or in combination of two or more.

上記非イオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトールテトラ脂肪酸エステル、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステルが挙げられる。これらは、単独で、または、2種以上組み合わせて用いられ得る。 Examples of the nonionic surfactant include polyoxyethylene alkyl ether, polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol tetra fatty acid ester, and glycerin fatty acid. Examples thereof include esters, sorbitan fatty acid esters, polyglycerin fatty acid esters, and sucrose fatty acid esters. These can be used alone or in combination of two or more.

成形体における界面活性剤の含有量は、好ましくは0.1質量%以上、さらに好ましくは0.5質量%以上、特に好ましくは0.8質量%以上である。このような含有量によれば、得られる成形体の柔軟性がさらに優れ得る。一方、成形体における界面活性剤の含有量は、例えば10質量%以下、好ましくは5質量%以下、さらに好ましくは3質量%以下、特に好ましくは1.5質量%以下である。例えば、得られる成形体の柔軟性に大きな差は確認されないからである。 The content of the surfactant in the molded product is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and particularly preferably 0.8% by mass or more. With such a content, the flexibility of the obtained molded product can be further improved. On the other hand, the content of the surfactant in the molded product is, for example, 10% by mass or less, preferably 5% by mass or less, more preferably 3% by mass or less, and particularly preferably 1.5% by mass or less. For example, no significant difference is found in the flexibility of the obtained molded product.

A-4.アルミナ質粒子
1つの実施形態においては、上記成形体は、アルミナ(代表的には、αアルミナ)を含むアルミナ質粒子を含む。アルミナ質粒子のアルミナの含有量は、例えば98質量%以上、好ましくは99.5質量%以上である。
A-4. Alumina Particles In one embodiment, the molded product contains alumina particles containing alumina (typically α-alumina). The alumina content of the aluminal particles is, for example, 98% by mass or more, preferably 99.5% by mass or more.

アルミナ質粒子の平均粒子径は、代表的には1μm~100μmである。例えば、加熱後の保形性の観点から、アルミナ質粒子の平均粒子径は、好ましくは1μm~50μm、さらに好ましくは1μm~10μmである。なお、平均粒子径は、レーザー回折式粒度分布測定装置により測定することができる。 The average particle size of the aluminal particles is typically 1 μm to 100 μm. For example, from the viewpoint of shape retention after heating, the average particle size of the alumina-like particles is preferably 1 μm to 50 μm, more preferably 1 μm to 10 μm. The average particle size can be measured by a laser diffraction type particle size distribution measuring device.

アルミナ質粒子を用いることにより、上記アルミナ質繊維の使用量を抑制して、例えば、コストを削減し得る。成形体におけるアルミナ質粒子の含有量は、例えば70質量%以下、好ましくは50質量%以下である。このような含有量によれば、例えば、後述の密度を良好に満足し、優れた柔軟性を達成し得る。1つの実施形態においては、アルミナ質粒子の含有量を調整することにより、得られる成形体の密度を調整する。 By using the alumina-based particles, the amount of the alumina-based fibers used can be suppressed, for example, the cost can be reduced. The content of alumina particles in the molded product is, for example, 70% by mass or less, preferably 50% by mass or less. With such a content, for example, the densities described below can be well satisfied and excellent flexibility can be achieved. In one embodiment, the density of the resulting molded product is adjusted by adjusting the content of alumina particles.

A-5.有機バインダー
好ましくは、上記成形体は有機バインダーを含む。有機バインダーとしては、例えば、アクリル系、メタクリル系、スチレン系、ブタジエン系等の樹脂、澱粉が挙げられる。これらの中でも、アクリル系、メタクリル系が好ましい。得られる成形体の柔軟性が極めて優れ得るからである。
A-5. Organic Binder Preferably, the molded product contains an organic binder. Examples of the organic binder include acrylic, methacrylic, styrene, butadiene and other resins and starch. Among these, acrylic type and methacrylic type are preferable. This is because the flexibility of the obtained molded product can be extremely excellent.

成形体における有機バインダーの含有量は、好ましくは3質量%以上12質量%以下、さらに好ましくは6質量%以上10質量%以下である。このような含有量によれば、得られる成形体の柔軟性がさらに優れ得る。1つの実施形態においては、成形体は上記澱粉を実質的に含まない。具体的には、成形体の澱粉の含有量は、例えば1質量%以下、好ましくは0.1質量%以下、さらに好ましくは0.01質量%以下である。 The content of the organic binder in the molded product is preferably 3% by mass or more and 12% by mass or less, and more preferably 6% by mass or more and 10% by mass or less. With such a content, the flexibility of the obtained molded product can be further improved. In one embodiment, the molded product is substantially free of the starch. Specifically, the starch content of the molded product is, for example, 1% by mass or less, preferably 0.1% by mass or less, and more preferably 0.01% by mass or less.

A-6.高分子凝集剤
好ましくは、上記成形体は高分子凝集剤を含む。高分子凝集剤を用いることにより、後述の成形体の製造において、スラリーに含まれる成分を効果的に凝集させて、フロックを形成することができる。
A-6. Polymer flocculant Preferably, the molded product contains a polymer flocculant. By using the polymer flocculant, the components contained in the slurry can be effectively aggregated to form flocs in the production of the molded product described later.

上記高分子凝集剤としては、任意の適切な高分子凝集剤が用いられ得る。高分子凝集剤としては、例えば、カチオン性高分子凝集剤、アニオン性高分子凝集剤、両性高分子凝集剤、ノニオン性高分子凝集剤が挙げられる。これらは、単独で、または、2種以上組み合わせて用いられ得る。1つの実施形態においては、第一高分子凝集剤(例えば、アニオン性高分子凝集剤)が用いられる。別の実施形態においては、第一高分子凝集剤(例えば、アニオン性高分子凝集剤)および第二高分子凝集剤(例えば、カチオン性高分子凝集剤)を組み合わせて用いられる。 As the polymer flocculant, any suitable polymer flocculant can be used. Examples of the polymer flocculant include a cationic polymer flocculant, an anionic polymer flocculant, an amphoteric polymer flocculant, and a nonionic polymer flocculant. These can be used alone or in combination of two or more. In one embodiment, a first polymer flocculant (eg, anionic polymer flocculant) is used. In another embodiment, the first polymer flocculant (eg, anionic polymer flocculant) and the second polymer flocculant (eg, cationic polymer flocculant) are used in combination.

上記カチオン性高分子凝集剤としては、例えば、ジメチルアミノエチルアクリレートの四級化物の重合物、ジメチルアミノエチルアクリレートの四級化物とアクリルアミドとの共重合物等のアクリレート系高分子凝集剤、ジメチルアミノエチルメタクリレートの四級化物の重合物、ジメチルアミノエチルメタクリレートの四級化物とアクリルアミドとの共重合物等のメタクリレート系高分子凝集剤、アミド基、ニトリル基、アミン塩酸塩、ホルムアミド基などを含むポリビニルアミジン(アミジン系高分子凝集剤)、ポリアクリルアミドのマンニッヒ変性物が挙げられる。 Examples of the cationic polymer flocculant include an acrylate-based polymer flocculant such as a polymer of a quaternized product of dimethylaminoethyl acrylate and a copolymer of a quaternized product of dimethylaminoethyl acrylate and acrylamide, and dimethylamino. Polypolymer containing a quaternized product of ethyl methacrylate, a methacrylate-based polymer flocculant such as a copolymer of a quaternized product of dimethylaminoethyl methacrylate and acrylamide, an amide group, a nitrile group, an amine hydrochloride, a formamide group, and the like. Examples thereof include amidin (amidine-based polymer flocculant) and Mannig modified products of polyacrylamide.

上記アニオン性高分子凝集剤としては、例えば、ポリアクリル酸ナトリウム、アクリル酸ナトリウムとアクリルアミドとの共重合物、ポリメタクリル酸ナトリウム、メタクリル酸ナトリウムとアクリルアミドの共重合物が挙げられる。 Examples of the anionic polymer flocculant include sodium polyacrylate, a copolymer of sodium acrylate and acrylamide, sodium polymethacrylate, and a copolymer of sodium methacrylate and acrylamide.

上記両性高分子凝集剤としては、例えば、ジメチルアミノメチルアクリレートの四級化物とアクリルアミドとアクリル酸との共重合物、ジメチルアミノメチルメタクリレートの四級化物とアクリルアミドとアクリル酸との共重合物が挙げられる。 Examples of the amphoteric polymer flocculant include a quaternized product of dimethylaminomethyl acrylate and a copolymer of acrylamide and acrylic acid, and a quaternized product of dimethylaminomethyl methacrylate and a copolymer of acrylamide and acrylic acid. Be done.

上記ノニオン性高分子凝集剤としては、例えば、ポリアクリルアミド、ポリエチレンオキサイドが挙げられる。 Examples of the nonionic polymer flocculant include polyacrylamide and polyethylene oxide.

成形体における高分子凝集剤の含有量は、好ましくは0.1質量%以上、さらに好ましくは0.15質量%以上である。一方、成形体における高分子凝集剤の含有量は、例えば5質量%以下である。 The content of the polymer flocculant in the molded product is preferably 0.1% by mass or more, more preferably 0.15% by mass or more. On the other hand, the content of the polymer flocculant in the molded product is, for example, 5% by mass or less.

A-7.無機凝集剤
上記成形体は、無機凝集剤を含み得る。無機凝集剤を用いることにより、後述の成形体の製造において、スラリーに含まれる成分を効果的に凝集させて、フロックを形成することができる。具体的には、無機バインダーのアルミナ(特に、アルミナ質繊維)への定着性向上に寄与し得る。
A-7. Inorganic flocculant The molded product may contain an inorganic flocculant. By using the inorganic flocculant, in the production of the molded product described later, the components contained in the slurry can be effectively aggregated to form flocs. Specifically, it can contribute to improving the fixability of the inorganic binder to alumina (particularly, alumina fiber).

上記無機凝集剤としては、例えば、硫酸アルミニウム、ポリ塩化アルミニウム(PAC)等のアルミニウム塩、塩化第二鉄、ポリ硫酸第二鉄等の第二鉄塩が挙げられる。成形体における無機凝集剤の含有量は、好ましくは5質量%以下である。このような含有量であれば、優れた柔軟性を良好に保持し得る。 Examples of the inorganic flocculant include aluminum salts such as aluminum sulfate and polyaluminum chloride (PAC), and ferric salts such as ferric chloride and ferric polysulfate. The content of the inorganic flocculant in the molded product is preferably 5% by mass or less. With such a content, excellent flexibility can be well maintained.

A-8.含有量
上記成形体におけるアルミナの含有量は、例えば70質量%以上、好ましくは80質量%以上、特に好ましくは85質量%以上である。このような含有量によれば、得られる成形体の耐アルカリ性が優れ得る。1つの実施形態においては、成形体のアルミナの含有量は、92質量%以下である。別の実施形態においては、成形体のアルミナの含有量は、95質量%以下である。
A-8. Content The content of alumina in the molded product is, for example, 70% by mass or more, preferably 80% by mass or more, and particularly preferably 85% by mass or more. According to such a content, the alkali resistance of the obtained molded product can be excellent. In one embodiment, the alumina content of the molded product is 92% by mass or less. In another embodiment, the alumina content of the molded product is 95% by mass or less.

上述のように、1つの実施形態においては、成形体はアルミナ質繊維に加え、上記アルミナ質粒子を含む。この場合、成形体は、例えば、アルミナ質繊維を30質量部以上70質量部以下、アルミナ質粒子を30質量部以上70質量部以下、界面活性剤を0.1質量部以上10質量部以下の割合で含む。アルミナ質粒子の含有量は、アルミナ質繊維100質量部に対し、40質量部以上230質量部以下であることが好ましく、さらに好ましくは60質量部以上150質量部以下である。界面活性剤の含有量は、アルミナ質繊維およびアルミナ質粒子の合計100質量部に対し、0.1質量部以上10質量部以下であることが好ましい。 As described above, in one embodiment, the compact comprises the aluminal particles in addition to the aluminalous fibers. In this case, the molded body is, for example, 30 parts by mass or more and 70 parts by mass or less of alumina fibers, 30 parts by mass or more and 70 parts by mass or less of alumina particles, and 0.1 parts by mass or more and 10 parts by mass or less of a surfactant. Include in proportion. The content of the aluminal particles is preferably 40 parts by mass or more and 230 parts by mass or less, and more preferably 60 parts by mass or more and 150 parts by mass or less with respect to 100 parts by mass of the aluminalic fibers. The content of the surfactant is preferably 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass in total of the alumina fiber and the alumina particles.

別の実施形態においては、成形体は、アルミナ質粒子を実質的に含まない。例えば、成形体は、アルミナ質繊維を80質量部以上120質量部以下、アルミナ質粒子を5質量部以下、界面活性剤を0.1質量部以上10質量部以下の割合で含む。界面活性剤の含有量は、アルミナ質繊維100質量部に対し、0.1質量部以上10質量部以下であることが好ましい。 In another embodiment, the molded product is substantially free of alumina particles. For example, the molded body contains 80 parts by mass or more and 120 parts by mass or less of alumina fibers, 5 parts by mass or less of alumina particles, and 0.1 parts by mass or more and 10 parts by mass or less of a surfactant. The content of the surfactant is preferably 0.1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the alumina fiber.

成形体は、好ましくは、リフラクトリーセラミックファイバー(RCF)を実質的に含まない。ここで、「実質的に含まない」とは、成形体におけるにおけるRCFの含有量が1質量%以下であることをいい、好ましくは0.5質量%以下、さらに好ましくは0.05質量%以下、特に好ましくは0.01質量%以下である。RCFは、代表的には、アルミナおよびシリカを含む。RCFのアルミナの含有量は、代表的には30質量%~60質量%、好ましくは40質量%~60質量%である。RCFのシリカの含有量は、代表的には40質量%~60質量%である。RCFの繊維径(直径)は、代表的には1μm~3μmである。このようなRCFを含む成形体は柔軟性と保形性とを兼ね備え得るが、RCFを実質的に含ませずに(例えば、加熱により脆化しやすく太い上述のアルミナ質繊維を用いて、上述の高いアルミナの含有量を有しながら)、柔軟性と保形性とを兼ね備えた成形体を実現し得ることが、本発明の特徴の一つである。 The molded product is preferably substantially free of refractory ceramic fibers (RCF). Here, "substantially free" means that the content of RCF in the molded product is 1% by mass or less, preferably 0.5% by mass or less, and more preferably 0.05% by mass or less. Particularly preferably, it is 0.01% by mass or less. RC F typically comprises alumina and silica. The alumina content of RC F is typically 30% by mass to 60% by mass, preferably 40% by mass to 60% by mass. The silica content of RC F is typically 40% by mass to 60% by mass. The fiber diameter (diameter) of RC F is typically 1 μm to 3 μm. A molded product containing such an RCF may have both flexibility and shape retention, but is substantially free of RCF (for example, using the above-mentioned alumina fiber which is easily brittle by heating and is thick, as described above. It is one of the features of the present invention that a molded product having both flexibility and shape retention can be realized (while having a high alumina content).

B.成形体の物性
上記成形体の密度は、好ましくは80kg/m以上200kg/m以下、さらに好ましくは100kg/m以上150kg/m以下である。このような密度を有することにより、例えば、優れた柔軟性および保形性を達成し得る。
B. Physical characteristics of the molded product The density of the molded product is preferably 80 kg / m 3 or more and 200 kg / m 3 or less, and more preferably 100 kg / m 3 or more and 150 kg / m 3 or less. By having such a density, for example, excellent flexibility and shape retention can be achieved.

成形体の30%圧縮復元率は、例えば85%以上である。1つの実施形態においては、成形体の30%圧縮復元率は、好ましくは92%以上である。別の実施形態においては、成形体の30%圧縮復元率は、好ましくは90%以上である。このような高い復元率を有し得ることが、本発明の特徴の一つである。このような圧縮復元率によれば、柔軟性に極めて優れ得る。 The 30% compression restoration rate of the molded product is, for example, 85% or more. In one embodiment, the 30% compression restoration rate of the molded product is preferably 92% or more. In another embodiment, the 30% compression restoration rate of the molded product is preferably 90% or more. It is one of the features of the present invention that it can have such a high restoration rate. According to such a compression / restoration rate, the flexibility can be extremely excellent.

成形体の加熱収縮率(1600℃の収縮率)は、好ましくは3%以下であり、2%以下であってもよい。このような加熱収縮率によれば、例えば、炉材として良好に用いられ得る。 The heat shrinkage rate (shrinkage rate at 1600 ° C.) of the molded product is preferably 3% or less, and may be 2% or less. According to such a heat shrinkage rate, it can be satisfactorily used as a furnace material, for example.

C.成形体の製造方法
上記成形体は、任意の適切な方法により製造される。1つの実施形態においては、上記成形体の製造方法は、分散媒に、上記アルミナ質繊維、上記無機バインダーおよび上記界面活性剤を添加してスラリーを得ること、得られたスラリーから湿潤成形体を得ること、および、得られた湿潤成形体を乾燥することを含む。
C. Method for manufacturing a molded product The molded product is manufactured by any suitable method. In one embodiment, the method for producing the molded product is to add the alumina fiber, the inorganic binder and the surfactant to the dispersion medium to obtain a slurry, and to obtain a wet molded product from the obtained slurry. Includes obtaining and drying the resulting wet molded body.

C-1.スラリーの調製
上記分散媒としては、任意の適切な分散媒を用い得る。分散媒としては、例えば、蒸留水、イオン交換水、水道水、地下水、工業用水等の水、極性有機溶媒が挙げられる。極性有機溶媒としては、例えば、エタノール、プロパノール等の1価のアルコール類、エチレングリコール等の2価のアルコール類が挙げられる。これらの中でも、作業環境の悪化がなく環境への負荷がない点で水が好ましい。
C-1. Preparation of slurry Any suitable dispersion medium can be used as the dispersion medium. Examples of the dispersion medium include distilled water, ion-exchanged water, tap water, groundwater, water such as industrial water, and polar organic solvents. Examples of the polar organic solvent include monohydric alcohols such as ethanol and propanol, and divalent alcohols such as ethylene glycol. Among these, water is preferable because it does not deteriorate the working environment and has no burden on the environment.

上記分散媒に無機バインダーを添加する際、無機バインダーは、固形物の状態であってもよいし、分散体(懸濁液)または溶液の状態であってもよい。後者の場合、無機バインダーは、代表的には、コロイドゾル(例えば、コロイダルシリカ)の状態とされる。好ましくは、無機バインダーは、分散体または溶液の状態で分散媒に添加される。 When the inorganic binder is added to the dispersion medium, the inorganic binder may be in the state of a solid, or may be in the state of a dispersion (suspension) or a solution. In the latter case, the inorganic binder is typically in the form of a colloidal sol (eg colloidal silica). Preferably, the inorganic binder is added to the dispersion medium in the form of a dispersion or solution.

上記分散媒に、必要に応じて、上記アルミナ質粒子、上記高分子凝集剤、上記無機凝集剤、上記樹脂、澱粉等の有機バインダーを添加する。これらは、上記分散媒に添加される際、固形物の状態であってもよいし、分散体または溶液の状態であってもよい。凝集剤は、代表的には、溶液の状態で添加される。樹脂は、代表的には、分散体(エマルジョン)の状態で添加される。 If necessary, an organic binder such as the alumina particles, the polymer flocculant, the inorganic flocculant, the resin, and starch is added to the dispersion medium. These may be in the form of solids, dispersions or solutions when added to the dispersion medium. The flocculant is typically added in the form of a solution. The resin is typically added in the form of a dispersion (emulsion).

1つの実施形態においては、分散媒へのコロイドゾルの添加量は、アルミナ質繊維およびアルミナ質粒子の合計100質量部に対し、固形分換算で0.5質量部以上3質量部以下であることが好ましく、さらに好ましくは1質量部以上2質量部以下である。別の実施形態においては、アルミナ質繊維100質量部に対し、固形分換算で2質量部以上6質量部以下であることが好ましく、さらに好ましくは3質量部以上5質量部以下である。 In one embodiment, the amount of the colloidal sol added to the dispersion medium is 0.5 parts by mass or more and 3 parts by mass or less in terms of solid content with respect to 100 parts by mass in total of the alumina fiber and the alumina particles. It is preferable, more preferably 1 part by mass or more and 2 parts by mass or less. In another embodiment, it is preferably 2 parts by mass or more and 6 parts by mass or less in terms of solid content, and more preferably 3 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of alumina fiber.

スラリー中に含まれる全固形分濃度(スラリー濃度)は、好ましくは0.1質量%以上10質量%以下、さらに好ましくは0.3質量%以上8質量%以下、特に好ましくは0.5質量%以上3質量%以下である。 The total solid content concentration (slurry concentration) contained in the slurry is preferably 0.1% by mass or more and 10% by mass or less, more preferably 0.3% by mass or more and 8% by mass or less, and particularly preferably 0.5% by mass. It is 3% by mass or less.

上記湿潤成形体は、代表的には、上記スラリーを脱水成形または抄造することにより得る。 The wet molded body is typically obtained by dehydration molding or papermaking of the slurry.

上記脱水成形は、任意の適切な方法により行い得る。具体例としては、底部に網が設置された成形型内にスラリーを流し込んで上記分散媒を吸引する吸引脱水成形法、加圧脱水成形法が挙げられる。なお、本明細書においては、水以外の分散媒を用いる場合も含めて、脱水成形と称する。 The dehydration molding can be performed by any suitable method. Specific examples thereof include a suction dehydration molding method in which a slurry is poured into a molding mold having a net installed at the bottom and the dispersion medium is sucked, and a pressure dehydration molding method. In this specification, it is referred to as dehydration molding including the case where a dispersion medium other than water is used.

上記抄造は、任意の適切な方法により行い得る。具体例としては、フローボックスから帯状の多孔質担体上にスラリーを流し出すフローオン法、ハチェック式抄造法、長網式抄造法などスラリーを連続的に抄造し得る方法が挙げられる。 The above papermaking can be performed by any suitable method. Specific examples include a flow-on method in which a slurry is poured from a flow box onto a strip-shaped porous carrier, a Hacheck-type papermaking method, a long net-type papermaking method, and other methods capable of continuously making a slurry.

湿潤成形体は、所望の成形体に相似する形状を有することが好ましい。成形体の形状としては、例えば、ボード状、シート状、ブロック状が挙げられる。 The wet molded product preferably has a shape similar to the desired molded product. Examples of the shape of the molded body include a board shape, a sheet shape, and a block shape.

上記湿潤成形体の乾燥方法としては、任意の適切な方法を採用し得る。乾燥温度は、例えば40℃~180℃、好ましくは60℃~150℃、さらに好ましくは80℃~120℃、特に好ましくは100℃~120℃である。乾燥時間は、例えば6時間~48時間、好ましくは8時間~40時間、さらに好ましくは10時間~36時間、特に好ましくは12時間~20時間である。 Any suitable method can be adopted as the method for drying the wet-molded article. The drying temperature is, for example, 40 ° C. to 180 ° C., preferably 60 ° C. to 150 ° C., more preferably 80 ° C. to 120 ° C., and particularly preferably 100 ° C. to 120 ° C. The drying time is, for example, 6 hours to 48 hours, preferably 8 hours to 40 hours, more preferably 10 hours to 36 hours, and particularly preferably 12 hours to 20 hours.

以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

[実施例1-1]
水に、カチオン性界面活性剤(星光PMC社製の風合向上剤「FS8006」)を固形分換算で1質量部加えて攪拌した。ここに、アルミナ質繊維(デンカ社製の「デンカアルセンB80」、アルミナ含有割合80質量%、シリカ含有割合20質量%)45質量部、アルミナ質粒子(日本軽金属社製の「SA31」、平均粒径:5μm)55質量部、コロイダルシリカ(日本化学工業社製の「シリカドール30」、固形分30質量%の懸濁液、固形分の平均粒径:15nm、pH:10.0)を固形分換算で1.5質量部、樹脂(東亜合成社製の「アロンタックHV-C9081」、アクリル系ポリマー57~61質量%、水39~43質量%、pH:5.0~7.0、粘度:50~1,500mPa・s、Tg:-41℃)7.5質量部、および、ポリアクリル酸(荒川化学工業社製の「ポリストロン705」、カチオン性、不揮発分10質量%、pH:2.5~3.5、粘度:300~1000cps)0.2質量部を加えた後、ポリアクリルアミド(浅田化学工業製の「30A113」、アニオン性、0.1質量%水溶液、PH:6~8)0.1質量部を加え、さらに、得られるスラリー濃度が2質量%となるように水を加えて攪拌し、スラリーを得た。
[Example 1-1]
To water, 1 part by mass of a cationic surfactant (texture improver "FS8006" manufactured by Seiko PMC) in terms of solid content was added and stirred. Here, 45 parts by mass of alumina fiber (“Denca Arsen B80” manufactured by Denka Co., Ltd., alumina content ratio 80% by mass, silica content ratio 20% by mass), alumina particles (“SA31” manufactured by Nippon Light Metal Co., Ltd., average grain). Diameter: 5 μm) 55 parts by mass, colloidal silica (“Silica Doll 30” manufactured by Nippon Kagaku Kogyo Co., Ltd., suspension with a solid content of 30% by mass, average particle size of solid content: 15 nm, pH: 10.0) is solid. 1.5 parts by mass in minutes, resin ("Aron Tuck HV-C9081" manufactured by Toa Synthetic Co., Ltd., acrylic polymer 57-61% by mass, water 39-43% by mass, pH: 5.0-7.0, viscosity : 50 to 1,500 mPa · s, Tg: −41 ° C.) 7.5 parts by mass, and polyacrylic acid (“Polystron 705” manufactured by Arakawa Chemical Industry Co., Ltd., cationic, non-volatile content 10% by mass, pH: After adding 0.2 parts by mass (2.5 to 3.5, viscosity: 300 to 1000 cps), polyacrylamide ("30A113" manufactured by Asada Chemical Industry Co., Ltd., anionic, 0.1% by mass aqueous solution, PH: 6 to 8) 0.1 part by mass was added, water was further added so that the obtained slurry concentration was 2% by mass, and the mixture was stirred to obtain a slurry.

上記スラリーを脱水成形し、ボード形状の湿潤成形体を得た後、110℃で12時間乾燥することで成形体を得た。 The slurry was dehydrated to obtain a board-shaped wet molded product, and then dried at 110 ° C. for 12 hours to obtain a molded product.

[実施例1-2]~[実施例1-4]
無機凝集剤(大明化学工業社製の液体硫酸アルミニウム、硫酸アルミニウム濃度23.5~27.5質量%)を添加するとともに、後述の表1に記載のように配合を変更したこと以外は実施例1-1と同様にして、実施例1-2~実施例1-4に係る成形体を得た。
[Example 1-2] to [Example 1-4]
Examples except that an inorganic flocculant (liquid aluminum sulfate manufactured by Daimei Chemical Industry Co., Ltd., aluminum sulfate concentration 23.5 to 27.5% by mass) was added and the composition was changed as shown in Table 1 below. In the same manner as 1-1, the molded bodies according to Examples 1-2 to 1-4 were obtained.

[実施例2-1]
水に、カチオン性界面活性剤(星光PMC社製の風合向上剤「FS8006」)を固形分換算で1.1質量部加えて攪拌した。ここに、アルミナ質繊維(デンカ社製の「デンカアルセンB97N5」、アルミナ含有割合97質量%、シリカ含有割合3質量%)100質量部、コロイダルシリカ(日本化学工業社製の「シリカドール30」、固形分30質量%の懸濁液、固形分の平均粒径:15nm、pH:10.0)を固形分換算で4質量部、無機凝集剤(大明化学工業社製の液体硫酸アルミニウム、硫酸アルミニウム濃度23.5~27.5質量%)3質量部、樹脂(東亜合成社製の「アロンタックHV-C9081」、アクリル系ポリマー57~61質量%、水39~43質量%、pH:5.0~7.0、粘度:50~1,500mPa・s、Tg:-41℃)7.5質量部、および、ポリアクリルアミド(浅田化学工業製の「30A113」、アニオン性、0.1質量%水溶液、PH:6~8)0.2質量部を加えた後、得られるスラリー濃度が2質量%となるように水を加えて攪拌し、スラリーを得た。
[Example 2-1]
To water, 1.1 parts by mass of a cationic surfactant (texture improver "FS8006" manufactured by Seiko PMC) in terms of solid content was added and stirred. Here, 100 parts by mass of alumina fiber (“Denca Arsen B97N5” manufactured by Denka Co., Ltd., alumina content ratio 97% by mass, silica content ratio 3% by mass), colloidal silica (“Silica Doll 30” manufactured by Nippon Chemical Industry Co., Ltd.), Suspension with 30% by mass of solid content, average particle size of solid content: 15 nm, pH: 10.0) in 4 parts by mass in terms of solid content, inorganic flocculant (liquid aluminum sulfate, aluminum sulfate manufactured by Daimei Chemical Industry Co., Ltd.) Concentration 23.5 to 27.5% by mass) 3 parts by mass, resin ("Arontack HV-C9081" manufactured by Toa Synthetic Co., Ltd., acrylic polymer 57 to 61% by mass, water 39 to 43% by mass, pH: 5.0 ~ 7.0, viscosity: 50 ~ 1,500 mPa · s, Tg: −41 ° C.) 7.5 parts by mass, and polyacrylamide (“30A113” manufactured by Asada Chemical Industry Co., Ltd., anionic, 0.1% by mass aqueous solution , PH: 6-8) After adding 0.2 parts by mass, water was added and stirred so that the obtained slurry concentration was 2% by mass to obtain a slurry.

上記スラリーを脱水成形し、ボード形状の湿潤成形体を得た後、110℃で12時間乾燥することで成形体を得た。 The slurry was dehydrated to obtain a board-shaped wet molded product, and then dried at 110 ° C. for 12 hours to obtain a molded product.

[実施例2-2]~[実施例2-5]
後述の表1に記載のように配合を変更したこと以外は実施例2-1と同様にして、実施例2-2~実施例2-5に係る成形体を得た。
[Example 2-2] to [Example 2-5]
Molds according to Examples 2-2 to 2-5 were obtained in the same manner as in Example 2-1 except that the formulation was changed as shown in Table 1 described later.

[比較例1]
コロイダルシリカを用いなかったこと以外は実施例1-2と同様にして、成形体を得た。
[Comparative Example 1]
A molded product was obtained in the same manner as in Example 1-2 except that colloidal silica was not used.

[比較例2]
界面活性剤を用いなかったこと以外は実施例2-2と同様にして、成形体を得た。
[Comparative Example 2]
A molded product was obtained in the same manner as in Example 2-2 except that no surfactant was used.

[比較例3]
水に、アルミナ質繊維(デンカ社製の「デンカアルセンB97N5」、アルミナ含有割合97質量%、シリカ含有割合3質量%)60質量部、アルミナ質粒子(日本軽金属社製の「A11」、平均粒径:50μm)40質量部、コロイダルシリカ(日本化学工業社製の「シリカドール30」、固形分30質量%の懸濁液、固形分の平均粒径:15nm、pH:10.0)を固形分換算で8質量部、澱粉(日澱化学社製の「ペトロサイズJ」)4質量部およびポリアクリルアミド(荒川化学工業社製の「ポリストロン311」、カチオン性、不揮発分:10質量%、pH:4.2~4.8、粘度:500~1500cps)3質量部の割合で加えた後、得られるスラリー濃度が2質量%となるように水を加えて攪拌し、スラリーを得た。
[Comparative Example 3]
In water, 60 parts by mass of alumina fibers (“Denca Arsen B97N5” manufactured by Denka, 97% by mass of alumina, 3% by mass of silica content), alumina particles (“A11” manufactured by Nippon Light Metal Co., Ltd., average grains). 40 parts by mass (diameter: 50 μm), colloidal silica (“Silica Doll 30” manufactured by Nippon Kagaku Kogyo Co., Ltd., suspension with a solid content of 30% by mass, average particle size of solid content: 15 nm, pH: 10.0) is solid. 8 parts by mass in terms of minutes, 4 parts by mass of starch (“Petrosize J” manufactured by Nissho Chemical Co., Ltd.) and polyacrylamide (“Polystron 311” manufactured by Arakawa Chemical Industry Co., Ltd., cationic, non-volatile content: 10% by mass, pH: 4.2 to 4.8, viscosity: 500 to 1500 cps) were added at a ratio of 3 parts by mass, and then water was added and stirred so that the obtained slurry concentration was 2% by mass to obtain a slurry.

次いで、得たスラリーを、底部に網が設置された成形型内にスラリーを流し込み、水を吸引する吸引脱水成形法により脱水成形して、ボード状の湿潤成形体を得た。 Next, the obtained slurry was dehydrated by a suction dehydration molding method in which the slurry was poured into a molding die having a net installed at the bottom and water was sucked to obtain a board-shaped wet molded body.

次いで、得られた湿潤成形体に110℃で36時間、乾燥処理を施すことによりボード状の成形体を得た。 Next, the obtained wet molded product was dried at 110 ° C. for 36 hours to obtain a board-shaped molded product.

[参考例]
水に、アルミナ質繊維(デンカ社製の「デンカアルセンB80」、アルミナ含有割合80質量%、シリカ含有割合20質量%)60質量部、RCF(ニチアス製「ファインフレックス1300バルク」アルミナ含有割合50質量%、シリカ含有割合50質量%)40質量部、樹脂(東亜合成社製の「アロンタックHV-C9081」、アクリル系ポリマー57~61質量%、水39~43質量%、pH:5.0~7.0、粘度:50~1,500mPa・s、Tg:-41℃)5.0質量部、無機凝集剤(大明化学工業社製の液体硫酸アルミニウム、硫酸アルミニウム濃度23.5~27.5質量%)1.3質量部および、ポリアクリル酸(荒川化学工業社製の「ポリストロン705」、カチオン性、不揮発分10質量%、pH:2.5~3.5、粘度:300~1000cps)0.06質量部を加えた後、さらに、得られるスラリー濃度が2質量%となるように水を加えて攪拌し、スラリーを得た。
上記スラリーを脱水成形し、ボード形状の湿潤成形体を得た後、110℃で12時間乾燥することで成形体を得た。
[Reference example]
60 parts by mass of alumina fiber ("Denca Arsen B80" manufactured by Denka, 80% by mass of alumina content, 20% by mass of silica content), RCF ("Fineflex 1300 bulk" manufactured by Nichias, 50% by mass) in water. %, Silica content 50% by mass) 40 parts by mass, resin ("Arontuck HV-C9081" manufactured by Toa Synthetic Co., Ltd., acrylic polymer 57-61% by mass, water 39-43% by mass, pH: 5.0-7 .0, viscosity: 50 to 1,500 mPa · s, Tg: -41 ° C) 5.0 parts by mass, inorganic flocculant (liquid aluminum sulfate manufactured by Daimei Chemical Industry Co., Ltd., aluminum sulfate concentration 23.5 to 27.5 mass) %) 1.3 parts by mass and polyacrylic acid (“Polystron 705” manufactured by Arakawa Chemical Industry Co., Ltd., cationic, non-volatile content 10% by mass, pH: 2.5 to 3.5, viscosity: 300 to 1000 cps) After adding 0.06 parts by mass, water was further added and stirred so that the obtained slurry concentration was 2% by mass to obtain a slurry.
The slurry was dehydrated to obtain a board-shaped wet molded product, and then dried at 110 ° C. for 12 hours to obtain a molded product.

<評価方法>
得られた成形体について、下記の評価を行った。
(1)密度
得られた成形体を、必要に応じて板状に加工して測定用試料とした。測定用試料の質量M(kg)を、はかりで測定した。測定用試料の体積V(m)を、ノギス、鋼製巻尺、鋼製直尺、または非接触測定機(レーザ変位計、距離計)を用いて求めた。これらの値から、密度M/V(kg/m)を求めた(小数点第1位を四捨五入し整数値とした)。
(2)30%圧縮復元率
圧縮試験機(島津製作所製の「オートグラフAG-Xplus」、ロードセル容量:50kN、冶具:φ100mmの固定式圧盤)にて、上下の圧盤どうしが接し、応力0.20Nとなる変位を0位置とした。得られた成形体から、厚さ50mm×幅50mm×長さ50mmの試験片を切り出し、試験片を圧縮試験機の上下の圧盤に挟持させ、圧縮応力0.20Nとなるよう試験片をセットし、セットした際の変位を試験片厚さT1とした。その後、5mm/min.の速度で圧縮試験機を下降させ、試験片の厚さの30%を圧縮した後、30%圧縮位置で5分間保持させた。保持後、5mm/min.の速度で圧縮試験機を上昇させて試験片の圧縮を解放し、圧縮解放時に圧盤と試験片とが離れて、圧縮応力が0となった時から5分間静置した。静置後、再度圧縮試験機を下降させ、圧縮応力0.20Nとなる変位を試験片厚さT2とし、式:T2/T1×100により圧縮復元率(%)を算出した(小数点第1位を四捨五入し整数値とした)。
(3)加熱収縮率
得られた成形体から、厚さ50mm×幅50mm×長さ150mmの試験片を切り出し、試験片の長さL1をノギスで測定する。その後、電気炉で試験片の加熱試験を行った。具体的には、約200℃/hの速度で昇温させ、1600℃の温度で3時間保持し、電気炉の電源を切って、炉内で自然冷却させた。加熱試験後の試験片の長さL2を測定し、式:{(L1-L2)/L1}×100により加熱収縮率(%)を算出した(算出した値の小数点第2位を四捨五入した)。
(4)加熱後保形性
得られた成形体を手で持ち運ぶこと(ハンドリング)が可能か確認した。また、ハンドリング時、アルミナ質繊維や粒子の飛散量を触感および目視で評価した。評価基準は以下のとおりである。
<評価基準>
〇:ハンドリング可能であり、アルミナ質繊維や粒子の飛散が少ない。
△:ハンドリング可能であるが、アルミナ質繊維や粒子の飛散が多い。
×:ハンドリング不可能である。
(5)柔軟性(触感)
得られた成形体の手で触った感触により評価した。評価基準は以下のとおりである。
<評価基準>
〇:柔らかく、復元性がある。
△:柔らかいが、復元性がない。
×:硬い。
<Evaluation method>
The following evaluation was performed on the obtained molded body.
(1) Density The obtained molded body was processed into a plate shape as needed to prepare a sample for measurement. The mass M (kg) of the measurement sample was measured with a scale. The volume V (m 3 ) of the sample for measurement was determined using a caliper, a steel tape measure, a steel straightedge, or a non-contact measuring machine (laser displacement meter, rangefinder). From these values, the density M / V (kg / m 3 ) was obtained (rounded to the first decimal place to obtain an integer value).
(2) 30% compression restoration rate With a compression tester (“Autograph AG-Xplus” manufactured by Shimadzu Corporation, load cell capacity: 50 kN, jig: φ100 mm fixed pressure plate), the upper and lower pressure plates are in contact with each other, and the stress is 0. The displacement of 20N was set to the 0 position. From the obtained molded body, a test piece having a thickness of 50 mm, a width of 50 mm, and a length of 50 mm is cut out, the test piece is sandwiched between the upper and lower pressure plates of the compression tester, and the test piece is set so that the compression stress is 0.20 N. The displacement when set was defined as the test piece thickness T1. Then, the compression tester was lowered at a speed of 5 mm / min. To compress 30% of the thickness of the test piece, and then held at the 30% compression position for 5 minutes. After holding, the compression tester is raised at a speed of 5 mm / min. To release the compression of the test piece, and when the compression is released, the pressure plate and the test piece are separated from each other, and the test piece is allowed to stand for 5 minutes from the time when the compressive stress becomes 0. did. After standing still, the compression tester was lowered again, the displacement at which the compressive stress was 0.20 N was defined as the test piece thickness T2, and the compression restoration rate (%) was calculated by the formula: T2 / T1 × 100 (decimal point 1). Was rounded off to an integer value).
(3) Heat shrinkage rate A test piece having a thickness of 50 mm, a width of 50 mm, and a length of 150 mm is cut out from the obtained molded body, and the length L1 of the test piece is measured with a caliper. After that, a heating test of the test piece was performed in an electric furnace. Specifically, the temperature was raised at a rate of about 200 ° C./h, the temperature was maintained at 1600 ° C. for 3 hours, the power of the electric furnace was turned off, and the mixture was naturally cooled in the furnace. The length L2 of the test piece after the heating test was measured, and the heating shrinkage rate (%) was calculated by the formula: {(L1-L2) / L1} × 100 (rounded to the first decimal place of the calculated value). ..
(4) Shape retention after heating It was confirmed whether the obtained molded body could be carried by hand (handling). In addition, the amount of alumina fibers and particles scattered during handling was evaluated by touch and visual inspection. The evaluation criteria are as follows.
<Evaluation criteria>
〇: Can be handled, and there is little scattering of alumina fibers and particles.
Δ: Handleable, but a lot of alumina fibers and particles are scattered.
×: Unable to handle.
(5) Flexibility (tactile sensation)
The evaluation was made based on the feel of the obtained molded product by hand. The evaluation criteria are as follows.
<Evaluation criteria>
〇: Soft and resilient.
Δ: Soft, but not resilient.
×: Hard.

評価結果を表1にまとめる。 The evaluation results are summarized in Table 1.

Figure 2022085606000001
Figure 2022085606000001

本発明の成形体は、様々な用途の耐熱材、断熱材として用いられ得る。例えば、炉材として好適に用いられる。具体的には、電子部品用焼成炉等の工業炉、火葬炉、理化学炉等の炉材として好適に用いられる。 The molded product of the present invention can be used as a heat-resistant material and a heat insulating material for various purposes. For example, it is suitably used as a furnace material. Specifically, it is suitably used as a furnace material for industrial furnaces such as firing furnaces for electronic parts, crematoriums, and physics and chemistry furnaces.

Claims (13)

アルミナを含むアルミナ質繊維と、
無機バインダーと、
界面活性剤と、を含み、
前記アルミナの含有量が70質量%以上である、
成形体。
Alumina fibers containing alumina and
With an inorganic binder,
Containing, with surfactant,
The alumina content is 70% by mass or more.
Molded body.
密度が80kg/m以上200kg/m以下である、請求項1に記載の成形体。 The molded product according to claim 1, wherein the density is 80 kg / m 3 or more and 200 kg / m 3 or less. 30%圧縮復元率が85%以上である、請求項1または2に記載の成形体。 The molded product according to claim 1 or 2, wherein the 30% compression restoration rate is 85% or more. 1600℃の収縮率が3%以下である、請求項1から3のいずれかに記載の成形体。 The molded product according to any one of claims 1 to 3, wherein the shrinkage rate at 1600 ° C. is 3% or less. 有機バインダーを含む、請求項1から4のいずれかに記載の成形体。 The molded product according to any one of claims 1 to 4, which comprises an organic binder. 前記無機バインダーの含有量が5質量%以下である、請求項1から5のいずれかに記載の成形体。 The molded product according to any one of claims 1 to 5, wherein the content of the inorganic binder is 5% by mass or less. 前記無機バインダーの含有量が1質量%以上である、請求項1から6のいずれかに記載の成形体。 The molded product according to any one of claims 1 to 6, wherein the content of the inorganic binder is 1% by mass or more. 前記界面活性剤がカチオン性界面活性剤を含む、請求項1から7のいずれかに記載の成形体。 The molded product according to any one of claims 1 to 7, wherein the surfactant contains a cationic surfactant. リフラクトリーセラミックファイバーを実質的に含まない、請求項1から8のいずれかに記載の成形体。 The molded product according to any one of claims 1 to 8, which is substantially free of refractory ceramic fibers. 高分子凝集剤を含む、請求項1から9のいずれかに記載の成形体。 The molded product according to any one of claims 1 to 9, which comprises a polymer flocculant. 前記高分子系凝集剤が第一高分子凝集剤および第二高分子凝集剤を含む、請求項10に記載の成形体。 The molded product according to claim 10, wherein the polymer-based flocculant contains a first polymer flocculant and a second polymer flocculant. アルミナを含むアルミナ質粒子を含み、
前記アルミナ質繊維を30質量部以上70質量部以下、前記アルミナ質粒子を30質量部以上70質量部以下、前記界面活性剤を0.1質量部以上10質量部以下の割合で含む、請求項1から11のいずれかに記載の成形体。
Contains alumina-containing particles containing alumina,
The claim comprises 30 parts by mass or more and 70 parts by mass or less of the alumina fiber, 30 parts by mass or more and 70 parts by mass or less of the alumina particles, and 0.1 part by mass or more and 10 parts by mass or less of the surfactant. The molded body according to any one of 1 to 11.
アルミナを含むアルミナ質粒子を実質的に含まず、
前記アルミナ質繊維を80質量部以上120質量部以下、前記アルミナ質粒子を5質量部以下、前記界面活性剤を0.1質量部以上10質量部以下の割合で含む、請求項1から10のいずれかに記載の成形体。
Substantially free of alumina-containing particles containing alumina
13. The molded body according to any one.
JP2020197372A 2020-11-27 2020-11-27 Mold Pending JP2022085606A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020197372A JP2022085606A (en) 2020-11-27 2020-11-27 Mold
KR1020237018118A KR20230096082A (en) 2020-11-27 2021-09-03 molding
CN202180075486.3A CN116406436A (en) 2020-11-27 2021-09-03 Molded body
PCT/JP2021/032545 WO2022113465A1 (en) 2020-11-27 2021-09-03 Molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020197372A JP2022085606A (en) 2020-11-27 2020-11-27 Mold

Publications (1)

Publication Number Publication Date
JP2022085606A true JP2022085606A (en) 2022-06-08

Family

ID=81754489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020197372A Pending JP2022085606A (en) 2020-11-27 2020-11-27 Mold

Country Status (4)

Country Link
JP (1) JP2022085606A (en)
KR (1) KR20230096082A (en)
CN (1) CN116406436A (en)
WO (1) WO2022113465A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115925319B (en) * 2022-12-28 2024-04-16 安翼陶基复合材料(上海)有限公司 Heat-absorbing fireproof coiled material containing hollow alumina fiber and manufacturing method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124840A (en) * 1983-01-06 1984-07-19 Nichias Corp Manufacture of heat resistant molding
JPH06135776A (en) * 1992-10-28 1994-05-17 Riken Corp Foamed porous ceramic and its production
JPH06240580A (en) * 1993-02-16 1994-08-30 Denki Kagaku Kogyo Kk Method for controlling occurrence of dust of molded article of alumina fiber and molded article of inorganic fiber
JPH09208318A (en) * 1996-01-29 1997-08-12 Isolite Kogyo Kk Formed material of inorganic fiber having high heat-resistance
JPH10226567A (en) * 1997-02-12 1998-08-25 Mitsubishi Heavy Ind Ltd How to make insulation
WO2009081881A1 (en) * 2007-12-21 2009-07-02 Mitsubishi Chemical Corporation Fiber composite
JP2010155733A (en) * 2008-12-26 2010-07-15 Nichias Corp Inorganic molded body
JP2013136848A (en) * 2011-12-28 2013-07-11 Nichias Corp Inorganic fibrous formed article having high flexibility
JP2018199879A (en) * 2017-05-29 2018-12-20 株式会社エーアンドエーマテリアル Inorganic fibrous molded body

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523920U (en) 1975-06-24 1977-01-12
JP3065929B2 (en) * 1996-03-29 2000-07-17 ニチアス株式会社 Burner tile
CN1468202A (en) * 2000-08-04 2004-01-14 Ħ��������˾ bonded fiber material
EP2034153A3 (en) * 2001-05-25 2012-10-03 Ibiden Co., Ltd. Alumina-silica based fiber, ceramic fiber, ceramic fiber aggregation, holding seal material and manufacturing methods thereof, as well as manufacturing method of alumina fiber aggregation
GB0622652D0 (en) * 2006-11-14 2006-12-20 Saffil Automotive Ltd Mats
KR101228243B1 (en) * 2007-01-05 2013-01-31 (주)엘지하우시스 A non-intumescent mat comprising crystalline type inorganic fiber and a method for manufacturing the same
JP5165601B2 (en) * 2009-01-09 2013-03-21 ニチアス株式会社 Inorganic molded body
AU2010340533B2 (en) * 2010-01-07 2014-04-10 Nichias Corporation Inorganic fibrous molded refractory article, method for producing inorganic fibrous molded refractory article, and inorganic fibrous unshaped refractory composition
CN102344276A (en) * 2011-03-15 2012-02-08 苏州伊索来特耐火纤维有限公司 Production method of aluminum silicate inorganic fiberboard
CN103524140B (en) * 2013-09-23 2015-05-13 天津大学 Oxide ceramic fiber board
CN109320273A (en) * 2018-09-13 2019-02-12 南京鑫达晶体材料科技有限公司 A kind of improved alumina fibre plate and preparation method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124840A (en) * 1983-01-06 1984-07-19 Nichias Corp Manufacture of heat resistant molding
JPH06135776A (en) * 1992-10-28 1994-05-17 Riken Corp Foamed porous ceramic and its production
JPH06240580A (en) * 1993-02-16 1994-08-30 Denki Kagaku Kogyo Kk Method for controlling occurrence of dust of molded article of alumina fiber and molded article of inorganic fiber
JPH09208318A (en) * 1996-01-29 1997-08-12 Isolite Kogyo Kk Formed material of inorganic fiber having high heat-resistance
JPH10226567A (en) * 1997-02-12 1998-08-25 Mitsubishi Heavy Ind Ltd How to make insulation
WO2009081881A1 (en) * 2007-12-21 2009-07-02 Mitsubishi Chemical Corporation Fiber composite
JP2010155733A (en) * 2008-12-26 2010-07-15 Nichias Corp Inorganic molded body
JP2013136848A (en) * 2011-12-28 2013-07-11 Nichias Corp Inorganic fibrous formed article having high flexibility
JP2018199879A (en) * 2017-05-29 2018-12-20 株式会社エーアンドエーマテリアル Inorganic fibrous molded body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
葛谷 稔: "紙パルプ分野における界面活性剤", オレオサイエンス, vol. 第1巻第12号, JPN6021041240, 2001, pages 1141 - 1148, ISSN: 0005506326 *

Also Published As

Publication number Publication date
KR20230096082A (en) 2023-06-29
CN116406436A (en) 2023-07-07
WO2022113465A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
KR20160083030A (en) Dialdehyde modified acrylamide type polymer and method for preparing same
ES2423673T3 (en) Hydrophobic modified cationic copolymers
WO2022113465A1 (en) Molded body
EP1295682A4 (en) Abrasive material
CN101386490A (en) A kind of allyl polyethylene glycol ether type polycarboxylate water reducing agent and preparation method thereof
JP2016501321A5 (en)
JP2007510806A (en) Laundry compositions having polyalkylene oxide groups and copolymers containing quaternary nitrogen atoms and surfactant systems
MX347061B (en) Small particle size telomers of methacrylic acid or anhydride.
CN102716694A (en) Cellulose graft copolymer ceramic slurry dispersing agent and preparation method thereof
JP2992511B2 (en) Cement admixture and cement composition
JPS60122770A (en) Binder for ceramic forming
NZ703547A (en) Composition comprising superabsorbent polymer
ES2277160T3 (en) EMPLOYMENT OF WATERPROOF BINDING AGENTS IN OBTAINING ABRASIVE MATERIALS.
BR112016021898B1 (en) SYNTHETIC POLYMER RHEOLOGY MODIFIER AND REPLACEMENT OF WATER RETAINING AGENT FOR CELLULOSE ETHER IN CEMENT COMPOSITIONS
BR112017006645A2 (en) low to mid range water reduction using comb polycarboxylate polymers
WO2016104261A1 (en) Binder and aqueous solution
WO2014161119A1 (en) Filtrate reducer for calcium phosphate cement
JPWO2016043248A1 (en) Binder and aqueous solution
CN103857710B (en) Dispersant for solid suspension
JP5203920B2 (en) Inorganic molded body and sintered body
JP2001233678A (en) Ceramic molding binder
JPH11106248A (en) Cement admixture
JP6348005B2 (en) Binder
JP6345452B2 (en) Binder
JP6350286B2 (en) Method for producing vinylamine unit-containing polymer solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20250121

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20250312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20250521